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Abstract

A number of authentication protocols have been proposed recently,

where at least some part of the authentication is performed during a

phase, lasting n rounds, with no error correction. This requires assigning

an acceptable threshold for the number of detected errors. This paper de-

scribes a framework enabling an expected loss analysis for all the protocols

in this family. Furthermore, computationally simple methods to obtain

nearly optimal value of the threshold, as well as for the number of rounds

is suggested. Finally, a method to adaptively select both the number of

rounds and the threshold is proposed.

1 Introduction

Traditionally [16,17], authentication is assumed to be taking place on an error-
free channel, and error analysis is performed separately from cryptographic anal-
ysis of protocols. However, a number of authentication protocols have been pro-
posed [2, 3, 7, 9, 10, 12, 13, 15, 18], where at least some part of the authentication
is performed during a challenge-response phase lasting n rounds with no error
correction, due to a need to detect relay attacks by timing delays. The noise
necessitates the use of a tolerance threshold τ , such that a party is authenticated
if the total error of its responses ǫ is below the threshold τ .

This paper introduces a general framework for analysing such protocols. We
assign a cost ℓA to the event that we authenticate a malicious party A—which
we call the attacker—a cost (or loss) ℓU to the event that we fail to authenticate
a valid party U—which we call the user—and a cost ℓB for each round of the
challenge-response phase. Our goal is to select n, τ so as to minimise the expected
loss EL.

The paper is organised as follows. Section 1.1 presents related work, while
Section 2 introduces notation and thresholded authentication protocols. Sec-
tion 3 contains the expected loss analysis under noise. In particular, Sec. 3.1
suggests a method to calculate the threshold accompanied by a finite sample
loss bound, while Sec. 3.2 provides a further bound by selecting an appropriate
number of rounds. These results only require that the expected error of the
attacker is higher than that of the user. Section 4 applies the above analysis
to a number of currently used protocols. Section 5 suggests a high-probability
method for estimating the channel noise and presents the results of simulation
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experiments that compare our choice of threshold with thresholds derived using
asymptotic approximations. Finally, Sec. 6 concludes the paper. For complete-
ness, the appendix provides some useful auxilliary results regarding the finite
sample and the asymptotic derivations.

1.1 Related Work

In certain authentication protocols part of the communication is performed
in noisy channels without employing error correction. Specifically, a rapid-
bit exchange phase was introduced in [2] to compute an upper bound on the
distance of the prover P . This is composed of n challenge-response rounds,
used to calculate a round-trip time and thus place a bound on the distance.
Subsequently, a broad range of distance bounding protocols were proposed, both
for RFID [7, 10, 12, 13, 15], as well as other wireless devices [18–20].

Hancke and Kuhn [7] were the first to indicate that since the rapid-bit ex-
change phase is taking place in a noisy channel, challenges and responses may
be corrupted. Thus, a legitimate user may fail to get authenticated. Their
protocol (henceforth HaKu), employed n rounds and authenticated any prover
who made a number of mistakes ε less than an acceptance threshold τ , so as to
reduce the number of false rejections. Using the binomial distribution and an
assumption on the error rates they give expressions for the false accept and false
reject probability as a function of n and τ , but they provide no further analysis.
Nevertheless, they indicate that the number of challenge-response rounds n in
the rapid bit exchange phase should be chosen according to the expected error
rate. Kim et al. [10] extend this approach with the Swiss-Knife protocol by
considering three types of errors. Finally [15], rather than using a threshold
τ , proposed a protocol (henceforth ECMAD) using an error correcting code
(ECC). ECMAD, which extends the MAD protocol [19], uses only k of the n
total rounds for the challenges and responses. The remaining n− k rounds are
used to transmit the (n, k) ECC. This has the effect of achieving better security
(in terms of false acceptance rates) with the same number of rounds n.

All these approaches use n rounds in the noisy authentication phase. How-
ever, they do not define the optimal n. They simply state that the probability
of authenticating a user becomes much higher than the probability of authen-
ticating an attacker as n increases. However, a large value of n is incompatible
with the requirements of many applications and devices (i.e. high value of n
leads to high overhead for resource-constrained devices). This can be modelled
by assigning an explicit cost to every round, which should take into account the
transmission energy, computation and time overhead. This cost has so far not
been explicitly taken into consideration.

