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Abstract—The exponential server timing channel is known it was demonstrated [2] that for an exponential service time

to be the simplest, and in some sense canonical, queuing tim-distribution of ratey > \ the capacityC'()\) is given by

ing channel. The capacity of this infinite-memory channel is

known. Here, we discuss practical finite-length restrictims on the o J

codewords and attempt to understand the amount of maximal C(A) = Alog, nats/s

rate that can be achieved for a target error probability. By . . . . .

using Markov chain analysis, we prove a lower bound on the A point process viewpoint version of the problem with the
maximal channel coding rate achievable at blocklengthn and Same fundamental limits was considered in [3], [4]. Rather
error probability e is approximated by C' —n~'/?sQ " (¢) where than considering: inter-arrival times andn inter-departure

@ denotes the Q-function ando? is the asymptotic variance of times of the queue, the time axis was fixed to|el,] at the

. X ¢ by
the underlying Markov chain. A closed form expression for o encoder ando, T,,] at the decoder. In [5], Bedekar and Azi-

* Igr|1\:1|ee?< Terms—Timing channel, finite block-length, achievabil- 209lu considered a discrete time analog to the continuioues-t
ity, geometric ergodicity, asymptotic variance model studied in [2] where packets arrive to and depart from
a discrete-time single-server queue with i.i.d. geomalsic
. INTRODUCTION distributed service times. For an arrival process comstichio

While most communication systems convey information ge’/e of rate\ packets per time slot, it was demonstrated [5] that

controlling the amplitudes of signals at each time instarfP" dueue with service times of rafe> A the capacityC'(\)

information can also be sent by controlling the timing atethi IS 9iven by

events occur. For example it is widely believed that neurons A

exchange information by sending spike trains [1], where in- C(A)=H(\) - ;H(ﬂ) nats/slot

formation is contained in the random lengths of the intdwspi

intervals. Another example are packet switching network&here [ (-) denotes the binary entropy function.

where forwarding moves packets from their source towardThe timing channels with memoryless service times (i.e.

their ultimate destination. The sources can choose wheneéxponential in the continuous case and geometric in the

send packets, but a queuing mechanism in the forwardidigcrete case), are known to be the simplest, and in some

nodes obscures the timing information. sense canonical, queuing timing channels. This paper éscus
The landmark paper “Bits through Queues” by Ananthara@n the discrete time model with memoryless service times and

& Verd( [2] characterizes such channels. Suppose the “paélscusses the maximal achievable rate of communicatiomwhe

ets” are identical and only their arrival time carries inforthere is a finite-length restriction on the codewords.

mation. The times at which the sender puts packets on theNVhen each codeword corresponds to the timing of packets

network encodes a message. The packets go through a firstr time units and the probability of error may not exceed

come, first-serve single-server queue with exponentiaicer ¢, the maximal achievable rate can be substantially less than

times. The decoder observes when the packets depart fromttran capacity. By using Markov chain analysis, we prove a

gueue and then chooses one of the possible messages. Fdowar bound on the maximal channel coding rate achievable

at blocklengthn and error probabilitye. We shall show that

‘ ‘ ‘ ‘ ‘ ‘ the maximal channel coding rate is lower bounded by
—>Enc > Queue > Dec—> |
ogn
C\) = n Y20Q 1 (e) - 2L L oY)
Fig. 1. Conveying information through packet timings in &aeing system 2n

where C'(\) is the channel capacity whose closed form ex-
arrival process constrained to be of rat@ackets per second, pression is given above)(-) denotes the Q-function ane?
_ _ _ is the asymptotic variance of the underlying Markov chain fo
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which in turn can be used to anticipate the achievable rate on
this channel in the finite block length regime.

Asymptotic expansions of the above form were studied
extensively in the 60s for the case of memoryless channels
[6]-[9]. The strongest results were given by Strassen ine
[9]. Recently, this research was rediscovered and extended
to Gaussian channels with an input constraint [10]. The
major components of the proof can be traced back to thee
work of Strassen who combined hypothesis testing arguments
(Neyman-Pearson lemma), Feinstein’s lemma [11] and bounds
on the convergence rate of the central limit theorem [14].[1

The queuing timing channel considered here has memory
and previous results therefore do not apply. We show that
the bound provided by the Berry-Esseen theorem in the

For anye € (0,1), an (M,n,e) code is a sequence
{(z, DY) i 1,...,M} where (¥ ¢ X" and
{D"} are mutually disjoint withP(D@|2®) > 1 —

e Vi.

The rate of an(M, n, €) code is denoted byR = l‘)gTM.
Let N(e,n,\) be the supremum of the integek$ such
that an(M, n, €)-code exists ant[X,,/n] = A.

Denote the rate-constrained capacity as

C(A) 2 Timg s limy, o BN EmA)

We drop subscripts whenever they are clear from the
context. For exampl@y» x» (y"|x") = P(y"|x").

