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developed in coordination with, the 
film industry. Unlike film, however, 
games need to be interactive. Player 
actions require visual feedback; game 
characters should react to player choic-
es. Adding interactive features typically 
requires some form of programming. 
These features are also a form of artis-
tic content, and game studios would 
prefer they be created by designers—
developers who understand how the 
player will interact with the game, and 
what makes it fun—rather than soft-
ware engineers.

The idea of game software as artis-
tic content has led many game studios 
to split their software developers into 
two groups. Software engineers work 
on technical aspects of the game that 
will be reused over multiple titles. They 
work on core technology such as anima-
tion, networking, or motion planning, 
and they build the tools that make up 
the content-creation pipeline. Game-
play programmers, on the other hand, 
create the behavior specific to a single 
game. Part designer, part programmer, 
they implement and tune the interac-
tive features that challenge and reward 
the player.  

The gameplay programmer should 
produce fun, not complex, algorithms. 
Game studios design their program-
ming workflow to relieve gameplay 
programmers of any technical burdens 
that keep them from producing fun. 
Often this involves an iterative process 
between the gameplay programmers 
and the engineers. The gameplay pro-
grammers develop feature prototypes 
to play-test before adding them to the 
game. The software engineers then use 
these feature prototypes to design sup-
port libraries, which are used to build 
another round of prototypes. This is an 
effective workflow, but game companies 
are always looking for ways to speed up 
or even automate this process.

In addition to supporting the inter-
action between gameplay program-
mers and software engineers, the 
studios are always looking for ways to 
integrate the designers into the pro-
gramming process. Designers often 

The video game industry earned $8.85 billion in 
revenue in 2007, almost as much as movies made at 
the box office. Much of this revenue was generated by 
blockbuster titles created by large groups of people. 
Though large development teams are not unheard of in 
the software industry, game studios tend to have unique 
collections of developers. Software engineers make 
up a relatively small portion of the game development 
team, while the majority of the team consists of content 
creators such as artists, musicians, and designers.

Since content creation is such a major part of 
game development, game studios spend many re-
sources developing tools to integrate content into 
their software. For example, entry-level programmers 
typically make tools to allow artists to manage assets 
or to allow designers to place challenges and rewards 
in the game. These tools export information in a 
format usable by the software engineers, either as auto-
generated code or as standardized data files. 

This content-creation pipeline is not very well 
understood, and each studio has its own philosophy 
and set of tools. Many tools are taken from, or
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have very little programming experi-
ence, but they have the best intuitions 
for how the game should play. Thus, 
studios want tools that allow design-
ers, if not actually to program behav-
ior, at least to fine-tune the parameters 
behind it.

The Role of Scripting Languages
Many game studios rely on scripting 
languages to enable gameplay pro-
grammers and designers to program 
parts of their games. These languages 
allow developers to easily specify how 
an object or character is supposed to 
behave, without having to worry about 
how to integrate this behavior into the 
game itself. Scripting languages are 
particularly important for massively 
multiplayer games where any piece of 
code must interact with multiple sub-
systems, from the application layer to 
the networking layer to the database.

User-created content is another 

reason for games to support scripting. 
Open-ended virtual worlds such as Sec-
ond Life have made player scripting a 
common topic of conversation. Even 
before that, games had a long tradi-
tion of player-developed mods. Given 
tools—either official or third party—to 
modify the data files that came with the 
game, players have been able to create 
completely new experiences. Gener-
ally, modding has been seen as a way 
to extend the lifespan of older games. 
In some cases, however, it can create 
completely new games: the commer-
cially successful Counter-Strike was a 
player modification of the game Half-
Life and relied heavily on scripting fea-
tures present in its parent game. 

Scripting languages allow players to 
modify game behavior without access 
to the code base. Just as important, 
they provide a sandbox that—unlike a 
traditional programming language—
limits the types of behavior the player 

can introduce. If the game has a mul-
tiplayer component, the game develop-
ers do not want players creating scripts 
to give themselves an undue advantage. 
Overly powerful scripting languages 
have facilitated many of the bots—au-
tomated players performing repetitive 
tasks—that currently populate mas-
sively multiplayer games. Sandboxing 
can even be useful in-house. By limit-
ing the types of behaviors that their 
designers can create, the studios can 
reduce the number of bugs that they 
can introduce—bugs that cost valuable 
time to find and eliminate.

