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Generally applicable approaches for estimating the ‘‘quasi-static’’, which means without

fluid–structure interaction and frequency-dependent water-hammer wave speed in

steel-lined pressure tunnels are analyzed. The external constraints and assumptions of

these approaches are discussed in detail. The reformulated formulas are then compared to

commonly used expressions. Some special cases of wave speed calculation such as

unlined pressure tunnels and open-air penstocks are investigated. The quasi-static wave

speed is significantly influenced by the state of the backfill concrete and the near-field

rock zone (cracked or uncracked). In the case when these two layers are cracked, the

quasi-static wave speed is overestimated in between 1% and 8% compared to uncracked

concrete and near-field rock layers. Depending on the stiffness of steel liner and penstock,

the fluid–structure interaction leads to significant difference in wave speeds values.

Compared to the quasi-static case, the fluid–structure interaction approach, applied to

steel-lined tunnels, results up to 13% higher wave speed values in the high-frequency

range (higher than 600 Hz) and up to 150% lower values for frequencies between 150 and

300 Hz in the considered test case.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The quasi-static and frequency-dependent wave speed of flow disturbances in pipes have been treated extensively for
rigid, elastic and visco-elastic tube walls. Without considering fluid–structure interaction (FSI), Halliwell (1963), Streeter
(1963), Rieutord (1982), Wylie et al. (1993), and Ghidaoui et al. (2005) gave, among others, good overviews on the different
methods for wave speed estimation. FSI can be found in Rubinov and Keller (1971, 1978), Lavooij and Tijsseling (1991),
and Tijsseling (1996). Unlike the case of open-air and thin-walled pipes, most formulae predicting the wave speed of
flow disturbances in rock-bored tunnels and shafts (lined or unlined) have not been explicitly derived using a clear definition
of the external constraints. The most consistent approaches, without considering the FSI problem, can be found in Jaeger
(1933), Halliwell (1963), Fanelli (1973), Bürmann (1975), and Suo and Wylie (1990a). Considering FSI, references from the
biomechanical domain such as Atabeck (1968) and Kuiken (1984, 1988) provide a rather complete 2-D calculation model.
A 1-D mathematical model was also presented by Tijsseling (2007) describing the behaviour of thick-walled and liquid-
filled pipes.

This paper focuses on the analysis of the wave speed propagation in rock-bored steel-lined tunnels and shafts. The purpose
of it is to give: (a) a review of relevant contributions in deriving the wave speed formulae with clear definition of hypotheses
ll rights reserved.
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Nomenclature

a quasi-static wave speed of water hammer
(m/s)

A internal cross-sectional area of the steel liner
(m2)

A1, A2 factors defined in Eq. (3.3)
A3, A4 factors defined in

Eq. (3.4)
A5, A6 factors defined in Eq. (3.5)
b ratio of the internal radius of the pressure

tunnel and the steel-liner thickness (=pi/ts)
(�)

c complex wave speed (m/s)
c0eq equivalent reference wave speed defined in

Eq. (4.6) (m/s)
ci phase or group velocities of the ith mode (m/s)
cgi group velocity of the ith mode (m/s)
cpi phase velocity of the ith mode (m/s)
c0 reference wave speed (m/s)
cT speed of sound in unconfined water (m/s)
Cr,l radial (longitudinal) frictional coefficient per

unit area of the Kelvin model (N s/m/m2)
D complex integration constant (�)
D1, D2 undetermined complex constants of solution

(�)
D0 mode-dependent factor defined in Eq. (2.19)
Eapp apparent elasticity modulus of rock mass (MPa)
Ec elasticity modulus of the backfill concrete

(MPa)
Es elasticity modulus of steel liner (MPa)
Ecrm elasticity modulus of the near-field loosened

rock zone (MPa)
Erm elasticity modulus of the far-field rock

zone (MPa)
Fx resultant of axial forces applied on the liner per

unit area (MN/m2)
Fr resultant of radial forces applied on the liner

per unit area (MN/m2)
f excitation frequency (Hz)
fy yield strength of steel (MPa)
i the complex number (�1)0.5

k ratio of the reference wave speed (c0) to the
complex wave speed (c) (�)

Kr parameter defined in Eq. (4.4) (N/m)
Ksr,l radial (resp. longitudinal) spring stiffness

coefficient per unit area of the Kelvin model
(N/m/m2)

Kw bulk modulus of water (MPa)
Mr,l radial (resp. longitudinal) additional mass per

unit area of the Kelvin model (kg/m2)
p water pressure in excess of the steady-state

pressure p0 used in the FSI case (MPa)

p0 water pressure in the steady-state conditions
used in the FSI case (MPa)

pc pressure transmitted to backfill concrete at
radius rc (MPa)

pi water pressure used in the quasi-static
case (MPa)

pr1 uniform pressure transmitted to the rock zone
at radius ra (MPa)

pr2 uniform pressure transmitted to the rock zone
at radius rf (MPa)

r radius measured from tunnel axis (m)
rc internal radius of backfill concrete (m)
rf internal radius of the far-field rock zone (m)
ra internal radius of the near-field rock zone (m)
ri internal radius of the steel liner (m)
t time (s)
ts steel liner or penstock wall thickness (m)
u water velocity in the axial direction of the

tunnel (m/s)
ul

s axial displacement of the steel liner (m)
ur

s radial displacement of the steel liner (m)
v water velocity in the radial direction of the

tunnel (m/s)
x longitudinal coordinate according to the tun-

nel axis (m)
Di logarithmic decrement of the ith propagating

mode (�)
Dr0 initial thermal gap between steel liner and

backfill concrete (m)
z damping ratio for the Kelvin model (�)
li wave length of the ith propagating mode

(=ci /f ) (m)
m dynamic viscosity of water (kg/m/s)
nc Poisson’s ratio of backfill concrete (�)
ns Poisson’s ratio of steel (�)
nrm Poisson’s ratio of the near- and far-fields of the

rock mass (�)
rw unit mass of water used in the quasi-static case

(kg/m3)
sr radial stress in the theory of thick-walled

cylinder (MN/m)
st tensile stress in the theory of thick-walled

cylinder (MN/m)
sl

0 initial longitudinal stress in the liner per unit
length (MN/m)

sr
0 initial circumferential stress in the liner per

unit length (MN/m)
sl

+ perturbation of longitudinal stress in the liner
per unit length (MN/m)

sr
+ perturbation of circumferential stress in the

liner per unit length (MN/m)
o angular frequency of transient excitations

(=2pf) (rd/s)
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and constraints and (b) to extend the use of the FSI model, derived by Kuiken (1984), to the field of steel-lined tunnels and
shafts. Some examples with a sensitivity analysis of the main parameters are also provided in order to compare the results
obtained in the frequency domain with the classical approaches.
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2. Radial deformation of steel-lined pressure tunnels

