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1 Introduction

The impedance (or, equivalently, dispersion relation coefficients) in synchrotrons have been analytically computed
for more than forty years [1]. The formalism used, in particular the source terms, changed since then, together
with the appoximations made, as machines open up new frequency domains or pipe material evolves in such a
way that usual approximations do not apply anymore. A general formalism is therefore very useful, for present
and forthcoming impedance calculations. This is particularly true for the LHC, where the wall impedance coming
from graphite collimators, combined to the low revolution frequency, makes the classic thick wall formula be
wrong in at least part of the frequency domain of interest.
Also, one often limits oneself to the computation of impedance, which is the quantity needed to characterize the
effect of the environment on the beam dynamics. However, more generally the six components of the electro-
magnetic fields are also of interest, because knowing them enables a better understanding of the behaviour of the
impedance with frequency and various parameters. There are also relevant from the measurement point of view,
since impedance measurements often come from field measurements, especially the magnetic field, and some of
the approximations that are then made need to be checked theoretically.
Therefore, we will try here to present a general formalism, introduced first by Bruno Zotter (see Ref. [2] and
references therein), with as little approximations as possible, which will enable us to compute analytically the
electromagnetic fields and impedance created by a beam in an accelerator. Both longitudinal and transverse cases
are studied, for a cylindrical pipe made of any resistive, dielectric or magnetic material, assuming only its linearity,
isotropy, homogeneity (in each layer) and the validity of Ohm’s law. We derive here the most general and exact
(within the assumptions made, see next section) formulae in frequency domain, in the multimode and multilayer
case. We restrict ourselves to the single-bunch case1, and to an infinitely long pipe wall.
The paper is structured as follows. We start by giving the source creating the electromagnetic fields in the pipe
in Section 2. Then we introduce Maxwell equations and the various material constants used in Section 3. After
that we derive the general expressions for the longitudinal components of the fields in Section 4, from which the
transverse components are then computed in Section 5. The various constants are computed in Section 6, using a
new matrix method. The electromagnetic forces on a test particle are also derived in Section 7, followed by the
impedance calculation in Section 8, with new results concerning the multimode analysis. Our concluding remarks
follow finally in Section 9.
Note that the whole paper is expressed in SI (or MKSA) units.

2 Source charges and currents

We consider a macroparticle of chargeQ travelling at a speedυ along the axis of a cylindrical pipe of inner radius
b. In the single-bunch caseυ is the speed of the beamυb, but in the multibunch case or for a coasting beam,
the source travels on a wave with speedυ 6= υb (see Refs. [2, 3] for more details). The pipe is supposed to be
infinitely long (no side effects). In time domain, the charge is supposed to be slightly offset from the center of
the pipe by a distancea along the horizontal direction. Neglecting any transient effects, and using the cylindrical
coordinates(r, θ, s) (s stands for the coordinate along the axis of the cylinder, which is also assumed to be the
azimuthal coordinate along the beam orbit in the accelerator – we therefore neglect all curvature effects which is
a good approximation for accelerators of long radius of curvature like the LHC; we refer the reader to Refs. [4–9]
for details about such effects), the charge is thus supposed to be atr = a, θ = 0 (or θ = 2lπ wherel is an integer)
ands = υt [10, p. 5], so that the charge density2 is [11]

ρ(r, θ, s; t) =
Q

a
δ(r − a)δp(θ)δ(s− vt), (2.1)

1Still, we will sometimes make a difference between the beam wave velocity and the test particle velocity, so that the formalism could
be used in the multibunch case as well.

2This charge density (and the corresponding current density) is valid when only one bunch is passing through the beam pipe. In
circular accelerators we should in principle take into account multiturn effects, in that case a bunch is passing several times at a position
s, all separated by an integer number ofTrev, the revolution period along the orbit. This means that we have to replaceδ(s − vt) by∑∞

l=−∞ δ(s − v(t − lTrev)) if at t = 0 the bunch is ats = 0. For this study only single-turn effects are considered. Maxwell equations
being linear we could anyway perform such a multiturn sum on the resulting fields we compute in this paper.
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where δ is the Dirac distribution, i.e. such that for any functionf ,
∫∞
−∞ f(x)δ(x)dx = f(0), and δp is a

2π−periodic Dirac distribution, i.e.δp(θ) =
∑∞

l=−∞ δ(θ − 2lπ) (this is to take into account the periodicity
of the azimuthal angleθ). As expected we get

∫∫∫
Ω ρ(r, θ, s; t)rdrdθds = Q for any volumeΩ aroundr = a,

θ = 0 ands = υt (thus the1
a

factor in the charge density).
It is convenient to solve Maxwell equations in frequency domain. To do so we write the factorδ(s− υt) in terms
of its Fourier spectrum [12, 13]

δ(s− υt) =
1

2π

∫ ∞

−∞
e−jk(s−υt)dk

=
1

2πυ

∫ ∞

−∞
ejω(t− s

υ )dω

=
1

2π

∫ ∞

−∞
dωejωt e

−jks

υ
, (2.2)

where
k ≡ ω

υ
, (2.3)

is the wave number. We drop the factor1
2π

∫∞
−∞ dωejωt to proceed to the frequency domain, to get

ρ(r, θ, s;ω) =
Q

aυ
δ(r − a)δp(θ)e

−jks. (2.4)

Since the macroparticle is supposed to travel at speedυ along thes axis, the current density is obtained in general
by [11]

~J = ρυ~es,

~es being the unit vector along thes axis. Therefore we get for our source, in frequency domain

~J(r, θ, s;ω) =
Q

a
δ(r − a)δp(θ)e

−jks ~es. (2.5)

We can rewrite Eqs. (2.4) and (2.5) by using the Fourier series expansion on azimuthal modes of theδp(θ) fac-
tor [11, 12]

δp(θ) =
1

2π
+

∞∑

m=1

cos(mθ)

π
. (2.6)

We then obtain for the charge density [10, p. 5], [14]:

ρ(r, θ, s;ω) =
∞∑

m=0

Pm cos(mθ)

πυam+1(1 + δm0)
δ(r − a)e−jks, (2.7)

whereδm0 = 1 if m = 0, 0 otherwise, andPm = Qam is themth multipole moment of the source. We can now
isolate each azimuthal mode, obtaining finally for the charge density [13, 14]

ρm(r, θ, s;ω) =
Pm cos(mθ)

πυam+1(1 + δm0)
δ(r − a)e−jks, (2.8)

and for the current density along thes axis

Jm(r, θ, s;ω) =
Pm cos(mθ)

πam+1(1 + δm0)
δ(r − a)e−jks. (2.9)

For a given azimuthal modem, Eqs. (2.8) and (2.9) give the charge and current densities in frequency domain that
we will use to solve the electromagnetic fields. They are those of a wave of frequencyω propagating along thes
axis with a wave numberk. Since Maxwell equations are linear inρ and ~J (see next section), to obtain the fields
for the initial sources inδp(θ) from Eqs. (2.4) and (2.5) we will need to sum the responses from all the azimuthal
modesm, as in Eq. (2.7). Then to get back to time domain we should put back the1

2π

∫∞
−∞ dωejωt factor and

integrate our frequency domain solutions.
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3 Maxwell equations

The macroscopic Maxwell equations in frequency domain for the electric and magnetic fields~E and ~H in a
general linear and isotropic medium are [2]

div ~D = ρm, (3.1)
~curl ~H − jω ~D = ~Jm, (3.2)
~curl ~E + jω ~B = 0, (3.3)

div ~B = 0, (3.4)

whereρm and ~Jm = Jm ~es are given in the whole space by Eqs. (2.8) and (2.9). The electric displacement~D and
the magnetic induction~B are defined using complex permittivities and permeabilitiesεc andµ

~D = εc ~E, (3.5)
~B = µ ~H, (3.6)

where

εc = ε0ε1 = ε0
(
ε′r − jε′′r

)
= ε0εb [1 − j tanϑE ] +

σ

jω
, (3.7)

µ = µ0µ1 = µ0µr [1 − j tanϑM ] . (3.8)

In these expressions,ε1 (µ1) is the relative complex permittivity (permeability) of the medium,ε0 (µ0) the per-
mittivity (permeability) of vacuum,µr is the real part of the relative complex permeability andtanϑM is the
magnetic loss tangent (that depends on frequency).ε1 can be written in terms of its real and imaginary partsε′r
and−ε′′r , or equivalently in terms of the “normal” complex dielectric constant of the mediumεb [1 − j tanϑE ]
(including dielectric losses with the frequency dependent quantitytanϑE , see Appendix A) and an electric con-
ductivity σ [15, p. 312]. In the general case,σ depends on the angular frequencyω and contributes both to the
real and imaginary parts ofε1. We use in this paper an AC complex conductivity following the Drude model (see
Refs. [15, p. 312] and [16, p. 16], with an opposite sign convention forω in the latter)

σ =
σDC

1 + jωτ
, (3.9)

whereσDC is the DC conductivity of the pipe material andτ its relaxation time. It is here important to note that we
assume that Ohm’s law (in its local sense, i.e. the proportionality between the induced conductive current density
and the electric field, at any point) holds for the media involved. Doing so we neglect magnetoresistance effects
(see Refs. [16, pp. 11-15 and 234-239] and [17]) and the so-called “anomalous skin effect” [17–24]. Both might
appear at low temperature, and very high magnetic fields for the former (several Teslas), or very high frequencies
for the latter (see Ref. [25] for some examples of relevant limits).

Equations (3.5) and (3.6) can be derived from the general microsopic Maxwell equations, as shown in Appendix A.
The idea is that charges and currents induced in the medium can be taken into account by adding both the polar-
ization term and the conductive term to the electric displacement, instead of adding these charges and currents to
the right-hand side of the two inhomogeneous Maxwell equations (3.1) and (3.2)3.
Note that the minus signs in front oftanϑE , tanϑM andε′′r is a convention (see e.g. Ref. [28]) to ensure that
the energy dissipation is positive in the medium ifµr tan(ϑM ) ≥ 0 andε′′r ≥ 0 for positive frequencies (and the

3The definitions used for~D and ~B are consistent with the boundary conditions that will be used later on. In Refs. [2, 14],~D was
instead set toε0εb

~E (with tan ϑE assumed to be zero) in Eq. (3.1) but not in Eq. (3.2) (the conduction term being treated separately),
which has been found to lead to an inconsistency when writing the boundary conditions for the electric displacement radial components
at the pipe surface when no surface charges or currents are taken into account (these radial conditions cannot be enforced if the tangential
ones are, see Section 6). As only the tangential boundary conditions were used in these references (because the radial ones should have
been redundant), it had no consequence on the resulting fields and impedances. The above expression (3.5) for~D was also found in
Refs. [26, 27] (in Ref. [26, p. 33-34], it is likely that there was a misprint in the expression of~D in Eq. (I.2), since the following wave
equations of pages 33 and 34 are consistent with our expression of~D).
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opposite condition for negative frequencies4). This is shown in Ref. [29, p. 274] (where actually the opposite
convention holds since fields are taken to be proportional toe−jωt instead ofejωt).

We will add the superscript(p) to all the quantities related to the properties of the medium where it is not clear
from the context, when considering a region of space made of one homogeneous material, i.e. with uniform values
of εc andµ. The space is thus divided intoN + 1 (with N ≥ 2) cylindrical layers of radiib(p), as shown in Fig. 1.
Finally, when needed we will sometimes assume a positive angular frequencyω. The fields in frequency domain
for ω < 0 can be obtained by noting that all the time domain field components should be real, which means that
for any field componentϕ the quantity

1

2π

∫ ∞

−∞
dωejωtϕ(ω) =

1

2π

∫ ∞

0
dω
[
ejωtϕ(ω) + e−jωtϕ(−ω)

]
=

1

2π

∫ ∞

0
dω
[
ejωtϕ(ω) + (ejωtϕ(−ω)∗)∗

]
,

(3.12)
is real (∗denotes the complex conjugate). This is true if

ϕ(−ω) = ϕ(ω)∗. (3.13)

Therefore we can use the above equation to compute the field components for negative frequencies.

4 Longitudinal components of the electromagnetic f elds

We apply Maxwell equations in a region whereεc andµ are constant (boundary conditions will be considered in
Section 6), so that we will omit the superscript(p).
Applying the ~curl operator to Maxwell’s equation (3.3), we obtain

~curl
(
~curl ~E

)
+ jωµ ~curl ~H = 0.

Using the “ ~curl ~curl” relation (Eq. (C.1) of Appendix C), injecting Maxwell equations (3.1) and (3.2), and know-
ing that ~Jm = ρmυ~es, we then get

∇2 ~E + ω2εcµ~E =
1

εc
~gradρm + jωµρmυ~es. (4.1)

Similarly, we can apply the~curl operator to Maxwell’s equation (3.2) to obtain

~curl
(
~curl ~H

)
− jωεc ~curl ~E = ~curl (ρmυ~es) ,

which gives, with Eqs. (3.3) and (3.4), using also the expression of the~curl operator in cylindrical coordinates
from Eq. (B.3) of Appendix B for the right-hand side

∇2 ~H + ω2εcµ ~H = υ
∂ρm

∂r
~eθ −

υ

r

∂ρm

∂θ
~er. (4.2)

The wave equations (4.1) and (4.2) turn out to be relatively simple for the longitudinal field components. Using
the expressions of the gradient and the laplacian in cylindrical coordinates (see Eqs. (B.1), (B.4) and (B.5) of
Appendix B), we get the following scalar Helmholtz equations [2, 14]

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂s2
+ ω2εcµ

]
Es =

1

εc

∂ρm

∂s
+ jωµρmυ, (4.3)

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂s2
+ ω2εcµ

]
Hs = 0. (4.4)

4Therefore, iftan ϑE andtan ϑM are taken to be independent on frequency, they should still be dependent on the sign of the frequency,
and in this case we should write

εc = ε0εb [1 − j sign(ω) tan ϑE ] +
σ

jω
, (3.10)

µ = µ0µr [1 − j sign(ω) tan ϑM ] . (3.11)
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Figure 1: Cross section of the pipe. The region denoted by the superscript (0) is the vacuum inside themth

multipole moment of the beam and is of radiusa, and the region denoted by the superscript(1) is the vacuum
between the beam and the pipe wall atr = b. Subsequent layers can be made of any medium. The last layer
(denoted by the superscript(N)) has an infinite radiusb(N) = ∞. We have also sketched in red the initial beam
source, before its azimuthal mode decomposition using Eq. (2.6), which is a point-like charge atr = a andθ = 0.

In any region wherer 6= a, those equations are homogeneous and we can seek solutions by separation of variables,
in the general formR(r)Θ(θ)S(s). For bothEs andHs we have

Θ(θ)S(s)
(rR′(r))′

r
+
R(r)

r2
S(s)Θ′′(θ) +R(r)Θ(θ)S′′(s) + ω2εcµR(r)Θ(θ)S(s) = 0, (4.5)

where the prime′ denotes the derivative with respect to the argument of the function (e.g.R′(r) = dR
dr

). This
gives, when dividing byR(r)Θ(θ)S(s)

(rR′(r))′

rR(r)
+

1

r2
Θ′′(θ)
Θ(θ)

+
S′′(s)
S(s)

+ ω2εcµ = 0,

or equivalently 




Θ′′(θ)
Θ(θ) = r2

(
−ω2εcµ− (rR′(r))′

rR(r) − S′′(s)
S(s)

)
= constant = A,

S′′(s)
S(s) = −ω2εcµ− (rR′(r))′

rR(r) − 1
r2

Θ′′(θ)
Θ(θ) = constant = B.

