
42 communications of the acm | march 2009 | vol. 52 | no. 3

practice

developed in coordination with, the
film industry. Unlike film, however,
games need to be interactive. Player
actions require visual feedback; game
characters should react to player choic-
es. Adding interactive features typically
requires some form of programming.
These features are also a form of artis-
tic content, and game studios would
prefer they be created by designers—
developers who understand how the
player will interact with the game, and
what makes it fun—rather than soft-
ware engineers.

The idea of game software as artis-
tic content has led many game studios
to split their software developers into
two groups. Software engineers work
on technical aspects of the game that
will be reused over multiple titles. They
work on core technology such as anima-
tion, networking, or motion planning,
and they build the tools that make up
the content-creation pipeline. Game-
play programmers, on the other hand,
create the behavior specific to a single
game. Part designer, part programmer,
they implement and tune the interac-
tive features that challenge and reward
the player.

The gameplay programmer should
produce fun, not complex, algorithms.
Game studios design their program-
ming workflow to relieve gameplay
programmers of any technical burdens
that keep them from producing fun.
Often this involves an iterative process
between the gameplay programmers
and the engineers. The gameplay pro-
grammers develop feature prototypes
to play-test before adding them to the
game. The software engineers then use
these feature prototypes to design sup-
port libraries, which are used to build
another round of prototypes. This is an
effective workflow, but game companies
are always looking for ways to speed up
or even automate this process.

In addition to supporting the inter-
action between gameplay program-
mers and software engineers, the
studios are always looking for ways to
integrate the designers into the pro-
gramming process. Designers often

The video game industry earned $8.85 billion in
revenue in 2007, almost as much as movies made at
the box office. Much of this revenue was generated by
blockbuster titles created by large groups of people.
Though large development teams are not unheard of in
the software industry, game studios tend to have unique
collections of developers. Software engineers make
up a relatively small portion of the game development
team, while the majority of the team consists of content
creators such as artists, musicians, and designers.

Since content creation is such a major part of
game development, game studios spend many re-
sources developing tools to integrate content into
their software. For example, entry-level programmers
typically make tools to allow artists to manage assets
or to allow designers to place challenges and rewards
in the game. These tools export information in a
format usable by the software engineers, either as auto-
generated code or as standardized data files.

This content-creation pipeline is not very well
understood, and each studio has its own philosophy
and set of tools. Many tools are taken from, or

doi:10.1145/1467247.1467262

Smarter, more powerful scripting languages
will improve game performance while making
gameplay development more efficient.

by Walker White, Christoph Koch,
Johannes Gehrke, and Alan Demers

Better Scripts,
Better Games

march 2009 | vol. 52 | no. 3 | communications of the acm 43

have very little programming experi-
ence, but they have the best intuitions
for how the game should play. Thus,
studios want tools that allow design-
ers, if not actually to program behav-
ior, at least to fine-tune the parameters
behind it.

The Role of Scripting Languages
Many game studios rely on scripting
languages to enable gameplay pro-
grammers and designers to program
parts of their games. These languages
allow developers to easily specify how
an object or character is supposed to
behave, without having to worry about
how to integrate this behavior into the
game itself. Scripting languages are
particularly important for massively
multiplayer games where any piece of
code must interact with multiple sub-
systems, from the application layer to
the networking layer to the database.

User-created content is another

reason for games to support scripting.
Open-ended virtual worlds such as Sec-
ond Life have made player scripting a
common topic of conversation. Even
before that, games had a long tradi-
tion of player-developed mods. Given
tools—either official or third party—to
modify the data files that came with the
game, players have been able to create
completely new experiences. Gener-
ally, modding has been seen as a way
to extend the lifespan of older games.
In some cases, however, it can create
completely new games: the commer-
cially successful Counter-Strike was a
player modification of the game Half-
Life and relied heavily on scripting fea-
tures present in its parent game.

Scripting languages allow players to
modify game behavior without access
to the code base. Just as important,
they provide a sandbox that—unlike a
traditional programming language—
limits the types of behavior the player

can introduce. If the game has a mul-
tiplayer component, the game develop-
ers do not want players creating scripts
to give themselves an undue advantage.
Overly powerful scripting languages
have facilitated many of the bots—au-
tomated players performing repetitive
tasks—that currently populate mas-
sively multiplayer games. Sandboxing
can even be useful in-house. By limit-
ing the types of behaviors that their
designers can create, the studios can
reduce the number of bugs that they
can introduce—bugs that cost valuable
time to find and eliminate.

