
Cache-Aware Lock-Free Concurrent Hash Tries

Aleksandar Prokopec, Phil Bagwell, Martin Odersky
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

{�rstname}.{lastname}@ep�.ch

Abstract
This report describes an implementation of a non-blocking concur-
rent shared-memory hash trie based on single-word compare-and-
swap instructions. Insert, lookup and remove operations modifying
different parts of the hash trie can be run independent of each other
and do not contend. Remove operations ensure that the unneeded
memory is freed and that the trie is kept compact. A pseudocode
for these operations is presented and a proof of correctness is given
– we show that the implementation is linearizable and lock-free.
Finally, benchmarks are presented which compare concurrent hash
trie operations against the corresponding operations on other con-
current data structures, showing their performance and scalability.

1. Introduction
Many applications access data concurrently in the presence of mul-
tiple processors. Without proper synchronization concurrent access
to data may result in errors in the user program. A traditional ap-
proach to synchronization is to use mutual exclusion locks. How-
ever, locks induce a performance degradation if a thread holding a
lock gets delayed (e.g. by being preempted by the operating sys-
tem). All other threads competing for the lock are prevented from
making progress until the lock is released. More fundamentally,
mutual exclusion locks are not fault tolerant – a failure may pre-
vent progress indefinitely.

A lock-free concurrent object guarantees that if several threads
attempt to perform an operation on the object, then at least some
thread will complete the operation after a finite number of steps.
Lock-free data structures are in general more robust than their lock-
based counterparts [10], as they are immune to deadlocks, and
unaffected by thread delays and failures. Universal methodologies
for constructing lock-free data structures exist [9], but they serve
as a theoretical foundation and are in general too inefficient to be
practical – developing efficient lock-free data structures still seems
to necessitate a manual approach.

Trie is a data structure with a wide range of applications first
developed by Brandais [6] and Fredkin [7]. Hash array mapped tries
described by Bagwell [1] are a specific type of tries used to store
key-value pairs. The search for the key is guided by the bits in the
hashcode value of the key. Each hash trie node stores references to
subtries inside an array which is indexed with a bitmap. This makes
hash array mapped tries both space-efficient and cache-aware. A
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similar approach was taken in the dynamic array data structures
[8]. In this paper we present and describe in detail a non-blocking
implementation of the hash array mapped trie data structure.

Our contributions are the following:

1. We introduce a completely lock-free concurrent hash trie data
structure for a shared-memory system based on single-word
compare-and-swap instructions. A complete pseudocode is in-
cluded in the paper.

2. Our implementation maintains the space-efficiency of sequen-
tial hash tries. Additionally, remove operations check to see if
the concurrent hash trie can be contracted after a key has been
removed, thus saving space and ensuring that the depth of the
trie is optimal.

3. There is no stop-the-world dynamic resizing phase during
which no operation can be completed – the data structure grows
with each subsequent insertion and removal. This makes our
data structure suitable for real-time applications.

4. We present a proof of correctness and show that all operations
are linearizable and lock-free.

5. We present benchmarks that compare performance of concur-
rent hash tries against other concurrent data structures. We in-
terpret and explain the results.

The rest of the paper is organized as follows. Section 2 describes
sequential hash tries and several attempts to make their operations
concurrent. It then presents case studies with concurrent hash trie
operations. Section 3 presents the algorithm for concurrent hash trie
operations and describes it in detail. Section 4 presents the outline
of the correctness proof – a complete proof is given in the appendix.
Section 5 contains experimental results and their interpretation.
Section 6 presents related work and section 7 concludes.

2. Discussion
Hash array mapped tries (from now on hash tries) described previ-
ously by Bagwell [1] are trees which have 2 types of nodes – in-
ternal nodes and leaves. Leaves store key-value bindings. Internal
nodes have a 2k-way branching factor. In a straightforward imple-
mentation, each internal node is a 2k-element array. Finding a key
proceeds in the following manner. If the internal node is at the root,
the initial k bits of the key hashcode are used as an index in the
array. If the internal node is at the level l, then the bits k bits of the
hashcode starting from the position k ∗ l are used. This is repeated
until a leaf or an empty entry is found. Insertion and removal are
similar.

Such an implementation is space-inefficient – most entries in
the internal nodes are never used. To ensure space efficiency, each
internal node contains a bitmap of length 2k. If a bit is set, then its
corresponding array entry contains an element. The corresponding
entry for a bit on position i in the bitmap bmp is calculated as
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#((i − 1) � bmp), where # is the bitcount and � is a logical
AND operation. The k bits of the hashcode relevant at some level l
are used to compute the index i as before. At all times an invariant
is preserved that the bitmap bitcount is equal to the array length.
Typically, k is 5 since that ensures that 32-bit integers can be used
as bitmaps. An example hash trie is shown in Fig. 1A.

We want to preserve the nice properties of hash tries – space-
efficiency, cache-awareness and the expected depth ofO(log2k (n)),
where n is the number of elements stored in the trie and 2k is the
bitmap length. We also want to make hash tries a concurrent data
structure which can be accessed by multiple threads. In doing so,
we avoid locks and rely solely on CAS instructions. Furthermore,
we ensure that the new data structure has the lock-freedom prop-
erty. We call this new data structure a Ctrie. In the remainder of
this chapter we give examples of Ctrie operations.

Assume that we have a hash trie from Fig. 1A and that a thread
T1 decides to insert a new key below the node C1. One way to
do this is to do a CAS on the bitmap in C1 to set the bit which
corresponds to the new entry in the array, and then CAS the entry
in the array to point to the new key. This requires all the arrays to
have additional empty entries, leading to inefficiencies. A possible
solution is to keep a pointer to the array inside C1 and do a CAS on
that pointer with the updated copy of the array. The fundamental
problem that still remains is that such an insertion does not happen
atomically. It is possible that some other thread T2 also tries to
insert below C1 after its bitmap is updated, but before the array
pointer is updated. Lock-freedom is not ensured if T2 were to wait
for T1 to complete.

Another solution is for T1 to create an updated version of C1
called C1' with the updated bitmap and the new key entry in the
array, and then do a CAS in the entry within the C2 array which
points to C1. The change is then done atomically. However, this
approach does not work. Assume that another thread T2 decides
to insert a key below the node C2 at the time when T1 is creating
C1'. To do this, it has to read C2 and create its updated copy C2'.
Assume that after that, T1 does the CAS in C2. The copy C2' will
not reflect the changes by T1. Once T2 does a CAS in the C3 array,
the key inserted by T1 is lost.