(4.6)

Therefore bothΘ andS are solutions of the harmonic differential equation.θ being the azimuthal coordinate,Θ
needs to be2π−periodic for the field component to be single valued, so thatA must be real and negative. The
solutions forΘ(θ) are then of the form

Θ(θ) = κ1 cos(
√
−Aθ) + κ2 sin(

√
−Aθ),

and the periodicity constraint then requires
√
−A to be an integer, that we will noteme for the longitudinal

component of the electric field, andmh for that of the magnetic field. We notice also that the whole problem

7



(including boundary conditions, and source charges and currents from Eqs. (2.8) and (2.9) ) have a rotational
invariance of angle2π

m
about thes axis. Consequently,me andmh should be integer multiples of the azimuthal

mode numberm. Finally, theθ = 0 (modπ) plane is a symmetry plane of the problem (corresponding to the
invariance with the sign ofθ of the charge and current densities as well as boundary conditions), therefore the
electric field should also be symmetric with respect to that plane, and in particular the longitudinal component
(which is parallel to the symmetry plane). So there is no sine term inΘEs for Es. This is the opposite for the
longitudinal component ofHs: we should imagine current loops creating the magnetic field, perpendicular to it;
for the longitudinal part of the field, such loops are perpendicular to theθ = 0 (modπ) symmetry plane, and
their reflected images are current loops where the current flows in the opposite direction, in such a way that the
magnetic field created by them is opposite. ThereforeHs(−θ) = −Hs(θ), which means that there is no cosine
term inΘHs .
Similarly to what we saw for the azimuthal dependence of the fields, the whole problem exhibits a translational
invariance along thes axis, the translation vector being2π

k
~es. Therefore the resulting fields should exhibit the

same invariance, soB must be real and negative, and the longitudinal dependenceS(s) can be taken of the form:

S(s) = κ3e
−j

√
−Bs + κ4e

j
√
−Bs.

From the translational invariance,
√
−B should then be an integer multiple ofk, that we will write lk. If we

(temporary) get back to the time domain, applying the inverse Fourier transform1
2π

∫∞
−∞ dωejωt we see that we

get two terms, one whose integrand is proportional to

κ3e
jω(t− ls

υ ),

and the other whose integrand is proportional to

κ4e
jω(t+ ls

υ ).

Since this must be invariant with respect to the transformation(t0, s0) → (t0+t, s0+υt) for any(t0, s0, t) (which
is an invariance property of the time domain initial problem), and recalling thatk ≡ ω

υ
, this clearly means that the

second term is zero (κ4 = 0) and thatl = 1.
For the azimuthal and longitudinal parts, we finally get

ΘEs(θ) ∝ cos(meθ),

ΘHs(θ) ∝ sin(mhθ),

SEs(s) ∝ e−jks,

SHs(s) ∝ e−jks.

The radial dependence is then obtained by reinjecting those expressions into Eq.(4.5) and dividing byΘ(θ)S(s).
For instance for the longitudinal component of~E we obtain

(rR′(r))′

r
− R(r)

r2
m2

e −R(r)k2 + ω2εcµR(r) = 0,

or equivalently
r2R′′(r) + rR′(r) −

[
m2

e + r2
(
k2 − ω2εcµ

)]
R(r) = 0. (4.7)

Now we define the radial propagation constant as in Ref. [14] (using the definitions of Eqs. (3.7) and (3.8), and
the identityε0µ0 = 1

c2
wherec is the speed of light in vacuum)

ν2 = k2 − ω2εcµ = k2
(
1 − β2ε1µ1

)
, (4.8)

so that
ν = |k|

√
1 − β2ε1µ1, (4.9)

where the square root of a complex number is defined by
√
αejϕ =

√
αej

ϕ

2 with −π < ϕ ≤ π, andβ ≡ υ
c

is the relativistic velocity factor. With the change of variablez = νr and assumingν 6= 0 (i.e. ω 6= 0 and
ǫ1µ1 6= 1

β2 ) we get Eq. (D.1) of Appendix D, whose solutions are the modified Bessel functionsIme(νr) and
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Kme(νr)
5. The same derivation is applicable to the radial dependence ofHs. Putting all the integration constants

together intoR(r) and reinserting the superscript(p) for each cylindrical layer (note that at that point,m(p)
e and

m
(p)
h could be in principle dependent on the layerp), the longitudinal components of the electromagnetic fields

can be written [14]

E(p)
s = cos(m(p)

e θ)e−jks
[
C

(p)
Ie Im(p)

e

(
ν(p)r

)
+ C

(p)
KeKm

(p)
e

(
ν(p)r

)]
, (4.10)

H(p)
s = sin(m

(p)
h θ)e−jks

[
C

(p)
Ih Im(p)

h

(
ν(p)r

)
+ C

(p)
KhKm

(p)
h

(
ν(p)r

)]
, (4.11)

where the subscripts (Ie,Ke, Ih andKh) of the integration constants are self-explanatory.6

5 Transverse components of the electromagnetic f elds

Again, we apply Maxwell equations in a region whereεc andµ are constant and we omit the superscript(p). Writ-
ing the transverse components of Eqs. (3.2) and (3.3) in cylindrical coordinates (see Appendix B) and assuming
r 6= a, we have the relations

1

r

∂Hs

∂θ
− ∂Hθ

∂s
= jωεcEr, (5.1)

∂Hr

∂s
− ∂Hs

∂r
= jωεcEθ, (5.2)

1

r

∂Es

∂θ
− ∂Eθ

∂s
= −jωµHr, (5.3)

∂Er

∂s
− ∂Es

∂r
= −jωµHθ. (5.4)

Differentiating with respect tos Eq. (5.4) and combining it to Eq. (5.1), we get, knowing the longitudinal depen-
dence ofEs

∂2Er

∂s2
+ ω2εcµEr = −jk∂Es

∂r
− jωµ

1

r

∂Hs

∂θ
. (5.5)

In the same way, we can differentiate with respect tos Eqs. (5.3), (5.2) and (5.1), then combine them respectively
to Eqs. (5.2), (5.3) and (5.4), to get

∂2Eθ

∂s2
+ ω2εcµEθ = −jk1

r

∂Es

∂θ
+ jωµ

∂Hs

∂r
, (5.6)

∂2Hr

∂s2
+ ω2εcµHr = jωεc

1

r

∂Es

∂θ
− jk

∂Hs

∂r
, (5.7)

∂2Hθ

∂s2
+ ω2εcµHθ = −jωεc

∂Es

∂r
− jk

1

r

∂Hs

∂θ
. (5.8)

At given r andθ, these four equations can all be written in the form

∂2ψ

∂s2
+ ω2εcµψ = Ae−jks,

5Ime(−νr) andKme(−νr) are also solutions of Eq. (4.7) which depends onν through its square, but these solutions are linearly
bound toIme(νr) andKme(νr) from Eqs. 9.6.30 and 9.6.31 of Ref. [30], which give in our case

Ime(−νr) = (−1)meIme(νr),

Kme(−νr) = (−1)meKme(νr) − jπIme(νr).

6Note that with our definition ofν (in particular, its proportionality to the absolute value ofk), we have, as will be explained below,
ν(−ω) = ν(ω)∗. This comes from the fact thatν2(−ω) =

(
ν(ω)2

)∗
sinceε1(−ω) = ε1(ω)∗ and a similar relation forµ1, which can be

seen in Eqs. (3.10), (3.11) and (3.9), or more generally in Ref. [15, p. 332]. Then ifν2 = k2αejϕ, we haveα(−ω) = α(ω) andϕ(−ω) =

−ϕ(ω) which givesν(−ω) = ν(ω)∗ from ν = |k|√αej
ϕ
2 . Equation (D.8) then givesI

m
(p)
e

(
ν(−ω)(p)r

)
= I

m
(p)
e

(
ν(ω)(p)r

)∗

and a similar relation withK
m

(p)
e

. The same kind of relations apply to the constants as they are obtained from linear equations whose

coefficients depend onε(p)
1 , µ

(p)
1 , ν(p) and modified Bessel functions of the argumentsν(p)b(p) andν(p+1)b(p) (see Section 6). Therefore

we haveE(p)
s (−ω) = E

(p)
s (ω)∗ and the same relation for the magnetic field and the transverse components (from the equations of the

next section), which means that Eq. (3.13) is true for the field components without having to apply it “by hand”.
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ψ being the field component considered, andA a constant with respect tos. The general solution of this equation
is

ψ(s) = η1e
−jω

√
εcµs + η2e

jω
√

εcµs + η3e
−jks,

whereη3 is related toA. The first two terms are obviously not invariant with respect to the translation of vector
2π
k
~es (see Section 4) which means that we have to drop them:η1 = η2 = 0. Thereforeψ is proportional toe−jks,

the proportionallity constant depending only onr andθ. So the transverse components have the same longitudinal
dependence as the longitudinal components (i.e. ine−jks), and we can rewrite Eqs. (5.5) to (5.8) in the form
(reinserting the superscript(p) to avoid any confusion) [2, 14]

E(p)
r =

jk

ν(p)2

(
∂E

(p)
s

∂r
+
υµ(p)

r

∂H
(p)
s

∂θ

)
, (5.9)

E
(p)
θ =

jk

ν(p)2

(
1

r

∂E
(p)
s

∂θ
− υµ(p)∂H

(p)
s

∂r

)
, (5.10)

H(p)
r =

jk

ν(p)2

(
−υε

(p)
c

r

∂E
(p)
s

∂θ
+
∂H

(p)
s

∂r

)
, (5.11)

H
(p)
θ =

jk

ν(p)2

(
υε(p)

c

∂E
(p)
s

∂r
+

1

r

∂H
(p)
s

∂θ

)
. (5.12)

6 Field matching

To specify the field components we need to express the boundary conditions between all the cylindrical layers.
For simplicity, we will assume from this section onward that the angular frequencyω is positive7.

6.1 Boundary conditions at r = a

Firstly, from Ref. [30] we know that for anyη ≥ 0, Iη(0) is finite whileKη(z) goes to infinity when|z| → 0.
Therefore, for the first layer we have

C
(0)
Ke = C

(0)
Kh = 0. (6.1)

We also know (from e.g. Ref. [15, p. 18]) that the electric field component tangential to a boundary between
media is always continuous, giving in particular atr = a, from Eq. (4.10)

cos(m(0)
e θ)C

(0)
Ie Im(0)

e

(
ν(0)a

)
= cos(m(1)

e θ)
[
C

(1)
Ie Im(1)

e

(
ν(1)a

)
+ C

(1)
KeKm

(1)
e

(
ν(1)a

)]
. (6.2)

Since this is valid for anyθ, m(0)
e andm(1)

e are necessarily equal (if the multiplicating factors in front of both
cos(m

(0)
e θ) andcos(m

(1)
e θ) are zero, it means, since we know from Ref. [30] thatI

m
(0)
e

(
ν(0)a

)
6= 0, thatEs = 0

in the whole region wherer ≤ a and we can still writem(0)
e = m

(1)
e providedC(0)

Ie is set to zero).
Equation (4.3) is valid acrossr = a, and following what is done in Ref. [13], we can multiply each side byr and
integrate overr betweena− δa anda+ δa, obtaining

(a+ δa)
∂Es

∂r

∣∣∣∣
a+δa

− (a− δa)
∂Es

∂r

∣∣∣∣
a−δa

+

∫ a+δa

a−δa

dr



−m
(0)
e

2

r
− rk2 + rω2ε0µ0



Es

=
jPm

πam+1(1 + δm0)
cos(mθ)e−jks

(−k
ε0υ

+ ωµ0

)∫ a+δa

a−δa

drδ(r − a)r

=
−jωPm

πε0υ2γ2am(1 + δm0)
cos(mθ)e−jks, (6.3)

7To recover the results at any frequency we would simply need to replacek
γ

by |k|
γ

in the expression of the radial propagation constant
of vacuum. See also the end of Section 3 and footnote 6.
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where we have replacedεc andµ by their values in vacuumε0 andµ0, and whereγ = 1√
1−β2

is the relativistic

mass factor. Whenδa goes to zero, the integral term in the left-hand side vanishes sinceEs is not infinite at
r = a. Recalling that in vacuumν(0) = ν(1) = k

γ
, replacingEs by its expression on each side of the boundary,

and dropping thee−jks factor8, we can rewrite the equation as

ka

γ
cos(m(0)

e θ)

[
C

(1)
Ie I

′
m

(0)
e

(
ka

γ

)
+ C

(1)
KeK

′
m

(0)
e

(
ka

γ

)
− C

(0)
Ie I

′
m

(0)
e

(
ka

γ

)]
=

−jωPm

πε0υ2γ2am(1 + δm0)
cos(mθ).

(6.4)
This relation, valid at anyθ, means that we necessarily have

m(0)
e = m(1)

e = m, (6.5)

and we can divide bycos(mθ) both sides of Eq. (6.4). We can then inject Eq. (6.2) taken in the form

(
C

(0)
Ie − C

(1)
Ie

)
Im

(
ka

γ

)
= C

(1)
KeKm

(
ka

γ

)
, (6.6)

into Eq. (6.4), to get

ka

γ
C

(1)
Ke

[
K ′

m

(
ka

γ

)
Im

(
ka

γ

)
− I ′m

(
ka

γ

)
Km

(
ka

γ

)]
=

−jωPm

πε0υ2γ2am(1 + δm0)
Im

(
ka

γ

)
.

The term between square brackets is equal to− γ
ka

from Eq. (D.2) of Appendix D. Finally we obtain

C
(1)
Ke =

jωPm

πε0υ2γ2am(1 + δm0)
Im

(
ka

γ

)
. (6.7)

At r = a there is a surface current density flowing along thes axis. From Ref. [15, p. 18] we know that only the
tangential component of the magnetic fieldHθ is discontinuous at that point. SoHs is continuous, which gives a
relation analogous to Eq. (6.2). Therefore we havem

(0)
h = m

(1)
h and

(
C

(0)
Ih − C

(1)
Ih

)
I
m

(0)
h

(
ka

γ

)
= C

(1)
KhKm

(0)
h

(
ka

γ

)
,

which we can plug into a similar integration of Eq. (4.4) as what was done above onEs, but since this time the
right-hand side is zero, we get9

C
(1)
Kh = 0,

C
(0)
Ih = C

(1)
Ih . (6.8)

No further information can be obtained from the boundary condition atr = a. Indeed, the discontinuity ofHθ

coming from the surface charge density at that point [15, p. 18] is proportional to the discontinuity of∂Es

∂r
as can

been seen from Eq. (5.12), since bothHs and its derivative with respect toθ are continuous atr = a. It will then
give the same relation as above (Eq. (6.3) ).

6.2 Boundary conditions at the pipe wall inner surface and between each of its layers

We will now consider the boundary conditions for the subsequent layers, i.e. at eachr = b(p) for 1 ≤ p ≤ N − 1.
There are no externally imposed surface charge or currents between each cylindrical layer, which means (see

8Note that this equation could have been used in the discussion of Section 4: it prevents anyl 6= 1 for thee−jkls factor and is another
reason to eliminate theejks term, in the longitudinal dependence ofEs.