The Need for Game-Specific
Scripting Languages
The foremost criterion for a scripting
language is that it should make game-
play development fast and efficient.
Often game objects—rocks, plants,
or even intelligent characters—share
many common attributes. Game script-

In this Second Life photograph avatars Alpha Auer and MosMax Hax explore a pose stand that allows users to program poses and run two
scripts. One script cycles through the poses, and the other one makes the pose stand invisible/visible.

S
e

c
o

n
d

 l
i

f
e

 P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 A
l

p
h

a
 A

u
e

r
 a

n
d

 M
o

s
M

a
x

 H
a

x

44 communications of the acm | march 2009 | vol. 52 | no. 3

practice

ing languages are often part of IDEs
(such as the one shown in Figure 1)
that provide forms for quickly modify-
ing these attributes. The scripting lan-
guages themselves, however, are fairly
conventional. Many companies use
traditional scripting languages such as
Lua or Python for scripting. Even com-
panies that design their own languages
usually stick with traditional format
and control structures. Little effort has
been spent tailoring these scripting
languages for games.

One of the major problems with tra-
ditional scripting languages is that the
programmer must be explicitly aware
of low-level processing issues that have
little to do with gameplay. Performance
is a classic example of such a low-level
issue. Animation frame rate is so im-
portant to developers that they opti-
mize by counting the number of mul-
tiplies or adds in their code. This type
of analysis is beyond the skill of most
designers, however. Furthermore, ex-
isting languages provide almost no
tools to help designers improve script
performance.

Designers must also take perfor-
mance into account when creating con-
tent. If the game runs too slowly, they
may be forced to reduce the number of
objects in the game, which in turn can
significantly alter the playing experi-
ence. This is what occurred when The
Sims was ported to consoles. In this
game, a player indirectly controls a
character (Sim) by purchasing furniture

or other possessions for it. Each piece
of furniture is scripted to advertise its
capabilities to the Sim periodically. The
Sim then compares these capabilities
with its needs in order to determine its
next action. Furniture does not exist in
isolation, however; a couch in front of a
television is much more versatile than
one alone in a room. Therefore, pieces
of furniture also periodically poll the
other furniture in the room to update
their capabilities. As each piece of fur-
niture may communicate with other
pieces of furniture, the cost of process-
ing a room can grow quadratically with
the number of objects in the room.
When the title was ported to consoles,
the performance issue became so pro-
nounced that the designers had to in-
troduce a “feng shui meter” to prevent
players from filling rooms with too
many possessions.

Game developers have many tech-
niques available to them for improving
performance. Spatial indexes are one
popular way of handling interactions
between game objects at less than qua-
dratic cost. Parallel execution is an-
other possibility; many games are em-
barrassingly parallel, and developers
leverage this fact for multicore CPUs
and distributed multiplayer environ-
ments. These techniques are beyond
the skill of the typical game designer,
however, and are left to the software
engineers.

Another low-level issue with script-
ing languages is the lack of transac-

tion support for massively multiplayer
games. Individual scripts are often exe-
cuted concurrently, particularly in mas-
sively multiplayer games, so designers
need some form of transaction to avoid
inconsistent updates to the game state.
Indeed, script-level concurrency vio-
lations are one of the major causes of
bugs in multiplayer environments.

To make scripting easier for design-
ers, we have to provide them with sim-
ple tools for addressing these low-level
issues. None of these problems is really
new; many programming languages
have been developed over the years to
address them, but most of these lan-
guages make programming more diffi-
cult, not easier. Fortunately, designers
do not need an arbitrary scripting lan-
guage; they just need a language that
helps them write games.

From Patterns to
Language Features
Despite these problems, games are be-
ing developed. Game developers have
come up with many ideas that, if not
complete solutions, do ameliorate the
problems. These ideas typically come in
the form of programming patterns that
have proven over time to be successful.
Though developers use these program-
ming patterns in creating game behav-
ior, the scripting languages usually do
not support them explicitly. One of the
reasons object-oriented programming
languages have been so successful is
that object-oriented programming pat-
terns existed long before the languages
that supported them. Similarly, by ex-
amining existing programming prac-
tices in game development, we can de-
sign scripting languages that require
very little retraining of developers. The
challenge in developing a scripting lan-
guage is identifying those patterns and
creating language features to support
them most effectively.

