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Abstract—The exponential server timing channel is known
to be the simplest, and in some sense canonical, queuing tim-
ing channel. The capacity of this infinite-memory channel is
known. Here, we discuss practical finite-length restrictions on the
codewords and attempt to understand the amount of maximal
rate that can be achieved for a target error probability. By
using Markov chain analysis, we prove a lower bound on the
maximal channel coding rate achievable at blocklengthn and
error probability ε is approximated byC−n−1/2σQ−1(ε) where
Q denotes the Q-function andσ2 is the asymptotic variance of
the underlying Markov chain. A closed form expression forσ2

is given.
Index Terms—Timing channel, finite block-length, achievabil-

ity, geometric ergodicity, asymptotic variance

I. I NTRODUCTION

While most communication systems convey information by
controlling the amplitudes of signals at each time instant,
information can also be sent by controlling the timing at which
events occur. For example it is widely believed that neurons
exchange information by sending spike trains [1], where in-
formation is contained in the random lengths of the interspike
intervals. Another example are packet switching networks,
where forwarding moves packets from their source toward
their ultimate destination. The sources can choose when to
send packets, but a queuing mechanism in the forwarding
nodes obscures the timing information.

The landmark paper “Bits through Queues” by Anantharam
& Verdú [2] characterizes such channels. Suppose the “pack-
ets” are identical and only their arrival time carries infor-
mation. The times at which the sender puts packets on the
network encodes a message. The packets go through a first-
come, first-serve single-server queue with exponential service
times. The decoder observes when the packets depart from the
queue and then chooses one of the possible messages. For an
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Fig. 1. Conveying information through packet timings in a queueing system

arrival process constrained to be of rateλ packets per second,
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it was demonstrated [2] that for an exponential service time
distribution of rateµ > λ the capacityC(λ) is given by

C(λ) = λ log2
µ

λ
nats/s,

A point process viewpoint version of the problem with the
same fundamental limits was considered in [3], [4]. Rather
than consideringn inter-arrival times andn inter-departure
times of the queue, the time axis was fixed to be[0, Tn] at the
encoder and[0, Tn] at the decoder. In [5], Bedekar and Azi-
zoglu considered a discrete time analog to the continuous-time
model studied in [2] where packets arrive to and depart from
a discrete-time single-server queue with i.i.d. geometrically
distributed service times. For an arrival process constrained to
be of rateλ packets per time slot, it was demonstrated [5] that
for queue with service times of rateµ > λ the capacityC(λ)
is given by

C(λ) = H(λ)− λ

µ
H(µ) nats/slot,

whereH(·) denotes the binary entropy function.
The timing channels with memoryless service times (i.e.

exponential in the continuous case and geometric in the
discrete case), are known to be the simplest, and in some
sense canonical, queuing timing channels. This paper focuses
on the discrete time model with memoryless service times and
discusses the maximal achievable rate of communication when
there is a finite-length restriction on the codewords.

When each codeword corresponds to the timing of packets
in n time units and the probability of error may not exceed
ε, the maximal achievable rate can be substantially less than
than capacity. By using Markov chain analysis, we prove a
lower bound on the maximal channel coding rate achievable
at blocklengthn and error probabilityε. We shall show that
the maximal channel coding rate is lower bounded by

C(λ)− n−1/2σQ−1(ε)− log n

2n
+O(n−1)

whereC(λ) is the channel capacity whose closed form ex-
pression is given above,Q(·) denotes the Q-function andσ2

is the asymptotic variance of the underlying Markov chain for
which we give a closed form expression below. Dropping the
last two terms in this expression yields a good approximation
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which in turn can be used to anticipate the achievable rate on
this channel in the finite block length regime.

Asymptotic expansions of the above form were studied
extensively in the 60s for the case of memoryless channels
[6]–[9]. The strongest results were given by Strassen in
[9]. Recently, this research was rediscovered and extended
to Gaussian channels with an input constraint [10]. The
major components of the proof can be traced back to the
work of Strassen who combined hypothesis testing arguments
(Neyman-Pearson lemma), Feinstein’s lemma [11] and bounds
on the convergence rate of the central limit theorem [12], [13].

The queuing timing channel considered here has memory
and previous results therefore do not apply. We show that
the bound provided by the Berry-Esseen theorem in the
memoryless channel case still holds and then prove the asymp-
totic result above by use of Feinstein’s lemma. Further, as
mentioned before, we obtain a closed form expression for the
asymptotic varianceσ2. Finding such an expression for a given
Markov chain is generally hard and significant research in the
area of steady-state stochastic simulation [14]–[16] yields a
closed form solution only for the class of homogeneous birth-
death processes.