9This is actually obvious since in Eq. (4.4) there is no source of discontinuity atr = a, so no reason forHs to have a different
expression from one side to the other of the ring-shaped source.
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Ref. [15, p. 18] and Eqs. (3.5) and (3.6) ) that the following relations holdacross those boundaries (for anyθ, s
andω)

ε(p)
c E(p)

r

(
b(p), θ, s;ω

)
= ε(p+1)

c E(p+1)
r

(
b(p), θ, s;ω

)
, (6.9)

E
(p)
θ

(
b(p), θ, s;ω

)
= E

(p+1)
θ

(
b(p), θ, s;ω

)
, (6.10)

E(p)
s

(
b(p), θ, s;ω

)
= E(p+1)

s

(
b(p), θ, s;ω

)
, (6.11)

µ(p)H(p)
r

(
b(p), θ, s;ω

)
= µ(p+1)H(p+1)

r

(
b(p), θ, s;ω

)
, (6.12)

H
(p)
θ

(
b(p), θ, s;ω

)
= H

(p+1)
θ

(
b(p), θ, s;ω

)
, (6.13)

H(p)
s

(
b(p), θ, s;ω

)
= H(p+1)

s

(
b(p), θ, s;ω

)
. (6.14)

Equation (6.11) and (6.14) read respectively

cos(m(p)
e θ)

[
C

(p)
Ie Im(p)

e

(
ν(p)b(p)

)
+ C

(p)
KeKm

(p)
e

(
ν(p)b(p)

)]
=

cos(m(p+1)
e θ)

[
C

(p+1)
Ie I

m
(p+1)
e

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K

m
(p+1)
e

(
ν(p+1)b(p)

)]
, (6.15)

sin(m
(p)
h θ)

[
C

(p)
Ih Im(p)

h

(
ν(p)b(p)

)
+ C

(p)
KhKm

(p)
h

(
ν(p)b(p)

)]
=

sin(m
(p+1)
h θ)

[
C

(p+1)
Ih I

m
(p+1)
h

(
ν(p+1)b(p)

)
+ C

(p+1)
Kh K

m
(p+1)
h

(
ν(p+1)b(p)

)]
, (6.16)

while Eqs. (6.13) and (6.10), using Eqs. (5.12) and (5.10), can be written

1

ν(p)2

[
υε(p)

c

∂E
(p)
s

∂r

∣∣∣∣∣
b(p)

+
1

b(p)

∂H
(p)
s

∂θ

(
b(p)
)]

=
1

ν(p+1)2

[
υε(p+1)

c

∂E
(p+1)
s

∂r

∣∣∣∣∣
b(p)

+
1

b(p)

∂H
(p+1)
s

∂θ

(
b(p)
)]

,

1

ν(p)2

[
1

b(p)

∂E
(p)
s

∂θ

(
b(p)
)
− υµ(p) ∂H

(p)
s

∂r

∣∣∣∣∣
b(p)

]
=

1

ν(p+1)2

[
1

b(p)

∂E
(p+1)
s

∂θ

(
b(p)
)
− υµ(p+1) ∂H

(p+1)
s

∂r

∣∣∣∣∣
b(p)

]
,

which, using Eqs. (4.10) and (4.11), become

1

ν(p)2

[
υε(p)

c cos(m(p)
e θ)ν(p)

{
C

(p)
Ie I

′
m

(p)
e

(
ν(p)b(p)

)
+ C

(p)
KeK

′
m

(p)
e

(
ν(p)b(p)

)}

+
m

(p)
h

b(p)
cos(m

(p)
h θ)

{
C

(p)
Ih Im(p)

h

(
ν(p)b(p)

)
+ C

(p)
KhKm

(p)
h

(
ν(p)b(p)

)}]

=
1

ν(p+1)2

[
υε(p+1)

c cos(m(p+1)
e θ)ν(p+1)

{
C

(p+1)
Ie I ′

m
(p+1)
e

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K ′

m
(p+1)
e

(
ν(p+1)b(p)

)}

+
m

(p+1)
h

b(p)
cos(m

(p+1)
h θ)

{
C

(p+1)
Ih I

m
(p+1)
h

(
ν(p+1)b(p)

)
+ C

(p+1)
Kh K

m
(p+1)
h

(
ν(p+1)b(p)

)}]
, (6.17)
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and

1

ν(p)2

[
−m

(p)
e

b(p)
sin(m(p)

e θ)
{
C

(p)
Ie Im(p)

e

(
ν(p)b(p)

)
+ C

(p)
KeKm

(p)
e

(
ν(p)b(p)

)}

− υµ(p) sin(m
(p)
h θ)ν(p)

{
C

(p)
Ih I

′
m

(p)
h

(
ν(p)b(p)

)
+ C

(p)
KhK

′
m

(p)
h

(
ν(p)b(p)

)}]

=
1

ν(p+1)2

[
−m

(p+1)
e

b(p)
sin(m(p+1)

e θ)
{
C

(p+1)
Ie I

m
(p+1)
e

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K

m
(p+1)
e

(
ν(p+1)b(p)

)}

− υµ(p+1) sin(m
(p+1)
h θ)ν(p+1)

{
C

(p+1)
Ih I ′

m
(p+1)
h

(
ν(p+1)b(p)

)
+ C

(p+1)
Kh K ′

m
(p+1)
h

(
ν(p+1)b(p)

)}]
. (6.18)

Equation (6.15), valid for anyθ, tells us thatm(p)
e = m

(p+1)
e except in the case where

C
(p)
Ie Im(p)

e

(
ν(p)b(p)

)
+C

(p)
KeKm

(p)
e

(
ν(p)b(p)

)
= C

(p+1)
Ie I

m
(p+1)
e

(
ν(p+1)b(p)

)
+C

(p+1)
Ke K

m
(p+1)
e

(
ν(p+1)b(p)

)
= 0.

If this happens, we can express Eq. (6.17) using the derivative with respect toθ of Eq. (6.16) (that is, the continu-
itity at b(p) of ∂Hs

∂θ
), leading to

1

ν(p)2
υε(p)

c cos(m(p)
e θ)ν(p)

[
C

(p)
Ie I

′
m

(p)
e

(
ν(p)b(p)

)
+ C

(p)
KeK

′
m

(p)
e

(
ν(p)b(p)

)]

+

(
1

ν(p)2
− 1

ν(p+1)2

)
m

(p)
h

b(p)
cos(m

(p)
h θ)

[
C

(p)
Ih Im(p)

h

(
ν(p)b(p)

)
+ C

(p)
KhKm

(p)
h

(
ν(p)b(p)

)]

=
1

ν(p+1)2
υε(p+1)

c cos(m(p+1)
e θ)ν(p+1)

[
C

(p+1)
Ie I ′

m
(p+1)
e

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K ′

m
(p+1)
e

(
ν(p+1)b(p)

)]
. (6.19)

Then the casem(p)
e 6= m

(p+1)
e is possible only if one of the two terms

C
(p)
Ie I

′
m

(p)
e

(
ν(p)b(p)

)
+ C

(p)
KeK

′
m

(p)
e

(
ν(p)b(p)

)

or
C

(p+1)
Ie I ′

m
(p+1)
e

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K ′

m
(p+1)
e

(
ν(p+1)b(p)

)

is zero, sincem(p)
h can be equal to only one ofm(p)

e or m(p+1)
e so the thecos(m

(p)
h θ) term will combine to at

most only one of the two other cosine terms. In such a case in either layerp or layerp + 1 bothEs and ∂Es

∂r
are

zero atr = b(p) which means that the longitudinal component of the electric field is zero in the whole layer (it is
determined by two constants only). Should this happend we can still imposem

(p)
e = m

(p+1)
e by taking the value

of the layer that has a non zeroEs, since in the other layer the constants are zeros so the value of the azimuthal
mode number does not play any role.
We can repeat this argument at each boundary, and therefore drop the superscript for the quantitym

(p)
e . Using

also Eq. (6.5) we get
∀p between0 andN , m(p)

e = m. (6.20)

Very similar arguments can be applied toHs andm(p)
h : using first Eq. (6.16), and then, if the radial part ofHs is

zero atr = b(p), Eq. (6.18) together with the continuity of∂Es

∂θ
, we prove thatm(p)

h = m
(p+1)
h . Applying this at

each layer boundary and using the results of Section 6.1 enables us to drop the superscript for this quantity:

∀p between0 andN , m
(p)
h = mh. (6.21)
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We now want to prove thatm = mh. To do so we rewrite Eqs. (6.18) and (6.19) using Eqs. (6.15), (6.20)
and (6.21), to get

sin(mθ)

(
1

ν(p+1)2
− 1

ν(p)2

)
m

b(p)

[
C

(p)
Ie Im

(
ν(p)b(p)

)
+ C

(p)
KeKm

(
ν(p)b(p)

)]
=

sin(mhθ)υ

[
µ(p)

ν(p)

{
C

(p)
Ih I

′
mh

(
ν(p)b(p)

)
+ C

(p)
KhK

′
mh

(
ν(p)b(p)

)}

−µ
(p+1)

ν(p+1)

{
C

(p+1)
Ih I ′mh

(
ν(p+1)b(p)

)
+ C

(p+1)
Kh K ′

mh

(
ν(p+1)b(p)

)}]
, (6.22)

and

cos(mθ)υ

[
ε
(p)
c

ν(p)

{
C

(p)
Ie I

′
m

(
ν(p)b(p)

)
+ C

(p)
KeK

′
m

(
ν(p)b(p)

)}

− ε
(p+1)
c

ν(p+1)

{
C

(p+1)
Ie I ′m

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K ′

m

(
ν(p+1)b(p)

)}]
=

cos(mhθ)

(
1

ν(p+1)2
− 1

ν(p)2

)
mh

b(p)

[
C

(p)
Ih Imh

(
ν(p)b(p)

)
+ C

(p)
KhKmh

(
ν(p)b(p)

)]
. (6.23)

The case when eitherm or mh is zero leads obviously tom = mh = 0 sincemh is proportional tom (see
Section 4). Now assuming that they are both different from zero, the two above equations (valid for anyθ) show
thatm = mh unless

(
1

ν(p+1)2
− 1

ν(p)2

)[
C

(p)
Ie Im

(
ν(p)b(p)

)
+ C

(p)
KeKm

(
ν(p)b(p)

)]

=
µ(p)

ν(p)

[
C

(p)
Ih I

′
mh

(
ν(p)b(p)

)
+ C

(p)
KhK

′
mh

(
ν(p)b(p)

)]

−µ
(p+1)

ν(p+1)

[
C

(p+1)
Ih I ′mh

(
ν(p+1)b(p)

)
+ C

(p+1)
Kh K ′

mh

(
ν(p+1)b(p)

)]

=
ε
(p)
c

ν(p)

[
C

(p)
Ie I

′
m

(
ν(p)b(p)

)
+ C

(p)
KeK

′
m

(
ν(p)b(p)

)]

− ε
(p+1)
c

ν(p+1)

[
C

(p+1)
Ie I ′m

(
ν(p+1)b(p)

)
+ C

(p+1)
Ke K ′

m

(
ν(p+1)b(p)

)]

=

(
1

ν(p+1)2
− 1

ν(p)2

)[
C

(p)
Ih Imh

(
ν(p)b(p)

)
+ C

(p)
KhKmh

(
ν(p)b(p)

)]

= 0. (6.24)

Should this happen we could express the same boundary conditions on the subsequent layers, leading to the same
conclusion (m= mh). In the end the only case that is problematic is when Eq. (6.24) is true for every boundary,
i.e. for p between1 andN − 1. We can actually show (see Appendix E) that in this case the layers have all the
same radial propagation constantν(p), that is, that of vacuum, such thatε(p)

1 µ
(p)
1 = 1 for anyp, and thatHs = 0

everywhere in space, meaning that we can still writemh = m provided we set the constantsC(p)
Ih andC(p)

Kh to
zero for all the layers. The case whereε1µ1 = 1 is in principle possible for a medium different from vacuum, for
instance if it’s diamagnetic (i.e.µr < 1) and slightly dielectric (i.e.εb > 1 with εb − 1 small compared to1), with
no loss and an infinite resistivity.
As a consequence, we always have (except in a very specific case, quite unlikely to happen, that we will assume
not to occur here, see Appendix E)

m = mh. (6.25)
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The only unknown coefficients remain the constants in front of the modified Bessel functions in the expression of
Es andHs of Eqs. (4.10) and (4.11). We have four such constants per layer, so4(N + 1) of them on the whole.

For the first two layers, we know from Eqs. (6.1), (6.6), (6.7) and (6.8) that only2 constants (C(1)Ie andC(1)
Ih )

remain to be determined. For the last layer (going to infinity), there can be no functionIm in the expression of the
fields, sinceIm(ν(N)r) goes to infinity whenr goes to infinity (see e.g. Eq. (9.7.1) in Ref. [30]), such that

C
(N)
Ie = C

(N)
Ih = 0. (6.26)

So4(N − 1) constants remain to be determined by the boundary conditions atr = b(p) for 1 ≤ p ≤ N − 1, which

means that four equations for each boundary are needed. For instance the continuity at those boundaries ofE
(p)
θ ,

E
(p)
s , H(p)

θ andH(p)
s are sufficient. Continuity ofε(p)

c E
(p)
r andµ(p)H

(p)
r give redundant equations, which can be

readily seen from Eqs. (5.1) and (5.3).
Note that the redundancy ofDr continuity would not have occurred if (as done in Refs. [2, 14]) we had used
~D = ε0εb ~E instead of Eq. (3.5) for the definition of the electric displacement field used in Eq. (3.1), while
Eqs. (3.2) and (5.1) remain the same. In the absence of surface charge at the boundaries, this would lead to the
following boundary condition in replacement of Eq. (6.9)

ε
(p)
b E(p)

r

(
b(p), θ, s;ω

)
= ε

(p+1)
b E(p+1)

r

(
b(p), θ, s;ω

)
,

and consequently to one additional equation per boundary and necessarily to an inconsistency. Still, it had no
impact on the final results of Refs. [2, 14] because the continuity of the radial components was never used. Also,
consistency is recovered simply by saying that in such a formalism there exists a surface charge density at the
layers boundary (physically, those charges are actually induced charges, created by the discontinuity of the com-
plex permittivity – particularly its conductive part – which results in a discontinuity in the current density at that
boundary – see also Appendix A).