To solve this problem we define a new type of a node which we
call an indirection node. This node remains present within the Ctrie
even if nodes above and below it change. We now show an example
of a sequence of Ctrie operations.

Every Ctrie is defined by the root reference (Fig. 1B). Initially,
the root is set to a special value called null. In this state the Ctrie
corresponds to an empty set, so all lookups fail to find a value for
any given key and all remove operations fail to remove a binding.

Assume that a key k1 has to be inserted. First, a new node C1 of
type CNode is created, so that it contains a single key k1 according
to hash trie invariants. After that, a new node I1 of type INode
is created. The node I1 has a single field main (Fig. 2) which is
initialized to C1. A CAS instruction is then performed at the root
reference (Fig. 1B), with the expected value null and the new
value I1. If a CAS is successful, the insertion is completed and
the Ctrie is in a state shown in Fig. 1C. Otherwise, the insertion
must be repeated.

Assume next that a key k2 is inserted such that its hashcode
prefix is different from that of k1. By the hash trie invariants, k2
should be next to k1 in C1. The thread that does the insertion
first creates an updated version of C1 and then does a CAS at the
I1.main (Fig. 1C) with the expected value of C1 and the updated
node as the new value. Again, if the CAS is not successful, the
insertion process is repeated. The Ctrie is now in the state shown in
Fig. 1D.

If some thread inserts a key k3 with the same initial bits as k2,
the hash trie has to be extended with an additional level. The thread

starts by creating a new node C2 of type CNode containing both
k2 and k3. It then creates a new node I2 and sets I2.main to C2.
Finally, it creates a new updated version of C1 such that it points to
the node I2 instead of the key k2 and does a CAS at I1.main (Fig.
1D). We obtain a Ctrie shown in Fig. 1E.

Assume now that a thread T1 decides to remove k2 from the
Ctrie. It creates a new node C2' from C2 which omits the key k2. It
then does a CAS on I2.main to set it to C2' (Fig. 1E). As before,
if the CAS is not successful, the operation is restarted. Otherwise,
k2 will no longer be in the trie – concurrent operations will only
see k1 and k3 in the trie, as shown in Fig. 1F. However, the key k3
could be moved further to the root - instead of being below the node
C2, it could be directly below the node C1. In general, we want to
ensure that the path from the root to a key is as short as possible. If
we do not do this, we may end up with a lot of wasted space and an
increased depth of the Ctrie.

For this reason, after having removed a key, a thread will attempt
to contract the trie as much as possible. The thread T1 that removed
the key has to check whether or not there are less than 2 keys
remaining within C2. There is only a single key, so it can create
a copy of C1 such that the key k3 appears in place of the node I2
and then do a CAS at I1.main (Fig. 1F). However, this approach
does not work. Assume there was another thread T2 which decides
to insert a new key below the node I2 just before T1 does the CAS
at I1.main. The key inserted by T2 is lost as soon as the CAS at
I1.main occurs.

To solve this, we relax the invariants of the data structure. We
introduce a new type of a node - a tomb node. A tomb node is
simply a node which holds a single key. No thread may modify
a node of type INode if it contains a tomb node. In our example,
instead of directly modifying I1, thread T1 must first create a tomb
node which contains the key k3. It then does a CAS at I2.main
to set it to the tomb node. After having done this (Fig. 1G), T1

may create a contracted version of C1 and do a CAS at I1.main,
at which point we end up with a trie of an optimal size (Fig. 1H).
If some other thread T2 attempts to modify I2 after it has been
tombed, then it must first do the same thing T1 is attempting to do
- move the key k3 back below C2, and only then proceed with its
original operation. We call an INode which points to a tomb node
a tomb-inode. We say that a tomb-inode in the example above is
resurrected.

If some thread decides to remove k1, it proceeds as before.
However, even though k3 now remains the only key in C1 (Fig. 1I),
it does not get tombed. The reason for this is that we treat nodes
directly below the root differently. If k3 were next removed, the
trie would end up in a state shown in Fig. 1J, with the I1.main set
to null. We call this type of an INode a null-inode.

3. Algorithm
We present the pseudocode of the algorithm in figures 3, 4 and
5. The pseudocode assumes C-like semantics of conditions in if
statements – if the first condition in a conjunction fails, the second
one is never evaluated. We use logical symbols for boolean expres-
sions. The pseudocode also contains pattern matching constructs
which are used to match a node against its type. All occurences
of pattern matching can be trivially replaced with a sequence of
if-then-else statements – we use pattern matching for conciseness.
The colon (:) in the pattern matching cases should be understood as
has type. The keyword def denotes a procedure definition. Reads
and compare-and-set instructions written in capitals are atomic –
they occur at one point in time. This is a high level pseudocode and
might not be optimal in all cases – the source code contains a more
efficient implementation.

Operations start by reading the root (lines 2, 11 and 23). If the
root is null then the trie is empty, so neither removal nor lookup
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Figure 1. Hash trie and Ctrie examples

finds a key. If the root points to an INode which is set to null (as
in Fig. 1J), then the root is set back to just null before repeating. In
both the previous cases, an insertion will replace the root reference
with a new CNode with the appropriate key.

If the root is neither null nor a null-inode then the node below
the root inode is read (lines 35, 51 and 80), and we proceed case-
wise. If the node pointed at by the inode is a CNode, an appropriate
entry in its array must be found. The method flagpos computes
the values flag and pos from the hashcode hc of the key, bitmap
bmp of the cnode and the current level lev. The relevant flag in
the bitmap is defined as (hc >> (k · lev)) � ((1 << k) − 1),
where 2k is the length of the bitmap. The position pos within the
array is given by the expression #((flag − 1) � bmp), where #
is the bitcount. The flag is used to check if the appropriate branch
is in the CNode (lines 38, 54, 83). If it is not, lookups and removes
end, since the desired key is not in the Ctrie. An insert creates an
updated copy of the current CNode with the new key. If the branch
is in the trie, pos is used as an index into the array. If an inode is
found, we repeat the operation recursively. If a key-value binding

root: INode

structure INode {
main: MainNode

}
MainNode: CNode | SNode

structure CNode {
bmp: integer
array: Array[2^W]

}

structure SNode {
k: KeyType
v: ValueType
tomb: boolean

}

Figure 2. Types and data structures

(an SNode) is found, then a lookup compares the keys and returns
the binding if they are the same. An insert operation will either re-
place the old binding if the keys are the same, or otherwise extend
the trie below the CNode. A remove operation compares the keys –
if they are the same it replaces the CNode with its updated version
without the key.