The State-Effect Pattern
One popular pattern in game develop-
ment is the state-effect pattern. Every
game consists of a long-running simu-
lation loop. The responsiveness of the
game to player input depends entirely
on the speed at which the simulation
loop can be processed. In the state-ef-
fect pattern, each iteration of the sim-
ulation loop consists of two phases:
effect and update. In the effect phase,

Figure 1. The Neverwinter Nights 2 toolset is an extensive IDE that allows users to create
new content for the game.

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 45

each game object selects an action and
determines individually the effects of
this action. In the update phase, all the
effects are combined and update the
current state of the game to create the
new state for the next iteration of the
simulation loop.

Because of these two phases, we can
separate the attributes of game objects
into states and effects. State attributes
represent the snapshot of the world
after the last iteration of the simula-
tion loop. They are altered only in the
update phase and are read-only in the
effect phase. Effect attributes, on the
other hand, contain the new actions of
the game objects, and the state of the
game is updated with effects during the
update phase. Because interactions be-
tween game objects are logically simul-
taneous, effect values are never read
until the update phase. Hence, effect
values are, in some sense, write-only
during the effect phase.

Game physics provides many exam-
ples of this pattern. At the beginning of
the simulation loop, each game object
has a current position and velocity re-
corded as state attributes. To compute
the new velocity, each object computes
the vector sum of all of the forces act-
ing upon it, such as collisions, gravity,
or friction. In other words, the force
attribute may be written to multiple
times during the simulation loop, but
it is never read until all of the force val-
ues have been summed together at the
end of the loop. The example in Figure
2 illustrates the use of the state-effect
pattern to simulate objects moving
about in a potential field. The variable
force is an effect in this calculation.
During the effect phase we only incre-
ment its value and never read it to de-
termine control flow. Whereas most
implementations would read the old
value of force to perform this incre-
ment, this is not necessary; we could
also gather all of these force values in a
list and add them together at the end of
the effect phase.

Most of the time, game developers
use the state-effect pattern to manually
design high-performance algorithms
for very specific cases. That is because
it has several properties that allow
them to significantly enhance the per-
formance of the simulation loop. The
effect phase can be parallelized since
the effect assignments do not influence

each other. The update phase can also
be parallelized since it consists only of
the aggregation of effects and updates
to state variables. This does not need
to be done by hand; if the scripting
language knew which attributes were
state attributes and which were effect
attributes, it could perform much of
this parallelization automatically, even
in scripts written by inexperienced de-
signers. This is similar to what Google
achieves with its Sawzall language and
the MapReduce pattern; special ag-
gregate variables perform much the
same function as effect attributes, and
the language allows programmers at
Google to process data without any
knowledge of how the program is be-
ing parallelized.1

Automatic parallelization is an
example of an alternative execution
model; the game runs the script using
a control flow that is different from the
one specified by the programmer. Since
the simulation loop logically processes
all of the game objects simultaneously,
we can process them in any order, pro-

vided that we always produce the same
outcome. Thus, alternative execution
models are among the easiest ways of
optimizing game scripts. Another un-
usual execution model is used by the
SGL scripting language, which is being
developed at Cornell University.2 This
language is based on the observation
that game scripts written in the state-
effect pattern can often be optimized
and processed with database tech-
niques. The script compiler gathers
all of the scripts together and converts
them into a single in-memory query
plan. Instead of using explicit threads,
it constructs a data pipeline that allows
the code to be parallelized in natural
ways. Many of these data pipelines are
similar to the ones that game program-
mers create when they program on the
graphics processing unit, except that
these are generated automatically.

The Restricted Iteration Pattern
Iteration is another common source of
problems in game development. Allow-
ing arbitrary iteration can quickly lead

Figure 2: Example of the state-effect pattern.

// Outer simulation loop
for each timestep {

	 // Compute effects for all for each particle o {
		 o.effectPhase();
	 }

// Update state for all for each particle o {
	 o.updatePhase() ;
	 }

}

// State variables
vector position, velocity;
scalar q, damping, mass;

// Effect variables
vector force;

// Read state, write effects
	 effectPhase() {
		 for each particle p {
			 r = position-this.p.position;
			 s = ((this.q*p.q)/(r.magnitude())^3;
			 force += s*r;
		 }
	 }

// Read and write state, read effects
updatePhase() {
	 velocity = damping*velocity+force/mass;
}

46 communications of the acm | march 2009 | vol. 52 | no. 3

practice

to significant performance degrada-
tion of the simulation loop. Iteration
can be even more dangerous in the
hands of inexperienced designers. Dur-
ing the development of City of Heroes,
Cryptic Studios discovered that many
of the scripts had interdependencies
that produced hard-to-find infinite
loops. To prevent this, the developers
removed unbounded iteration from
the scripting language.