To solve for all the constants of the problem we will first introduce the free space impedanceZ0 and the field
~G that has the same dimension as the electric field~E

Z0 =
1

ε0c
= µ0c =

√
µ0

ε0
, (6.27)

~G = Z0
~H, (6.28)

and the corresponding constant coefficients for~G

C
(p)
Ig = Z0C

(p)
Ih ,

C
(p)
Kg = Z0C

(p)
Kh. (6.29)

Then, letting

xp+1,p = ν(p+1)b(p),

xp,p = ν(p)b(p), (6.30)

the continuity ofEs andHs is given by Eqs. (6.15) and (6.16) where we can now drop the cosine and sine factors:

C
(p)
Ie Im(xp,p) + C

(p)
KeKm(xp,p) = C

(p+1)
Ie Im(xp+1,p) + C

(p+1)
Ke Km(xp+1,p), (6.31)

C
(p)
Ig Im(xp,p) + C

(p)
KgKm(xp,p) = C

(p+1)
Ig Im(xp+1,p) + C

(p+1)
Kg Km(xp+1,p). (6.32)

The continuity ofEθ andHθ can be written, from Eqs. (6.22) and (6.23) where the cosine and sine factors have
been dropped
(

1

ν(p+1)2
− 1

ν(p)2

)
m

b(p)

[
C

(p)
Ie Im(xp,p) + C

(p)
KeKm(xp,p)

]

− βµ
(p)
1

ν(p)

[
C

(p)
Ig I

′
m(xp,p) + C

(p)
KgK

′
m(xp,p)

]

= −βµ
(p+1)
1

ν(p+1)

[
C

(p+1)
Ig I ′m(xp+1,p) + C

(p+1)
Kg K ′

m(xp+1,p)
]
, (6.33)
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and

βε
(p)
1

ν(p)

[
C

(p)
Ie I

′
m(xp,p) + C

(p)
KeK

′
m(xp,p)

]

+

(
1

ν(p)2
− 1

ν(p+1)2

)
m

b(p)

[
C

(p)
Ig Im(xp,p) + C

(p)
KgKm(xp,p)

]

=
βε

(p+1)
1

ν(p+1)

[
C

(p+1)
Ie I ′m(xp+1,p) + C

(p+1)
Ke K ′

m(xp+1,p)
]
. (6.34)

We can write Eqs. (6.31) and (6.34) in matrix form:




Im(xp+1,p) Km(xp+1,p)

βε
(p+1)
1

ν(p+1) I
′
m(xp+1,p)

βε
(p+1)
1

ν(p+1) K
′
m(xp+1,p)


 ·



C

(p+1)
Ie

C
(p+1)
Ke


 =




C
(p)
Ie Im(xp,p) + C

(p)
KeKm(xp,p)

βε
(p)
1

ν(p)

{
C

(p)
Ie I

′
m(xp,p) + C

(p)
KeK

′
m(xp,p)

}
+(

1

ν(p)2
− 1

ν(p+1)2

)
m

b(p)

{
C

(p)
Ig Im(xp,p) + C

(p)
KgKm(xp,p)

}



.

This can be readily solved for

[
C

(p+1)
Ie

C
(p+1)
Ke

]
, knowing that the determinant of the first matrix is proportional to the

wronskian of the modified Bessel functions, more precisely equal to (see Eq. (D.2) )− βε
(p+1)
1

ν(p+1)2b(p)
. We get, using

the inversion formula of a2 × 2 matrix (see Appendix F)



C

(p+1)
Ie

C
(p+1)
Ke


 = −ν

(p+1)2b(p)

βε
(p+1)
1




βε
(p+1)
1

ν(p+1) K
′
m(xp+1,p) −Km(xp+1,p)

−βε
(p+1)
1

ν(p+1) I
′
m(xp+1,p) Im(xp+1,p)


 ·







Im(xp,p) Km(xp,p)

βε
(p)
1

ν(p) I
′
m(xp,p)

βε
(p)
1

ν(p) K
′
m(xp,p)


 ·



C

(p)
Ie

C
(p)
Ke


+

{
1

ν(p)2
− 1

ν(p+1)2

}
m

b(p)




0 0

Im(xp,p) Km(xp,p)



 ·



C

(p)
Ig

C
(p)
Kg





 . (6.35)
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Very similarly we can write for

[
C

(p+1)
Ig

C
(p+1)
Kg

]
, from Eqs. (6.32) and (6.33)



C

(p+1)
Ig

C
(p+1)
Kg


 = −ν

(p+1)2b(p)

βµ
(p+1)
1




βµ
(p+1)
1

ν(p+1) K
′
m(xp+1,p) −Km(xp+1,p)

−βµ
(p+1)
1

ν(p+1) I
′
m(xp+1,p) Im(xp+1,p)


 ·







Im(xp,p) Km(xp,p)

βµ
(p)
1

ν(p) I
′
m(xp,p)

βµ
(p)
1

ν(p) K
′
m(xp,p)


 ·



C

(p)
Ig

C
(p)
Kg


+

{
1

ν(p)2
− 1

ν(p+1)2

}
m

b(p)




0 0

Im(xp,p) Km(xp,p)



 ·



C

(p)
Ie

C
(p)
Ke





 . (6.36)

Let us now define the four following2 × 2 matrices, enabling the computation of the values of the constants for
thep+ 1 region knowing those of thep region:

P p+1,p =

−ν
(p+1)2b(p)

βε
(p+1)
1




βε
(p+1)
1

ν(p+1) K
′

m(xp+1,p) −Km(xp+1,p)

−βε
(p+1)
1

ν(p+1) I
′

m(xp+1,p) Im(xp+1,p)


 ·




Im(xp,p) Km(xp,p)

βε
(p)
1

ν(p) I
′

m(xp,p)
βε

(p)
1

ν(p) K
′

m(xp,p)


 ,

Qp+1,p =

−
(
ν(p+1)2

ν(p)2
− 1

)
m

βε
(p+1)
1




βε
(p+1)
1

ν(p+1) K
′

m(xp+1,p) −Km(xp+1,p)

−βε
(p+1)
1

ν(p+1) I
′

m(xp+1,p) Im(xp+1,p)


 ·




0 0

Im(xp,p) Km(xp,p)



 ,

Rp+1,p =

−ν
(p+1)2b(p)

βµ
(p+1)
1




βµ
(p+1)
1

ν(p+1) K
′

m(xp+1,p) −Km(xp+1,p)

−βµ
(p+1)
1

ν(p+1) I
′

m(xp+1,p) Im(xp+1,p)


 ·




Im(xp,p) Km(xp,p)

βµ
(p)
1

ν(p) I
′

m(xp,p)
βµ

(p)
1

ν(p) K
′

m(xp,p)


 ,

Sp+1,p =

−
(
ν(p+1)2

ν(p)2
− 1

)
m

βµ
(p+1)
1




βµ
(p+1)
1

ν(p+1) K
′

m(xp+1,p) −Km(xp+1,p)

−βµ
(p+1)
1

ν(p+1) I
′

m(xp+1,p) Im(xp+1,p)


 ·




0 0

Im(xp,p) Km(xp,p)



 ,

such that Eqs. (6.35) and (6.36) become10



C

(p+1)
Ie

C
(p+1)
Ke


 = P p+1,p ·



C

(p)
Ie

C
(p)
Ke


+Qp+1,p ·



C

(p)
Ig

C
(p)
Kg


 , (6.37)



C

(p+1)
Ig

C
(p+1)
Kg


 = Rp+1,p ·



C

(p)
Ig

C
(p)
Kg


+ Sp+1,p ·



C

(p)
Ie

C
(p)
Ke


 . (6.38)

10Note that whenm = 0, Qp+1,p = Sp+1,p = 0 so the constants for the electric field and those for the magnetic field are uncoupled.
This is actually obvious since in this caseHs = 0 from Eq. (4.11). A2×2 matrix is then sufficient to compute the constants of the electric
field longitudinal component.
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It is crucial to be able to compute accurately these four matrices, which is not straightforward since components
can be equal to a difference between very large numbers, especially whenν(p)b(p) or ν(p+1)b(p) becomes large:
for large argumentsIm andI ′m are exponentially growing whileKm andK ′

m are exponentially decaying (see
Ref. [30], formulas 9.7.1 to 9.7.4). It is therefore better to write them in the following way

P p+1,p = −ν
(p+1)2b(p)

ε
(p+1)
1




Im(xp,p)Km(xp+1,p)

{
ε
(p+1)
1

ν(p+1)

K′

m(xp+1,p)
Km(xp+1,p) −

ε
(p)
1

ν(p)

I′

m(xp,p)
Im(xp,p)

}

Im(xp,p)Im(xp+1,p)

{
− ε

(p+1)
1

ν(p+1)

I′

m(xp+1,p)
Im(xp+1,p) +

ε
(p)
1

ν(p)

I′

m(xp,p)
Im(xp,p)

}

Km(xp,p)Km(xp+1,p)

{
ε
(p+1)
1

ν(p+1)

K′

m(xp+1,p)
Km(xp+1,p) −

ε
(p)
1

ν(p)

K′

m(xp,p)
Km(xp,p)

}

Km(xp,p)Im(xp+1,p)

{
− ε

(p+1)
1

ν(p+1)

I′

m(xp+1,p)
Im(xp+1,p) +

ε
(p)
1

ν(p)

K′

m(xp,p)
Km(xp,p)

}



,

Qp+1,p = −
(
ν(p+1)2

ν(p)2
− 1

)
m

βε
(p+1)
1




−Im(xp,p)Km(xp+1,p) −Km(xp,p)Km(xp+1,p)

Im(xp,p)Im(xp+1,p) Km(xp,p)Im(xp+1,p)



 ,

Rp+1,p = −ν
(p+1)2b(p)

µ
(p+1)
1




Im(xp,p)Km(xp+1,p)

{
µ

(p+1)
1

ν(p+1)

K′

m(xp+1,p)
Km(xp+1,p) −

µ
(p)
1

ν(p)

I′

m(xp,p)
Im(xp,p)

}

Im(xp,p)Im(xp+1,p)

{
−µ

(p+1)
1

ν(p+1)

I′

m(xp+1,p)
Im(xp+1,p) +

µ
(p)
1

ν(p)

I′

m(xp,p)
Im(xp,p)

}

Km(xp,p)Km(xp+1,p)

{
µ

(p+1)
1

ν(p+1)

K′

m(xp+1,p)
Km(xp+1,p) −

µ
(p)
1

ν(p)

K′

m(xp,p)
Km(xp,p)

}

Km(xp,p)Im(xp+1,p)

{
−µ

(p+1)
1

ν(p+1)

I′

m(xp+1,p)
Im(xp+1,p) +

µ
(p)
1

ν(p)

K′

m(xp,p)
Km(xp,p)

}



,

Sp+1,p =
ε
(p+1)
1

µ
(p+1)
1

Q(p+1,p),

in which the quotients involving modified Bessel functions and their derivatives can be computed accurately using
Eqs. (D.3) and (D.4)

I ′m(z)

Im(z)
=

Im−1(z)

Im(z)
− m

z
,

K ′
m(z)

Km(z)
= −Km−1(z)

Km(z)
− m

z
, (6.39)

and we can normalize the Bessel functions in the first quotient of these expressions withez for Im ande−z for
Km, which does not change the quotient value (this normalization is available under MatlabR©[31], for instance).
In order to get more compact expressions, we’d rather rewrite those matrices as the product of three relatively
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simple matrices

P p+1,p =

[
Km(xp+1,p) 0

0 −Im(xp+1,p)

]
· P̃ p+1,p ·

[
Im(xp,p) 0

0 Km(xp,p)

]
,

(6.40)

Qp+1,p =

[
Km(xp+1,p) 0

0 −Im(xp+1,p)

]
· Q̃p+1,p ·

[
Im(xp,p) 0

0 Km(xp,p)

]
,

(6.41)

Rp+1,p =

[
Km(xp+1,p) 0

0 −Im(xp+1,p)

]
· R̃p+1,p ·

[
Im(xp,p) 0

0 Km(xp,p)

]
,

(6.42)

Sp+1,p =

[
Km(xp+1,p) 0

0 −Im(xp+1,p)

]
· S̃p+1,p ·

[
Im(xp,p) 0

0 Km(xp,p)

]
, (6.43)

with P̃ p+1,p, Q̃p+1,p, R̃p+1,p andS̃p+1,p defined by

P̃ p+1,p = −ν
(p+1)2b(p)

ε
(p+1)
1




ε
(p+1)
1

ν(p+1)

K′
m(xp+1,p)

Km(xp+1,p)
− ε

(p)
1

ν(p)

I′m(xp,p)
Im(xp,p)

ε
(p+1)
1

ν(p+1)

K′
m(xp+1,p)

Km(xp+1,p)
− ε

(p)
1

ν(p)

K′
m(xp,p)

Km(xp,p)

ε
(p+1)
1

ν(p+1)

I′m(xp+1,p)
Im(xp+1,p)

− ε
(p)
1

ν(p)

I′m(xp,p)
Im(xp,p)

ε
(p+1)
1

ν(p+1)

I′m(xp+1,p)
Im(xp+1,p)

− ε
(p)
1

ν(p)

K′
m(xp,p)

Km(xp,p)


 ,

(6.44)

Q̃p+1,p =

(
ν(p+1)2

ν(p)2
− 1

)
m

βε
(p+1)
1




1 1

1 1



 ,

(6.45)

R̃p+1,p = −ν
(p+1)2b(p)

µ
(p+1)
1




µ
(p+1)
1

ν(p+1)

K′
m(xp+1,p)

Km(xp+1,p)
− µ

(p)
1

ν(p)

I′m(xp,p)
Im(xp,p)

µ
(p+1)
1

ν(p+1)

K′
m(xp+1,p)

Km(xp+1,p)
− µ

(p)
1

ν(p)

K′
m(xp,p)

Km(xp,p)

µ
(p+1)
1

ν(p+1)

I′m(xp+1,p)
Im(xp+1,p)

− µ
(p)
1

ν(p)

I′m(xp,p)
Im(xp,p)

µ
(p+1)
1

ν(p+1)

I′m(xp+1,p)
Im(xp+1,p)

− µ
(p)
1

ν(p)

K′
m(xp,p)

Km(xp,p)


 ,

(6.46)

S̃p+1,p =

(
ν(p+1)2

ν(p)2
− 1

)
m

βµ
(p+1)
1




1 1

1 1



 .

(6.47)

We can then define the4 × 4 matrixMp+1,p by

Mp+1,p =

[
P p+1,p Qp+1,p

Sp+1,p Rp+1,p

]

=




Km(xp+1,p) 0 0 0

0 −Im(xp+1,p) 0 0

0 0 Km(xp+1,p) 0

0 0 0 −Im(xp+1,p)



 · M̃p+1,p ·




Im(xp,p) 0 0 0

0 Km(xp,p) 0 0
0 0 Im(xp,p) 0
0 0 0 Km(xp,p)



 ,

(6.48)
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with

M̃p+1,p =

[
P̃ p+1,p Q̃p+1,p

S̃p+1,p R̃p+1,p

]
, (6.49)

such that 


C
(p+1)
Ie

C
(p+1)
Ke

C
(p+1)
Ig

C
(p+1)
Kg




= Mp+1,p ·




C
(p)
Ie

C
(p)
Ke

C
(p)
Ig

C
(p)
Kg




. (6.50)

When successively applying this relation, we get




C
(N)
Ie

C
(N)
Ke

C
(N)
Ig

C
(N)
Kg




= MN,N−1 ·MN−1,N−2 · · ·M2,1 ·




C
(1)
Ie

C
(1)
Ke

C
(1)
Ig

C
(1)
Kg




.