After a key was removed, the trie has to be contracted. A remove
operation first attempts to create a tomb from the current CNode. It
first reads the node below the current inode to check if it is still
a CNode. It then calls toWeakTombed which creates a weak tomb
from the given CNode. A weak tomb is defined as follows. If the
number of nodes below the CNode that are not null-inodes is greater
than 1, then it is the CNode itself – in this case we say that there is
nothing to entomb. If the number of such nodes is 0, then the weak
tomb is null. Otherwise, if the single branch below the CNode is a
key-value binding or a tomb-inode (alternatively, a singleton), the
weak tomb is the tomb node with that binding. If the single branch
below is another CNode, a weak tomb is a copy of the current CNode
with the null-inodes removed.

The procedure tombCompress continually tries to entomb the
current CNode until it finds out that there is nothing to entomb
or it succeeds. The CAS in line 133 corresponds to the one in
Fig. 1F. If it succeeds and the weak tomb was either a null or
a tomb node, it will return true, meaning that the parent node
should be contracted. The contraction is done in contractParent,
which checks if the inode is still reachable from its parent and then
contracts the CNode below the parent - it removes the null-inode
(line 149) or resurrects a tomb-inode into an SNode (line 153). The
latter corresponds to the CAS in Fig. 1G.

If any operation encounters a null or a tomb node, it attempts
to fix the Ctrie before proceeding, since the Ctrie is in a relaxed
state. A tomb node may have originated from a remove operation
which will attempt to contract the tomb node at some time in the
future. Rather than waiting for that remove operation to do its work,
the current operation should do the work of contracting the tomb
itself, so it will invoke the clean operation on the parent inode.
The clean operation will attempt to exchange the CNode below the
parent inode with its compression. A CNode compression is defined
as follows – if the CNode has a single tomb node directly beneath,
then it is that tomb node. Otherwise, the compression is the copy
of the CNode without the null-inodes (this is what the filtered
call in the toCompressed procedure does) and with all the tomb-
inodes resurrected to regular key nodes (this is what the map and
resurrect calls do). Going back to our previous example, if in
Fig. 1G some other thread were to attempt to write to I2, it would
first do a clean operation on the parent I1 of I2 – it would contract
the trie in the same way as the removal would have. After having
fixed the Ctrie, the operation is repeated from the start.
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def insert(k, v)1

r = READ(root)2

if r = null ∨ isNullInode(r) {3

scn = CNode(SNode(k, v, ⊥))4

nr = INode(scn)5

if !CAS(root, r, nr) insert(k, v)6

} else if ¬iinsert(r, k, v, 0, null)7

insert(k, v)8

9

def remove(k)10

r = READ(root)11

if r = null return NOTFOUND12

else if isNullInode(r) {13

CAS(root, r, null)14

return remove(k)15

} else {16

res = iremove(r, k, 0, null)17

if res 6= RESTART return res18

else remove(k)19

}20

21

def lookup(k)22

r = READ(root)23

if r = null return NOTFOUND24

else if isNullInode(r) {25

CAS(root, r, null)26

return lookup(k)27

} else {28

res = ilookup(r, k, 0, null)29

if res 6= RESTART return res30

else return lookup(k)31

}32

33

def ilookup(i, k, lev, parent)34

READ(i.main) match {35

case cn: CNode =>36

flag, pos = flagpos(k.hc, lev, cn.bmp)37

if cn.bmp � flag = 0 return NOTFOUND38

cn.array(pos) match {39

case sin: INode =>40

return ilookup(sin, k, lev + W, i)41

case sn: SNode ∧ ¬sn.tomb =>42

if sn.k = k return sn.v43

else return NOTFOUND44

}45

case (sn: SNode ∧ sn.tomb) ∨ null =>46

if parent 6= null clean(parent)47

return RESTART48

}49

Figure 3. Basic operations I

4. Correctness
As illustrated by the examples in the previous section, designing a
correct lock-free algorithm is not straightforward. One of the rea-
sons for this is that all possible interleavings of steps of different
threads executing the operations have to be considered. For brevity,
this section gives only the outline of the correctness proof – the
complete proof is given in the appendix. There are three main crite-
ria for correctness. Safety means that the Ctrie corresponds to some
abstract set of keys and that all operations change the corresponding
abstract set of keys consistently. An operation is linearizable if any
external observer can only observe the operation as if it took place
instantaneously at some point between its invocation and comple-
tion [9] [11]. Lock-freedom means that if some number of threads
execute operations concurrently, then after a finite number of steps
some operation must complete [9].

We assume that the Ctrie has a branching factor 2W . Each
node in the Ctrie is identified by its type, level in the Ctrie l and
the hashcode prefix p. The hashcode prefix is the sequence of
branch indices that have to be followed from the root in order to
reach the node. For a cnode cnl,p and a key k with the hashcode
h = r0 · r1 · · · rn, we denote cn.sub(k) as the branch with the

def iinsert(i, k, v, lev, parent)50

READ(i.main) match {51

case cn: CNode =>52

flag, pos = flagpos(k.hc, lev, cn.bmp)53

if cn.bmp � flag = 0 {54

nsn = SNode(k, v, ⊥)55

narr = cn.array.inserted(pos, nsn)56

ncn = CNode(narr, bmp | flag)57

return CAS(i.main, cn, ncn)58

}59

cn.array(pos) match {60

case sin: INode =>61

return iinsert(sin, k, v, lev + W, i)62

case sn: SNode ∧ ¬sn.tomb =>63

nsn = SNode(k, v, ⊥)64

if sn.k = k {65

ncn = cn.updated(pos, nsn)66

return CAS(i.main, cn, ncn)67

} else {68

nin = INode(CNode(sn, nsn, lev + W))69

ncn = cn.updated(pos, nin)70

return CAS(i.main, cn, ncn)71

}72

}73

case (sn: SNode ∧ sn.tomb) ∨ null =>74

if parent 6= null clean(parent)75

return ⊥76

}77

78

def iremove(i, k, lev, parent)79

READ(i.main) match {80

case cn: CNode =>81

flag, pos = flagpos(k.hc, lev, cn.bmp)82

if cn.bmp � flag = 0 return NOTFOUND83

res = cn.array(pos) match {84

case sin: INode =>85

return iremove(sin, k, lev + W, i)86

case sn: SNode ∧ ¬sn.tomb =>87

if sn.k = k {88

narr = cn.array.removed(pos)89

ncn = CNode(narr, bmp ^ flag)90

if cn.array.length = 1 ncn = null91

if CAS(i.main, cn, ncn) return sn.v92

else return RESTART93

} else return NOTFOUND94

}95

if res = NOTFOUND ∨ res = RESTART return res96

if parent ne null ∧ tombCompress()97

contractParent(parent, in, k.hc, lev - W)98

case (sn: SNode ∧ sn.tomb) ∨ null =>99

if parent 6= null clean(parent)100

return RESTART101

}102

Figure 4. Basic operations II

index rl or null if such a branch does not exist. We define the
following invariants:

INV1 For every inode inl,p, inl,p.main is a cnode cnl,p, a tombed snode
sn† or null.