2.1. Quasi-static case

In general, the deformation of radial symmetrical multilayer systems is derived from compatibility conditions at the
interfaces (Talobre, 1967; Schleiss, 1988). In the case of steel-lined pressure tunnels, three layer interfaces of radius rc, ra, and
rf, as shown in Fig. 1(a), exist. The compatibility of radial deformation ur at these three interfaces can be written as follows:

us
rðr¼ rcÞ�Dr0 ¼ uc

r ðr¼ rcÞ with Dr0Z0,

uc
r ðr¼ raÞ ¼ ucrm

r ðr¼ raÞ,

ucrm
r ðr¼ rf Þ ¼ urm

r ðr¼ rf Þ,

8><
>: ð2:1Þ

where superscript s is related to steel liner, c to the backfill concrete, and crm and rm to the near- and far-field zones of the
rock mass. The subscript r indicates deformations in the radial direction. In contact with colder water, the steel liner shrinks
and an initial gap Dr0 may occur between steel and backfill concrete. A typical value of Dr0 equal to 0.25% of ri is often used
(Schleiss, 1988). In this paper, when the kinematic and dynamic effects of water and steel liner are considered (fluid–
structure interaction phenomenon) under internal pressure, the steel liner is assumed to be in permanent contact with the
backfill concrete and the gap can be thus ignored.

For any layer j, considered as a thick circular cylinder in axisymmetrical behaviour and with elasticity modulus Ej, interior
radius rj�1, and exterior radius rj, the two general equations governing the deformation of this layer under internal pj�1 and
external pressures pj subject to uniform longitudinal strain el, or uniform longitudinal stress sl, are (Halliwell, 1963;
Timoshenko and Goodier, 1970)

uj
rðrÞ ¼

1

Ej

r2
j r2

j-1

r2
j �r2

j�1

ð1þnjÞ

r
ðpj�1�pjÞþð1�njÞr

pj�1

r2
j

-
pj

r2
j�1

 !" #
�
njslr

Ej
, ð2:2Þ

el ¼
sl

Ej
�

2njr
2
j r2

j�1

Ejðr
2
j �r2

j�1Þ

pj�1

r2
j

�
pj

r2
j�1

 !
: ð2:3Þ
Fig. 1. Calculation models for steel liners with axisymmetrical behaviour: (a) used for the quasi-static wave speed calculation and (b) used for the frequency-

dependent wave speed calculation.
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In plane strain conditions (el=0), Eq. (2.3) becomes

sl ¼
2njr

2
j r2

j�1

r2
j �r2

j�1

pj�1

r2
j

�
pj

r2
j�1

 !
: ð2:4Þ

In the following discussion, uncracked materials or layers are homogenous, elastic with axisymmetrical behaviour, modelled
according to thick-walled cylinder theory (Timoshenko and Goodier, 1970) while cracked layers cannot transfer tensile
stresses (layers with radial cracks).

The displacements ur
j(r), of the different layers shown in the 2-D calculation model of Fig. 1(a), can be written as (Hachem

and Schleiss, 2009)
(i)
 Steel liner

us
rðr¼ rcÞ ¼

1þns

Es

rc

r2
c�r2

i

ð1�2nsÞðpir
2
i �pcr2

c Þþðpi�pcÞr
2
i

� �
: ð2:5Þ
(ii)
 Uncracked backfill concrete

uc
r ðr¼ ra or rcÞ ¼

1þnc

Ec

r

r2
a�r2

c

ð1�2ncÞðpcr2
c�pr1r2

a Þþðpc�pr1Þr
2

� �
: ð2:6Þ
(iii)
 Cracked backfill concrete

uc
r ðr¼ raÞ ¼ uc

r ðr¼ rcÞþ
ð1�n2

c Þpcrc

Ec
ln

rc

ra

� �
, ð2:7Þ

with, pcrc ¼ pr1ra: ð2:8Þ
(iv)
 Uncracked near-field rock zone
In this case, the entire rock mass (near- and far-field) is treated as an infinite uncracked layer (rf-N). The displacements
ur

rm at the interior face of the rock mass layer is

urm
r ðr¼ raÞ ¼

ð1þnrmÞ

Erm
pr1ra: ð2:9Þ
(v)
 Cracked near-field rock zone

ucrm
r ðr¼ rf Þ ¼ ucrm

r ðr¼ raÞþ
ð1�n2

rmÞpr1ra

Ecrm
ln

ra

rf

� �
, ð2:10Þ

with, pr1ra ¼ pr2rf : ð2:11Þ
(vi)
 Uncracked infinite far-field rock zone when the near-field rock is considered as cracked

urm
r ðr¼ rf Þ ¼

ð1þnrmÞ

Erm
pr2rf : ð2:12Þ
Note that Eq. (2.8) assuming cracked backfill concrete is derived from the theory of a thick-walled cylinder by putting the
tensile stress st equal to zero in the general equation: st�sr�r dsr/dr=0 and then by integrating it between the two layers’
borders wheresr=pc at r=rc andsr=pr1 at r=ra. Variablesst andsr stand, respectively, for the tensile and radial stresses in the
cylinder wall and dsr/dr for the first derivative of sr relative to the radius r measured from the tunnel axis. The same
procedure is used to obtain Eq. (2.11) for cracked near-field rock zone. The far-field rock zone was assumed as homogeneous,
isotropic and elastic with a mean elastic deformation modulus Erm.

The near-field rock zone corresponds to the rock mass disturbed (loosened) as a result of the excavation method and the
change in the near stress field around the tunnel. Schleiss (1988) suggested values for the disturbed rock zone between
0.5–1.0 m for tunnels excavated by Tunnel Boring Machine (TBM) and 1.0–2.0 m for drill and blast excavation. In the paper,
rf has been taken equal to 1.25 times ra.

2.2. General case considering kinematic and dynamic effects of water and steel liner

Depending on the system stiffness of steel-lined pressure tunnels and penstocks, deviation from the quasi-static case may
occur. Pressure waves in water produce dynamic forces on the steel liner and trigger vibrations. Such liner vibrations cause
additional water pressure waves in return. This phenomenon is called ‘‘fluid–structure interaction’’ or ‘‘FSI’’. Compared to the
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conventional uncoupled water hammer analyses, FSI may lead to: higher or lower extreme dynamic pressures and steel wall
stresses, change in the natural frequencies of the system, and more damping and dispersion in the pressure and stress
histories (Kuiken, 1988). The dispersion results from a frequency-dependent wave speed built from different frequencies
travelling at different speeds. This makes it difficult to identify the exact location of the wave front.

Denoting the axial displacement of the steel liner by ul
s, the linearized boundary conditions at the water-liner interface

using the no-slip condition are

u¼
@us

l

@t
, v¼

@us
r

@t
, ð2:13Þ

where u and v are, respectively, the water velocities in the axial x and radial r directions and t is the time. The first boundary
condition concerning the velocity u is not needed in non-viscous fluid approximation (Rubinov and Keller, 1971).