Recalling, from Eqs. (6.7), (6.8) and (6.26), that

C
(1)
Ke =

jωPm

πε0υ2γ2am(1 + δm0)
Im

(
ka

γ

)
,

C
(1)
Kg = 0,

C
(N)
Ie = C

(N)
Ig = 0, (6.51)

and defining

M = MN,N−1 ·MN−1,N−2 · · ·M2,1

= DN · M̃N,N−1 ·DN−1,N−2 · M̃N−1,N−2 ·DN−2,N−3 · · ·D2,1 · M̃2,1 ·D1

= DN · M̃ ·D1, (6.52)

with

D1 =




Im(x1,1) 0 0 0
0 Km(x1,1) 0 0
0 0 Im(x1,1) 0
0 0 0 Km(x1,1)


 , (6.53)

Dp+1,p =




Im(xp+1,p+1)Km(xp+1,p) 0 0 0

0 −Km(xp+1,p+1)Im(xp+1,p) 0 0

0 0 Im(xp+1,p+1)Km(xp+1,p) 0

0 0 0 −Km(xp+1,p+1)Im(xp+1,p)



 ,

(6.54)

DN =




Km(xN,N−1) 0 0 0
0 −Im(xN,N−1) 0 0
0 0 Km(xN,N−1) 0
0 0 0 −Im(xN,N−1)


 , (6.55)

M̃ = M̃N,N−1 ·DN−1,N−2 · M̃N−1,N−2 ·DN−2,N−3 · · ·D2,1 · M̃2,1, (6.56)
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we can write 


0

C
(N)
Ke

0

C
(N)
Kg




= M ·




C
(1)
Ie

jωPm

πε0υ2γ2am(1+δm0)
Im

(
ka
γ

)

C
(1)
Ig

0




, (6.57)

leading finally to the linear equations

M11C
(1)
Ie +M13C

(1)
Ig = −M12C

(1)
Ke,

M31C
(1)
Ie +M33C

(1)
Ig = −M32C

(1)
Ke,

and

C
(N)
Ke = M21C

(1)
Ie +M22C

(1)
Ke +M23C

(1)
Ig ,

C
(N)
Kg = M41C

(1)
Ie +M42C

(1)
Ke +M43C

(1)
Ig . (6.58)

The first two ones can be inverted easily using the inversion formula of a2 × 2 matrix (see Appendix F), giving

C
(1)
Ie = −C(1)

Ke

M12M33 −M32M13

M11M33 −M13M31
,

C
(1)
Ig = C

(1)
Ke

M12M31 −M32M11

M11M33 −M13M31
. (6.59)

As in Ref. [14] we defineαTM andαTE as the proportionality constants respectively betweenC
(1)
Ie and−C(1)

Ke,

and betweenC(1)
Ig andC(1)

Ke:

αTM =
M12M33 −M32M13

M11M33 −M13M31
,

αTE =
M12M31 −M32M11

M11M33 −M13M31
. (6.60)

Using Eqs. (6.52), (6.53) and (6.55) we can be further express those constants into

αTM =
Km(x1,1)

Im(x1,1)

M̃12M̃33 − M̃32M̃13

M̃11M̃33 − M̃13M̃31

,

αTE =
Km(x1,1)

Im(x1,1)

M̃12M̃31 − M̃32M̃11

M̃11M̃33 − M̃13M̃31

. (6.61)

Note that none of these two quantities depend ona, the offset of the source, since the matricesMp+1,p do not
depend ona.
Finally, knowing from Eqs. (6.1), (6.6) and (6.8) that

C
(0)
Ke = C

(0)
Kg = 0,

C
(0)
Ig = C

(1)
Ig ,

C
(0)
Ie = C

(1)
Ie + C

(1)
Ke

Km

(
ka
γ

)

Im

(
ka
γ

) , (6.62)

we can compute the constants for all the layersp.
It is worth mentioning that the general multilayer analysis was performed long ago form = 0 andm = 1 in
Refs. [26, 32], using a different algorithm that was implemented in a computer program called LAWAT, later [33]
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converted to MathematicaR©[34]. According to Ref. [2], the results seemed to lack accuracy due to numerical
errors, so the code was modified to compute the solutions in a symbolic way before performing the numerical
evaluation. Still, some problems remained as it was very long to perform the computation (for them = 1 mode)
for 3 layers of different materials in the pipe wall, and impossible to perform it for a larger number of layers. Our
method, which involves only multiplications of4 × 4 matrices and a final simple formula to computeαTM and
αTE, overcomes this difficulty. A similar matrix method has also been developped independently in Refs. [35–37].

7 Electromagnetic force inside the pipe

One of the quantity of interest is the Lorentz electromagnetic force~F on a given test particle inside the vacuum
pipe. We assume such a particle has a charge ofq and a velocity given by

~υb = υb ~es,

whereυb is the velocity of the bunch containing the particle (it can be different from the velocityυ of the source
terms, in the multibunch and coasting beam cases, whereυ is not the velocity of the beam but that of the travelling
wave [2, 3]). Dropping the superscript(p) for simplicity, the longitudinal component of the force is written

Fs = qEs, (7.1)

while the transverse components are (using Eqs. (5.9) to (5.12) and recalling thatν = k
γ

in vacuum)

Fr = q (Er − υbµ0Hθ) =
jqγ2

k

[
(1 − ββb)

∂Es

∂r
+
υ − υb

r
µ0
∂Hs

∂θ

]
, (7.2)

Fθ = q (Eθ + υbµ0Hr) =
jqγ2

k

[
1 − ββb

r

∂Es

∂θ
− (υ − υb)µ0

∂Hs

∂r

]
, (7.3)

whereβb = υb

c
is the relativistic velocity factor of the test particle. In the case whenυ = υb (single-bunch case),

we get for the transverse forces

Fr =
jq

k

∂Es

∂r
, (7.4)

Fθ =
jq

kr

∂Es

∂θ
. (7.5)

Therefore in the single-bunch case the force does not depend on the longitudinal component of the magnetic field.

8 Impedance

8.1 Recapitulation: expressions for the f eld components and the electromagnetic force in the single-bunch
case

For a given azimuthal modem, we computed in frequency domain the six components of the electromagnetic
fields created by the sources given in Section 2, in each layer(p). The longitudinal components are given by
Eqs. (4.10) and (4.11) (recalling that~G = Z0

~H and the equality between all the azimuthal mode numbers):

E(p)
s = cos(mθ)e−jks

[
C

(p)
Ie Im

(
ν(p)r

)
+ C

(p)
KeKm

(
ν(p)r

)]
, (8.1)

G(p)
s = sin(mθ)e−jks

[
C

(p)
Ig Im

(
ν(p)r

)
+ C

(p)
KgKm

(
ν(p)r

)]
, (8.2)

where the constantsC(p)
Ie , C(p)

Ke, C
(p)
Ig andC(p)

Kg (that still depend onm and on frequency) are calculated thanks to
the matrices defined in Eqs. (6.44) to (6.49) and (6.52), and the relations (6.50), (6.51), (6.58), (6.59) and (6.62).
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The transverse components are then, from Eqs. (5.9) to (5.12)

E(p)
r =

jk

ν(p)2
cos(mθ)e−jks

[
ν(p)

{
C

(p)
Ie I

′
m

(
ν(p)r

)
+ C

(p)
KeK

′
m

(
ν(p)r

)}

+
mβµ

(p)
1

r

{
C

(p)
Ig Im

(
ν(p)r

)
+ C

(p)
KgKm

(
ν(p)r

)}]
, (8.3)

E
(p)
θ =

jk

ν(p)2
sin(mθ)e−jks

[
−m
r

{
C

(p)
Ie Im

(
ν(p)r

)
+ C

(p)
KeKm

(
ν(p)r

)}

−βµ(p)
1 ν(p)

{
C

(p)
Ig I

′
m

(
ν(p)r

)
+ C

(p)
KgK

′
m

(
ν(p)r

)}]
, (8.4)

G(p)
r =

jk

ν(p)2
sin(mθ)e−jks

[
mβε

(p)
1

r

{
C

(p)
Ie Im

(
ν(p)r

)
+ C

(p)
KeKm

(
ν(p)r

)}

+ν(p)
{
C

(p)
Ig I

′
m

(
ν(p)r

)
+ C

(p)
KgK

′
m

(
ν(p)r

)}]
, (8.5)

G
(p)
θ =

jk

ν(p)2
cos(mθ)e−jks

[
βε

(p)
1 ν(p)

{
C

(p)
Ie I

′
m

(
ν(p)r

)
+ C

(p)
KeK

′
m

(
ν(p)r

)}

+
m

r

{
C

(p)
Ig Im

(
ν(p)r

)
+ C

(p)
KgKm

(
ν(p)r

)}]
. (8.6)

The Lorentz electromagnetic force acting on a test particle of chargeq located inside the vacuum pipe and outside
the ring-shaped beam (in the single-bunch case, i.e.υb = υ) has a longitudinal component equal to

F (1)
s =

jqωPm

πε0υ2γ2am(1 + δm0)
Im

(
ka

γ

)
cos(mθ)e−jks

[
Km

(
kr

γ

)
− αTMIm

(
kr

γ

)]
, (8.7)

while the transverse components are

F (1)
r = − qωPm

πε0υ2γ3am(1 + δm0)
Im

(
ka

γ

)
cos(mθ)e−jks

[
K ′

m

(
kr

γ

)
− αTMI

′
m

(
kr

γ

)]
, (8.8)

F
(1)
θ =

qPmm

πε0υγ2am(1 + δm0)r
Im

(
ka

γ

)
sin(mθ)e−jks

[
Km

(
kr

γ

)
− αTMIm

(
kr

γ

)]
, (8.9)

where we used the definitions (6.60) and Eq. (6.51).
We can also compute the forces in the first region, that is, wherer < a. This gives, using Eqs. (6.62)

F (0)
s =

jqωPm

πε0υ2γ2am(1 + δm0)
cos(mθ)e−jks

[
Km

(
ka

γ

)
− αTMIm

(
ka

γ

)]
Im

(
kr

γ

)
, (8.10)

F (0)
r = − qωPm

πε0υ2γ3am(1 + δm0)
cos(mθ)e−jks

[
Km

(
ka

γ

)
− αTMIm

(
ka

γ

)]
I ′m

(
kr

γ

)
, (8.11)

F
(0)
θ =

qPmm

πε0υγ2am(1 + δm0)r
sin(mθ)e−jks

[
Km

(
ka

γ

)
− αTMIm

(
ka

γ

)]
Im

(
kr

γ

)
. (8.12)

In principle we should sum the contributions of all the azimuthal modes to calculate the fields created by our
initial point source (see Eqs. (2.4) and (2.5)). The resulting expression cannot be evaluated analytically in the
general case because all the constants depend onm in a very complicated way. In the next section we will still
perform (and then simplify) such a multimode sum on the force in the vacuum region, to get the impedance seen
by a test particle.

8.2 Impedance derivation

As explained in the last section, we have to perform a sum on all the azimuthal modes to compute the exact force
felt by a test particle in the vacuum region (inside the pipe), which then enables us to compute the impedance seen
by the particle at the position in the transverse plane(a2, θ2) while the source is at(a1, 0) (note that from now on
we replacea by a1 in all previous formulas). To the best of our knowledge, such a multimode analysis has not
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been done before, as one usually limits oneself to the computation of the modesm = 0 (“monopole”) and the
modem = 1 (“dipole”), respectively associated with the longitudinal and transverse impedance. We will show
here that when summing all the azimuthal mode contributions (which is required in principle to get back the fields
created by our delta-function point source, so the Green’s function of the problem), we get a different expression
for the direct space-charge impedance, as well as additional terms in the wall impedance.
Several definitions of the impedance exist in Refs. [13, 38, 39] and [40, p. 74]. We will here write the longitudinal
impedance in a general way, inspired by Ref. [39]

Z‖ = − 1

Q q
a2

∫
dV EsJ

∗
t (a2, θ2), (8.13)

where the integration is performed over the volume of the structure considered (usually on a finite lengthL), and
where bothEs andJt are the sum of all the azimuthal contributions. The∗ stands for the complex conjugate,
Es is the longitudinal component of the field created by a source atr = a1 andθ = 0 and ~Jt = Jt ~es is another
current density flowing at the test particle position, whose expression is therefore (see Section 2)

Jt(a2, θ2) =
q

a2
e−jksδ(r − a2)δp(θ − θ2), (8.14)

q being the particle charge. This gives for a test particle in the vacuum region outside the source

Z
(1)
‖ = −

∫ L

ds

∞∑

m=0

jω

πε0υ2γ2(1 + δm0)
Im

(
ka1

γ

)
cos(mθ2)

[
Km

(
ka2

γ

)
− αTM(m,ω)Im

(
ka2

γ

)]
,

(8.15)
and in the vacuum region wherea2 < a1

Z
(0)
‖ = −

∫ L

ds
∞∑

m=0

jω

πε0υ2γ2(1 + δm0)
Im

(
ka2

γ

)
cos(mθ2)

[
Km

(
ka1

γ

)
− αTM(m,ω)Im

(
ka1

γ

)]
.

(8.16)
Nothing depends onL in the integrands so we can replace both integrals by a multiplcation byL.
We can identify two terms in the impedance: one is a sum overm of terms that do not depend onαTM, i.e. on the
pipe wall or even its presence (if there’s no pipe wall we obviously haveαTM = 0 since there can be no Bessel
functionIm in the radial dependence of the field, this function going to infinity withr). This is the so-called direct
(and incoherent) space-charge impedance, that we can compute exactly (without making any approximation) using
Eq. (D.16). This gives the same result for botha2 > a1 anda2 < a1, so an expression valid in the whole vacuum
region (we therefore drop the superscript(0) or (1))

ZSC,direct
‖ = − jLω

2πε0υ2γ2
K0

(
k
√
a2

1 + a2
2 − 2a1a2 cos θ2
γ

)
. (8.17)

Note that
√
a2

1 + a2
2 − 2a1a2 cos θ2 is, from the law of cosines, the distance (in the transverse plane) between the

source and the test particle11. This expression differs substantially to what can be found in Ref. [13] for instance,
because we have summed all the azimuthal mode contributions in an exact way, which is particularly required
for that part of the impedance: even if bothka1

γ
and ka2

γ
are much smaller than unity, each mode contributes

significantly to the final result as it contains the productIm

(
ka2
γ

)
Km

(
ka1
γ

)
(for e.g.a2 < a1) which is of order

1
2m

(
a2
a1

)m

(i.e. of order unity) as can be seen from Eqs. (D.13) and (D.14).

11This result is actually quite obvious from the observation that the direct space-charge is the part of the impedance that is due to the
force created by the beam when no boundaries are present, which is the same force as the one created by a beam at the origin of coordinates
on a test particle at a distancer. The longitudinal force can be computed easily when knowingEs in the modem = 0 by taking the limit
a → 0, which gives (there is no boundary so there can be noI0 function ofr in Es)

Es =
jωQ

2πε0υ2γ2
e
−jks

K0

(
kr

γ

)
.

Upon integration and normalization according to Eq. (8.13), this gives exactly the direct space-charge longitudinal impedance computed
above.
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The second term of Eqs. (8.15) and (8.16) (whose radial dependenceuses onlyIm functions) is the so-called wall
impedance, which is not exactly the same as the resistive-wall impedance and has been introduced in Ref. [41].
It contains both the impedance that we would have with a pipe wall made of a perfect conductor (this part is
usually called the indirect space-charge impedance) and the part of the impedance coming from the resistivity of
the layer(s). Its dependence on the wall properties is contained inαTM(m,ω). We can notice that it is the same
expression fora2 < a1 anda1 < a2 so that we can drop the superscript(0) or (1). To compute the impedance at
any order of precision, we need to use the exact formula from Eq. (D.12) for the Bessel functionIm

ZWall
‖ =

jLω

πε0υ2γ2

∞∑

m=0

cos(mθ2)

(1 + δm0)
αTM(m,ω)



(
ka1

2γ

)m ∞∑

n1=0

(
ka1
2γ

)2n1

n1!(m+ n1)!






(
ka2

2γ

)m ∞∑

n2=0

(
ka2
2γ

)2n2

n2!(m+ n2)!




=
jLω

πε0υ2γ2

∞∑

n1=0

∞∑

n2=0

n2−n1 even

(
ka1

2γ

)n1
(
ka2

2γ

)n2




min(n1,n2)∑

m=0
n1−m even

cos(mθ2)αTM(m,ω)

(1 + δm0)(
n1−m

2 )!(n1+m
2 )!(n2−m

2 )!(n2+m
2 )!