INV2 For every cnode the length of the array is equal to the bitcount in the
bitmap.

INV3 If a flag i in the bitmap of cnl,p is set, then corresponding array entry
contains an inode inl+W,p·r or an snode.

INV4 If an entry in the array in cnl,p contains an snode sn, then p is the
prefix of the hashcode sn.k.

INV5 If an inode inl,p contains an snode sn, then p is the prefix of the
hashcode sn.k.

We say that the Ctrie is valid if and only if the invariants hold.
The relation hasKey(node, x) holds if and only if the key x is
within an snode reachable from node. A valid Ctrie is consis-
tent with an abstract set A if and only if ∀k ∈ A the relation
hasKey(root, k) holds and ∀k /∈ A it does not. A Ctrie lookup
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def toCompressed(cn)103

num = bit#(cn.bmp)104

if num = 1 ∧ isTombInode(cn.array(0))105

return cn.array(0).main106

ncn = cn.filtered(_.main 6= null)107

rarr = ncn.array.map(resurrect(_))108

if bit#(ncn.bmp) > 0109

return CNode(rarr, ncn.bmp)110

else return null111

112

def toWeakTombed(cn)113

farr = cn.array.filtered(_.main 6= null)114

nbmp = cn.bmp.filtered(_.main 6= null)115

if farr.length > 1 return cn116

if farr.length = 1117

if isSingleton(farr(0))118

return farr(0).tombed119

else CNode(farr, nbmp)120

return null121

122

def clean(i)123

m = READ(i.main)124

if m ∈ CNode125

CAS(i.main, m, toCompressed(m))126

127

def tombCompress(i)128

m = READ(i.main)129

if m 6∈ CNode return ⊥130

mwt = toWeakTombed(m)131

if m = mwt return ⊥132

if CAS(i.main, m, mwt) mwt match {133

case null ∨ (sn: SNode ∧ sn.tomb) =>134

return >135

case _ => return ⊥136

} else return tombCompress()137

138

def contractParent(parent, i, hc, lev)139

m, pm = READ(i.main), READ(parent.main)140

pm match {141

case cn: CNode =>142

flag, pos = flagpos(k.hc, lev, cn.bmp)143

if bmp � flag = 0 return144

sub = cn.array(pos)145

if sub 6= i return146

if m = null {147

ncn = cn.removed(pos)148

if !CAS(parent.main, cn, ncn)149

contractParent(parent, i, hc, lev)150

} else if isSingleton(m) {151

ncn = cn.updated(pos, m.untombed)152

if !CAS(parent.main, cn, ncn)153

contractParent(parent, i, hc, lev)154

}155

case _ => return156

}157

Figure 5. Compression operations

is consistent with the abstract set semantics if and only if it finds
the keys in the abstract set and does not find other keys. A Ctrie
insertion or removal is consistent with the abstract set semantics if
and only if it produces a new Ctrie consistent with a new abstract
set with or without the given key, respectively.

Lemma 1. If an inode in is either a null-inode or a tomb-inode at
some time t0 then ∀t > t0 in.main is not written. We refer to such
inodes as nonlive.

Lemma 2. Cnodes and snodes are immutable – once created, they
do not change the value of their fields.

Lemma 3. Invariants INV1-3 always hold.

Lemma 4. If a CAS instruction makes an inode in unreachable
from its parent at some time t0, then in is nonlive at t0.

Lemma 5. Reading a cn such that cn.sub(k) = sn and k = sn.k
at some time t0 means that hasKey(root, k) holds at t0.

For a given Ctrie, we say that the longest path for a hashcode
h = r0 · r1 · · · rn, length(ri) = W , is the path from the root to
a leaf such that at each cnode cni,p the branch with the index ri is
taken.

Lemma 6. Assume that the Ctrie is an valid state. Then every
longest path ends with an snode, cnode or null.

Lemma 7. Assume that a cnode cn is read from inl,p.main at
some time t0 while searching for a key k. If cn.sub(k) = null then
hasKey(root, k) is not in the Ctrie at t0.

Lemma 8. Assume that the algorithm is searching for a key k and
that an snode sn is read from cn.array(i) at some time t0 such
that sn.k 6= k. Then the relation hasKey(root, k) does not hold
at t0.

Lemma 9. 1. Assume that one of the CAS in lines 58 and 71
succeeds at time t1 after in.main was read in line 51 at time t0.
Then ∀t, t0 ≤ t < t1, relation hasKey(root, k) does not hold.

2. Assume that the CAS in lines 67 succeeds at time t1 after
in.main was read in line 51 at time t0. Then ∀t, t0 ≤ t < t1,
relation hasKey(root, k) holds.

3. Assume that the CAS in line 92 succeeds at time t1 after
in.main was read in line 80 at time t0. Then ∀t, t0 ≤ t < t1,
relation hasKey(root, k) holds.

Lemma 10. Assume that the Ctrie is valid and consistent with
some abstract set A ∀t, t1 − δ < t < t1. CAS instructions from
lemma 9 induce a change into a valid state which is consistent with
the abstract set semantics.

Lemma 11. Assume that the Ctrie is valid and consistent with
some abstract set A ∀t, t1 − δ < t < t1. If one of the operations
clean, tombCompress or contractParent succeeds with a CAS
at t1, the Ctrie will remain valid and consistent with the abstract
set A at t1.

Corollary 1. Invariants INV4,5 always hold due to lemmas 10 and
11.

Theorem 1 (Safety). At all times t, a Ctrie is in a valid state
S, consistent with some abstract set A. All Ctrie operations are
consistent with the semantics of the abstract set A.

Theorem 2 (Linearizability). Ctrie operations are linearizable.

Lemma 12. If a CAS that does not cause a consistency change in
one of the lines 58, 67, 71, 126, 133, 149 or 153 fails at some time
t1, then there has been a state (configuration) change since the time
t0 when a respective read in one of the lines 51, 51, 51, 124, 129,
140 or 140 occured.