The effect of the backfill concrete and the surrounding rock mass is mechanically modelled by a spring, a dashpot, and a
lumped additional mass (Kelvin model). This conceptual model is represented in Fig. 1(b). The model input coefficients are
Ksr, Cr, and Mr representing, respectively, (per unit area) the spring stiffness coefficient, the frictional coefficient of the
dashpot, and an additional mass. The same mechanical model is used to represent longitudinal liner-rock interaction with Ksl,
Cl, and Ml as coefficients.

The six-equation (3-mode) model of the FSI problem was established first by Atabeck (1968) and generalized by Kuiken
(1984). These equations are:
(i)
 For the fluid without body forces in the axial x and radial r directions, the linearized equations of motions (Eqs. (2.14) and
(2.15)), equation of continuity (Eq. (2.16)), and the thermodynamic constitutive equation for the density (Eq. (2.17)) are,
respectively,

r0

@u

@t
¼�

@p

@x
þm @2u

@r2
þ

1

r

@u

@r
þ
@2u

@x2

 !
þ kþ 1

3
m

� �
@2v

@r@x
þ

1

r

@v

@x
þ
@2u

@x2

 !
, ð2:14Þ

r0

@v

@t
¼�

@p

@r
þm @2v

@r2
þ

1

r

@v

@r
þ
@2v

@x2
�

v

r2

 !
þ kþ 1

3
m

� �
@2v

@r2
þ

1

r

@v

@r
�

v

r2
þ
@2u

@x@r

 !
, ð2:15Þ

@r
@t
þr0

@v

@r
þ

v

r
þ
@u

@x

� �
¼ 0, ð2:16Þ

dp¼ c2
T dr: ð2:17Þ
(ii)
 For the steel liner, the equations of motion in an initially stressed field are (Flügge, 1973)

rsts
@2us

l

@t2
¼
@sþl
@x
þFxþs0

l

@2us
l

@x2
�
s0

r

ri

@us
r

@x
, ð2:18Þ

rsts
@2us

r

@t2
¼�

sþr
ri
þFrþs0

l

@2us
r

@x2
þ
s0

r

ri

@us
l

@x
, ð2:19Þ

wherer is the unit mass of water in excess of the steady-state unit massr0, p is the water pressure in excess of the steady-
state pressure p0, m, and k are, respectively, the dynamic and the bulk viscosities of water, rs is the unit mass of steel, ts is
the thickness of the liner,sr

+ andsl
+ are, respectively, the perturbation stresses in the circumferential and axial directions,

sr
0 and sl

0 are the initial radial and longitudinal stresses in the liner evaluated per unit length, and cT is the speed of sound
in unconfined water equal to (Kw /rw)0.5, where Kw is the bulk modulus of water andrw is the unit mass of water when FSI
is not considered. The forces Fx and Fr represent the resultant of hydrodynamic forces and forces applied by the
surrounding backfill concrete on the liner, respectively, in the axial and radial directions. According to the Kelvin model,
these forces are specified by

Fx ¼�m
@u

@r
þ
@v

@r

� �
r ¼ ri

�Ml

@2us
l

@t2
�Cl

@us
l

@t
�Kslu

s
l , ð2:20Þ

Fr ¼ p�2m @v

@r
� k�2

3
m

� �
1

r

@rv

@r
þ
@u

@x

� �� �
r ¼ ri

�Mr
@2us

r

@t2
�Cr

@us
r

@t
�Ksru

s
r : ð2:21Þ
Finally, the linear stress–strain relations for membranes are

sþr ¼ B
us

r

ri
þBð12Þ

@us
l

@x
, sþl ¼ Bð12Þ

us
r

ri
þB

@us
l

@x
; ð2:22;2:23Þ

where B and B(12) are defined in Eq. (2.30).
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The unknowns to be solved are u, v, p, ul
s, and ur

s. They are assumed to vary harmonically in x and t with a real constant
angular frequencyo according to the following expressions in which the superscript ^ indicates the amplitude of the periodic
quantities and c denotes the complex propagation velocity

½u,v,p� ¼ ½ûðrÞ,v̂ðrÞ,p̂ðrÞ�eioðt�x=cÞ, ½us
l ,u

s
r� ¼ ½û

s
l ,û

s
r �e

ioðt�x=cÞ: ð2:24;2:25Þ

Any non-sinusoidal variable can be treated as the combination of an infinite number of harmonic components using
Fourier transformation. In linear theory, small sinusoidal amplitude motions of the liner wall are considered.

By substituting Eq. (2.24) into Eqs. (2.14)–(2.16), and using Eq. (2.17), the following expressions for ûðrÞ, v̂ðrÞ, and p̂ðrÞ can
be written

ûðrÞ ¼
F1p̂0

rc0
kJ0ðibzkr=riÞþDF0 ði

3a2�k2b2
Þ
0:5 r

ri

� �� �
,

v̂ðrÞ ¼
F1p̂0

rc0
xkJ1ðibzkr=riÞþ0:5ibkDF1 ði

3a2�k2b2
Þ
0:5 r

ri

� �� �
,

p̂ðrÞ ¼ p̂0J0ðibzkr=riÞ,

8>>>>>><
>>>>>>:

ð2:26Þ

where p̂0 is the reference pressure amplitude of water at r=0, i=(�1)0.5, D an integration constant, and c0 is the reference
wave speed (defined in Eq. (4.2)), and the functions Fn(lr/ri) are defined by

Fnðlr=riÞ ¼ 2nn!
Jnðlr=riÞ

lnJ0ðlÞ
; ð2:27Þ

J0(y) and J1(y) are, respectively, the zero- and first-order first-kind Bessel functions. In Eq. (2.26), the various dimensionless
parameters are

k¼
c0

c
, a¼ ri

or0

m

� �0:5

, au¼ a or0

k

� 	0:5

, b¼
ori

c0
, bu¼

ori

cT
,

b0T ¼
c0

cT
, z2

¼ 1�
b2

0T

k2F1
, F1 ¼ 1þ

ibu2

au2
þ

4ibu2

3a2
:

8>>>><
>>>>:

ð2:28Þ

The first two homogeneous equations needed to solve the problem are derived from substitution of Eq. (2.26) into
Eqs. (2.20) and (2.21). These latter equations with Eqs. (2.22) and (2.23) are then injected into Eqs. (2.18) and (2.19). The other
two equations are derived from substitution of Eqs. (2.25) and (2.26) into the kinematic boundary condition (2.13). A non-
trivial solution for the five unknowns plus the constant of integration D is possible if the determinant is equal to zero. The
following dispersion equation for an isotropic and elastic steel liner is thus obtained:

k6ðz2F1bð1Þ�F1að1ÞÞb
2B22u slu

0
þk4½ðz2F1bð1Þ�F1að1ÞÞðB22u B0

11�B02
12þKluslu

0
Þ�0:5z2F1bð1ÞF1að1Þb

2slu
0
�

þk2½F1að1ÞðB
0
12þF4B0

21�0:5B0
11z

2F1bð1ÞÞ�2F4B22u þðK ul=b
2
ÞB0

11ðz
2F1bð1Þ�F1að1ÞÞ�þF4½F1að1Þ�2ðKlu=b

2
Þ� ¼ 0, ð2:29Þ

where

B22u ¼
Bþs0

l

rric
2
0

, B¼
Ests

ð1�n2
s Þ

, slu
0
¼

s0
l

rric
2
0

,

B0
11 ¼ B11u þKru�

2ib2

a , B11u ¼
B

rric
2
0

,

Kr,lu¼
ri

rc2
0

Ksr,lþ ioCr,l�o2ðMr,lþrstsÞ
� �

, B0
21 ¼ B0

12 ¼ B12u �
2ib2

a2
,

B12u ¼
Bð12Þ�s0

r

rric
2
0

, Bð12Þ ¼
Estsns

ð1�n2
s Þ

, F4 ¼
F2þð2ibu2=a2Þ

F1
, F2 ¼ 1�

ibu2

au2
þ

2ibu2

3a2
,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð2:30Þ

and F1a
r
ri

� 	
and F1b

r
ri

� 	
stand, respectively, for the first members of

Fna
r
ri

� 	
� Fn ði

3a2�k2b2
Þ
0:5 r

ri

� 	
; n¼ 0,1

Fnb
r
ri

� 	
� Fn ibzk r

ri

� 	
; n¼ 0,1:

8><
>: ð2:31Þ

The complete solution is finally obtained for a linear combination of the forward and backward propagation mode for
infinitely long tunnels and shafts. Using Eqs. (2.26), the linear combination of the solution (2.24) for each mode gives

uðrÞ ¼
F1p̂ðriÞ

rc0
k F0b

r

ri

� �
þDuF0a

r

ri

� �� �
D1cos

ox

c

� 	
þD2sin

ox

c

� 	h i
eiot ,

vðrÞ ¼
F1p̂ðriÞ

rc0
0:5bk2 z2F1b

r

ri

� �
�DuF1a

r

ri

� �� �
�D1 sin

ox

c

� 	
þD2 cos

ox

c

� 	h i
eiot ,

pðrÞ ¼ p̂ðriÞF0b
r

ri

� �
�D1 sin

oUx

c

� 	
þD2 cos

ox

c

� 	h i
eiot ,

8>>>>>>>><
>>>>>>>>:

ð2:32Þ
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where the complex constants D1 and D2 are determined, for each mode, by boundary conditions at two different sections of
the steel-lined tunnel, and the mode-dependent factor D0 is defined by

Du¼�
D

kj0ðibzkÞ
¼
½ðB0

11þk2b2slu
0
Þz2F1b�2B0

12�k
2�2F4

½ðB0
11þk2b2slu

0ÞF1a�2B0
12�k

2
: ð2:33Þ

The radial and longitudinal displacements of the steel liner or penstock wall result from the summation of the mode
solutions. For each mode, the solution is

us
rðx,tÞ ¼ 0:5rik

2ðz2F1bð1Þ�DuF1að1ÞÞ
F1pðriÞ

rc2
0

 !
,

us
l ðx,tÞ ¼ �iri

k

b
ð1�DuÞ

F1pðriÞ

rUc2
0

 !
:

8>>>>><
>>>>>:

ð2:34Þ

3. Water-hammer wave-speed expressions without fluid–structure interaction

3.1. General expressions for wave speed estimation

The classical theory of water hammer predicts pressure wave propagation inside a frictionless closed cylinder with
uniform cross section at a wave speed given by the following general formula (Wylie et al., 1993)

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwð1=Kwþð1=AÞðdA=dpiÞÞ

s
, ð3:1Þ

where dA is the variation of the cross-sectional area A of the cylinder caused by the variation of the internal water pressure dpi.
For multiphase (vapour cavities are present) and multicomponent (suspended sediment is present) flow, the bulk

modulus Kw and the unit mass rw are substituted in Eq. (3.1) with an effective bulk modulus Ke and an effective unit mass re

(Wylie et al., 1993).
Without considering the FSI and by ignoring the dynamic effect of the tunnel wall, dA/dpi is a constant value. This results in

a constant, or quasi-static, wave speed.
In plain strain conditions and considering the hypothesis of linear elasticity and small deformations with riErc (thin-

walled liners are considered), Eq. (3.1) can be written according to Fig. 1(a) as follows:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwðð1=KwÞþð2=riÞðdus
rðriÞ=dpiÞÞ

s
, ð3:2Þ

in which dus
rðriÞ=dpi is the first derivative of ur

s relative to the internal pressure pi at the layer interface of radius ri.

3.1.1. Case 1: Backfill concrete and near-rock mass zone are uncracked

For this case, the transmitted load to the rock is first determined as a function of pi,Dr0, and the materials characteristics by
solving the system of the compatibility of deformation (2.1) using Eqs. (2.5), (2.6) and (2.9). The radial deformation of the steel
liner, ur

s(rc) and its derivative according to pi are then computed from Eq. (2.5).
The complete expression of water-hammer wave speed is obtained by replacing the following expression of dus

rðrcÞ=dpi in
Eq. (3.2)):

dus
rðrcÞ

dpi
¼

2ð1þncÞð1�n2
s Þrcr2

i ½Ecð1þnrmÞðð1�2ncÞr2
c þr2

a Þ�Ermð1þncÞð1�2ncÞðr2
c�r2

a Þ�

A1þA2
, ð3:3Þ

where

A1 ¼ Esðr2
c�r2

i ÞðErmð1þnsÞ
2
ð2nc�1Þðr2

c�r2
a Þ�Ecð1þncÞð1þnrmÞðð2nc�1Þr2

c�r2
i ÞÞ,

A2 ¼ Ecð1þnsÞðð2ns�1Þr2
c�r2

i Þðð1þnrmÞðr2
c�r2

a Þ�Ermð1þncÞðr2
c�ð2nc�1Þr2

a ÞÞ:

3.1.2. Case 2: Backfill concrete is cracked while rock mass is not

Eqs. (2.5), (2.7), (2.8) and (2.9) are used to solve the system of Eqs. (2.1) for pc, pr1, and ur
s(rc). The following expression of

dus
rðrcÞ=dpi is then replaced in Eq. (3.2):

dus
rðrcÞ

dpi
¼

2ðn2
s�1Þrcr2

i Ecð1þnrmÞ�ð1�n2
c ÞErmln rc

ra

� 	h i
A3þA4

, ð3:4Þ

where

A3 ¼ Ec½Ermð1þnsÞðð2ns�1Þr2
c�r2

i Þ�Esð1þnrmÞðr2
c�r2

i Þ�,

A4 ¼ ð1�n2
c ÞErmEsðr2

c�r2
i Þln

rc
ra

� 	
:

8<
:
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3.1.3. Case 3: Backfill concrete and near-rock zone are cracked

For this case, the expression of dus
rðrcÞ=dpi is obtained by replacing Ec by (Ec Ecrm) and (1�nc

2)ln(rc/ra) by [(1�nc
2)Ecrm ln(rc/ra)+

(1�nrm
2 )Ec ln(ra/rf)] in Eq. (3.4). This yields to the following expression:

dus
rðrcÞ

dpi
¼

2ðn2
s�1Þrcr2

i EcEcrmð1þnrmÞ�Erm ð1�n2
c ÞEcrmln rc

ra

� 	
þð1�n2

rmÞEcln ra
rf

� 	� 	h i
A5þA6

, ð3:5Þ

where

A5 ¼ EcEcrm½Ermð1þnsÞðð2ns�1Þr2
c�r2

i Þ�Esð1þnrmÞðr2
c�r2

i Þ�,

A6 ¼ ErmEsðr2
c�r2

i Þ ð1�n
2
c ÞEcrm ln rc

ra

� 	
þð1�n2

rmÞEc ln ra
rf

� 	� 	
:

This case of the calculation scheme can be considered as the most realistic case. In fact, the backfill concrete with low
tensile strength is normally cracked, and the close rock field is disturbed and cracked as a result of excavation and the change
in the stress field around the tunnel. Only radial compressive stresses can be transmitted in these cracked zones. The water-
wave-velocity expression for this case is referred in this paper as the ‘‘complete quasi-static expression’’ which is valid for
wave-speed calculation in frictionless circular steel-lined tunnel with axisymmetrical behaviour. The complete quasi-static
expression neglects fluid–structure interaction.

3.2. Comparison of calculated wave speeds for Cases 1, 2, and 3

For comparison of Cases 1, 2 and 3, three configurations with different elasticity modulus for the far-field rock zone
(Erm=5%, 10%, and 20% of Es) were analyzed by using the following input values:

Es ¼ 210000MPa; Ec ¼ 21000MPa; Ecrm ¼ 0:5Erm

ns ¼ 0:30; nc ¼ 0:20; nrm ¼ 0:25

ra ¼ 1:2ri; rf ¼ 1:25ra; Kw ¼ 2200MPa; rw ¼ 1000kg=m3

In Fig. 2, the quasi-static wave speeds for the three cases are given. The relative differences of Cases 1 and 2 compared to
Case 3 are indicated as a function of (ri /ts) for the three (Erm/Es) ratios. If the near-rock mass zone is considered as uncracked
with cracked backfill concrete (Case 2), it can be seen that the wave speed is higher, compared to the cracked layers case
(Case 3). This augmentation of wave speed is 1–1.5% for thick steel liners and 1.5–4% for thin steel liners. If the backfill
concrete and the near-rock field are both considered as uncracked (Case 1), the overestimation of the wave speed, compared
to Case 3, is between 2% and 8% for thin steel liners. For thick liners, the overestimation is between 1% and 2.5%. The highest
differences in the computed values of the wave speed are observed for relatively weak rock-mass moduli.

3.3. Comparison with other simplified expressions

3.3.1. Jaeger’s formula

Jaeger (1972, 1977) published the following formula to estimate the pressure wave velocity in steel-lined pressure
tunnels:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rw ð1=KwÞþð2rcð1�l1Þ=Esðrc�riÞÞ
� �

s
; ð3:6Þ

where

l1 ¼
r2

c =Ests

ðr2
c =EstsÞþðr2

a�r2
c =2EcraÞþðnrmð1þ1=nrmÞrc=ErmÞ

: ð3:7Þ

This formula was derived from the same hypotheses as the Case 2 model. The steel liner is treated as a thin circular cylinder
and the mean radial deformation of the backfill concrete is taken into account. However, the steel and concrete Poisson ratios
are ignored.

The quasi-static wave speeds calculated according to Jaeger’s formula for different (Erm/Es) ratios and their relative
differences compared to Case 3 are shown in Fig. 3(a). Jaeger’s relation overestimates the water hammer velocity relative to
the complete quasi-static expression. The maximum relative difference reaches 3.5% for ri/tsE130 and Erm/Es=0.05.

3.3.2. Parmakian’s formula

Parmakian (1963) proposed a formula considering a steel liner surrounded by uncracked and infinite rock mass.
The influence of the backfill concrete and the steel Poisson ratio are ignored. The same relation has also been used by



Fig. 2. Quasi-static wave speeds and relative differences compared to Case 3 (right-hand scale) calculated by the formulae of the Cases 1, 2, and 3 as a function of the ratio of internal tunnel radius to steel-liner

thickness for different values of Erm/Es ratio. (a) Case 1: Backfill concrete and the near-rock mass zone are uncracked (Eqs. (3.2) and (3.3)). (b) Case 2: Backfill concrete is cracked while the rock mass is not (Eqs. (3.2)

and (3.4)). (c) Case 3: Backfill concrete and the near-rock zone are cracked (Eqs. (3.2) and (3.5)).
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Fig. 3. Quasi-static wave speeds and relative differences compared to Case 3 (right-hand scale) as a function of the ratio of internal tunnel radius to steel-liner thickness for different values of Erm/Es ratio. (a) Jaeger’s

formula (Eqs. (3.6) and (3.7)). (b) Parmakian’s formula (Eq. (3.8)). (c) Halliwell’s formula (Eqs. (3.9) and (3.10)).
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Chaudhry (1987). It is given as follows:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwðð1=KwÞþð2rið1þnrmÞ=ErmriþEstsð1þnrmÞÞÞ

s
: ð3:8Þ

Fig. 3(b) shows that the wave speed values computed by Parmakian’s relation are higher than values obtained from the
complete quasi-static expression. For Erm/Es=0.05, the wave speed is overestimated by 3–4.6% for ri/tsE150.

3.3.3. Halliwell’s formula

Halliwell (1963) derived a formula for the wave speed assuming an uncracked concrete and rock mass surrounding the
steel liner. The same Poisson ratios for steel, concrete, and rock are considered. Salah et al. (2001) generalized Halliwell’s
formula using different Poisson ratios for each material.

Halliwell’s wave speed equation is written as follows:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwðð1=KwÞþð2rcð1�n2Þð1�l2Þ=Esðrc�riÞÞÞ

s
, ð3:9Þ

where

l2 ¼
ð1�nÞrc

ð1�nÞrcþ
Esðrc�riÞ

Ec

Ecðr2
aþr2

c ð1�2nÞÞþErmð1�2nÞðr2
a�r2

c Þ

Ecðr2
a�r2

c ÞþErmðr2
c þr2

a ð1�2nÞÞ

, ð3:10Þ

and ns=nc=nrm=n.
The wave speed and relative differences computed from Halliwell’s formula are shown in Fig. 3(c). This formula gives wave

speed values of approximately 7.5% higher than the complete quasi-static expression for ri/ts=150 and Erm/Es=0.05 assuming
n=0.3.