 .

(8.18)

In the linear domain (when bothka1
γ

and ka2
γ

are much smaller than unity), it is sufficient to compute the first
term of the sum only (the next term being of second order). This term comes from them = 0 mode and does not
depend on the position of the test particle nor ona1:

ZWall,0,0
‖ =

jLω

2πε0υ2γ2
αTM(m = 0, ω). (8.19)

This result can be inferred from Ref. [14]. More generally we can define a wall impedance of ordern1 in a1 and
n2 in a2

ZWall,n1,n2

‖ =






0 if n1 − n2 is odd,
jLω

πε0υ2γ2

(
ka1
2γ

)n1
(

ka2
2γ

)n2
[∑min(n1,n2)

m=0
n1−m even

cos(mθ2)αTM(m,ω)

(1+δm0)(
n1−m

2
)!(

n1+m

2
)!(

n2−m

2
)!(

n2+m

2
)!

]
if n1 − n2 is even.

(8.20)
For instance the next non-zero terms are quadratic:

ZWall,1,1
‖ =

jLω

πε0υ2γ2
cos(θ2)αTM(m = 1, ω)

(
ka1

2γ

)(
ka2

2γ

)
, (8.21)

ZWall,2,0
‖ =

jLω

2πε0υ2γ2
αTM(m = 0, ω)

(
ka1

2γ

)2

, (8.22)

ZWall,0,2
‖ =

jLω

2πε0υ2γ2
αTM(m = 0, ω)

(
ka2

2γ

)2

. (8.23)

Similarly to the longitudinal case we can define the horizontal transverse impedance (see Refs. [13, 38, 39]
and [40, p. 77], where we have again chosen a definition inspired from Ref. [39])

Zx =
j

Q q
a2

∫
dV
[
~E + β ~es × ~G

]
· ~exJ∗

t (a2, θ2) =
j

Q q
a2

∫
dV

~F

q
· ~exJ∗

t (a2, θ2), (8.24)

wherex stands for the cartesian horizontal coordinate,~ex = cos θ~er−sin θ ~eθ, Jt has the same expression as above
in Eq. (8.14), and where the fields are the sum of all the azimuthal contributions created by our initial source at
r = a1 andθ = 0. This gives fora2 > a1, using Eqs. (8.8) and (8.9)

Z(1)
x = − jLω

πε0υ2γ3
cos(θ2)

∞∑

m=0

1

1 + δm0
Im

(
ka1

γ

)
cos(mθ2)

[
K ′

m

(
ka2

γ

)
− αTM(m,ω)I ′m

(
ka2

γ

)]

− jL

πε0υγ2a2
sin(θ2)

∞∑

m=0

m

1 + δm0
Im

(
ka1

γ

)
sin(mθ2)

[
Km

(
ka2

γ

)
− αTM(m,ω)Im

(
ka2

γ

)]
,

(8.25)
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while for a2 < a1, using Eqs. (8.11) and (8.12)

Z(0)
x = − jLω

πε0υ2γ3
cos(θ2)

∞∑

m=0

1

1 + δm0
I ′m

(
ka2

γ

)
cos(mθ2)

[
Km

(
ka1

γ

)
− αTM(m,ω)Im

(
ka1

γ

)]

− jL

πε0υγ2a2
sin(θ2)

∞∑

m=0

m

1 + δm0
Im

(
ka2

γ

)
sin(mθ2)

[
Km

(
ka1

γ

)
− αTM(m,ω)Im

(
ka1

γ

)]
.

(8.26)

Again, we can identify a direct space-charge term that does not depend onαTM, that we can compute exactly
using Eqs. (D.17), (D.18) and (D.19), giving the same expression for botha1 < a2 anda1 > a2 so that we can
also drop the superscript(0) or (1):

ZSC,direct
x =

jLω

2πε0υ2γ3
K1

(
k
√
a2

1 + a2
2 − 2a1a2 cos θ2
γ

)
a2 cos θ2 − a1√

a2
1 + a2

2 − 2a1a2 cos θ2
. (8.27)

As in the longitudinal case, this formula is different from the results that can be found in Refs. [13, 14], for the
same reasons, that is, the fact that we have summed all the azimuthal modes instead of looking only at the dipolar
modem = 1, each of the modes contributing quite significantly to the total result.

The transverse horizontal wall impedance can be written in a similar way as in the longitudinal case, that is
from the second term of Eqs. (8.25) and (8.26). Dropping again the superscript(0) or (1) since it has the same
expression for botha1 < a2 anda1 > a2, using first Eq. (D.3) and then the exact expansion forIm andIm−1

from Eq. (D.12), we get

ZWall
x =

jLω

πε0υ2γ3
cos(θ2)

∞∑

m=0

αTM(m,ω)

1 + δm0
cos(mθ2)Im

(
ka1

γ

)
Im−1

(
ka2

γ

)

− jL

πε0υγ2a2

∞∑

m=0

mαTM(m,ω)

1 + δm0
cos((m+ 1)θ2)Im

(
ka1

γ

)
Im

(
ka2

γ

)

=
jL

πε0υγ2a2

∞∑

m=0

αTM(m,ω)

1 + δm0

(
ka1

2γ

)m(ka2

2γ

)m




∞∑

n1=0

(
ka1
2γ

)2n1

n1!(m+ n1)!




·


−m cos ((m+ 1)θ2)




∞∑

n2=0

(
ka2
2γ

)2n2

n2!(m+ n2)!




+2 cos θ2 cos(mθ2)




∞∑

n2=0

(
ka2
2γ

)2n2

n2!(m+ n2 − 1)!





 (where(−1)! = ∞)

=
jL

πε0υγ2a2

∞∑

m=0

αTM(m,ω)

1 + δm0

(
ka1

2γ

)m(ka2

2γ

)m




∞∑

n1=0

(
ka1
2γ

)2n1

n1!(m+ n1)!




·




∞∑

n2=0

(
ka2
2γ

)2n2

n2!(m+ n2)!
(m cos {(m− 1)θ2) + 2n2 cos θ2 cos(mθ2)}




=
jL

πε0υγ2a2

∞∑

n1=0

∞∑

n2=0

n2−n1 even

(
ka1

2γ

)n1
(
ka2

2γ

)n2

·




min(n1,n2)∑

m=0
n1−m even

αTM(m,ω)

1 + δm0

(
n2 cos θ2 cos(mθ2) +m sin θ2 sin(mθ2)

(n1−m
2 )!(n1+m

2 )!(n2−m
2 )!(n2+m

2 )!

)
 . (8.28)
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As in the longitudinal case, in the linear domain whereka1
γ

≪ 1 and ka2
γ

≪ 1 we can restrict ourselves to the first
and principal terms of this sum, that are linear:

ZWall,1,1
x =

jLk2

4πε0υγ4
αTM(m = 1, ω)a1,

ZWall,0,2
x =

jLk2

4πε0υγ4
αTM(m = 0, ω)a2 cos θ2. (8.29)

The first term, which does not depend on the position of the test particle but is proportional to the one of the source
a1, is usually called the dipolar term and is often normalized by dividing bya1 (as in Ref. [14]), thus obtaining an
impedance inΩ/m. The second one is proportional tox2 = a2 cos θ2 and is called quadrupolar. This term is new
and comes from the fact that we have developped the Bessel function for them = 0 mode instead of considering
as usual only the first order term.
More generally we can as in the longitudinal case define a transverse wall impedance of ordern1 in a1 andn2 in
a2

ZWall,n1,n2
x =






0 if n1 − n2 is odd,
jL

πε0υγ2a2

(
ka1
2γ

)n1
(

ka2
2γ

)n2

·
[∑min(n1,n2)

m=0
n1−m even

αTM(m,ω)
1+δm0

(
n2 cos θ2 cos(mθ2)+m sin θ2 sin(mθ2)

(
n1−m

2
)!(

n1+m

2
)!(

n2−m

2
)!(

n2+m

2
)!

)]
if n1 − n2 is even.

(8.30)
The next non-zero terms are of third order.

Obviously we can also define the vertical transverse impedance by

Zy =
j

Q q
a2

∫
dV
[
~E + β ~es × ~G

]
· ~eyJ∗

t (a2, θ2) =
j

Q q
a2

∫
dV

~F

q
· ~eyJ∗

t (a2, θ2), (8.31)

wherey stands for the cartesian vertical coordinate,~ey = sin θ~er + cos θ ~eθ, Jt has the same expression as above
in Eq. (8.14), and where the fields are the sum of all the azimuthal contributions created by our initial source at
r = a1 andθ = 0. This gives fora2 > a1, using Eqs. (8.8) and (8.9)

Z(1)
y = − jLω

πε0υ2γ3
sin(θ2)

∞∑

m=0

1

1 + δm0
Im

(
ka1

γ

)
cos(mθ2)

[
K ′

m

(
ka2

γ

)
− αTM(m,ω)I ′m

(
ka2

γ

)]

+
jL

πε0υγ2a2
cos(θ2)

∞∑

m=0

m

1 + δm0
Im

(
ka1

γ

)
sin(mθ2)

[
Km

(
ka2

γ

)
− αTM(m,ω)Im

(
ka2

γ

)]
,

while for a2 < a1, using Eqs. (8.11) and (8.12)

Z(0)
y = − jLω

πε0υ2γ3
sin(θ2)

∞∑

m=0

1

1 + δm0
I ′m

(
ka2

γ

)
cos(mθ2)

[
Km

(
ka1

γ

)
− αTM(m,ω)Im

(
ka1

γ

)]

+
jL

πε0υγ2a2
cos(θ2)

∞∑

m=0

m

1 + δm0
Im

(
ka2

γ

)
sin(mθ2)

[
Km

(
ka1

γ

)
− αTM(m,ω)Im

(
ka1

γ

)]
.

Again, we can identify a direct space-charge term, that we can compute exactly using Eqs. (D.17), (D.18)
and (D.19), giving the same expression for botha1 < a2 anda1 > a2 so that we can also drop the superscript(0)
or (1):

ZSC,direct
y =

jLω

2πε0υ2γ3
K1

(
k
√
a2

1 + a2
2 − 2a1a2 cos θ2
γ

)
a2 sin θ2√

a2
1 + a2

2 − 2a1a2 cos θ2
. (8.32)

The transverse vertical wall impedance can be written in a similar way as in the horizontal one. Dropping again
the superscript(0) or (1) since it has the same expression for botha1 < a2 anda1 > a2, using first Eq. (D.3) and
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then the exact expansion forIm and Im−1 from Eq. (D.12), we get

ZWall
y =

jLω

πε0υ2γ3
sin(θ2)

∞∑

m=0
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cos(mθ2)Im

(
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γ

)
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(
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γ

)

− jL
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∞∑
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(
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γ
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(
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γ

)

=
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∞∑
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(
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)m(ka2

2γ
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(
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∞∑

n2=0

(
ka2
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(
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=
jL
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(
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)m(ka2
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(
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)2n1

n1!(m+ n1)!




·




∞∑
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(
ka2
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)2n2

n2!(m+ n2)!
(−m sin {(m− 1)θ2) + 2n2 sin θ2 cos(mθ2)}




=
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πε0υγ2a2
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n1=0
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n2=0

n2−n1 even

(
ka1

2γ

)n1
(
ka2

2γ

)n2

·




min(n1,n2)∑

m=0
n1−m even

αTM(m,ω)

1 + δm0

(
n2 sin θ2 cos(mθ2) −m cos θ2 sin(mθ2)

(n1−m
2 )!(n1+m

2 )!(n2−m
2 )!(n2+m

2 )!

)
 . (8.33)

As above, in the linear domain whereka1
γ

≪ 1 and ka2
γ

≪ 1 we can restrict ourselves to the first and principal
term of this sum, that is linear:

ZWall,0,2
y =

jLk2

4πε0υγ4
αTM(m = 0, ω)a2 sin θ2. (8.34)

In the transverse vertical impedance we don’t have any dipolar term at first order because hereθ = 0 for the
source. On the other hand there is a quadrupolar term, proportional toy2 = a2 sin θ2. This term is new and comes
from the fact that we have developped the modified Bessel function for them = 0 mode instead of considering
only the first order term as is usually done. More generally we can as in the horizontal case define a vertical
transverse wall impedance of ordern1 in a1 andn2 in a2

ZWall,n1,n2
y =






0 if n1 − n2 is odd,
jL

πε0υγ2a2

(
ka1
2γ

)n1
(

ka2
2γ

)n2

·
[∑min(n1,n2)

m=0
n1−m even

αTM(m,ω)
1+δm0

(
n2 sin θ2 cos(mθ2)−m cos θ2 sin(mθ2)

(
n1−m

2
)!(

n1+m

2
)!(

n2−m

2
)!(

n2+m

2
)!

)]
if n1 − n2 is even.

(8.35)
Again, the next non-zero terms are of third order.
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8.3 Generalization to a source in r = a1 and θ = θ1

We can generalize the impedances computed above in the case of a source atr = a1 andθ = θ1 (instead ofθ = 0).
From the rotational symmetry of the problem about thes axis, the results can be obtained from those in the above
analysis by replacingθ2 with the difference between the two anglesθ2−θ1. This will give directly the longitudinal
impedance, while a further step is required for the transverse one, because we would then haveZx′ andZy′ for
~ex′ along theθ1 direction, i.e.~er(θ1), and ~ey′ along the perpendicular of theθ1 direction, i.e.~eθ(θ1). To get back
to Zx andZy one then simply needs to computeZx = Zx′ cos θ1 − Zy′ sin θ1 andZy = Zx′ sin θ1 + Zy′ cos θ1.
This gives, for the direct space-charge impedances (definingx1 = a1 cos θ1 andy1 = a1 sin θ1)

ZSC,direct
‖ = − jLω

2πε0υ2γ2
K0

(
k
√

(x1 − x2)2 + (y1 − y2)2

γ

)
, (8.36)

ZSC,direct
x′ =

jLω

2πε0υ2γ3
K1

(
k
√

(x1 − x2)2 + (y1 − y2)2

γ

)
x2 cos θ1 + y2 sin θ1 − a1√

(x1 − x2)2 + (y1 − y2)2
,

ZSC,direct
y′ =

jLω

2πε0υ2γ3
K1

(
k
√

(x1 − x2)2 + (y1 − y2)2

γ

)
y2 cos θ1 − x2 sin θ1√

(x1 − x2)2 + (y1 − y2)2
,

so that

ZSC,direct
x =

jLω

2πε0υ2γ3
K1

(
k
√

(x1 − x2)2 + (y1 − y2)2

γ

)
x2 − x1√

(x1 − x2)2 + (y1 − y2)2
, (8.37)

ZSC,direct
y =

jLω

2πε0υ2γ3
K1

(
k
√

(x1 − x2)2 + (y1 − y2)2

γ

)
y2 − y1√

(x1 − x2)2 + (y1 − y2)2
. (8.38)

For the wall part of the impedances we have whenn1 − n2 is even

ZWall,n1,n2

‖ =
jLω

πε0υ2γ2

(
ka1

2γ

)n1
(
ka2

2γ

)n2




min(n1,n2)∑
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cos (m(θ2 − θ1))αTM(m,ω)
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2 )!(n2−m
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 ,

(8.39)
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jL

πε0υγ2a2

(
ka1

2γ

)n1
(
ka2

2γ

)n2

·




min(n1,n2)∑

m=0
n1−m even

αTM(m,ω)

1 + δm0

(
n2 sin(θ2 − θ1) cos (m(θ2 − θ1)) −m cos(θ2 − θ1) sin (m(θ2 − θ1))

(n1−m
2 )!(n1+m

2 )!(n2−m
2 )!(n2+m

2 )!