IIl. SYSTEM DESCRIPTION ANDPRELIMINARIES

Throughout this document, we consider a discrete-time

memoryless channel case still holds and then prove the asym
totic result above by use of Feinstein’s lemma. Further, 8 A A ; .
mentioned before, we obtain a closed form expression for f mmunication (;hannel we con§|der IS an Interesting ex.e_tmlpl
asymptotic variance?. Finding such an expression for a giveﬁ). al channel with _memor¥. It ls_tﬁstshentllallytre]l pr‘OtEabIhStIC
Markov chain is generally hard and significant research én tynd'e SEIVer queuing system wi € ‘ength of the queue
area of steady-state stochastic simulation [14]—[16]dsie being the memory of channel. At each discrete time instance

closed form solution only for the class of homogeneous birt the rgntljor? ;/r?”abbléli“ Zf eth[n —1], |nd|<t:at'Fe§ ';;hefe.tW";‘S
death processes. an arrival at the back of the queue at time The initial

length of the queu&), Xo is a non-negative integer-
[I. BASIC DEFINITIONS AND CONVENTIONS valued random variable with distributioR,, = Px,. Denote
« Forz € [0,1], denotez £ 1 — z. X, = X, —X,;_1 and denoté&’; analogously. Denote the queue

. Denote Berfp) to be the Bernoulli distribution with state.for time; > 1 asQ; = X; — Y;—;. Then note that we
parametep and geon(p) to be the geometric distribution Nave:
with parametemp:

int process version of the problem, analogous to [3],TAk

Xi=Xo+) X

1
P(k)=p(1—p)*, k>0. = &

» Denote the binary entropy functiof (p) = —plogp — L

plogp. Y =0+ Y )
o X denotes a random variablB]X] denotes an expecta- =1 - -

tion, andz denotes a realization. Qi=Qo+Xi—Yi1=Qi1 +X; —Yi ®3)
o x denotes a vectaf. ey Ty . L ~ ~

» Ofw1, 22, oy Tn) Note that there is a bijection betwe¢@q, X1, ..., X,) and

o A random proces®p = (&q1,Pq,...) on a probability
space({2, F, P) is aMarkov processf for any n,

LD, €A

the channel inputX™ £ (Xy, X1, ..., X,,). For geometrically
distributed service times, the binary random variablés
are conditionally independent giveR; and are distributed
according to the conditional law pertaining to a Z channel:

P(@l EAl,QSQ GAQ,..

= P(Qpl € AI)HP(gpz S Ai|(pi_1 S Ai—l)-

i=2 L Vi=0,Q;=0
Z is the set of all integers ard; = {z € Z: z > 0} % _ ) m Yi=0.0Qi>0

’ ,  art: 2= PrioilQ) =91 0 v _1{ 0 = )
o Denote[n]; = {j,...,n} with [n] = [n];. 0; ¥i=10Qi=0
o DenoteX™ to be the sequence of counting functions on pi Yi=1,Q; >0

[n]o, i.e. the set of functionsy, .. .,x, for which z; €
Z, andx; > z;_1. DenoteY™ to be the set of counting
functionsy on [n]y for which yo = 0.

« For a sequence of input sets and output 4et8, Y™ :
n > 1}, a channel is a a sequence of conditional
distributions{ Py »| xn (-|2™) : 2™ € X", n > 1}.

e Given a distribution Px» on X" and channel
Pyuixn(|z"), denote Py~ as the induced outputciearly, X; (Y;) counts the total number of arrivals (depar-
distribution. tures),Q; denotes the length of the queue at timand Y;

« Denote the information density as(z",y") indicates if there was a departure from the front of the queue

Pyn n ™ . . . . . .
log == — z‘af,(n 8,’? L at times. This is illustrated in Figure 2.

The vectorY™ € Y" is the channel output vector and there
is a bijection betwee¥™ € Y™ and(Y; : i € [n]). With this
the channel law reads

n—1
P(y"|z") = H P(gilq:)- )
i=0



; ﬁ
1 4 Qi chaZnneI i | accumul|—' 5
d ! - T = . d

Fig. 2. A simple time-invariant description of the queuimging channel.

We assume the queue to be stable and hence the arrival thnd only if A < , there exists a probability measurg
A= % to be smaller than the serving rateWe now state on Ny that solves the system of equations

the following theorem
> 70(@)Po, . (@ir1la) = 7o (git) (10)

Theorem 1. [5]: For the queueing timing channel of rate a:€Ng
given by(5), for all ¢;11 € Ny and this measure is called the invariant mea-
CO\) = H(\) — iH(u). ©6) sure. Note tha_t.for irreduciple Ma.rkov chains th(_e existeoice
1 such a probability measure is equivalent to positive reswe.