3.3.4. Special case of open-air penstocks and unlined pressure tunnels
(a)
 Open-air penstocks

The pressure wave speed relation for a longitudinally blocked penstock can be derived from Eq. (3.3) of Case 1 by putting
ra=rc and by replacing nc, nrm, Ec, and Erm by zeros and (rc+ri) by 2ri. Considering the longitudinal boundary conditions of
the penstock, Halliwell (1963) generalized the formula and Streeter (1963) corrected it in the case of penstocks that can
freely slip in the longitudinal direction as follows:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwðð1=KwÞþð2ril3=EstsÞÞ

s
, ð3:11Þ

where

l3 ¼

1�0:5ns if the penstock can freely slip in the longitudinal direction,

1 if the penstock has expansion joints over its entire length,

1�n2
s if the penstock is blocked in the longitudinal direction:

2
64
(b)
 Unlined pressure tunnels

The wave speed in an unlined pressure tunnel can be deduced from Case 1 by putting ra=rc=ri and by setting ns, nc, Es, and
Ec equal to zero. Then, the wave speed can be written as

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwðð1=KwÞþð2ð1þnrmÞ=ErmÞÞ

s
: ð3:12Þ

The same relation has been proposed by Parmakian (1963) while in Jaeger (1977), nrm has also been set equal to zero.
Jaeger’s approximation leads to a wave speed overestimation of 3.5% for Erm=10 000 MPa and nrm=0.25.
3.4. Definition of an apparent rock mass modulus

The purpose of the definition of such apparent rock mass modulus is to simplify the complicated expression of the quasi-
static wave speed of the complete quasi-static expression (Case 3). The backfill concrete and the near- and far-rock masses are
replaced by an equivalent homogeneous rock mass with an apparent elasticity modulus, Eapp .This latter is defined such that
the transmitting load ratio from steel to the equivalent rock mass is the same as in Case 3. The apparent rock mass modulus
can be obtained by equating the wave velocity expressions in Cases 1 or 2 (with ra-rc and Erm replaced by Eapp) with wave
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velocity in Case 3 (with ra-rc)

aðCase 1 or 2Þ ¼ aðCase 3Þ: ð3:13Þ

Eq. (3.13) leads to two expressions defining respectively Eapp and a as follows:

Eapp ¼
ErmEcrm

Ecrm�Ermð1�nrmÞlnðrc=rf Þ
, ð3:14Þ

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rW

1

KW
þ

4ðn2
s�1Þð1þnrmÞrcri

Eappð1þnsÞ ð2ns�1Þr2
c�r2

i

� �
�Esð1þnrmÞðr2

c�r2
i Þ

" #
vuuuut : ð3:15Þ

4. Water-hammer wave-speed expressions considering the fluid–structure interaction

4.1. General expressions

By considering the water as a compressible non-viscous fluid (m=k=0) and by neglecting the initial longitudinal stress in
the steel liner (sl

0=0), the dispersion Eq. (2.29) can be simplified as follows:

½ðB22u þKruÞKluþk2b2
ðBu222þB22u Kru�Bu212Þ�ðk

2b2
�bu2
ÞF1ðiðk

2b2
�bu2
Þ
0:5
Þ ¼ 2b2

ðKluþk2B22u b
2
Þ: ð4:1Þ

The reference velocity c0 can be written, according to Kuiken (1984), as

c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rwðð1=KwÞþCð2ri=EstsÞÞ

s
, ð4:2Þ

where

C ¼
1�n2

s

1þðKr=BÞ
, ð4:3Þ

and

Kr ¼ r2
i ½Ksrþ ioCr�o2ðMrþrstsÞ�; ð4:4Þ

o is the real angular frequency (=2pf) of the continuous excitation of frequency f.
If Ksr is taken equal to (pc/ur

s(rc)), calculated according to Case 3, and if o is very small, c0 is equal to the complete quasi-
static wave speed. When o approaches infinity, c0 becomes the speed of sound in unconfined water (Kw/rw)0.5.

The solutions of the quadratic dispersion Eq. (4.1) occur in pairs (7k) where each 7k solution is associated to a particular
mode of oscillation with waves propagating in positive and negative directions along x. The modes with small values of the
imaginary part of k are the propagating modes, whereas the modes with high values of the imaginary part of k decay rapidly
according to the following expression:

½u,v,p� ¼ ½ûðrÞ,v̂ðrÞ,p̂iðrÞ�e
ioðt�x=cÞ ¼ ½ûðrÞ,v̂ðrÞ,p̂iðrÞ�e

�Dix=li eioðt�x=ciÞ, ð4:5Þ

where li is the wave length of the ith wave mode, ci is the phase velocity, cpi or the group velocity, cgi, andDi is the logarithmic
decrement of the ith wave mode. The phase velocity of a travelling wave form may or may not correspond to a particular
physical entity and does not necessarily correspond to the speed at which energy or information is propagating. That is why
the phase velocity might go to infinity and be higher than the speed of sound in unconfined water. Hence, the energy of the
wave propagates with the group velocity when this later is smaller than the phase velocity. The parameters of Eq. (4.5) with
the equivalent reference wave speed are defined by

li ¼ 2p ci

o
,

Phase velocity, cpi ¼
1

Re½k=c0�
, Group velocity, cgi ¼

do
dðoRe½k=c0�Þ

,

Di ¼�2p Im½k=c0�

Re½k=c0�
, c0eq ¼

Re½c0�
2þ Im½c0�

2

Re½c0�
, ð4:6Þ

where Re[ ] and Im[ ] are, respectively, the real and imaginary parts of the complex numbers.
Rubinov and Keller (1971, 1978) showed that, for the non-viscous fluid approximation, two modes (called tube modes)

can only propagate at low frequencies (with or without cut-off bands) and an infinite number of acoustic modes propagate at
high frequencies. For open-air penstocks, the first acoustic mode begins to propagate at an angular frequency of (b01cT/ri),
where b01 is the first positive root of the Bessel function J0 (=2.40483). For example, the lower cut-off frequency of the first
acoustic mode of a penstock of radius ri=1.75 m is equal to 2038.25 rad/s (or 324.4 Hz).

In the low-frequency range solution of Eq. (4.1), the tube mode with the lowest propagation velocity at low frequencies is
the longitudinal compression mode in water (called water hammer or Young mode), while the higher propagation velocity
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corresponds to the axial stress wave mode in the steel walls of liners and penstocks (called precursor or Lamb mode). The axial
stress waves result from the coupling of the radial expansion and contraction of the liner or penstock walls and the Poisson’s
ratio of the steel. The stress waves in return generate pressure fluctuations in the enclosed water. This coupling is known as
the ‘’Poisson coupling’’ (Skalak, 1956). Tijsseling et al. (2008) re-calculated the solution of Skalak’s four-equation model and
gave an analytical expression for water hammer and precursor quasi-static wave speeds in open-air penstocks. The general
solution of the Poisson coupling problem has been solved exactly by Li et al. (2003) and Tijsseling (2003).