)
 ,
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giving in the end
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(8.40)

ZWall,n1,n2
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(8.41)

while the same terms whenn1 − n2 is odd are all zero.
In the linear domain the first and principal terms of these expressions are written

ZWall,0,0
‖ =

jLω

2πε0υ2γ2
αTM(m = 0, ω), (8.42)

ZWall,1,1
x =

jLk2

4πε0υγ4
αTM(m = 1, ω)x1, (8.43)

ZWall,0,2
x =

jLk2

4πε0υγ4
αTM(m = 0, ω)x2, (8.44)

ZWall,1,1
y =

jLk2

4πε0υγ4
αTM(m = 1, ω)y1, (8.45)

ZWall,0,2
y =

jLk2

4πε0υγ4
αTM(m = 0, ω)y2. (8.46)

Note that the new quadrupolar terms we found for the transverse impedance (proportional tox2 andy2) will be in
the ultrarelativistic case small with respect to the longitudinal impedance, as they are proportional toαTM(m=0,ω)

γ4

whereasZWall,0,0
‖ ∝ αTM(m=0,ω)

γ2 . Therefore, ifZWall,0,0
‖ stays finite whenγ → ∞ (which should usually be the

case), the quadrupolar termsZWall,0,2
x andZWall,0,2

y go to zero.
For the longitudinal wall impedance, the second order terms could be of interest as well. They are given by

ZWall,1,1
‖ =

jLωk2

4πε0υ2γ4
αTM(m = 1, ω)(x1x2 + y1y2), (8.47)

ZWall,2,0
‖ =
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8πε0υ2γ4
αTM(m = 0, ω)(x2

1 + y2
1), (8.48)

ZWall,0,2
‖ =

jLωk2

8πε0υ2γ4
αTM(m = 0, ω)(x2

2 + y2
2). (8.49)

8.4 Checking Panofsky-Wenzel theorem on the derived impedances

We can verify (with Eq. (D.11) ) that

∂

∂x2
ZSC,direct
‖ = − jωL

2πε0υ2γ2

k

γ
K ′

0

(
k
√
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= kZSC,direct
x , (8.50)

∂
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y , (8.51)
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which is in agreement with the Panofsky-Wenzel theorem as stated in Ref. [40, p. 90]. Also, knowing that
(
a2
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)m
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,
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+
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we get (whenn1 − n2 is even, the case when it’s odd leading obviously to the same relations)
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= kZWall,n1,n2
x , (8.52)
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and
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which are also in agreement with the Panofsky-Wenzel theorem.

9 Conclusion

This paper aimed at giving an as complete and detailed as possible derivation of the electromagnetic fields created
by an offset point charge travelling at any speed in a multilayer infinitely long circular beam pipe. One must
keep in mind that the basic assumptions of the derivation are the geometry of the pipe (uniform, infinitely long,
cylindrical, and with no curvature along its axis) and the linearity of the pipe materials together with the validity
of local Ohm’s law (thus neglecting magnetoresitance and the anomalous skin effect).
Some of the results found here, in particular the general form for the longitudinal and transverse field components,
were found long ago, but some detailed explanations on how they were derived were still missing in the references
cited. In particular, we tried to explain thoroughly the equality between the azimuthal mode numbers of the electric
field and magnetic field longitudinal components of all the subsequent layers.
A new procedure has also been devised for the field matching determination of all the constants, involving a
matrix method, which is not completely new as similar methods were also devised in Refs. [35–37] but not in the
same general formalism. A numerical implementation follows directly from the application of the equations in
Section 6, having in mind that it is better to use first a symbolic code to obtain the whole multilayer formula of
a particular problem, before plugging in numerical values. In a future paper the comparison between previously
adopted approaches and our matrix method will be shown.
Quite surprisingly appear some new results from this study, due to the generalization to any azimuthal mode
together with the final summation on all the modesm, to get the Green’s function, that is, the solution of the
initial problem involving delta-function sources. In principle from this analysis the electromagnetic fields created
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by any particular source, with a finite transverse shape, can then be computed using convolutions. The main
new outcomes are the formulas given in Section 8.3, in particular the multimode direct space-charge impedance
in Eqs. (8.36), (8.37) and (8.38). As the direct space-charge is usually not computed from the resistive-wall
computation we did, but directly, using the absence of wall boundary and the particular shape of the real source,
those “space-charge Green’s functions” should not give new information on the current state of comprehension
and modelisation of space-charge. On the other hand, the new quadrupolar terms for the transverse wall impedance
in Eqs. (8.44) and (8.46), which look negligible in the ultrarelativistic case but maybe not for low-energy beams,
might be of relevance. Future numerical and experimental studies are still needed to quantify the impact of these
analytically derived quantities in reality.
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A Appendix A:MacroscopicMaxwell equations in frequency domain for a general linearmedium

In a medium, time domain macroscopic Maxwell equations are derived from the exact microscopic ones that hold
for the electromagnetic fields~e and~b in vacuum, given thetotal microscopic charge densityρ and current density
~j [29, p. 1-2], [29, p. 105], [15, p. 248]

div~e =
ρ

ε0
,

~curl~b− ∂~e

c2∂t
= µ0

~j,

~curl~e+
∂~b

∂t
= 0,

div~b = 0,

wherec is the speed of light in vacuum,ε0 the permittivity of vacuum andµ0 its permeability. When averaging
these equations over elements of volume ”physically infinitesimal”, we get similar equations for the macroscopic

averaged quantites~E = ~e, ~B = ~b, ρ and ~J = ~j [15, p. 250-251]

div ~E =
ρ

ε0
, (A.1)

~curl ~B − ∂ ~E

c2∂t
= µ0

~J, (A.2)

~curl ~E +
∂ ~B

∂t
= 0, (A.3)

div ~B = 0. (A.4)

The total mean chargeρ and current~J are the sum of several terms:

• “External” charges and currents, i.e. independent of the electromagnetic fields and imposed by an external
source. For instance, in our study the external charges are those of Eq. (2.1) and the external current density
is related to them thanks to~Jext = ρextυ~es,

• “Induced” charges and currents, i.e. that come from the action of the fields themselves on the medium. The
induced charges and currents obviously vanish in vacuum (neglecting quantum effects).

We will now express the induced charges and currents, first in the case of a linear medium without dielectric or
magnetic losses, and then in a general linear medium that can exhibit such losses.

A.1 Linear medium without dielectric or magnetic losses

In such a medium, which can be either a dielectric or a conductor and has a certain magnetic permeability, we
can indentify three terms in the induced charges and currents, as we will see below. From the linear superposition
principle we can consider separately the induced charges and currents coming from the dielectric aspect of the
material to those coming from its conductive aspect12:

• For the dielectric aspect of the material we have [29, p. 34], [15, p. 153-156]

ρdiel
induced = −div ~P ,

~P being the polarization, that is, in a linear medium without loss:

~P = ε0χe
~E, (A.5)

12At a given frequency only one of these two aspects will be relevant, the material being either a conductor or a dielectric. Putting
both aspects (dielectric and conductor) in the same material can be thought of being somehow artificial, but it enables to write a general
formalism that will be suited for both cases, which is necessary to get formulas valid at any frequency since at high frequencies a conductor
behaves like a dielectric (see also Ref. [16, p. 777]).
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with χe the electric susceptibility, which is also equal toεb − 1 by definition of the dielectric constantεb
(using the notations of Section 3). So we obtain for the dielectric induced charge density

ρdiel
induced = −ε0div

(
χe
~E
)
. (A.6)

The current density is then obtained from the continuity equation [15, p. 3]13

∂ρdiel
induced

∂t
+ div ~Jinduced = 0, (A.7)

so that

div ~Jinduced = div
∂ ~P

∂t
,

which from Eq. (C.2) gives a current density as the sum of two terms

~Jinduced = ε0
∂
(
χe
~E
)

∂t
+ ~curl ~M. (A.8)

~M is a vector field called magnetization, which has nothing to do with the dielectric or conductive aspect of
the medium but is related to~B thanks to the magnetic susceptibilityχm = µr − 1 (using the notations of
Section 3) [29, p. 105], [15, p. 192]

~M =
χm

µ0(1 + χm)
~B. (A.9)

Therefore we have for the dielectric part of the induced current density

~Jdiel
induced = ε0

∂
(
χe
~E
)

∂t
, (A.10)

and for the induced magnetic part

~Jmag
induced = ~curl

(
χm

µ0(1 + χm)
~B

)
. (A.11)

• For the conductive aspect of the medium, we have from Ohm’s law

~Jcond
induced = σ ~E, (A.12)

whereσ is the conductivity (see Section 3) of the material. From the continuity equation we then get

∂ρcond
induced

∂t
= −div

(
σ ~E
)
,

so that

ρcond
induced = −

∫ t

dt′div
(
σ ~E
)
. (A.13)

13The continuity equation is not an additional equation to the problem but a consequence of Maxwell equations: taking the divergence
of Eq. (A.2), and using Eqs. (C.2) and (A.1) we get

µ0div ~J = −∂div ~E

c2∂t
= − 1

ε0c2

∂ρ

∂t

so that

div ~J +
∂ρ

∂t
= 0

from ε0µ0c
2 = 1. This continuity equation can be applied separately to each part of the induced charges and currents since it should be

true for a dielectric that has no conductivity, or a conductor that has no dielectric susceptibility, or more generally assuming that we can
always consider seperately the dielectric charges and currents from the conductive ones.
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Finally, substituting the induced charges and currents from Eqs. (A.6), (A.10), (A.11), (A.12) and (A.13) into
the right hand side of Maxwell’s inhomogeneous equations (A.1) and (A.2) and adding the external charges and
currentsρext and ~Jext, we get

ε0div ~E = ρext − ε0div
(
χe
~E
)
−
∫ t

dt′div
(
σ ~E
)
,

1

µ0

~curl ~B − ε0
∂ ~E

∂t
= ~Jext + ε0

∂
(
χe
~E
)

∂t
+ ~curl

(
χm

µ0(1 + χm)
~B

)
+ σ ~E,

which leads to

div

(
ε0εb ~E +

∫ t

dt′σ ~E

)
= ρext, (A.14)

~curl

(
1

µ0µr

~B

)
− ∂

∂t

(
ε0εb ~E +

∫ t

dt′σ ~E

)
= ~Jext. (A.15)

A.2 Linear medium with dielectric and magnetic losses

In a general linear medium, there can be losses (i.e. dissipation of energy) that are due to some delay between
the cause (an electromagnetic field) and its effect on the medium (polarization and/or magnetization). We can
introduce them by replacing Eqs. (A.5) and (A.9) by the following integrals over all previous instants [29, p. 266]:

~P = ε0

∫ ∞

0
dτf(τ) ~E(t− τ), (A.16)

~M =
1

µ0

∫ ∞

0
dτg(τ) ~B(t− τ), (A.17)

wheref andg are two functions (usually decaying with time). When substituting these equations into the induced
charge and current densities (dielectric and magnetic part, as the conductive part remains the same), we get instead
of Eqs. (A.14) and (A.15)

div

(
ε0ε̂b ~E +

∫ t

dt′σ ~E

)
= ρext, (A.18)

~curl

(
1

µ0

1̂

µr

~B

)
− ∂

∂t

(
ε0ε̂b ~E +

∫ t

dt′σ ~E

)
= ~Jext, (A.19)

where the linear operatorŝεb and 1̂
µr

are defined by

ε̂b ~E = ~E(t) +

∫ ∞

0
dτf(τ) ~E(t− τ),

1̂

µr

~B = ~B(t) −
∫ ∞

0
dτg(τ) ~B(t− τ).

In frequency domain (that is, after applying a Fourier transform as explained in Section 2), we can substitute all
occurences of∂

∂t
by the multiplicative factorjω and all occurences of

∫ t
dt′ by 1

jω
. Also, we can replace the

convolution product in the linear operatorε̂b (respectively,̂ 1
µr

) by a multiplication between the Fourier transform

f̃ of f (resp.g̃ for g) and that of~E (resp. ~B). Now we can always write them in the form

1 + f̃ = εb(ω) [1 − j tanϑE(ω)] ,

1 − g̃ =
1

µr(ω) [1 − j tanϑM (ω)]
,

whereεb, ϑE , µr andϑM (defined in Section 3) are real and can depend on frequency. At first order, we can
reasonably assume thatεb andµr are constants (as can also be inferred from the theory on linear medium without
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losses, see previous section). For the imaginary part, this can never be exactly the case since we should always

have, as specified in Ref. [15, p. 262],Im
(
f̃(−ω)

)
= −Im

(
f̃(ω)

)
and a similar relation for̃g. Finally, we get

for the two first (inhomogeneous) Maxwell equations in frequency domain14

div

[(
ε0εb(1 − j tanϑE) +

σ

jω

)
~E

]
= ρext, (A.20)

~curl

[
1

µ0µr(1 − j tanϑM )
~B

]
− jω

[(
ε0εb(1 − j tanϑE) +

σ

jω

)
~E

]
= ~Jext. (A.21)

Since the two homogeneous Maxwell’s equation (A.3) and (A.4) do not depend on induced charges and currents,
we get the equations of Section 3 by defining the electric displacement~D and magnetic field~H (while ~B is called
the magnetic induction) in the following way15

~D =

[
ε0εb(1 − j tanϑE) +

σ

jω

]
~E, (A.22)

~H =
1

µ0µr(1 − j tanϑM )
~B, (A.23)

therefore obtaining the four general frequency domain macroscopic Maxwell equations in a linear medium with
losses

div ~D = ρext, (A.24)
~curl ~H − jω ~D = ~Jext, (A.25)
~curl ~E + jω ~B = 0, (A.26)

div ~B = 0. (A.27)

We should stress again that these equations suppose linearity of the medium. This is in particular not true for
ferromagnetic materials (where the relation between the magnetization and the magnetic field is hysteretic and
strongly non-linear), except for small fields in an untreated material (that is, not previously magnetized). Also,
isotropy, homogeneity and the validity of Ohm’s law have been assumed.

B Appendix B: Vector operations in cylindrical coordinates

The following formulas can be found in many textbooks of mechanics or electrodynamics, and in particular in
Ref. [29, p. 452-453].

B.1 Gradient

For any scalar fieldf , the gradient in cylindrical coordinates(r, θ, s) (the basis unit vector being~er, ~eθ and~es) is
given by

~gradf =
∂f

∂r
~er +

1

r

∂f

∂θ
~eθ +

∂f

∂s
~es. (B.1)

B.2 Divergence

For any vector field~A, the divergence in cylindrical coordinates(r, θ, s) is given by

div ~A =
∂Ar

∂r
+
Ar

r
+

1

r

∂Aθ

∂θ
+
∂As

∂s
,

=
1

r

∂(rAr)

∂r
+

1

r

∂Aθ

∂θ
+
∂As

∂s
. (B.2)

14Alternatively, we could have introduced the losses directly in the frequency domain equations, as in Ref. [15, p. 262], by defining the
complex permittivity and permeability.