The Need for Game-Specific 
Scripting Languages
The foremost criterion for a scripting 
language is that it should make game-
play development fast and efficient. 
Often game objects—rocks, plants, 
or even intelligent characters—share 
many common attributes. Game script-

In this Second Life photograph avatars Alpha Auer and MosMax Hax explore a pose stand that allows users to program poses and run two 
scripts. One script cycles through the poses, and the other one makes the pose stand invisible/visible. 
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ing languages are often part of IDEs 
(such as the one shown in Figure 1) 
that provide forms for quickly modify-
ing these attributes. The scripting lan-
guages themselves, however, are fairly 
conventional. Many companies use 
traditional scripting languages such as 
Lua or Python for scripting. Even com-
panies that design their own languages 
usually stick with traditional format 
and control structures. Little effort has 
been spent tailoring these scripting 
languages for games.

One of the major problems with tra-
ditional scripting languages is that the 
programmer must be explicitly aware 
of low-level processing issues that have 
little to do with gameplay. Performance 
is a classic example of such a low-level 
issue. Animation frame rate is so im-
portant to developers that they opti-
mize by counting the number of mul-
tiplies or adds in their code. This type 
of analysis is beyond the skill of most 
designers, however. Furthermore, ex-
isting languages provide almost no 
tools to help designers improve script 
performance.

Designers must also take perfor-
mance into account when creating con-
tent. If the game runs too slowly, they 
may be forced to reduce the number of 
objects in the game, which in turn can 
significantly alter the playing experi-
ence. This is what occurred when The 
Sims was ported to consoles. In this 
game, a player indirectly controls a 
character (Sim) by purchasing furniture 

or other possessions for it. Each piece 
of furniture is scripted to advertise its 
capabilities to the Sim periodically. The 
Sim then compares these capabilities 
with its needs in order to determine its 
next action. Furniture does not exist in 
isolation, however; a couch in front of a 
television is much more versatile than 
one alone in a room. Therefore, pieces 
of furniture also periodically poll the 
other furniture in the room to update 
their capabilities. As each piece of fur-
niture may communicate with other 
pieces of furniture, the cost of process-
ing a room can grow quadratically with 
the number of objects in the room. 
When the title was ported to consoles, 
the performance issue became so pro-
nounced that the designers had to in-
troduce a “feng shui meter” to prevent 
players from filling rooms with too 
many possessions. 

Game developers have many tech-
niques available to them for improving 
performance. Spatial indexes are one 
popular way of handling interactions 
between game objects at less than qua-
dratic cost. Parallel execution is an-
other possibility; many games are em-
barrassingly parallel, and developers 
leverage this fact for multicore CPUs 
and distributed multiplayer environ-
ments. These techniques are beyond 
the skill of the typical game designer, 
however, and are left to the software 
engineers.  

Another low-level issue with script-
ing languages is the lack of transac-

tion support for massively multiplayer 
games. Individual scripts are often exe-
cuted concurrently, particularly in mas-
sively multiplayer games, so designers 
need some form of transaction to avoid 
inconsistent updates to the game state. 
Indeed, script-level concurrency vio-
lations are one of the major causes of 
bugs in multiplayer environments.

To make scripting easier for design-
ers, we have to provide them with sim-
ple tools for addressing these low-level 
issues. None of these problems is really 
new; many programming languages 
have been developed over the years to 
address them, but most of these lan-
guages make programming more diffi-
cult, not easier. Fortunately, designers 
do not need an arbitrary scripting lan-
guage; they just need a language that 
helps them write games.

From Patterns to 
Language Features
Despite these problems, games are be-
ing developed. Game developers have 
come up with many ideas that, if not 
complete solutions, do ameliorate the 
problems. These ideas typically come in 
the form of programming patterns that 
have proven over time to be successful. 
Though developers use these program-
ming patterns in creating game behav-
ior, the scripting languages usually do 
not support them explicitly. One of the 
reasons object-oriented programming 
languages have been so successful is 
that object-oriented programming pat-
terns existed long before the languages 
that supported them. Similarly, by ex-
amining existing programming prac-
tices in game development, we can de-
sign scripting languages that require 
very little retraining of developers. The 
challenge in developing a scripting lan-
guage is identifying those patterns and 
creating language features to support 
them most effectively.