Tijsseling (1996) has classified the one-dimensional FSI models according to their basic equations and physical variables
involved to derive their dispersion equations. According to this classification and by ignoring the radial movement of water,
the Kuiken model can be considered as a six-equation model (3-mode solutions) where the unknown variables are: the
pressure and axial velocity of water, axial stress, axial velocity, hoop stress, and radial velocity in the steel liner or
penstock wall.

The wave speed results of the two tube modes (water-hammer and precursor modes) and the first acoustic mode,
evaluated according to Eqs. (4.1) and (4.6), are shown in Fig. 4 for steel-lined pressure tunnels with the following parameters:
ri=1.75 m, b=100, rs=7850 kg/m3, r=r0=rw=1000 kg/m3, Es=210 000 MPa, fy=580 MPa, rr=2200 kg/m3, Ec=Erm=21 000

MPa, Ecrm=10 500 MPa, z=10%, m=k=0, sl
0=0, and sr

0=0.5fyts. It can be seen (Fig. 5(b)) that the motion of the liner wall is
primarily radial for the water hammer mode and primarily longitudinal for the precursor mode. The logarithmic decrement
coefficients plotted versus o are shown in Fig. 5(a). The radial and longitudinal mechanical coefficients of the surrounding
rock mass are taken as follows:

Mr ¼Ml ¼ rrðrf�rcÞ,

Ksr ¼ Ksl ¼
pc

us
rðr¼ rcÞ

of Case 3,

Cr ¼ Cl ¼ 2zMr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksr=Mr

p
,

8>>><
>>>:

ð4:7Þ

where z is the damping ratio of the mechanical model,rr is the unit mass of the rock mass, and where the inactive rock zone is
considered at radius r=rf.

For the water hammer mode, the group velocity is below the phase velocity for allo values except in the narrow frequency
band 1700–1900 rad/s. The group velocity represents then the wave speed of the propagating energy and can be compared to
quasi-static wave speed, a, and to the speed of sound in unconfined water, cT. For frequencies lower than 800 rad/s, the
relative difference, (cg1�c0eq)/cg1, between the group velocity, cg1 and a is less than 5%. This difference increases considerably
and reaches 150% for o=1700 rad/s. A cut-off frequency band exists around 2000 rad/s. The water hammer mode starts to
propagate again in the high-frequency range (higher than 2250 rad/s) with a group velocity that goes up from 500 m/s to
reach asymptotically cT. Near 1700 rad/s, the maximum attenuation coefficient is reached.
Fig. 4. Three modes’ phase and group wave speeds as a function of the angular frequency o for an isotropic steel-lined tunnel having the input parameters

shown in Section 4.1. The speed of sound in unconfined water, the wave speeds calculated according to quasi-static and equivalent reference approaches are

also shown.



Fig. 5. (a) The logarithmic decrement coefficients (Eqs. (4.6)) of the three propagation modes shown in Fig. 4. (b) The amplitude ratios of the longitudinal to

radial displacements ðûl
s
=ûr

s
Þ of the liner wall for the two tube modes shown in Fig. 4.

Fig. 6. (a) The variation of the precursor phase and group wave speeds (Eqs. (4.1) and (4.6)) versuso for different longitudinal stiffness constraints of a steel

liner with Cl=0 and with the other input parameters similar to those shown in Section 4.1. (b) The variation of the first acoustic phase and velocity wave

speeds (Eqs. (4.1) and (4.6)) versus o for different radial stiffness constraints characterized by two different values of the internal radius of the crack rock

zone (rf ) and with the other input parameters similar to those shown in Section 4.1.
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For the precursor mode, the low cut-off frequency is around 1600 rad/s and the wave speed (equal to the group velocity)
decreases rapidly when o increases in the intermediate frequency range (between 1600 and 2000 rad/s) and reaches, for
large o, a rather constant value between the quasi-static and cT wave speeds. Fig. 6(a) shows the variation of the precursor
wave speed mode (phase and group velocities) as a function of o for Cl=0 and Ksl=0.001Ksr, 0.1Ksr and Ksr. The cut-off
frequency depends on the longitudinal stiffness constraint of the liner and can be used as an indicator to detect the presence
and intensity of such constraint.

The first acoustic mode begins to propagate at an angular frequency near 3300 rad/s. This frequency is 1.7 times higher
than in open-air penstocks. This cut-off frequency depends on the radial constraint of the steel liner (Fig. 6(b)) and varies close
to the second mode of rigid tubes (b11cT/ri=3247.6 rad/s). b11 is the first positive root of the Bessel function J1 (b11=3.83171).
The phase and group velocities of this mode approach cT when o becomes very high.
4.2. FSI problem in the case of open-air penstocks

For open-air penstocks (Kr=0), Eq. (4.2) becomes equal to (3.10) when l3 is equal to (1�ns
2). The solutions of Eq. (4.1) for

the two tube modes and the first acoustic mode are given in Fig. 7. The water hammer mode has a cut-off frequency equal to
(1/ri)(Es/rs)

0.5. The precursor mode propagates for all values of o and is very well estimated by Skalak’s formula for
frequencies lower than 1200 rad/s and higher than 7500 rad/s. In the intermediate frequency range the maximum relative
difference, (cg2�aSkalak)/cg2, can reach 20%. The first acoustic mode presents a lower cut-off frequency equal to 2038.25 rad/s
(=b01cT/ri).

The classical expression (3.10) of the quasi-static wave speed has been also modified by Stuckenbruck et al. (1985). They
ignore radial inertia and consider only the axial inertial forces in the pipe wall. This approach leads to a constant real wave
velocity and causes a reduction of the classical wave speed of about 7% for high values of (2ri/ts).

For thin-walled viscoelastic pipes, a complex-valued and frequency-dependent wave speed has been formulated by Suo
and Wylie (1990b). The classical expression (3.10) was extended by replacing Es by a complex frequency-dependent Young’s
modulus, Es(w), of the viscoelastic material.
4.3. FSI problem in the case of unlined pressure tunnels

As can be seen from Eq. (2.30), the properties of the surrounding materials are included in Kru and Klu expressions. For
unlined pressure tunnels in rigid rock mass, Kru and Klu goes to infinity (similar to a strongly constrained liner), resulting in the
Fig. 7. Comparison between the variation of the quasi-static wave speed, the speed of sound in unconfined water, the equivalent reference wave speed, and

the phase and group wave speeds of the three propagation modes versus the angular frequency for an open-air penstock having the input parameters shown

in Section 4.1.