Another work that is closely related to ours is [14], which, given a required
false acceptance and false rejection rate, provides a lower bound on the number
of required rounds. This analysis is performed for both HaKu and ECMAD.
However, it assumes that the number of rounds n would be large enough for
the binomial distribution of errors to be approximately normal. Our analysis
is more general, since it uses finite-sample bounds that hold for any bounded
error function.

Recently, Baignères et al. [1] have given an analysis on the related topic of
distinguishing between a real and a fake solver of challenge-response puzzles.
More precisely, they study CAPTCHA-like protocols and provide a threshold
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which minimizes the probability of error in these protocols. The main differences
between the analysis presented in this paper and [1] can be summarised below:
(a) We perform an expected loss analysis rather than an error analysis. (b) Our
bounds hold uniformly, while [1] uses an asymptotically optimal distinguisher.
(c) We consider bounded errors rather than {0, 1} errors for each challenge-
response. (d) We additionally propose a method to estimate channel noise.
This is of course not applicable in the context of [1], due to the different setting.

A more general work on authentication under noisy conditions was presented
in [11]. This provided tight information-theoretic upper and lower bounds on
the attacker’s success in impersonation and substitution attacks, proving that
it decreased with noise. However, our analysis shows that, when one considers
losses due to communication overhead and false rejections of users, the expected
loss increases, which is a natural result.

1.2 Our contribution

In this paper, we perform a detailed expected loss analysis for a general class of
multi-round authentication protocols in a noisy channel. The analysis is per-
formed by assigning a loss ℓB to each round, and losses ℓA, ℓU to false acceptance
and false rejection respectively.

We show how a nearly-optimal threshold τ̂∗n for a given number of rounds n
can be chosen and give worst-case bounds on the expected loss for that choice.
Thus, the bounds hold no matter if the party that attempts to get authenti-
cated is either a legitimate user U or an attacker A. This extends our previous
work [12], which proposed a new distance bounding protocol (Hitomi) and only
calculated a value for the threshold τ , without providing any bounds.

We also show how a nearly-optimal number of rounds n̂∗ can be chosen and
give further bounds on the expected loss. The bounds hold for any bounded error
function, and not only for {0, 1} errors.1 Furthermore, they are valid for any n,
since they are based on probability inequalities for a finite number of samples.2

Thus, they are considerably more general to the bounds of [14].
Finally, we provide high-probability estimates for the current noise level in

the channel by leveraging the coding performed in the initial and final phases
of the protocol, which take place in a coded channel. This enables us to signifi-
cantly weaken assumptions on knowledge of the noise level in the channel and
in turn, provide an authentication algorithm which has low expected loss with
high probability.

2 Preliminaries

We consider sequences x = x1, . . . , xn with all xi in some alphabet X and
x ∈ Xn. We write X ∗ ,

⋃∞
n=0 Xn for the set of all sequences. We use , to

indicate a definition. P(A) denotes the probability of event A, while E denotes
expectations so that E(X | A) =∑u∈Ω uP(X = u | A) denotes the conditional
expectation of random variable X ∈ Ω when A is true. The notation FΩ will
denote an appropriate σ-field on Ω. Finally, I {A} is an indicator function equal
to 1 when A is true and 0 otherwise.

1In all previous proposals, there is either an error at each round, or there is not.
2The analysis in [14] only holds for large n, so the approximation only holds asymptotically.
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We consider shared secret challenge-response authentication protocols with
multi-round exchanges. In such protocols, a verifier V grants access to a prover
P , if the latter can demonstrate its identity I and possession of a shared secret
s ∈ Xm. The protocol has three phases: (i) An initialisation phase. (ii) A
rapid-bit exchange phase, lasting n rounds. (iii) A termination phase. A fre-
quent assumption is that the authentication takes place in a noise-free channel.
The extension to noisy channels is done by assuming the existence of an error
correcting protocol. Thus, the error analysis is performed separately from the
cryptographic analysis. Here we shall integrate the two aspects of the problem
by performing an expected loss analysis of the authentication protocol directly
on the noisy channel. We shall assume that the initialisation and termination
phases are fixed (due to other security considerations) and focus on the rapid-bit
exchange phase.