The State-Effect Pattern
One popular pattern in game develop-
ment is the state-effect pattern. Every 
game consists of a long-running simu-
lation loop. The responsiveness of the 
game to player input depends entirely 
on the speed at which the simulation 
loop can be processed. In the state-ef-
fect pattern, each iteration of the sim-
ulation loop consists of two phases: 
effect and update. In the effect phase, 

Figure 1. The Neverwinter Nights 2 toolset is an extensive IDE that allows users to create 
new content for the game. 
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each game object selects an action and 
determines individually the effects of 
this action. In the update phase, all the 
effects are combined and update the 
current state of the game to create the 
new state for the next iteration of the 
simulation loop. 

Because of these two phases, we can 
separate the attributes of game objects 
into states and effects. State attributes 
represent the snapshot of the world 
after the last iteration of the simula-
tion loop. They are altered only in the 
update phase and are read-only in the 
effect phase. Effect attributes, on the 
other hand, contain the new actions of 
the game objects, and the state of the 
game is updated with effects during the 
update phase. Because interactions be-
tween game objects are logically simul-
taneous, effect values are never read 
until the update phase. Hence, effect 
values are, in some sense, write-only 
during the effect phase.

Game physics provides many exam-
ples of this pattern. At the beginning of 
the simulation loop, each game object 
has a current position and velocity re-
corded as state attributes. To compute 
the new velocity, each object computes 
the vector sum of all of the forces act-
ing upon it, such as collisions, gravity, 
or friction. In other words, the force 
attribute may be written to multiple 
times during the simulation loop, but 
it is never read until all of the force val-
ues have been summed together at the 
end of the loop. The example in Figure 
2 illustrates the use of the state-effect 
pattern to simulate objects moving 
about in a potential field. The variable 
force is an effect in this calculation. 
During the effect phase we only incre-
ment its value and never read it to de-
termine control flow. Whereas most 
implementations would read the old 
value of force to perform this incre-
ment, this is not necessary; we could 
also gather all of these force values in a 
list and add them together at the end of 
the effect phase.

Most of the time, game developers 
use the state-effect pattern to manually 
design high-performance algorithms 
for very specific cases. That is because 
it has several properties that allow 
them to significantly enhance the per-
formance of the simulation loop. The 
effect phase can be parallelized since 
the effect assignments do not influence 

each other. The update phase can also 
be parallelized since it consists only of 
the aggregation of effects and updates 
to state variables. This does not need 
to be done by hand; if the scripting 
language knew which attributes were 
state attributes and which were effect 
attributes, it could perform much of 
this parallelization automatically, even 
in scripts written by inexperienced de-
signers. This is similar to what Google 
achieves with its Sawzall language and 
the MapReduce pattern; special ag-
gregate variables perform much the 
same function as effect attributes, and 
the language allows programmers at 
Google to process data without any 
knowledge of how the program is be-
ing parallelized.1

Automatic parallelization is an 
example of an alternative execution 
model; the game runs the script using 
a control flow that is different from the 
one specified by the programmer. Since 
the simulation loop logically processes 
all of the game objects simultaneously, 
we can process them in any order, pro-

vided that we always produce the same 
outcome. Thus, alternative execution 
models are among the easiest ways of 
optimizing game scripts. Another un-
usual execution model is used by the 
SGL scripting language, which is being 
developed at Cornell University.2 This 
language is based on the observation 
that game scripts written in the state-
effect pattern can often be optimized 
and processed with database tech-
niques. The script compiler gathers 
all of the scripts together and converts 
them into a single in-memory query 
plan. Instead of using explicit threads, 
it constructs a data pipeline that allows 
the code to be parallelized in natural 
ways. Many of these data pipelines are 
similar to the ones that game program-
mers create when they program on the 
graphics processing unit, except that 
these are generated automatically.  

The Restricted Iteration Pattern
Iteration is another common source of 
problems in game development. Allow-
ing arbitrary iteration can quickly lead 

Figure 2: Example of the state-effect pattern.