Lemma 13. In each operation there is a finite number of execution
steps between consecutive CAS instructions.

Corollary 2. There is a finite number of execution steps between
two state changes. This does not imply that there is a finite number
of execution steps between two operations. A state change is not
necessarily a consistency change.

We define the total path length d as the sum of the lengths of
all the paths from the root to some leaf. Assume the Ctrie is in a
valid state. Let n be the number of reachable null-inodes in this
state, t the number of reachable tomb-inodes, l the number of live
inodes, r the number of single tips of any length and d the total
path length. We denote the state of the Ctrie as Sn,t,l,r,d. We call
the state S0,0,l,r,d the clean state.

Lemma 14. Observe all CAS instructions which never cause a
consistency change and assume they are successful. Assuming there
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was no state change since reading in prior to calling clean, the
CAS in line 126 changes the state of the Ctrie from the state
Sn,t,l,r,d to either Sn+j,t,l,r−1,d−1 where r > 0, j ∈ {0, 1} and
d ≥ 1, or to Sn−k,t−j,l,r,d′≤d where k ≥ 0, j ≥ 0, k + j > 0,
n ≥ k and t ≥ j. Furthermore, the CAS in line 14 changes the
state of the Ctrie from S1,0,0,0,1 to S0,0,0,0,0. The CAS in line 26
changes the state from S1,0,0,0,1 to S0,0,0,0,0. The CAS in line 133
changes the state from Sn,t,l,r,d to either Sn+j,t,l,r−1,d−j where
r > 0, j ∈ {0, 1} and d ≥ j, or to Sn−k,t,l,r,d′≤d where k > 0
and n ≥ k. The CAS in line 149 changes the state from Sn,t,l,r,d
to Sn−1,t,l,r+j,d−1 where n > 0 and j ≥ 0. The CAS in line 153
changes the state from Sn,t,l,r to Sn,t−1,l,r+j,d−1 where j ≥ 0.

Lemma 15. If the Ctrie is in a clean state and n threads are exe-
cuting operations on it, then some thread will execute a successful
CAS resulting in a consistency change after a finite number of exe-
cution steps.

Theorem 3 (Lock-freedom). Ctrie operations are lock-free.

5. Experiments
We show benchmark results in Fig. 6. All the measurements were
performed on a quad-core 2.67 GHz i7 processor with hyperthread-
ing. We followed established performance measurement method-
ologies [2]. We compare the performance of Ctries against that of
ConcurrentHashMap and ConcurrentSkipListMap [3] [4] data
structures from the Java standard library.

In the first experiment, we insert a total of N elements into the
data structures. The insertion is divided equally among P threads,
where P ranges from 1 to 8. The results are shown in Fig. 6A-
D. Ctries outperform concurrent skip lists for P = 1 (Fig. 6A).
We argue that this is due to a fewer number of indirections in the
Ctrie data structure. A concurrent skip list roughly corresponds
to a balanced binary tree which has a branching factor 2. Ctries
normally have a branching factor 32, thus having a much lower
depth. A lower depth means less indirections and consequently
fewer cache misses when searching the Ctrie.

We can also see that the Ctrie sometimes outperforms a concur-
rent hash table for P = 1. The reason is that the hash table has
a fixed size and is resized once the load factor is reached – a new
table is allocated and all the elements from the previous hash table
have to be copied into the new hash table. More importantly, this
implementation uses a global write lock during the resize phase –
other threads adding new elements into the table have to wait until
the resizal completes. This problem is much more apparent in Fig.
6B where P = 8. Fig. 6C,D show how the insertion scales for the
number of elements N = 200k and N = 1M , respectively. Due
to the use of hyperthreading on the i7, we do not get significant
speedups when P > 4 for these data structures.

We next measure the performance for the remove operation
(Fig. 6E-H). Each data structure starts with N elements and then
emptied concurrently by P threads. The keys being removed are
divided equally among the threads. For P = 1 Ctries are clearly
outperformed by both other data structures. However, it should be
noted that concurrent hash table does not shrink once the number
of keys becomes much lower than the table size. This is space-
inefficient – a hash table contains many elements at some point
during the runtime of the application will continue to use the mem-
ory it does not need until the application ends. The slower Ctrie
performance seen in Fig. 6E for P = 1 is attributed to the addi-
tional work the remove operation does to keep the Ctrie compact.
However, Fig. 6F shows that the Ctrie remove operation scales well
for P = 8, as it outperforms both skip list and hash table removals.
This is also apparent in Fig. 6G,H.

In the next experiment, we populate all the data structures with
N elements and then do a lookup for every element once. The set

of elements to be looked up is divided equally among P threads.
From Fig. 6I-L it is apparent that concurrent hash tables have a
much more efficient lookups than other data structures. This is not
surprising since they are a flat data structure – a lookup typically
consists of a single read in the table, possibly followed by traversing
the collision chain within the bucket. Although a Ctrie lookup
outperforms a concurrent skip list when P = 8, it still has to
traverse more indirections than a hash table.

Finally, we do a series of benchmarks with both lookups and
insertions to determine the percentage of lookups for which the
concurrent hash table performance equals that of concurrent tries.
Our test inserts new elements into the data structures using P
threads. A total of N elements are inserted. After each insert, a
lookup for a random element is performed r times, where r is the
ratio of lookups per insertion. Concurrent skip lists scaled well in
these tests but had low absolute performance, so they are excluded
from the graphs for clarity. When using P = 2 threads, the ratio
where the running time is equal for both concurrent hash tables and
concurrent tries is r = 2. When using P = 4 threads this ratio is
r = 5 and for P = 8 the ratio is r = 9. As the number of threads
increases, more opportunity for parallelism is lost during the resizal
phase in concurrent hash tables, hence the ratio increases. This is
shown in Fig. 7A-C. In the last benchmark (Fig. 7D) we preallocate
the array for the concurrent hash table to avoid resizal phases –
in this case the hash table outperforms the concurrent trie. The
performance gap decreases as the number of threads approaches
P = 8. The downside is that a large amount of memory has to be
used for the hash table and the size needs to be known in advance.

6. Related work
Concurrent programming techniques and important results in the
area are covered by Shavit and Herlihy [9]. An overview of con-
current data structures is given by Moir and Shavit [10]. There is
a body of research available focusing on concurrent lists, queues
and concurrent priority queues [5] [22] [23]. While linked lists are
inefficient as sets or maps because they do not scale well, the latter
two do not support the basic operations on sets and maps, so we ex-
clude these from the further discussion and focus on more suitable
data structures.