Due to noise in the physical medium, in any exchange between V and P , the
former may send a symbol x ∈ X , while the latter may receive a symbol x̂ ∈ X
such that x 6= x̂. We shall denote the probability of erroneous transmission
in the data layer as: ω , P(x 6= x̂), ∀x, x̂ ∈ X . For simplicity, we shall only
treat the case of symmetric channel noise such that: P(x̂ = y | x 6= x̂) = 1

|X |−1 ,

∀y 6= x, x, y ∈ X .

2.1 Thresholded protocols

During multi-round challenge response authentication phase (e.g. the rapid-bit
exchange phase in an RFID distance-bounding protocol) the verifier V sends n
challenges c1, . . . , cn, with ck ∈ X , to the prover P , which responds by transmit-
ting n responses r1, . . . , rn, with rk ∈ X . We use c = (ck)

n
k=1, and r = (rk)

n
k=1 to

denote the complete challenge and response sequences respectively. The verifier
V can calculate the correct responses R(ci) and so can calculate an error εi for
the i-th round. While the legitimate user U should also be able to calculate the
correct responses, due to noise, there may be errors in the received responses.
On the other hand, the attacker has to resort to guessing, so the expected error
of the attacker should be higher than that of the user. In order to trade off
false acceptances with false rejections, we need a threshold value τ , such that a
prover is accepted if and only if the total error observed is smaller than τ . More
precisely, we define:

Definition 1. An additive thresholded multi-round challenge-response authen-
tication protocol has the following parameters:

1. A natural number n > 0, equal to the number of challenge-response rounds.

2. A threshold τ ≥ 0.

3. An error function ε ,
∑n

i=1 εi, where εi ∈ [0, 1] represents the error of
the i-th round.

The verifier V rejects the prover (authenticator) P, if and only if ε ≥ τ .

The relation of ε to the challenge and response strings c and r strongly
depends on the protocol. In order to make our analysis generally applicable, we
define pA ≤ E(εi | A), a lower bound on the expected per-round error of the
attacker and pU ≥ E(εi | U), an upper bound on the error of a legitimate user.
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These bounds depend on the noise and on the protocol under consideration. We
shall return to them in section 4.

3 Expected loss analysis

We now specify our potential losses. For every round of the rapid-bit exchange
phase, we suffer loss ℓB. In addition, we suffer a loss of ℓA for each false accep-
tance and a loss ℓU for false rejection.3 Given that we perform n rounds, the
total loss when the prover P is either the legitimate user U or the attacker A is
given by:

L =











nℓB + ℓU , if ε ≥ τ and P = U

nℓB + ℓA, if ε < τ and P = A

nℓB, otherwise.

(1)

Armed with this information, we can now embark upon an expected loss anal-
ysis. We wish to devise an algorithm that guarantees an upper bound on the
expected loss EL. To start with, we note that the expected loss when the
communicating party is an attacker A or the user U , is given respectively by:

E(L | A) = nℓB + P(ε < τ | A) · ℓA + P(ε ≥ τ | A) · 0 (2)

E(L | U) = nℓB + P(ε < τ | U) · 0 + P(ε ≥ τ | U) · ℓU . (3)

The expected loss is in either case bounded by the worst-case expected loss:

L , max {E(L | A),E(L | U)} ≥ EL (4)

If we can find an expression that bounds both E(L | A) and E(L | U), we
automatically obtain a bound on the expected loss, EL.

The remainder of this section is organised as follows. Section 3.1 shows how
a nearly-optimal threshold τ̂∗n for a given number of rounds n can be chosen
and gives bounds on the expected loss for that choice. Section 3.2 shows how a
nearly-optimal number of rounds n̂∗ can be chosen and gives further bounds.

3.1 Choice of threshold

We want to choose a threshold τ such that no matter whether the prover P is
the attacker A or the legitimate user U the expected loss E(L | P) is as small
as possible. The problem is that as we increase the threshold τ , E(L | P = U)
decreases, while E(L | P = A) increases. The opposite is happening when
we decrease the threshold τ . Thus, to minimise the worst-case expected loss,
we can choose a threshold τ such that E(L | P = A, τ) = E(L | P = U, τ). A
particular choice of the threshold τ that minimises an upper bound on the worst-
case expected loss is given in Theorem 1. As an intermediate step, we obtain a
bound on the worst-case expected loss for any given threshold τ . Formally, we
can show the following:

3These losses are subjectively set to application-dependent values. Clearly, for cases where
falsely authenticating an attacker the impact is severe, ℓA must be much greater than ℓU .
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Lemma 1. Let εi ∈ [0, 1] be the error of the i-th round. If, for all i > 0, it holds
that z̄A , E(εi | A) ≥ pA and z̄U , E(εi | U) ≤ pU , for some pA, pU ∈ [0, 1]
such that npA ≤ τ ≤ npU , then:

L(n; τ) , nℓB +max

{

exp

(

− 2

n
(npU − τ)2

)

ℓU , exp

(

− 2

n
(npA − τ)2

)

ℓA

}

≥ max {E(L | A),E(L | U)} ≥ EL. (5)

Proof. The expected loss when P = A, is simply:

E(L | A) = nℓB + P

(

∑

i

εi < τ
∣

∣

∣
A

)

ℓA

= nℓB + P

(

∑

i

εi − nz̄A < τ − nz̄A

∣

∣

∣
A

)

ℓA

≤ nℓB + P

(

∑

i

εi − nz̄A < τ − npA

∣

∣

∣
A

)

ℓA

≤ nℓB + e−
2
n
(npA−τ)2ℓA,

the last two steps used the fact that z̄A ≥ pA and the Hoeffding inequality (19).
Specifically, in our case, Lemma 2 (page 14) applies with Xi = ǫi. Then, it is

easy to see that µi = z̄A for all i and bi−ai = 1, so P(ǫ < npA+nt | A) ≤ e−2nt2 .
By setting τ = npA+nt, we obtain t = (τ −npA)/n, which we can plug into the
above inequality, thus arriving at the required result. The user case, P = U , is
handled similarly and we conclude that E(L | U) ≤ nℓB + e−

2
n
(npU−τ)2ℓU .

Having bounded the loss suffered when choosing a specific threshold, we now
choose a threshold τ̂∗n that minimises the above bound for fixed n. In fact, we
can show that such a threshold results in a particular loss bound.

Theorem 1. Let ρ , ℓA/ℓU and select

τ = τ̂∗n ,
n(pA + pU )

2
− ln ρ

4∆
(6)

If npU ≤ τ ≤ npA, then the expected loss EL is bounded by:

E(L | n, τ̂∗n) ≤ L1(n) , nℓB + e−
n
2 ∆2 ·

√

ℓAℓU . (7)

with ∆ , pA − pU .

Proof. Substitute (6) in the first exponential of (5) to obtain:

e−
2
n
(npU−τ̂∗)2ℓU = exp

(

−n

2
∆2 +

1

2
ln ρ− ln2 ρ

8n∆2
+ ln ℓU

)

ℓU

= e−
n
2 ∆2

e−
ln2 ρ

8n∆2

√

ℓAℓU .

It is easy to see that the exact same result is obtained by substituting (6) in the
second exponential of (5). Thus, both E(L | A) and E(L | U) are bounded by
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the same quantity and consequently, so is max {E(L | A),E(L | U)}. Thus,

L(n, τ̂∗n) ≤ nℓB + exp
(

−n

2
∆2
)

· exp
(

− ln2 ρ

8n∆2

)

·
√

ℓAℓU

≤ nℓB + e−
n
2 ∆2√

ℓAℓU ,

where we simplified the bound by noting that ln2 ρ
8n∆2 > 0.

The intuition behind the algorithm and the analysis is that it is possible
to bound the probability that A makes less errors than expected, or that U
makes more than expected. For this reason, the τ̂∗n chosen in the theorem must
lie between npU and npA. This also implies a lower bound on the number of
rounds n.

3.2 Choice of the number of rounds

Using similar techniques to those employed for obtaining a suitable value for
the threshold, we now indicate a good choice for the number of rounds n and
provide a matching bound on the expected loss.

Theorem 2. Assume ℓA, ℓU , ℓB > 0. If we choose τ = τ̂∗n and

n = n̂∗ ,

√
1 + 2CK − 1

C
, (8)

where C = ∆2 and K =
√
ℓAℓU/ℓB, then the expected loss EL is bounded by:

E(L | τ̂∗n , n̂∗) ≤ L2 ,
√

8K/C · ℓB =

√
8ℓB(ℓAℓU )

1/4

∆
. (9)

Proof. We shall bound each one of the summands of (7) by
√

2K/C · ℓB. For
the first term we have:

nℓB =

√
1 + 2CK − 1

C
ℓB ≤

√
1 + 2CK

C
ℓB

≤
√
2CK

C
ℓB =

√

2K

C
ℓB.