II. BASIC DEFINITIONS AND CONVENTIONS

• For x ∈ [0, 1], denotex̄ , 1− x.
• Denote Bern(p) to be the Bernoulli distribution with

parameterp and geom(p) to be the geometric distribution
with parameterp:

P (k) = p(1− p)k, k ≥ 0.

• Denote the binary entropy functionH(p) = −p log p −
p̄ log p̄.

• X denotes a random variable,E[X ] denotes an expecta-
tion, andx denotes a realization.

• x denotes a vector(x1, x2, ..., xn)
• A random processΦ = (Φ1, Φ2, . . .) on a probability

space(Ω,F , P ) is a Markov processif for any n,

P (Φ1 ∈ A1, Φ2 ∈ A2, . . . , Φn ∈ An)

= P (Φ1 ∈ A1)

n
∏

i=2

P (Φi ∈ Ai|Φi−1 ∈ Ai−1).

• Z is the set of all integers andZ+ = {z ∈ Z : z ≥ 0}.
• Denote[n]j = {j, . . . , n} with [n] ≡ [n]1.
• DenoteXn to be the sequence of counting functions on

[n]0, i.e. the set of functionsx0, . . . , xn for which xi ∈
Z+ andxi ≥ xi−1. DenoteYn to be the set of counting
functionsy on [n]0 for which y0 = 0.

• For a sequence of input sets and output sets{Xn,Yn :
n ≥ 1}, a channel is a a sequence of conditional
distributions{PY n|Xn(·|xn) : xn ∈ X

n, n ≥ 1}.
• Given a distribution PXn on X

n and channel
PY n|Xn(·|xn), denote PY n as the induced output
distribution.

• Denote the information density asi(xn,yn) ,

log
PY n|Xn (yn|xn)

PY n (yn) .

• For any ε ∈ (0, 1), an (M,n, ε) code is a sequence
{(x(i),D(i)), i = 1, . . . ,M} where x(i) ∈ X

n and
{D(i)} are mutually disjoint withP (D(i)|x(i)) > 1 −
ε ∀i.

• The rate of an(M,n, ε) code is denoted byR = logM
n .

• Let N(ε, n, λ) be the supremum of the integersM such
that an(M,n, ε)-code exists andE[Xn/n] = λ.

• Denote the rate-constrained capacity as
C(λ) , limε→0 limn→∞

logN(ε,n,λ)
n .

• We drop subscripts whenever they are clear from the
context. For examplePY n|Xn(yn|xn) = P (yn|xn).

III. SYSTEM DESCRIPTION ANDPRELIMINARIES

Throughout this document, we consider a discrete-time
point process version of the problem, analogous to [3], [4].The
communication channel we consider is an interesting example
of a channel with memory. It is essentially a probabilistic
single server queuing system with the length of the queue
being the memory of channel. At each discrete time instance
i the random variablẽXi, i ∈ [n − 1], indicates if there was
an arrival at the back of the queue at timei. The initial
length of the queueQ0 ≡ X0 is a non-negative integer-
valued random variable with distributionPQ0

= PX0
. Denote

X̃i = Xi−Xi−1 and denotẽYi analogously. Denote the queue
state for timei ≥ 1 asQi = Xi − Yi−1. Then note that we
have:

Xi = X0 +

i
∑

l=1

X̃l (1)

Yi = 0 +

i
∑

l=1

Ỹl (2)

Qi = Q0 +Xi − Yi−1 = Qi−1 + X̃i − Ỹi−1 (3)

Note that there is a bijection between(Q0, X̃1, . . . , X̃n) and
the channel input,Xn , (X0, X1, . . . , Xn). For geometrically
distributed service times, the binary random variablesỸi
are conditionally independent givenQi and are distributed
according to the conditional law pertaining to a Z channel:

PỸi|Qi
(Ỹi|Qi) =















1; Ỹi = 0, Qi = 0

µ̄; Ỹi = 0, Qi > 0

0; Ỹi = 1, Qi = 0

µ; Ỹi = 1, Qi > 0

(4)

The vectorY n ∈ Y
n is the channel output vector and there

is a bijection betweenY n ∈ Y
n and (Ỹi : i ∈ [n]). With this

the channel law reads

P (yn|xn) =
n−1
∏

i=0

P (ỹi|qi). (5)

Clearly, Xi (Yi) counts the total number of arrivals (depar-
tures),Qi denotes the length of the queue at timei and Ỹi
indicates if there was a departure from the front of the queue
at time i. This is illustrated in Figure 2.
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Fig. 2. A simple time-invariant description of the queuing timing channel.