Although this was a fairly drastic
solution, most games do not need ar-
bitrary iteration in their scripts. The
scripts just need to perform a compu-
tation over a finite set of objects; such
scripts follow the restricted iteration
pattern, which obviously guarantees
termination on all loops. In addition,
it may enable code analysis and com-
pile-time code transformations that
improve performance. For example,
SGL can take nested loops that pro-
duce quadratic behavior and generate
an index structure from them;2 it then
replaces the nested loops with a single
loop that performs lookups into that
index.

Examples of the restricted iteration
pattern appear throughout the scripts
in Warcraft III, a real-time strategy
game that has to process armies of in-
dividual units. The NudgeObjectsIn-
Rect script in Figure 3 appears in the
Blizzard.j file. This function takes a
rectangle and loops through all of the
military units that appear in that rect-
angle; in that loop, it uses the function
NudgeUnitsInRectEnum to push
units apart so that there is a minimum
distance between pairs of units.

All the operations in this script are
external functions provided by the soft-
ware engineers. The scripting language

be eliminated by the addition of locks
or synchronization primitives to the
scripting language. Locks can be ex-
pensive and error-prone, however, so
game developers like to avoid them
if at all possible. They are particularly
dangerous in the hands of designers.

Additionally, lock-based synchroni-
zation is incompatible with the state-ef-
fect pattern. In the state-effect pattern,
the state of the container consists of the
contents at the end of the last iteration
of the simulation loop, while an effect
attribute is used to gather the items be-
ing added to the container. Effect vari-
ables cannot be read, even with locks,
so the script cannot test for conflicting
items being added simultaneously.

Instead of trying to solve this prob-
lem with traditional concurrency ap-
proaches, it is best to step back and
understand what the programmer is
trying to do in this pattern. The pro-
grammer wants to update an object,
but under some conditions this update
may result in an inconsistent state. The
function TestPutItem defines which
states are consistent. If the language
knew this was the consistency function
for PutItemInContainer, it could
delay the check to ensure consistency
without a lock. The language could
first gather all of the items to be added
to the container and then use the con-
sistency check to place as many as the
container can hold. In some cases, the
language could even place multiple ob-
jects with a single consistency check.

Of course, this approach does not
solve arbitrary problems with parallel
execution, but game companies use lan-
guages with almost no concurrency sup-
port, and they rely on coding conven-
tions to limit consistency errors. Adding
features that provide concurrency guar-
antees for the more common design
patterns in games would allow the game
developers to trust their scriptwriters
with a wider variety of scripts, increas-
ing their artistic freedom.

Game-Aware Runtimes
Language features provide the runtime
with clues on how best to execute the
code, but some games have properties
outside of the scripting language that
the runtime can also leverage. For ex-
ample, the right optimization strategy
for a set of scripts depends on the cur-
rent state of the game. If the game is

is not aware that these functions im-
plement the equivalent of a for-each
loop (a loop over a fixed set of objects);
otherwise, the compiler would be able
to perform loop optimizations on it.
Given the number of times this pattern
appears in the Warcraft III scripts, this
could result in significant performance
improvements.

Concurrency Patterns
Iteration is not the only case in which
developers could benefit from alterna-
tive control structures. Many games
execute scripts in parallel, which re-
quires scriptwriters to be cognizant
of concurrency issues. As an example,
consider inventory management in on-
line games, a notoriously problematic
scenario, with consistency violations
resulting in lost or duplicated objects.
Consider the following simple script
written to put an item in a container
such as a sack or a backpack:

//	Test a container, and
	 insert an object if okay
success = TestPutItem(me,
container, item)
if (!success):	

Bail()
else:
	 PutItemInContainer(item,
	 container)

This script tests if a container has
the capacity to hold an item, then adds
the item if there is space. Nothing in
the script says that this action must be
executed atomically, so in a distributed
or concurrent setting, the container
could fill up between the time it is
tested and the time the item is added
to the container. Obviously, this could

Figure 3: Example of the restricted iteration pattern.