For the second term, by noting that ex ≥ 1 + x, we have:

√

ℓUℓA · e−n
2 ∆2 ≤

√
ℓUℓA

1 + n
2∆

2
=

KℓB

1 + nC
2

=
2KℓB
=

2KℓB
2 + nC

=
2KℓB

1 +
√
1 + 2CK

≤ 2KℓB√
1 + 2CK

≤ 2KℓB√
2CK

=

√

2K

C
ℓB.

Summing the two bounds, we obtain the required result.

This theorem proves that our worst-case expected loss L grows sublinearly
both with increasing round cost (with rate O(ǫ1/2)) and with increasing authen-
tication costs (with rate O(ǫ1/4)). Furthermore, the expected loss is bounded
symmetrically for both user and attacker access. Finally, there is a strong de-
pendence on the margin ∆ between the attacker and the user error rates, which
is an expected result.
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4 Analysis of RFID thresholded protocols

Currently, the only known protocols employing an authentication phase without
any error correction that we are aware of are RFID distance bounding protocols.
For that reason, we shall examine the properties of two such protocols, for which
it is possible to derive expressions for pA, pU given a symmetric channel noise
ω.

The Swiss-Knife protocol [10] and the variant Hitomi [12] are thresholded
authentication protocols satisfying Definition 1. It is easy to show (for details
see [12]) that, for those two protocols, under channel noise ω, the expected error
bounds pA, pU are given by: pA = ω+1

2 , pU = 2ω, where we note in passing that
pA ≥ pU and so ω ≤ 1

3 . Finally, by substituting ∆ = pA − pU = 1−3ω
2 in (7), we

obtain the following bound for Swiss-Knife and Hitomi:

EL ≤ nℓB + e−
n(1−3ω)2

8 ·
√

ℓAℓU , (10)

We have performed a number of experiments to test the efficacy of these
protocols, when used in conjunction with our suggested, as well as the optimal
values of the threshold and number of rounds. In all of the experiments shown
here, we chose the following values for the losses: ℓA = 10, ℓU = 1, ℓB = 10−2.

Figure 1(a) depicts the bound (10) on the expected loss, as well as the actual
EL calculated via the binomial formula, when the threshold τ̂∗n , calculated from
(6), is used. We plot both the expected loss and the bound for two different
channel noise levels ω ∈

{

10−1, 10−2
}

, where the number of rounds n varies
from 1 to 256. Obviously, the bound is greater than the actual expected loss,
while it approaches it exponentially fast as n increases. In addition, the losses
are higher when the amount of noise increases.

Furthermore, we can see that there are minimising values of n for all cases.
While they do not coincide for the bound and the actual expected loss, they
are within a factor of two of each other. Finally, n̂∗, the value of n minimising
the bound, is always greater than n∗ , argminn maxP∈A,U E(L | P , n), the
value of n that minimises the worst-case expected loss. Since the probability of
incorrect authentication always decreases with increasing n, this implies that
any additional losses incurred by using n̂∗ is due to transmission costs only.

Figure 1(b) examines the effect of noise in more detail. In particular, it de-
picts the worst-case expected loss for the optimal number of rounds n∗, denoted
by E(L | n∗) in the legend. This is of course smaller than E(L | n̂∗), the loss
suffered by choosing n̂∗, with the gap becoming smaller for larger error rates.
Since when this occurs, the expected loss is very close to L1, this implies that
the bound of the Theorem 1 needs considerable tightening for small ω. Finally,
L2 is considerably looser, and thus it is only of theoretical interest.

Finally, due to the way that the protocols under consideration generate
challenges and responses, the number of rounds n must be smaller than the
length k of the messages in the initialization phase and also the length of the key
x. Thus, in practice we will always select a number of rounds n = min{n∗, k}.
This condition is necessary since the responses r for both protocols are calculated
using an XOR operation between the secret key x and a constant value (i.e.
either α or β) that has the same length k. Since these protocols are only used
as examples, it is beyond the scope of this paper to propose protocols that do
not suffer from this limitation.
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(a) The Expected Loss EL and the bound on the Expected Loss L1 vs. the number of bits
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(b) The worst-case expected Loss L and the bounds L1 and L2 from theorems 1 and 2
respectively vs. the channel error rate ω.