We assume the queue to be stable and hence the arrival rate
λ = E[Xn]

n to be smaller than the serving rateµ. We now state
the following theorem

Theorem 1. [5]: For the queueing timing channel of rateµ
given by(5),

C(λ) = H(λ)− λ

µ
H(µ). (6)

The optimalP ∗
Xn is given byX̃i drawn i.i.d. with Bern(λ)

distribution andQ0 independently drawn withπQ given by

πQ(q) =

{

λ̄µ−λµ̄
µ ; q = 0

λ̄µ−λµ̄
µ̄µ ρq; q > 0

(7)

whereρ ,
λµ̄
λ̄µ

.

Note thatρ < 1 if and only if λ < µ. We will also exploit
how underP ∗

Xn , the outputỸi’s are i.i.d.:

Theorem 2. (Burke’s Theorem)For any n, for the channel
given by(5) andPXn = P ∗

Xn given in Theorem 1, the outputs
Ỹi’s are i.i.d. with Bern(λ) distribution.

Proof: The proof is similar to the one for continuous time
queues and can be found in [17]. A concise proof is also given
in [18].

Throughout the remainder of this paper, we assume that
PXn = P ∗

Xn .
By the above theorem

P (yn) =
n−1
∏

i=0

P (ỹi) (8)

It is also well-known from Burke’s theorem that underP ∗
Xn ,

the (Qi : i ≥ 0) form a Markov chain and likewise for the

random process
(

(Qi, Ỹi) : i ≥ 0
)

. The transition probabili-

ties for the Markov chain pertaining to(Qi : i ≥ 0) are given
by

PQi+1|Qi
(qi+1|qi) =























λ; qi+1 = qi + 1, qi = 0
λ̄; qi+1 = qi, qi = 0
λ̄µ; qi+1 = qi − 1, qi > 0
λµ̄; qi+1 = qi + 1, qi > 0

1− λµ̄− λ̄µ; qi+1 = qi, qi > 0
(9)

If and only if λ < µ, there exists a probability measureπQ
on N0 that solves the system of equations

∑

qi∈N0

πQ(qi)PQi+1|Qi
(qi+1|qi) = πQ(qi+1) (10)

for all qi+1 ∈ N0 and this measure is called the invariant mea-
sure. Note that for irreducible Markov chains the existenceof
such a probability measure is equivalent to positive recurrence.
For the transition probabilities given it can be checked that
πQ(qi) as defined in Theorem 1 is the solution.

The following lemma uses arguments introduced by Fein-
stein [11] to give a lower bound onN(ε, n, λ).

Lemma 1. (Feinstein)For any distributionPXn and anyθ ∈
R there exists an(M,n, ε) code such that

M ≥ eθ {ε− P (i(xn,yn) ≤ θ)} . (11)

Proof: The proof is short and elegant and reproduced in
[18].

IV. F INITE-LENGTH SCALING

Recall that by (5) and (8) the distributionsP (yn|xn) and
P (yn) factor and hence

i(xn,yn) =

n−1
∑

i=0

log
P (ỹi|qi)
P (ỹi)

=

n−1
∑

i=0

f(ỹi, qi) (12)

where

f(ỹi, qi) , log
P (ỹi|qi)
P (ỹi)

. (13)

The composed stateψi = (ỹi, qi) again forms a positive
recurrent Markov chain whose transition probabilities are
illustrated in Figure 3. The invariant measureπΨ for this chain
is only a slight extension toπQ:

πΨ (ỹ, q) = PỸi|Qi
(ỹ|q)πQ(q) (14)

The proof of the following theorem is one of the main
contributions of this paper because it can be used to proof
bounds and an asymptotic on the quantityN(ε, n, λ).

Theorem 3. The asymptotic variance

σ2 = lim
n→∞

1

n
Var(i(xn,yn)) (15)
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Fig. 3. Possible Transitions in the Markov Chain(Ỹ , Q)

is well defined, positive and finite, and

σ2 = Var(f(Ψ0)) + 2

∞
∑

i=1

Cov(f(Ψ0), f(Ψi)). (16)

Further the following Berry-Esseen type bound holds:

sup
ξ∈R

∣

∣

∣

∣

P

(

i(xn,yn)− nC(λ)

σ
√
n

≤ ξ

)

− Φ(ξ)

∣

∣

∣

∣

≤ O(n−1/2)

(17)

Proof: A detailed proof can be found in [18]. We only
give a sketch here. The Markov ChainΨ is aperiodic and
irreducible. The state space ofΨi can be chosen to be
X = {0, 1} × N ∪ {(0, 0)}. First we verify that there exists a
Lyapunov functionV : X → (0,∞], finite at someψ0 ∈ X, a
finite setS ⊂ X, andb <∞ such that

E[V (Ψi+1)− V (Ψi)|Ψi = ψ] ≤ −1 + b1S(ψ), ψ ∈ X

(18)

The chain is skip-free and the found Lyapunov function is
linear and hence also Lipschitz. These properties imply that
the chain is geometric ergodic [19], [20] and the bound in (17)
hence holds by arguments made in [21].