Hash tables are typically resizeable arrays of buckets. Each
bucket holds some number of elements which is expected to be
constant. The constant number of elements per bucket necessitates
resizing the data structure. Sequential hash tables amortize the cost
of resizing the table over other operations [14]. While the individ-
ual concurrent hash table operations such as insertion or removal
can be performed in a lock-free manner as shown by Maged [4],
resizing is typically implemented with a global lock. Although the
cost of resizal is amortized against operations by one thread, this
approach does not guarantee horizontal scalability. Lea developed
an extensible hash algorithm which allows concurrent searches dur-
ing the resizing phase, but not concurrent insertions and removals
[3]. Shalev and Shavit propose split-ordered lists which keep a table
of hints into a linked list in a way that does not require rearranging
the elements of the linked list when resizing [15]. This approach
is quite innovative, but it is unclear how to shrink the hint table if
most of the keys are removed, while preserving lock-freedom.

Skip lists are a data structure which stores elements in a linked
list. There are multiple levels of linked lists which allow efficient
insertions, removals and lookups. Skip lists were originally in-
vented by Pugh [16]. Pugh proposed concurrent skip lists which
achieve synchronization through the use of locks [17]. Concurrent
non-blocking skip lists were later implemented by Lev, Herlihy,
Luchangco and Shavit [18] and Lea [3].

Concurrent binary search trees were proposed by Kung and
Lehman [19] – their implementation uses a constant number of
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locks at a time which exclude other insertion and removal op-
erations, while lookups can proceed concurrently. Bronson et al.
presented a scalable concurrent implementation of an AVL tree
based on transactional memory mechanisms which require a fixed
number of locks to perform deletions [20]. Recently, the first non-
blocking implementation of a binary search tree was proposed [21].

Tries were originally proposed by Brandais [6] and Fredkin [7].
Trie hashing was applied to accessing files stored on the disk by
Litwin [12]. Litwin, Sagiv and Vidyasankar implemented trie hash-
ing in a concurrent setting [13], however, they did so by using mu-
tual exclusion locks. Hash array mapped trees, or hash tries, are
tries for shared-memory proposed by Bagwell [1]. To our knowl-
edge, there is no nonblocking concurrent implementation of hash
tries prior our work.

7. Conclusion
We described a lock-free concurrent implementation of the hash
trie data structure. Our implementation supports insertion, remove
and lookup operations. It is space-efficient in the sense that it keeps
a minimal amount of information in the internal nodes. It is com-
pact in the sense that after all removal operations complete, all
paths from the root to a leaf containing a key are as short as pos-
sible. Operations are worst-case logarithmic with a low constant
factor (O(log32 n)). Its performance is comparable to that of the
similar concurrent data structures. The data structure grows dynam-
ically – it uses no locks and there is no resizing phase. We proved
that it is linearizable and lock-free.

In the future we plan to extend the algorithm with operations
like move key, which reassigns a value from one key to another
atomically. One research direction is supporting efficient aggrega-
tion operations on the keys and/or stored in the Ctrie. One such
specific aggregation is the size of the Ctrie – an operation which
might be useful indeed. The notion of having a size kept in one
place in the Ctrie might, however, prove detrimental to the idea of
distributing Ctrie operations throughout different parts of it in order
to avoid contention.

Finally, we plan to develop an efficient lock-free snapshot oper-
ation for the concurrent trie which allows traversal of all the keys
present in the data structure at the time at which the snapshot was
created. One possible approach to doing so is to, roughly speaking,
keep a partial history in the indirection nodes. A snapshot would al-
low traversing (in parallel) the elements of the Ctrie present at one
point in time and modifying it during traversal in a way that the
changes are visible only once the traversal ends. This might prove
an efficient abstraction to express many iterative-style algorithms.
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A. Proof of correctness
Definition 1 (Basics). Value W is called the branching width.
An inode in is a node holding a reference main to other nodes.
A cnode cn is a node holding a bitmap bmp and an set of
references to other nodes called array. A cnode is k-way if
length(cn.array) = k. An snode sn is a node holding a key
k and a value v. An snode can be tombed, denoted by sn†, mean-
ing its tomb flag is set. A reference cn.arr(r) in the array defined
as array(#(((1 << r)−1)� cn.bmp)), where # is the bitcount
and � is the bitwise-and operation. Any node nl,p is at level l if
there are l/W cnodes on the simple path between itself and the
root inode. Hashcode chunk of a key k at level l is defined as
m(l, k) = (hashcode(k) >> l) mod 2W . A node at level 0 has
a hashcode prefix p = ε, where ε is an empty string. A node n at
level l +W has a hashcode prefix p = q · r if and only if it can
be reached from the closest parent cnode cnl,q by following the
reference cnl,q.arr(r). A reference cnl,p.sub(k) is defined as:

cnl,p.sub(k) =

{
cnl,p.arr(m(l, k)) if cnl,p.f lg(m(l, k))
null otherwise

cnl,p.f lg(r)⇔ cnl,p.bmp� (1� r) 6= 0

Definition 2 (Ctrie). A Ctrie is defined as the reference root to
the root of the trie. A Ctrie state S is defined as the configuration
of nodes reachable from the root by following references in the
nodes. A key is within the configuration if it is in a node reachable
from the root. More formally, the relation hasKey(inl,p, k) on an
inode in at the level l with a prefix p and a key k holds if and only
if (several relations for readability):

holds(inl,p, k)⇔ inl,p.main = sn : SNode ∧ sn.k = k

holds(cnl,p, k)⇔ cnl,p.sub(k) = sn : SNode ∧ sn.k = k

hasKey(cnl,p, k)⇔ holds(cnl,p, k)∨
(cnl,p.sub(k) = inl+w,p·m(l,k) ∧ hasKey(inl+w,p·m(l,k), k))

hasKey(inl,p, k)⇔ holds(inl,p, k)∨
(inl,p.main = cnl,p : CNode ∧ hasKey(cnl,p, k))

Definition 3. We define the following invariants for the Ctrie.

INV1 inodel,p.main = null|cnodel,p|snode†
INV2 #(cn.bmp) = length(cn.array)

INV3 cnl,p.f lg(r) 6= 0⇔ cnl,p.arr(r) ∈ {sn, inl+W,p·r}
INV4 cnl,p.arr(r) = sn⇔ hashcode(sn.k) = p · r · s
INV5 inl,p.main = sn† ⇔ hashcode(sn.k) = p · r

Definition 4 (Validity). A state S is valid if and only if the invari-
ants INV1-5 are true in the state S.