Figure 1: Comparison of all losses.
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5 Estimating ω

In this section, we discuss how it is possible to calculate the channel error rate
ω, which is used in the expressions for pA, pU . This can be done by leveraging
the coding performed during the initial and final phases of the protocol. We
assume some coding function Φ : Xm → X k, with k > m, and a metric γ on X k

(where usually X = {0, 1} and γ is the Hamming distance) such that:

γmin , {γ(Φ(x),Φ(y)) : x, y ∈ Xm, x 6= y} (11)

is the minimum (Hamming) distance between valid codewords. For a given

x ∈ Xm, the source transmits φ = Φ(x) and the sink receives φ̂, with φ, φ̂ ∈ Xn.
As before, we assume that the physical channel has a symmetric error rate
ω = P(φ̂i 6= φi), where φi denotes the i-th bit of φ. This is then decoded as

x̂ , argmin
{

γ(φ̂,Φ(y)) : y ∈ Xm
}

. Let θ be the number of errors in the string

φ̂, or more precisely θ = γ(φ, φ̂). Let θ̂ , γ(Φ(x̂), φ̂) be the distance between

the closest valid codeword Φ(x̂) and the received φ̂. If θ < (γmin − 1)/2, then

θ = θ̂.
The crux of our method for estimating ω relies on the number of errors θ

being less than (γmin − 1)/2, in which case, the estimated number of errors θ̂

will equal θ. Let ω̂ , θ̂
n be our empirical error rate. In that case, the expected

empirical error rate equals the true error rate. More formally:

E (ω̂ | θ ≤ (γmin − 1)/2) = ω. (12)

If θ > (γmin − 1)/2 then the protocol fails in any case, due to decoding errors
in the initial or final phases. If not, then the above equation holds and we can
obtain high probability bounds for ω via the Hoeffding inequality (Appendix,
Lemma 2). In particular, it is easy to show that, for any δ ∈ [0, 1]:

P

(

|ω̂ − ω| ≥
√

ln 2/δ

2k

)

≤ δ, (13)

by substituting the square-root term into (19), and setting µi = ω,
∑

Xi = θ̂,
ai = 0, bi = 1. Consequently, for the Swiss-Knife family of protocols the
following values for pA and pU hold with probability 1− δ:

pA =
1 + ω̂

2
+

√

ln 2/δ

8k
, pU = 2ω̂ −

√

2 ln 2/δ

k
. (14)

While we were unable to provide bounds on the performance of this choice,
experimental investigations presented in the next section indicate that it has
good performance.

5.1 Evaluation Experiments

We have performed some experiments to evaluate our methods in a more realistic
setting, involving an RFID distance bounding protocol with a rapid-bit exchange
phase. We perform simulations for two cases: Firstly, when a legitimate user
U is trying to get authenticated and secondly, when an adversary A is trying
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to perform a mafia fraud attack. We have estimated the worst-case expected
loss by running 104 experiments for each case, obtaining a pair of estimates
Ê(L | A), Ê(L | U) by averaging the loss L, as defined in (1), incurred in each
experiment and taking the maximum of the two. In all of the experiments shown
in this section, we chose the following values for the losses: ℓA = 10, ℓU = 1,
ℓB = 10−2, while we used k = 210 for the coded messages in the initialisation
phase.

The actual values pA, pU depend on ω, which is unknown. We compare three
methods for choosing pA, pU . Firstly, guessing a value ω̂ for the channel noise.
Secondly, using the maximum likelihood noise estimate ω̂ = θ̂/k. In both cases,
we simply use ω̂ as described at the beginning of Sec. 4 to obtain pA, pU . In the
third case, we use the high-probability bounds (14) for pA, pU , with an arbitrary
value of δ.

In the first experiment, we use the nearly-optimal threshold and number
of rounds that we have derived in our analysis. In the second experiment, we
replace our choice of threshold with a choice similar to that of Baignères et al. [1].
Their threshold is derived via the likelihood ratio test, which is asymptotically
optimal (c.f. [4, 6])

τ́ =
n ln 1−pU

1−pA

ln 1−pU

1−pA
− ln pU

pA

(15)

Since in our case we have unequal losses ℓA and ℓU , we re-derive their threshold
via a Bayesian test (to which a Bayesian formulation of the Neymann-Pearson
lemma [6] applies) to obtain:

τ̃ =
n ln 1−pU

1−pA
− ln ρ

ln 1−pU

1−pA
− ln pU

pA

(16)

Interestingly, for small ∆, the form of τ̃ is similar to τ̂∗n : Let p̄ such that pA =
p̄+∆/2 and pU = p̄−∆/2. Then (16) can be approximated by:

τ̃∗ = np̄− p̄(1 − p̄)

∆
ln ρ (17)

More details on the derivation of (16) are given in Appendix A.2.
Figure 2 depicts the worst-case expected loss L as a function of the actual

noise ω. Figure 2(a) shows L using the threshold τ derived from our expected loss
analysis (6), while in Figure 2(b) we use the asymptotically optimal threshold
of (16). In both cases, we plot L, while the actual noise ω is changing, for a
number of different cases. Initially, we investigate the evolution of L for three
arbitrarily chosen values ω̂ ∈ {10−1, 10−2, 10−3}. Additionally, we examine the
evolution of the worst-case expected loss, when the noise is empirically estimated
ω̂ = θ̂/n and finally when pA and pU are calculated via equation (14) with
δ ∈ {10−1, 10−2}.

As it can be seen in Figure 2, in all cases (using ours Figure 2(a) or Baignères
et al. [1] threshold Figure 2(b)) the worst-case expected loss is very low for small
values of the actual noise and increases sharply when the actual noise exceeds
the value of 10−1. It is interesting to see that when we use the optimistic4 high

4Experiments with pessimistic high probability estimates for the noise showed a significant
increase in the number of rounds used, which resulted in a higher expected loss.
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probability estimates for pA, pU , we obtain almost always better performance
than simply guessing the noise, or using the plain empirical estimate ω̂ directly.
Furthermore, using the asymptotically optimal threshold (16), we observe a
deterioration in the results.

As mentioned in the related work (Sec. 1.1), the choice of the threshold by
Baignères et al. [1] is only asymptotically optimal. Ours, while not optimal,
gives a worst-case expected loss guarantee for any finite sample size. Thus, it
has better performance when the asymptotic approximation is not sufficiently
good, which occurs when both the number of rounds n and the gap ∆ are small.

Finally, note that in the Swiss-Knife and Hitomi protocols, the size of
the initialisation messages is fixed, since the number of rounds n is fixed. In
practice, one would have to modify these protocols in order for them to work
with an arbitrary number of rounds, but this subject is beyond the scope of this
paper. Our focus is mainly the expected loss analysis of the noisy authentication
phase.

6 Conclusion

We have performed an expected loss analysis for thresholded authentication pro-
tocols under noise. This is particularly significant for areas of communications
where challenges and responses are costly and where there exists significant un-
certainty about the correctness of any single response. More precisely, we have
shown how to select a threshold and provided an upper bound on the worst-case
expected loss. Additionally, we have shown how to select the number of rounds
in order to tighten the loss and obtained a loss bound that holds uniformly
and depends only on the error rates of the user and attacker and the individual
losses. We have applied these choices of threshold and number of rounds to two
representative distance bounding protocols, the Swiss-Knife and the Hitomi.
In addition, we have presented a high-probability method for estimating the
channel noise for such protocols. We have examined its performance in further
simulation experiments with unknown channel noise, and shown that we obtain
uniformly superior results to guessing or direct empirical noise estimates. Fi-
nally, we repeated those experiments with a asymptotically optimal threshold
similar to that used by Baignères et al. [1]. Our results indicate a significant
improvement through the use of a threshold with uniform, rather than asymp-
totic, guarantees. Consequently, it is our view that algorithms motivated by
an asymptotic analysis should be avoided in the finite-sample regime of most
challenge-response authentication protocols.
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Figure 2: The worst-case expected loss as a function of noise. We plot the
evolution of the loss as noise changes, for a number of different cases. Firstly,
for the case where we arbitrarily assume a noise value ω̂ ∈ {10−1, 10−2, 10−3}.
Secondly, for an empirically estimated ω̂ = k̂/n, and finally for pA, pU calculated
via equation (14) with δ ∈ {10−1, 10−2}.
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A Auxilliary results

A.1 Useful formulas

If X1, . . . , Xn are Bernoulli random variables with Xk ∈ {0, 1} and P(Xk = 1) =
µ for all k, then

P

(

n
∑

k=1

Xk ≥ u

)

=
u
∑

k=0

(

n

k

)

µk(1− µ)n−k. (18)

This probability can be bounded via Hoeffding’s inequality [8]:

Lemma 2 (Hoeffding). For independent random variables X1, . . . , Xn such that
Xi ∈ [ai, bi], with µi , EXi and t > 0:

P

(

n
∑

i=1

Xi ≥
n
∑

i=1

µi + nt

)

= P

(

n
∑

i=1

Xi ≤
n
∑

i=1

µi − nt

)

≤ exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

.