Remark 1. An explicit solution to the asymptotic variance of
a general irreducible positive recurrent Markov chain is not
available.

Significant research in the area of steady-state stochastic
simulation has focused on obtaining an expression for the
asymptotic variance [14]–[16] and has yielded a closed form
solution only for the class of homogeneous birth-death pro-
cesses whenf(ψi) simply returns the integer valued state
itself.

We build up on an idea introduced in [22] to give an explicit
closed form solution to the asymptotic variance in (15).

Theorem 4. The asymptotic variance defined in(15) has a
closed form solution:

σ2 = −Var(f(Ψ0)) + 2

∞
∑

i=0

Cov(f(Ψ0), f(Ψi)) (19)

where

Var(f(Ψ0)) = log2(
1

λ̄
)πQ(0) + log2(

µ

λ
)µπQ(0)

+ log2(
µ̄

λ̄
)µ̄πQ(0)− C2 (20)

∞
∑

i=0

Cov(f(Ψ0), f(Ψi)) = log
1

λ̄
(−cM̃

ρ

1− ρ
− cM0ρ)

+ log
µ

λ
cM0

ρ

1− ρ
++ log

µ̄

λ̄

ρ

1− ρ
(cM̃ − ρcM0)

(21)

and we defined

cM0 =
λ̄

µ̄

(

µ log(
µ

λ
) + µ̄ log(

µ̄

λ̄
)− C

)

(22)

cM̃ =

{

cM0

µ
+ (C − log

µ

λ
)
πQ(0)

µ̄

}

(23)

Proof: Again we only sketch the proof here and refer to
[18] for a detailed version. For the computation of the sum
∑∞
i=0 Cov(f(Ψ0), f(Ψi)) we will setup and solve a recursion.
We define

r(ψ, i) =
∑

ψ′∈X

(f(ψ′)− C)πΨ (ψ
′)pΨi|Ψ0

(ψ|ψ′) (24)

Clearly

r(ψ, 0) = (f(ψ)− C)πΨ (ψ) (25)

and

Cov(f(Ψ0), f(Ψi)) =
∑

ψ∈X

(f(ψ)− C)r(ψ, i) (26)

=
∑

ψ∈X

f(ψ)r(ψ, i) (27)

Note however that for the computation of the asymptotic
variance we actually do not even need to know this covariance
for eachi. It is sufficient to know its sum. So we define

R(ψ) =

∞
∑

i=0

r(ψ, i) (28)

exchange limits

∞
∑

i=0

Cov(f(Ψ0), f(Ψi)) =
∑

ψ∈X

f(ψ)R(ψ) (29)

and derive and solve a recursion for the sequenceR(ψ).
Using the result stated in Theorem 3 we can prove the final

contribution of this paper:

Theorem 5.

logN(n, ε, λ) ≥ nC(λ) −
√
nσQ−1(ε)− 1

2
logn+ O(1)

(30)

whereC(λ) is given by(6) andσ is defined as in Theorem 3.



Proof: By Theorem 3∃A > 0 :

|P ((i(x,y)− nC)/
√
nσ2 ≤ ξ1)− Φ(ξ1)| ≤

A√
n

∀ξ1 ∈ R

(31)

Let B > A and ξ1 = Φ−1(ε − B√
n
) < Φ−1(ε) = ξ0. Set

θ =
√
nσξ1 + nC and the application of Feinstein’s Lemma

[11], [18] yields

logN(n, ε, λ)− nC −
√
nσξ0

≥ log

(

ε− P

(

i(x,y)− nC√
nσ

≤ ξ1

))

+
√
nσ(ξ1 − ξ0)

(32)

≥ log

(

ε− Φ(ξ1)−
A√
n

)

+
√
nσO(

1√
n
) (33)

Remark 2. We believe that the above result can be strength-
ened by dropping the term12 logn from the right hand side
of the inequality. By use of hypothesis testing arguments
Strassen [9] was able to prove the above bound without the
1
2 logn term for the class of discrete memoryless channels.
The used arguments can probably be extended to hold for
the non-memoryless channel considered here as well since the
information density factors and by Theorem 3 a Berry-Esseen
type bound holds.

Theorem 5 confirms thatC(λ) is the operational capacity
of the channel and any rateR < C(λ) is achievable. The real
beauty of this theorem is, however, that it proposes to use the
asymptotic

logN(n, ε, λ)

n
∼ C(λ) − n−1/2σQ−1(ε) (34)

as an approximation to the channel coding ratelogN(n,ε,λ)
n

which anticipates the achievable rate on this channel in the
finite block length regime. For illustraton we plotted this
asymptotic for blocklengths ranging between50 and 3000,
various values forε and the example valuesλ = 0.2, µ = 0.8
in Figure 4.
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