Definition 5 (Abstract set). An abstract set A is a mapping K ⇒
{⊥,>} which is true only for those keys which are a part of the
abstract set, where K is the set of all keys. An empty abstract set
∅ is a mapping such that ∀k,∅(k) = ⊥. Abstract set operations
are insert(k,A) = A1 : ∀k′ ∈ A1, k

′ = k ∨ k′ ∈ A,
lookup(k,A) = > ⇔ k ∈ A and remove(k,A) = A1 : k 6∈
A1 ∧ ∀k′ ∈ A, k 6= k′ ⇒ k′ ∈ A. Operations insert and remove
are destructive.

Definition 6 (Consistency). A Ctrie state S is consistent with an
abstract set A if and only if k ∈ A ⇔ hasKey(Ctrie, k). A
destructive Ctrie operation op is consistent with the corresponding
abstract set operation op′ if and only if applying op to a state
S consistent with A changes the state into S′ consistent with an
abstract set A′ = op(k,A). A Ctrie lookup is consistent with the
abstract set lookup if and only if it returns the same value as the
abstract set lookup, given that the state S is consistent with A. A

consistency change is a change from state S to state S′ of the Ctrie
such that S is consistent with an abstract set A and S′ is consistent
with an abstract set A′ and A 6= A′.

We point out that there are multiple valid states corresponding
to the same abstract set.

Theorem 1 (Safety). At all times t, a Ctrie is in a valid state
S, consistent with some abstract set A. All Ctrie operations are
consistent with the semantics of the abstract set A.

First, it is trivial to see that if the state S is valid, then the
Ctrie is also consistent with some abstract set A. Second, we prove
the theorem using structural induction. As induction base, we take
the empty Ctrie which is valid and consistent by definition. The
induction hypothesis is that the Ctrie is valid and consistent at some
time t. We use the hypothesis implicitly from this point on. Before
proving the induction step, we introduce additional definitions and
lemmas.

Definition 7. A node is live if and only if it is a cnode, a non-
tombed snode or an inode whosemain reference points to a cnode.
A nonlive node is a node which is not live. A null-inode is an inode
with a main set to null. A tomb-inode is an inode with a main
set to a tombed snode sn†. A node is a singleton if it is an snode
or an inode in such that in.main = sn†, where sn† is tombed.

Lemma 1 (End of life). If an inode in is either a null-inode or a
tomb-inode at some time t0, then ∀t > t0 in.main is not written.

Proof. For any inode in which becomes reachable in the Ctrie at
some time t, all assignments to in.main at any time t0 > t occur
in a CAS instruction – we only have to inspect these writes.

Every CAS instruction on in.main is preceeded by a check that
the expected value of in.main is a cnode. From the properties of
CAS, it follows that if the current value is either null or a tombed
snode, the CAS will not succeed. Therefore, neither null-inodes nor
tomb-inodes can be written to in.main.

Lemma 2. Cnodes and snodes are immutable – once created, they
no longer change the value of their fields.

Proof. Trivial inspection of the pseudocode reveals that k, v, tomb,
bmp and array are never assigned a value after an snode or a cnode
was created.

Definition 8. A compression ccn of a cnode cn seen at some time
t0 is a node such that:

• ccn = sn† if length(cn.array) = 1 and cn.array(0).main =
sn† at t0
• ccn = null if ∀i, cn.array(i).main = null at t0 (including

the case where length(cn.array) = 0)
• otherwise, ccn is a cnode obtained from cn so that at least those

null-inodes existing at t0 are removed and at least those tomb-
inodes in existing at t0 are resurrected - that is, replaced by
untombed copies sn of sn† = in.main

A weak tombing wtc of a cnode cn seen at some time t0 is a
node such that:

• ccn = sn† if length(cn.array) = 1 and cn.array(0) is a
tomb-inode or an snode at t0
• ccn = null if ∀i, cn.array(i).main = null at t0
• ccn = cn if there is more than a single non-null-inode below at
t0
• otherwise, ccn is a one-way cnode obtained from cn such that

all null-inodes existing at t0 are removed
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Lemma 3. Methods toCompressed and toWeakTombed return
the compression and weak tombing of a cnode cn, respectively.

Proof. From lemma 2 we know that a cnode does not change
values of bmp or array once created. From lemma 1 we know
that all the nodes that are nonlive at t0 must be nonlive ∀t > t0.
Methods toCompressed or toWeakTombed scan the array of cn
sequentially and make checks which are guaranteed to stay true if
they pass – when these methods complete at some time t > t0 they
will have removed or resurrected at least those inodes that were
nonlive at some point t0 after the operation began.

Lemma 4. Invariants INV1, INV2 and INV3 are always preserved.

Proof. INV1: Inode creation and every CAS instruction abide this
invariant. There are no other writes to main.

INV2, INV3: Trivial inspection of the pseudocode shows that
the creation of cnodes abides these invariants. From lemma 2 we
know that cnodes are immutable. Therefore, these invariants are
ensured during construction and do not change subsequently.

Lemma 5. If any CAS instruction makes an inode in unreachable
from its parent at some time t, then in is nonlive at time t.

Proof. We will show that all the inodes a CAS instruction could
have made unreachable from their parents at some point t1 were
nonlive at some time t0 < t1. The proof then follows directly from
lemma 1. We now analyze successful CAS instructions.

In lines 6, 14 and 26, if r is an inode and it is removed from the
trie, then it must have been previously checked to be a null-inode
in lines 3, 13 and 25, respectively.

In lines 58, 67 and 71, a cnode cn is replaced with a new cnode
ncn which contains all the references to inodes as cn does, and
possibly some more. These instructions do not make any inodes
unreachable.

In line 92, a cnode cn is replaced with a new ncnwhich contains
all the node references as cn but without one reference to an snode
– all the inodes remain reachable.

In line 126, a cnode m is replaced with its compression mc –
from lemma 3, mc may only be deprived of references to nonlive
inodes.

In line 133, a cnodem is replaced with its weak tombingmwt –
from lemma 3, mwt may only be deprived of references to nonlive
inodes.

Corollary 1. Lemma 5 has a consequence that any inode in can
only be made unreachable in the Ctrie through modifications in
their parent inode (or the root reference if in is referred by it).
If there is a parent that refers to in, then that parent is live by
definition. If the parent had been previously removed, lemma 5 tells
us that the parent would have been nonlive at the time. From lemma
1 we know that the parent would remain nonlive afterwards. This
is a contradiction.