// Outer simulation loop
for each timestep {

	 // Compute effects for all for each particle o {
		  o.effectPhase();
	 }

// Update state for all for each particle o {
	 o.updatePhase() ;
	 }

}

// State variables 
vector position, velocity;
scalar q, damping, mass;

// Effect variables
vector force;

// Read state, write effects
	 effectPhase() {
		  for each particle p {
			   r = position-this.p.position;
			   s = ((this.q*p.q)/(r.magnitude())^3;
			   force += s*r;
		  }
	 }

// Read and write state, read effects
updatePhase() {
	 velocity = damping*velocity+force/mass;
}
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to significant performance degrada-
tion of the simulation loop. Iteration 
can be even more dangerous in the 
hands of inexperienced designers. Dur-
ing the development of City of Heroes, 
Cryptic Studios discovered that many 
of the scripts had interdependencies 
that produced hard-to-find infinite 
loops. To prevent this, the developers 
removed unbounded iteration from 
the scripting language. 

Although this was a fairly drastic 
solution, most games do not need ar-
bitrary iteration in their scripts. The 
scripts just need to perform a compu-
tation over a finite set of objects; such 
scripts follow the restricted iteration 
pattern, which obviously guarantees 
termination on all loops. In addition, 
it may enable code analysis and com-
pile-time code transformations that 
improve performance. For example, 
SGL can take nested loops that pro-
duce quadratic behavior and generate 
an index structure from them;2 it then 
replaces the nested loops with a single 
loop that performs lookups into that 
index.

Examples of the restricted iteration 
pattern appear throughout the scripts 
in Warcraft III, a real-time strategy 
game that has to process armies of in-
dividual units. The NudgeObjectsIn-
Rect script in Figure 3 appears in the 
Blizzard.j file. This function takes a 
rectangle and loops through all of the 
military units that appear in that rect-
angle; in that loop, it uses the function 
NudgeUnitsInRectEnum to push 
units apart so that there is a minimum 
distance between pairs of units.

All the operations in this script are 
external functions provided by the soft-
ware engineers. The scripting language 

be eliminated by the addition of locks 
or synchronization primitives to the 
scripting language. Locks can be ex-
pensive and error-prone, however, so 
game developers like to avoid them 
if at all possible. They are particularly 
dangerous in the hands of designers.

Additionally, lock-based synchroni-
zation is incompatible with the state-ef-
fect pattern. In the state-effect pattern, 
the state of the container consists of the 
contents at the end of the last iteration 
of the simulation loop, while an effect 
attribute is used to gather the items be-
ing added to the container. Effect vari-
ables cannot be read, even with locks, 
so the script cannot test for conflicting 
items being added simultaneously.

Instead of trying to solve this prob-
lem with traditional concurrency ap-
proaches, it is best to step back and 
understand what the programmer is 
trying to do in this pattern. The pro-
grammer wants to update an object, 
but under some conditions this update 
may result in an inconsistent state. The 
function TestPutItem defines which 
states are consistent. If the language 
knew this was the consistency function 
for PutItemInContainer, it could 
delay the check to ensure consistency 
without a lock. The language could 
first gather all of the items to be added 
to the container and then use the con-
sistency check to place as many as the 
container can hold. In some cases, the 
language could even place multiple ob-
jects with a single consistency check.

Of course, this approach does not 
solve arbitrary problems with parallel 
execution, but game companies use lan-
guages with almost no concurrency sup-
port, and they rely on coding conven-
tions to limit consistency errors. Adding 
features that provide concurrency guar-
antees for the more common design 
patterns in games would allow the game 
developers to trust their scriptwriters 
with a wider variety of scripts, increas-
ing their artistic freedom.

Game-Aware Runtimes
Language features provide the runtime 
with clues on how best to execute the 
code, but some games have properties 
outside of the scripting language that 
the runtime can also leverage. For ex-
ample, the right optimization strategy 
for a set of scripts depends on the cur-
rent state of the game. If the game is 

is not aware that these functions im-
plement the equivalent of a for-each 
loop (a loop over a fixed set of objects); 
otherwise, the compiler would be able 
to perform loop optimizations on it. 
Given the number of times this pattern 
appears in the Warcraft III scripts, this 
could result in significant performance 
improvements.