For the transition probabilities given it can be checked tha
7o (gi) as defined in Theorem 1 is the solution.
The following lemma uses arguments introduced by Fein-

The optimal P%.. is given byX; drawn i.i.d. with Berti))
distribution andQ, independently drawn withr given by

AL, g=0 stein [11] to give a lower bound oN (e, n, \).
(@) = xuers o 7 o o
e(0) A=A g > 0 @ Lemma 1. (Feinstein)For any distributionPx~ and anyd <
A R there exists ar{M, n,¢) code such that
wherep = ﬁ
_ _ _ _ M > e {e — P(i(z",y") < 6)}. (11)
Note thatp < 1 if and only if A < x. We will also exploit
how underP%.., the outputY;'s are i.i.d.: Proof: The proof is short and elegant and reproduced in
Theorem 2. (Burke’s Theorem)or any n, for the channel [18]. "
given by(5) and Px» = Px., given in Theorem 1, the outputs IV. FINITE-LENGTH SCALING
Yi's are iid. with Berr{)) distribution. Recall that by (5) and (8) the distribution&(y"|2") and

Proof: The proof is similar to the one for continuous timeP(y™) factor and hence
gueues and can be found in [17]. A concise proof is also given

n—1 ~ n—1
in [18]. ey = Sl DU Sy @)
Throughout the remainder of this paper, we assume that o P(3:) =0
Pxn = Pi.. where
By the above theorem P(iila)
~ N Yildi
iyqi) = lo - . 13
[ (@i, qi) = log PG (13)

n—1
P(y") =[] P@) ®)
i=0 The composed stat¢; = (y;,q;) again forms a positive
recurrent Markov chain whose transition probabilities are
illustrated in Figure 3. The invariant measurg for this chain
is only a slight extension ta:

It is also well-known from Burke’s theorem that undgt;..,
the (Q; : « > 0) form a Markov chain and likewise for the
random proces (Qi,f@-) ;4> 0). The transition probabili-
ties for the Markov chain pertaining t@); : i > 0) are given T (9,9) = Py, g, (Gla)mq(q) (14)
by The proof of the following theorem is one of the main
A; g¢iv1 =¢; +1,¢; =0 contributions of this paper because it can be used to proof

A Qi1 =¢i,6i =0 bounds and an asymptotic on the quanfiye, n, \).
PQ»+1\Q»(%+1|%) = A qiv1 =¢qi —1,q: >0 . .
: : _ Theorem 3. The asymptotic variance
Ay qiv1 =¢qi +1,q:>0 ymp
—Nij — Ny = g 0 1
1 /\,u /\My di+1 i, qi >0 02 = lim = Var(z'(:n", yn)) (15)

(9) n—oo M



where

Var(f (%) =log?(5 )1 (0) +log (5 ima0)

+log*(5)mo(0) - C* (20)
> Cov(f (@), f(#:)) =log X(_CME — cnmop)
i=0
1% p gop
+10g XC]\/[Q1 s + +10g XTp(CA”{ — pC]\,jo)
(21)
Fig. 3. Possible Transitions in the Markov Chdivi, @) and we defined
5\ - _
exo = (n108(5) +alog(5) - €) (22)
is well defined, positive and finite, and . 1 70 (0)
cm{ﬂﬂc—log—)‘%} (23)
Iz A

0% = Var(f(¥)) +2 Y _ Cov(f(%), (%)) (16)

i=1 Proof: Again we only sketch the proof here and refer to

[18] for a detailed version. For the computation of the sum

Soeo Cov(f (%), f(¥;)) we will setup and solve a recursion.
We define

Further the following Berry-Esseen type bound holds:

i@, y") — nC(\)
P( ovm

sup
£eR

< 5) - @(5)‘ <Om™7?)
an @)=Y () - Ome (W )puge, (W) (24)
PEX

Proof: A detailed proof can be found in [18]. We only
give a sketch here. The Markov Chaih is aperiodic and
irreducible. The state space af; can be chosen to be r(1,0) = (f(¥) — C)ma (1) (25)
X ={0,1} x NU{(0,0)}. First we verify that there exists a
Lyapunov functionV : X — (0, oo}, finite at someyy € X, a and
finite setS C X, andb < oo such that

Clearly

Cov(f(Zo), f(7)) = Y (f(¥) = C)r(,i)  (26)

ElV(¥ip1) = V(@)W =¢] < -1+ b1s(v), ¢ e€X pexX
(18) = > FWIr(w,i) (27)
The chain is skip-free and the found Lyapunov function is vex

linear and hence also Lipschitz. These properties imply thqote however that for the computation of the asymptotic
the chain is geometric ergodic [19], [20] and the bound in) (1{ariance we actually do not even need to know this covariance

hence holds by arguments made in [21]. B for eachi. It is sufficient to know its sum. So we define
Remark 1. An explicit solution to the asymptotic variance of 0 '

a general irreducible positive recurrent Markov chain istno R(p) = ) r(,i) (28)
available. =0

Significant research in the area of steady-state stocha§tchange limits
simulation has focused on obtaining an expression for the oo
asymptotic variance [14]-[16] and has yielded a closed form Z Cov(f(P), f(¥;)) = Z FW)R(Y) (29)
solution only for the class of homogeneous birth-death pro- i=0 YeX

ﬁzzﬁces whery () simply returns the integer valued Stateand derive and solve a recursion for the sequefite). B

We build up on an idea introduced in [22] to give an explicit Using the result stated in Theorem 3 we can prove the final

closed form solution to the asymptotic variance in (15). contribution of this paper.