//===
// Nudge items and units within a given rect, so that they can fi nd
// locations where they can peacefully coexist
function NudgeObjectsInRect takes rect nudgeArea returns nothing
	 local group g

	 set g = CreateGroup()
	 call GroupEnumUnitsInRect(g, nudgeArea, null)
	 call ForGroup(g, function NudgeUnitsInRectEnum)
	 call DestroyGroup(g)
	
	 call EnumItemsInRect(nudgeArea, null, function NudgeItemsInRectEnum)
endfunction

practice

march 2009 | vol. 52 | no. 3 | communications of the acm 47

controlling a large army marching to-
ward an enemy, then the game should
optimize movement of soldiers; on
the other hand, if the army is guarding
against an attack, the game should op-
timize individual perception. Games
often have a small number of these
high-level states, and changes between
them happen relatively slowly. If the
runtime can recognize which state
the game is in, it can switch to an op-
timized execution plan and improve
performance.

To some degree, game developers
already take advantage of this fact in
their performance tuning. Currently
they log runs of the game during play-
testing, and later data-mine these logs
for recurring patterns. If these patterns
are easy to detect, developers can take
advantage of them. This type of optimi-
zation, however, is very difficult for de-
signers or for players developing user-
created content. Ideally, a game-aware
runtime would have some knowledge
of common patterns and be able to ad-
just for them automatically.

Performance is not the only reason
for the runtime to monitor how the
game changes over time; it is also use-
ful for debugging. Debugging a game
is not as simple as stepping through a
single script. Each object is scripted in-
dividually, and these scripts can inter-
act with one another in subtle ways. An
incorrect data value in one script may
be the result of an error in a completely
different script. In addition, many er-
rors are the result of user input that is
not always easy to reproduce. A script
designer needs some way of visualiz-
ing which scripts modify which objects
and how these objects change over
time. This is an application of data
provenance, which is an active area of
development in the field of scientific
computation. Like designers, the sci-
entists targeted by data provenance
tools often have little programming
experience; instead, the provenance
techniques model the way they natu-
rally think about the data. As yet, no
game scripting language supports data
provenance.

Data provenance is even more im-
portant if the script runtime has an
unusual execution model. In the previ-
ous script to place items in a container,
efficient execution involved reordering
portions of the script. Instead of hav-

ing the programmer debug the scripts
in an execution model that is differ-
ent from the one in which the bug ap-
peared, it is best to give him or her a
higher-level visualization of how that
bug might have occurred.

Game-aware runtimes are more dif-
ficult to implement than language fea-
tures. Language features can often be
implemented piecemeal; as program-
ming patterns are identified, new lan-
guage features can be added without
adversely affecting the old. Runtimes,
once architected, can be very interde-
pendent and difficult to change. For
example, any changes to the order in
which operations are processed will
affect the debugger. Thus, while lan-
guages can have an attitude of “see
what works,” runtimes need to be well
understood from the beginning.

Conclusion
Scripting languages are an integral part
of both game development and mod-
ding, and their design has huge impact
on both correctness and performance
of the resulting game. Game develop-
ers earn money from the titles that they
publish, not the engineering problems
that they solve. Therefore, anything
that reduces technical challenges for
the developers and allows them to cre-
ate more content is a welcome innova-
tion. Advances in design patterns and
scripting languages will influence the
way games are programmed for years
to come. 	

References
1.	D ean, J. and Ghemawat, S. MapReduce: Simplified

data processing on large clusters. Commun.
ACM 51, 1 (Jan. 2008): 107–113; doi.acm.
org/10.1145/1327452.1327492.

2.	 White, W., Sowell, B., Gehrke, J., and Demers, A.
Declarative processing for computer games. In
Proceedings of the 2008 ACM SIGGRAPH Sandbox
Symposium; doi.acm.org/10.1145/1401843.1401847.

Walker White is the director of the Game Design
Initiative, an interdisciplinary undergraduate program
training students in the design and development of
computer games, at Cornell University, Ithaca, NY.

Christoph Koch is an associate professor of computer
science at Cornell University, Ithaca, NY.

Johannes Gehrke is an associate professor in the
department of computer science at Cornell University,
Ithaca, NY. He co-authored Database Management
Systems (McGraw-Hill, 2002), currently in its third edition.

Al Demers is a principal research scientist in the
department of computer science at Cornell University.
His current work focuses on scalability and data
management for computer games and virtual worlds.

A previous version of this article appeared in the
November/December 2008 issue of ACM Queue.

© 2009 ACM 0001-0782/09/0300 $5.00

By examining
existing
programming
practices in game
development,
we can design
scripting languages
that require very
little retraining
of developers.
The challenge
in developing
a scripting language
is identifying
those patterns
and creating
language features
to support them
most effectively.