15Note that the dielectric loss tangent cannot be easily separated from the conductive part, which also generate an imaginary part in the
total dispersionεb(ω) [1 − j tan ϑE(ω)]+ σ

jω
. So we must be very careful when applying numerical values from tables in these formulas:

for instance, the loss tangent could already “contain” the conductivity.
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B.3 Curl

For any vector field~A, the curl in cylindrical coordinates(r, θ, s) is given by

(
~curl ~A

)

r
=

1

r

∂As

∂θ
− ∂Aθ

∂s
,

(
~curl ~A

)

θ
=

∂Ar

∂s
− ∂As

∂r
,

(
~curl ~A

)

s
=

∂Aθ

∂r
+
Aθ

r
− 1

r

∂Ar

∂θ
,

=
1

r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
. (B.3)

B.4 Scalar laplacian

For any scalar fieldf , the laplacian in cylindrical coordinates(r, θ, s) is given by

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂s2
. (B.4)

B.5 Vector laplacian

For any vector field~A, the vector laplacian in cylindrical coordinates(r, θ, s) is given by

(
∇2 ~A

)

r
= ∇2Ar −

Ar

r2
− 2

r2
∂Aθ

∂θ
,

(
∇2 ~A

)

θ
= ∇2Aθ −

Aθ

r2
+

2

r2
∂Ar

∂θ
,

(
∇2 ~A

)

s
= ∇2As. (B.5)

C Appendix C: Various relations between vector operations

From for instance Ref. [15, cover page], we know that

~curl
(
~curl
)

= ~grad (div) −∇2, (C.1)

div
(
~curl
)

= 0. (C.2)

D Appendix D: Various properties of the modif ed Bessel functions

In all the followingη andz are complex numbers whilem is a positive integer.
Modified Bessel functionsIη(z) andKη(z) are independent solutions of the differential equation [30]

z2d
2y

dz2
+ z

dy

dz
−
(
z2 + η2

)
y = 0. (D.1)
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From Ref. [30], we have the following relations between the modified Besselfunctions (z∗ stands for the complex
conjugate ofz)

I ′η(z)Kη(z) −K ′
η(z)Iη(z) =

1

z
, (D.2)

I ′η(z) = Iη−1(z) −
η

z
Iη(z), (D.3)

K ′
η(z) = −Kη−1(z) −

η

z
Kη(z), (D.4)

K ′
η(z) = −Kη+1(z) +

η

z
Kη(z), (D.5)

I−m(z) = Im(z), (D.6)

K−m(z) = Km(z), (D.7)

Im(z∗) = Im(z)∗, (D.8)

Km(z∗) = Km(z)∗, (D.9)

I ′0(z) = I1(z), (D.10)

K ′
0(z) = −K1(z). (D.11)

The same reference gives also expansions for small arguments

Im(z) =
(z

2

)m
∞∑

k=0

(
z
2

)2k

k!(m+ k)!
(also valid form = −1 with the convention(−1)! = ∞), (D.12)

Im(z) ∼|z|→0

(
1
2z
)m

m!
, (D.13)

Km(z) ∼|z|→0
1

2
(m− 1)!

(
1

2
z

)−m

(m strictly positive integer), (D.14)

whereo|z|→0 (f(|z|)) is a function such that
o|z|→0(f(|z|))

f(|z|) → 0 when|z| → 0.

Finally, from Ref. [42] the following formula holds, for any complex numbersφ, η, z1 andz2 such that|z1e±jφ| <
|z2|

∞∑

m=−∞
Im(z1)Kη+m(z2)e

jmφ = Kη

(√
z2
1 + z2

2 − 2z1z2 cosφ

)(
z2 − z1e

−jφ

√
z2
1 + z2

2 − 2z1z2 cosφ

)η

. (D.15)

This in particular gives forη = 0, 0 < z1 < z2 andφ real numbers, taking only the real part of the formula, and
recalling Eqs. (D.6) and (D.7)

∞∑

m=0

1

1 + δm0
Im(z1)Km(z2) cos(mφ) =

1

2
K0

(√
z2
1 + z2

2 − 2z1z2 cosφ

)
, (D.16)

whereδm0 = 1 if m = 0, 0 otherwise. We can differentiate this equation with respect toz1, z2 andφ, giving
(using Eq. (D.11) )

∞∑

m=0

1

1 + δm0
I ′m(z1)Km(z2) cos(mφ) = −K1

(√
z2
1 + z2

2 − 2z1z2 cosφ

)
z1 − z2 cosφ

2
√
z2
1 + z2

2 − 2z1z2 cosφ
,

(D.17)
∞∑

m=0

1

1 + δm0
Im(z1)K

′
m(z2) cos(mφ) = −K1

(√
z2
1 + z2

2 − 2z1z2 cosφ

)
z2 − z1 cosφ

2
√
z2
1 + z2

2 − 2z1z2 cosφ
,

(D.18)
∞∑

m=0

m

1 + δm0
Im(z1)Km(z2) sin(mφ) = K1

(√
z2
1 + z2

2 − 2z1z2 cosφ

)
z1z2 sinφ

2
√
z2
1 + z2

2 − 2z1z2 cosφ
.

(D.19)
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E Appendix E: Consequences of Eq. (6.24) for all the pipe wall boundaries

In Section 6.2, we could not prove that the azimuthal mode numbersm andmh are equal if for all the pipe wall
boundaries Eq. (6.24) is true. We will show here the consequences of such a situation.
From this equation together with the continuity ofEs andHs as stated in Eqs. (6.15) and (6.16) (dropping the
sine and cosine factors thanks to Eqs. (6.20) and (6.21) ), we have at each boundaryr = b(p) with 1 ≤ p ≤ N − 1
(using the notations of Section 6.2, i.e.xp+1,p = ν(p+1)b(p) andxp,p = ν(p)b(p))

C
(p)
Ie Im(xp,p) + C

(p)
KeKm(xp,p) = C

(p+1)
Ie Im(xp+1,p) + C

(p+1)
Ke Km(xp+1,p), (E.1)

ε
(p)
c

ν(p)

[
C

(p)
Ie I

′
m(xp,p) + C

(p)
KeK

′
m(xp,p)

]
=

ε
(p+1)
c

ν(p+1)

[
C

(p+1)
Ie I ′m(xp+1,p) + C

(p+1)
Ke K ′

m(xp+1,p)
]
, (E.2)

C
(p)
Ih Imh

(xp,p) + C
(p)
KhKmh

(xp,p) = C
(p+1)
Ih Imh

(xp+1,p) + C
(p+1)
Kh Kmh

(xp+1,p), (E.3)

µ(p)

ν(p)

[
C

(p)
Ih I

′
mh

(xp,p) + C
(p)
KhK

′
mh

(xp,p)
]

=
µ(p+1)

ν(p+1)

[
C

(p+1)
Ih I ′mh

(xp+1,p) + C
(p+1)
Kh K ′

mh
(xp+1,p)

]
,

(E.4)

to which we can add the relations (from Eqs. (6.1), (6.6), (6.7), (6.8) and (6.26) )

C
(1)
Ke =

jωPm

πε0υ2γ2am(1 + δm0)
Im

(
ka

γ

)
,

(
C

(0)
Ie − C

(1)
Ie

)
Im

(
ka

γ

)
= C

(1)
KeKm

(
ka

γ

)
,

C
(0)
Ke = C

(0)
Kh = C

(1)
Kh = 0,

C
(0)
Ih = C

(1)
Ih ,

C
(N)
Ie = C

(N)
Ih = 0. (E.5)

Putting together first Eqs. (E.1) and (E.2), then Eqs. (E.3) and (E.4), and writing them in matrix form, we have




Im(xp+1,p) Km(xp+1,p)

ε
(p+1)
c

ν(p+1) I
′
m(xp+1,p) ε

(p+1)
c

ν(p+1)K
′
m(xp+1,p)


 ·



C

(p+1)
Ie

C
(p+1)
Ke


 =




C
(p)
Ie Im(xp,p) + C

(p)
KeKm(xp,p)

ε
(p)
c

ν(p)

{
C

(p)
Ie I

′
m(xp,p) + C

(p)
KeK

′
m(xp,p)

}


 , (E.6)

and



Imh
(xp+1,p) Kmh

(xp+1,p)

µ(p+1)

ν(p+1) I
′
mh

(xp+1,p) µ(p+1)

ν(p+1)K
′
mh

(xp+1,p)


 ·



C

(p+1)
Ih

C
(p+1)
Kh


 =




C
(p)
Ih Imh

(xp,p) + C
(p)
KhKmh

(xp,p)

µ(p)

ν(p)

{
C

(p)
Ih I

′
mh

(xp,p) + C
(p)
KhK

′
mh

(xp,p)
}


 . (E.7)

These can be solved readily using the inversion formula of a2 × 2 matrix (see Appendix F), noticing that the
determinant of the first matrix is proportional to the wronskian of the modified Bessel functions, more precisely

equal to (see Eq. (D.2) )− ε
(p+1)
c

ν(p+1)2b(p)
for the first equation and− µ(p+1)

ν(p+1)2b(p)
for the second one. We get



C

(p+1)
Ie

C
(p+1)
Ke


 = −ν

(p+1)2b(p)

ε
(p+1)
c




ε
(p+1)
c

ν(p+1)
K′

m(xp+1,p) −Km(xp+1,p)

− ε
(p+1)
c

ν(p+1)
I′m(xp+1,p) Im(xp+1,p)



 ·
[

Im(xp,p) Km(xp,p)

ε
(p)
c

ν(p)
I′m(xp,p)

ε
(p)
c

ν(p)
K′

m(xp,p)

]
·



C

(p)
Ie

C
(p)
Ke


 , (E.8)
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and

C

(p+1)
Ih

C
(p+1)
Kh


 = −ν

(p+1)2b(p)

µ(p+1)

[
µ(p+1)

ν(p+1)
K′

mh
(xp+1,p) −Kmh

(xp+1,p)

−µ(p+1)

ν(p+1)
I′mh

(xp+1,p) Imh
(xp+1,p)

]
·
[

Imh
(xp,p) Kmh

(xp,p)

µ(p)

ν(p)
I′mh

(xp,p) µ(p)

ν(p)
K′

mh
(xp,p)

]
·



C

(p)
Ih

C
(p)
Kh


 . (E.9)

We callMp+1,p
e andMp+1,p

h the matrices relating respectively

[
C

(p+1)
Ie

C
(p+1)
Ke

]
to

[
C

(p)
Ie

C
(p)
Ke

]
and

[
C

(p+1)
Ih

C
(p+1)
Kh

]
to

[
C

(p)
Ih

C
(p)
Kh

]
,

i.e. the product of the two2 × 2 matrices in Eqs. (E.8) and (E.9), multiplied respectively by−ν(p+1)2b(p)

ε
(p+1)
c

and

−ν(p+1)2b(p)

µ(p+1) . When successively applying the relations (E.8) and (E.9) for each boundary, we get


C

(N)
Ie

C
(N)
Ke


 = MN,N−1

e ·MN−1,N−2
e · · ·M2,1

e ·



C

(1)
Ie

C
(1)
Ke


 ,



C

(N)
Ih

C
(N)
Kh


 = MN,N−1

h ·MN−1,N−2
h · · ·M2,1

h ·



C

(1)
Ih

C
(1)
Kh


 ,

which we can rewrite, recalling Eqs. (E.5) and definingM(h) = MN,N−1
h ·MN−1,N−2

h · · ·M2,1
h andM(e) =

MN,N−1
e ·MN−1,N−2

e · · ·M2,1
e [

0

C
(N)
Ke

]
= M(e) ·

[
C

(1)
Ie

C
(1)
Ke

]
, (E.10)

and [
0

C
(N)
Kh

]
= M(h) ·

[
C

(1)
Ih

0

]
. (E.11)

From the first equation we haveC(1)
Ie = −M(e)12

M(e)11
C

(1)
Ke, and all the other constants for the longitudinal component of

the electric field are determined by applying successively the matricesMp+1,p
e . Note thatM(e)11 6= 0, otherwise

we would haveM(e)12 = 0 sinceC(1)
Ke 6= 0 from Eq. (E.5), meaning that the determinant ofM(e) is zero which

is not possible from the expression ofMp+1,p
e , whose determinant is proportional to a product of wronskians of

modified Bessel functions.
Also we necessarily have that for all the layersν(p+1) = ν(p): if this was not the case for one layer then Eq. (6.24)
gives for that layer the additional relation

C
(p)
Ie Im(xp,p) + C

(p)
KeKm(xp,p) = 0,

which gives another relation betweenC(p)
Ie andC(p)

Ke, whereas those constants are already known. The rather ex-
ceptional case when the computed constants already exactly verify this relation won’t be analysed here. Therefore
one of the consequences of Eq. (6.24) is that all the layers have the same radial propagation constant, namely that
of vacuumν = k

γ
(γ being the relativistic mass factor), which also means thatε1µ1 = 1 for all the pipe wall

materials.
From Eq. (E.11) we haveM(h)11C

(1)
Ih = 0. The caseM(h)11 = 0 means a particular relation holds between

ν and all theµ(p) and b(p) of the layers. The other equation beingC(N)
Kh = M(h)21C

(1)
Ih , with M(h)21 6= 0

(otherwise the determinant ofM(h) would be zero, which is not the case from the expression ofMp+1,p
h ), this

would lead to the fact thatHs is not fully determined, despite that all the boundary conditions have been used:
the coefficientC(1)

Ih can have any value, as well as the integer quotientmh

m
. We won’t analyse fully this (again)

exceptional case here16.
16This is in principle possible but quite unlikely to happen. For instance if we have one layer going to infinity in the pipe, such that

N = 2, M(h) = M
2,1
h , we have (withb(1) = b, µ(1) = µ0, µ(2) = µ, ν = k

γ
and using Eq. (D.2) )

M(h)11 = − kb

γµ

[
µK

′
mh

(
kb

γ

)
Imh

(
kb

γ

)
− µ0Kmh

(
kb

γ

)
I
′
mh

(
kb

γ

)]
= − kb

γµ

[
(µ − µ0) K

′
mh

(
kb

γ

)
Imh

(
kb

γ

)
− µ0γ

kb

]
,

(E.12)
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If M(h)11 6= 0, thenC(1)
Ih = 0 and by successively applyingMp+1,p

h we getC(p)
Ih = C

(p)
Kh = 0 for any p.

Therefore, in the general case Eq. (6.24) has for consequences thatε1µ1 = 1 for all the layers andHs = 0
everywhere.

F Appendix F: Inversion of a 2 × 2 matrix

Given a2 × 2 matrix of the form

M =

[
a b
c d

]
, (F.1)

whose determinantad− bc is non zero, its inverse is given by

M−1 =
1

ad− bc

[
d −b
−c a

]
. (F.2)

This can be checked simply by multiplying the two matrices.

so that when
µ1 ≡ µ

µ0
= 1 +

γ

kbK′
mh

(
kb
γ

)
Imh

(
kb
γ

) , (E.13)

we getM(h)11 = 0. µ1 is often taken as real and constant with frequency, so Eq. (E.13) means that there might be particular frequencies
(related to differentmh

m
integer ratio) at which the behaviour ofHs becomes not fully determined. In the case of sufficiently small

frequencies such thatkb
γ

≪ 1, using Eqs. (D.5), (D.13) and (D.14), we have

kb

γ
K

′
mh

(
kb

γ

)
Imh

(
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)
= −kb

γ
Kmh+1

(
kb

γ

)
Imh

(
kb
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)
+mhKmh

(
kb

γ

)
Imh

(
kb

γ

)
≈ −1+

mh

2

(mh − 1)!

mh!
= −1

2
(for mh 6= 0) ,

so that the condition above readsµ1 = −1, which, together withε1 = −1 from ε1µ1 = 1, is quite unlikely to happen.
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