(19)

A.2 On asymptotic thresholds

One way to obtain an asymptotically optimal threshold is to employ a Bayesian
hypothesis test [6]. This requires defining a prior probabilty on the possible
hypotheses. In our case, the hypothesis set is H = {A,U}, on which we define a
prior probability π. For {0, 1} errors, the probability of observing ε errors out of
n observations is given by P(ε | A) and P(ε | U) for the attacker and user respec-
tively and it follows a binomial distribution with parameters pA, pU respectively.
Given an observed error x, the posterior probability of any hypothesis h ∈ H is:

π(h | ε = x) =
P(ε = x | h)π(h)

∑

h′∈H P(ε = x | h′)π(h′)
.

We then define a decision set G = {gA, gU , g∅}, where gA means we decide that
the prover is an attacker and gU means we decide that the prover is a user and g∅
means that we are undecided. Finally, we define a loss function L : G×H → R,
such that L(g, h) is our loss when we decide g and h is the correct hypothesis.
The expected loss of decision g ∈ G, under our prior and given ε errors out of
n is:

Eπ(L | ε, g) =
∑

h∈H

L(g, h)π(h | ε),

where Eπ denotes expectation with respect to the prior π. Now define the
decision function q : {0, 1, . . . , n} → G:

q(ε) ,

{

gU , if Eπ(L | ε, gU ) ≤ Eπ(L | ε, gA)
gA, if Eπ(L | ε, gU ) > Eπ(L | ε, gA).

(20)

This decision function minimises Eπ L by construction (c.f. [6] ch. 8). The
following remark is applicable in our case:
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Remark 1. Assume i.i.d errors with εi ∈ {0, 1}, so that we can use a binomial
probability for P(ε | h). Set the loss function L to be L(gU , A) = ℓA, L(gA, U) =
ℓU and 0 otherwise. Then the decision function (20) becomes equivalent to:

q(ε) ,

{

gU , if ε < τb

gA, if ε ≥ τb,

where

τb ,
n ln 1−pU

1−pA
− ln[ρπ(A)

π(U) ]

ln 1−pU

1−pA
− ln pU

pA

Proof. We start by calculating the expected loss for either decision. First:

Eπ(L | ε, gA) = ℓUπ(U | ε) = ℓUπ(U)P(ε | U)

π(A)P(ε | A) + π(U)P(ε | U)
,

due to our choice of L and π. Similarly,

Eπ(L | ε, gU ) = ℓAπ(A | ε) = ℓAπ(A)P(ε | A)
π(A)P(ε | A) + π(U)P(ε | U)

.

Combining the above expressions, the decision function (20) can then be written
so that we make decision gU if and only if:

ℓAπ(A)P(ε | A) ≤ ℓUπ(U)P(ε | U).

Finally, replacing (18) with means pA, pU respectively and taking logarithms we
obtain:

ln[ρπ(A)/π(U)] + ε ln
pA
pU

≤ (n− ε) ln
1− pU
1− pA

,

as a condition for deciding gU . With some elementary manipulations, we arrive
at the required result.

Given the conditions of the previous remark, it is easy to see (c.f. [6] ch. 8)
that the decision function q minimises the Bayes risk:

Eπ(L | q) = π(A)P(ε < τb | A)ℓU + π(U)P(ε ≥ τb | U)ℓA. (21)

Furthermore, for π(A) = π(U) = 1/2, we obtain (16). In addition, this choice
also minimises an upper bound on the worst-case expected loss since:

max
h∈H

E(L | h, q) ≤
∑

h∈H

E(L | h, q) = 2Eπ(L | q).

for uniform π.
Finally, the asymptotic optimality of Bayesian testing generally follows from

Bayesian consistency (c.f. [6] ch. 10). More specifically, [5] has proved the
asymptotic optimality of Bayes solutions for hypothesis testing of the type ex-
amined here.
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