Concurrency Patterns
Iteration is not the only case in which 
developers could benefit from alterna-
tive control structures. Many games 
execute scripts in parallel, which re-
quires scriptwriters to be cognizant 
of concurrency issues. As an example, 
consider inventory management in on-
line games, a notoriously problematic 
scenario, with consistency violations 
resulting in lost or duplicated objects. 
Consider the following simple script 
written to put an item in a container 
such as a sack or a backpack:

//	Test a container, and  
	 insert an object if okay 
success = TestPutItem(me, 
container, item)
if (!success):	

Bail()
else:
	 PutItemInContainer(item, 
	 container)

This script tests if a container has 
the capacity to hold an item, then adds 
the item if there is space. Nothing in 
the script says that this action must be 
executed atomically, so in a distributed 
or concurrent setting, the container 
could fill up between the time it is 
tested and the time the item is added 
to the container. Obviously, this could 

Figure 3: Example of the restricted iteration pattern.

//=====================================================================
// Nudge items and units within a given rect, so that they can fi nd
// locations where they can peacefully coexist
function NudgeObjectsInRect takes rect nudgeArea returns nothing
	 local group g

	 set g = CreateGroup()
	 call GroupEnumUnitsInRect(g, nudgeArea, null)
	 call ForGroup(g, function NudgeUnitsInRectEnum)
	 call DestroyGroup(g)
	
	 call EnumItemsInRect(nudgeArea, null, function NudgeItemsInRectEnum)
endfunction
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controlling a large army marching to-
ward an enemy, then the game should 
optimize movement of soldiers; on 
the other hand, if the army is guarding 
against an attack, the game should op-
timize individual perception. Games 
often have a small number of these 
high-level states, and changes between 
them happen relatively slowly. If the 
runtime can recognize which state 
the game is in, it can switch to an op-
timized execution plan and improve 
performance.   

To some degree, game developers 
already take advantage of this fact in 
their performance tuning. Currently 
they log runs of the game during play-
testing, and later data-mine these logs 
for recurring patterns. If these patterns 
are easy to detect, developers can take 
advantage of them. This type of optimi-
zation, however, is very difficult for de-
signers or for players developing user-
created content. Ideally, a game-aware 
runtime would have some knowledge 
of common patterns and be able to ad-
just for them automatically.

Performance is not the only reason 
for the runtime to monitor how the 
game changes over time; it is also use-
ful for debugging. Debugging a game 
is not as simple as stepping through a 
single script. Each object is scripted in-
dividually, and these scripts can inter-
act with one another in subtle ways. An 
incorrect data value in one script may 
be the result of an error in a completely 
different script. In addition, many er-
rors are the result of user input that is 
not always easy to reproduce. A script 
designer needs some way of visualiz-
ing which scripts modify which objects 
and how these objects change over 
time.  This is an application of data 
provenance, which is an active area of 
development in the field of scientific 
computation. Like designers, the sci-
entists targeted by data provenance 
tools often have little programming 
experience; instead, the provenance 
techniques model the way they natu-
rally think about the data. As yet, no 
game scripting language supports data 
provenance.

Data provenance is even more im-
portant if the script runtime has an 
unusual execution model. In the previ-
ous script to place items in a container, 
efficient execution involved reordering 
portions of the script. Instead of hav-

ing the programmer debug the scripts 
in an execution model that is differ-
ent from the one in which the bug ap-
peared, it is best to give him or her a 
higher-level visualization of how that 
bug might have occurred.

Game-aware runtimes are more dif-
ficult to implement than language fea-
tures. Language features can often be 
implemented piecemeal; as program-
ming patterns are identified, new lan-
guage features can be added without 
adversely affecting the old. Runtimes, 
once architected, can be very interde-
pendent and difficult to change. For 
example, any changes to the order in 
which operations are processed will 
affect the debugger. Thus, while lan-
guages can have an attitude of “see 
what works,” runtimes need to be well 
understood from the beginning.

Conclusion
Scripting languages are an integral part 
of both game development and mod-
ding, and their design has huge impact 
on both correctness and performance 
of the resulting game. Game develop-
ers earn money from the titles that they 
publish, not the engineering problems 
that they solve. Therefore, anything 
that reduces technical challenges for 
the developers and allows them to cre-
ate more content is a welcome innova-
tion. Advances in design patterns and 
scripting languages will influence the 
way games are programmed for years 
to come. 	
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existing 
programming 
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we can design 
scripting languages 
that require very 
little retraining  
of developers.  
The challenge  
in developing  
a scripting language 
is identifying  
those patterns  
and creating 
language features 
to support them 
most effectively. 