Fig. 8. The variation of: (a) the water-hammer wave speed (Eqs. (4.1) and (4.6)). (b) The logarithmic decrement coefficient (Eq. (4.6)) versus the radial

frequency in an unlined pressure tunnel having the following input parameters: ri=1.75 m, rr=2200 kg/m3, Erm=7000, 10 000, 15 000, and 21 000 MPa.
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rigid dispersion approximation written as follows:

ðb2k2�bu2=F1ÞF1ðiðb
2k2�bu2=F1Þ

0:51Þ�b2k2F1ðiðb
2k2�i3a2Þ

0:51Þ ¼ 0: ð4:8Þ

In this case, the propagation modes are only acoustic and occur because the fluid is compressible. The roots of Eq. (4.8)) are

cj ¼oriððori=cT Þ
2
�b2

1jÞ
�0:5 j¼ 0,1,2,. . ., ð4:9Þ

where b1j is the jth positive root of the Bessel function (J1). The reference velocity c0 given in (4.2) becomes equal to the wave
speed cT which is the first root (j=0) of Eq. (4.9).

The hydraulic transients in unlined pressure tunnels have been studied by Fanelli (1973) and Suo and Wylie (1990a)
without considering the complete FSI problem. The rock mass has been treated as an infinite homogeneous and isotropic
cylinder and only the dynamic effect of the rock mass has been taken into account. This leads to a complex-valued and
frequency-dependent wave speed. Fig. 8(a) and (b) shows, respectively, the variation of the equivalent wave speed and the
logarithmic decrement coefficient (Eq. (4.6)) versus the radial frequency in an unlined pressure tunnel with the following
input parameters: ri=1.75 m, rr =2200 kg/m3, and Erm=7000, 10 000, 15 000, and 21 000 MPa. The equivalent wave speeds
are bounded between the quasi-static (Eq. (3.12)) and the cT wave speeds and have no cut-off frequencies. They decrease
slightly at low frequencies, increase rapidly when o increases with abrupt change of value at intermediate frequencies, and
approach asymptotically cT when the frequency goes to infinity. The decrement coefficient increases rapidly for o between
50 and 100 rad/s and reaches its maximum value for o around 300 and 400 rad/s for hard rock. For relatively weak rock, the
coefficient continues increasing with increasing o, and reaches a constant value at high frequency.

5. Conclusion

General expressions for computing wave speeds in steel-lined pressure tunnels have been reformulated, analyzed, and
compared for cracked or uncracked concrete and rock layers and for three different moduli of the far-field rock zone. The
following assumptions have been considered: (i) frictionless and axisymmetrical waterways, (ii) linearization of equations of
water motion, (iii) linear elastic behaviour of the steel-liner and pipe wall, and (iv) infinitely long waterways.

Compared to the ‘‘complete quasi-static expression’’ (Eqs. (3.2) and (3.5)), the wave speed in steel-lined pressure tunnels
with cracked backfill concrete and uncracked near-rock zone (Eqs. (3.2) and (3.4)) is overestimated by 4% for thin steel liners
and by 1.5% for thick steel liners. If all layers are uncracked (Eqs. (3.2) and (3.3)), the wave speed is overestimated up to 8% for
thin steel liners and up to 2.5% for thick steel liners. The highest differences are observed for relatively weak rock mass moduli.
The ‘‘complete quasi-static expression’’ was also compared to other formulas in the literature. For thin steel liners and weak
rock mass modulus, Jaeger’s and Parmakian’s relationships (Eqs. (3.6) and (3.8), respectively) overestimate the water
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hammer velocity (Eqs. (3.2) and (3.5)) by approximately 3–4.5%, while in Halliwell’s formula (Eq. (3.9)) this overestimation
reaches 7.5%. For practical applications, this can be tolerated because of the uncertainty in the estimation of the rock mass
characteristics and/or the presence of air in the water. Nevertheless, the dynamic pressures obtained from classical water
hammer theory are not overly affected by such differences in wave speed. Depending on the system stiffness, FSI may lead to
higher extreme dynamic pressures with higher frequencies. Then an enhanced calculation model is required.

Based on Kuiken’s (1984) work, the FSI problem with the phase, group and reference wave velocities (Eqs. (4.2) and (4.6))
has been analyzed. The dispersion equation was also solved through a numerical example. The phase and group velocities of
the water-hammer mode, precursor mode, and first acoustic mode were evaluated in function of the angular frequency of the
transient excitation.

For the water-hammer mode inside steel-lined pressure tunnels and open-air penstocks, FSI results show that the
equivalent reference velocity is a good approximation of the phase and group velocities in low (80 Hz) and high (800 Hz)
frequency ranges with no significant wave attenuations. In the intermediate-frequency range, the maximum relative
difference of the wave velocities in steel-lined tunnels relative to the quasi-static case reaches 150%, and the maximum
attenuation coefficient is reached. In the intermediate frequency range, the precursor mode has a cut-off frequency and
decreases rapidly wheno increases from 255 to 320 Hz. This mode reaches, for largeo, a constant value between the quasi-
static wave speed and speed of sound in unconfined water, cT. The cut-off frequency is dependent on the longitudinal
distribution of the stiffness of the liner. It can be used as an indicator to detect the presence and intensity of such local weak
stiffness. In the case of open-air penstocks, the water-hammer mode presents a high cut-off frequency around 150 Hz, while
the precursor mode propagates for all values of the angular frequency (o) and can be well estimated by Skalak’s formula.

In steel-lined pressure tunnels, the first acoustic mode begins to propagate at an angular frequency near 3300 rad/s
(525 Hz). This cut-off frequency depends on the radial constraint of the steel liner and varies closely with the second mode of
rigid tubes. The wave velocity of this mode approaches the speed of sound, cT, when the angular frequency becomes
very large.

For the special case of unlined pressure tunnels with constant wave speed, Jaeger’s equation overestimates the wave speed
by 3.5% compared to the ‘‘complete quasi-static expression’’. Another approach was adopted by Suo and Wylie (1990a)
considering the rock mass as an infinite homogeneous and isotropic cylinder and taking only the dynamic effect of the rock
mass into account. Using the FSI formulations, this paper shows that the equivalent wave speed is bounded between the
quasi-static wave speed and the speed of sound in unconfined water and has no cut-off frequencies. It decreases slightly at
low frequencies, increases rapidly when o increases with abrupt change of value at intermediate frequencies, and
approaches asymptotically cT when the frequency goes to infinity. For the numerical cases studied, the decrement coefficient,
in the case of hard rock, increases rapidly for smallo, reaches a maximum value, and then decreases. For relatively weak rock,
the coefficient continues increasing with increasing o, approaching a constant value at high frequencies.

In an ongoing research project, laboratory experiments as well as in situ measurements are carried out. These experiments
will allow the validation of some cases presented herein and the comparison of a calculated transient event in the time and
frequency domains, respectively, as suggested in this paper.
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