Theorem 4. The asymptotic variance defined {f5) has a Theorem 5.

7 1
closed form solution: log N(n,€,\) > nC(\) — vnoeQ () — 5 logn + O(1)

0? = —Var(f(Z)) + 23 Cov(f(@), f(B))  (19) (30)

i=0 whereC()) is given by(6) and o is defined as in Theorem 3.



Proof: By Theorem 334 > 0 :

0.4
. A
[P((i(z,y) —nC)/Vno? < &) — (&) < —= V& €R o 035( IR
Vi 2 B it
(31) 2 o8t -7
Let B> Aandé = @ '(e - Z) < #71(e) = &. Set 3 o5l -
0 = /no& + nC and the application of Feinstein’s Lemma g ' / ’
[11], [18] yields 2 o2f
=
log N(n,e,\) —nC — /no& = 05|
o
] - @
>log (e - P <W < fl)) +vno (& — &) 0f, ~ — £=0.001
€ =1e-05
(32) 0,05—1{ — — —g=1e-07 |{
| capacity
>tog (e~ 0(6) - 22 ) + VaoO(2) (33) o=
vn vn 0 500 1000 1500 2000 2500 3000
- blocklengthn

Remark 2. We believe that the above result can be strength-
ened by dropping the terré logn from the right hand side

of the inequality. By use of hypothesis testing arguments
Strassen [9] was able to prove the above bound without thgl T. P. Coleman, “A simple memoryless proof of the capacitghe expo-

1 f h | f di | h | nential server timing channel,” iRroceedings of the IEEE Information
5 logn term for the class o Iscrete memoryless channels. Theory Workshop (ITW)\olos, Greece, 2009.

The used arguments can probably be extended to hold fg8] A. S. Bedekar and M. Azizoglu, “On the information-thetic capacity
the non-memoryless channel considered here as well siece th ngl’isfgegtg'“me queues|EEE Trans. Inform. Theorwol. 44, pp. 446~
information den5|ty factors and by Theorem 3 a Berry'Essee[@] L. Weiss, “On the strong converse of the coding theoremsfanmetric
type bound holds. channels without memoryQuart. Appl. Math vol. 18, no. 3, 1960.
[7] J. Wolfowitz, “Coding theorems of information theorygrgebnisse der
Mathematik und ihrer Grenzgebiet&961.

[8] R. L. Dobruschin, “Mathematical problems in the shanrtbrory of
optimal coding of information,Fourth Berkeley Symposiyrh961.

V. Strassen, “Asymptotische Abschatzungen in Sharsémformation-

Fig. 4. Channel Coding Rate in the Finite Block-Length Regim

Theorem 5 confirms that’()\) is the operational capacity
of the channel and any rafe < C'(\) is achievable. The real
beauty of this theorem is, however, that it proposes to use thg,

asymptotic stheorie,” Trans. Third Prague Conf. Information Theonyp. 689-723,
1962.
log N(n,e, \) [10] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel codirage in the

—-1/2 _~—1
~ C(/\) -n / oQ (5) (34) finite blocklength regime/1IEEE Transactions on Information Theory
vol. 56, pp. 2307-2359, 2010.

. . . (n,e,\)  [11] A. Feinstein, “A new basic theorem of information thgbriRE Trans.
as an approximation to the channel coding réﬁ%nL Inform. Theory vol. PGIT-4, pp. 222, 1954.

which anticipates the achievable rate on this channel in the) w. Feller, “Generalization of a probability limit theem of cramer,’
finite block length regime. For illustraton we plotted this  Transactions of The American Mathematical Societl. 54, pp. 361
asymptotic for blocklengths ranging betwe&f and 3000, 361, 1943.

. [13] C. G. Esseen, “Fourier analysis of distribution fuoos,” Acta Math,
various values foe and the example values= 0.2, u = 0.8 vol. 77, pp. 1-125, 1945,
in Figure 4.

[14] W. Whitt, “Asymptotic formulas for markov processestivapplications
to simulation,” Operations Researgtvol. 40, pp. 279-291, 1992.
[15] D. Y. Burman, “A functional central limit theorem for th and death
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