Lemma 6. If at some time t1 an inode in is read by some thread
(lines 2, 11, 23, 39, 60, 84, 145), followed by a read of cnode
cn = in.main in the same thread at time t2 > t1 (lines 35, 51,
80, 124, 129, 140), then in is reachable from the root at time t2.
Trivially, so is in.main.

Proof. Assume, that inode in is not reachable from the root at t2.
That would mean that in was made unreachable at an earlier time
t0 < t2. Corollary 1 says that in was then nonlive at t0. However,
from lemma 1 it follows that inmust be nonlive for all times greater
than t0, including t2. This is a contradiction – in is live at t2, since
it contains a cnode cn = in.main.

Lemma 7 (Presence). Reading a cnode cn at some time t0 and
then cn.sub(k) such that k = sn.k at some time t1 > t0 means
that the relation hasKey(root, k) holds at time t0. Trivially, k is
then in the corresponding abstract set A.

Proof. We know from lemma 6 that the corresponding cnode cn
was reachable at some time t0. Lemma 2 tells us that cn and sn
were the same ∀t > t0. Therefore, sn was present in the array
of cn at t0, so it was reachable. Furthermore, sn.k is the same
∀t > t0. It follows that hasKey(root, x) holds at time t0.

Definition 9. A longest path of nodes π(h) for some hashcode h
is the sequence of nodes from the root to a leaf of a valid Ctrie such
that:

• if root = null then π(h) = ε
• if root 6= null then the first node in π(h) is root, which is an

inode
• ∀in ∈ π(h) if in.main = cn, then the next element in the path

is cn
• ∀in ∈ π(h) if in.main = sn, then the last element in the path

is sn
• ∀in ∈ π(h) if in.main = null, then the last element in the

path is in
• ∀cnl,p ∈ π(h), h = p · r · s if cn.flg(r) = ⊥, then the last

element in the path is cn, otherwise the next element in the path
is cn.arr(r)

Lemma 8 (Longest path). Assume that a non-empty Ctrie is in
a valid state at some time t. The longest path of nodes π(h)
for some hashcode h = r0 · r1 · · · rn is a sequence in0,ε →
cn0,ε → inW,r0 → . . . → inW ·m,r0···rm → x, where x ∈
{cnW ·m,r0···rm , sn, cnW ·m,r0···rm → sn, null}.

Proof. Trivially from the invariants and the definition of the longest
path.

Lemma 9 (Absence I). Assume that at some time t0 ∃cn =
in.main for some node inl,p and the algorithm is searching
for a key k. Reading a cnode cn at some time t0 such that
cn.sub(k) = null and hashcode(k) = p · r · s implies that
the relation hasKey(root, k) does not hold at time t0. Trivially, k
is not in the corresponding abstract set A.

Proof. Lemma 6 implies that in is in the configuration at time
t0, because cn = cnl,p such that hashcode(k) = p · r · s is
live. The induction hypothesis states that the Ctrie was valid at t0.
We prove that hasKey(root, k) does not hold by contradiction.
Assume there exists an snode sn such that sn.k = k. By lemma 8,
sn can only be the last node of the longest path π(h), and we know
that cn is the last node in π(h).

Lemma 10 (Absence II). Assume that the algorithm is searching
for a key k. Reading a live snode sn at some time t0 and then
x = sn.k 6= k at some time t1 > t0 means that the relation
hasKey(root, x) does not hold at time t0. Trivially, k is not in the
corresponding abstract set A.

Proof. Contradiction similar to the one in the previous lemma.

Lemma 11 (Absence III). Assume that the root reference is read
in r at t0 and r is positively compared to null at t1 > t0. Then
∀k, hasKey(root, k) does not hold at t0. Trivially, the Ctrie is
consistent with the empty abstract set ∅.
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Proof. Local variable r has the same value ∀t ≥ t0. Therefore, at
t0 root = null. The rest is trivial.

Lemma 12 (Fastening). 1. Assume that one of the CAS instructions
in lines 6, 14 and 26 succeeds at time t1 after r was determined to
be a nonlive inode in one of the lines 3, 13 or 25, respectively, at
time t0. Then ∀t, t0 ≤ t < t1, relation hasKey(root, k) does not
hold for any key. If r is null, then ∃δ > 0∀t, t1 − δ < t < t1
hasKey does not hold for any key.

2. Assume that one of the CAS instructions in lines 58 and 71
succeeds at time t1 after in.main was read in line 51 at time t0.
The ∀t, t0 ≤ t < t1, relation hasKey(root, k) does not hold.

3. Assume that the CAS instruction in line 67 succeeds at time t1
after in.main was read in line 51 at time t0. The ∀t, t0 ≤ t < t1,
relation hasKey(root, k) holds.

4. Assume that the CAS instruction in line 92 succeeds at time t1
after in.main was read in line 80 at time t0. The ∀t, t0 ≤ t < t1,
relation hasKey(root, k) holds.

Proof. The algorithm never creates a reference to a newly allocated
memory areas unless that memory area has been previously re-
claimed. Although it is possible to extend the pseudocode with
memory management directives, we omit memory-reclamation
from the pseudocode and assume the presence of a garbage col-
lector which does not reclaim memory areas as long as there are
references to them reachable from the program. In the pseudocode,
CAS instructions always work on memory locations holding ref-
erences – CAS(x, r, r′) takes a reference r to a memory area
allocated for nodes as its expected value, meaning that a reference
r that is reachable in the program exists from the time t0 when
it was read until CAS(x, r, r′) was invoked at t1. On the other
hand, the new value for the CAS is in all cases a newly allocated
object. In the presence of a garbage collector with the specified
properties, a new object cannot be allocated in any of the areas still
being referred to. It follows that if a CAS succeeds at time t1, then
∀t, t0 ≤ t < t1, where t0 is the time of reading a reference and t1
is the time when CAS occurs, the corresponding memory location
x had the same value r.

We now analyze specific cases from the lemma statement:
1. We know that ∀t, t0 ≤ t < t1 the root reference has a

reference r to the same inode in. We assumed that r is nonlive
at t0. From lemma 1 it follows that r remains nonlive until time t1.
By the definition of hasKey, the relation does not hold for any key
from ∀t, t0 ≤ t < t1. Case where r is null is proved similarly.

2. From lemma 8 we know that for some hashcode h =
hashcode(k) there exists a longest path of nodes π(h) = in0,ε →
. . . → cnl,p such that h = p · r · s and that sn such that
sn.k = k cannot be a part of this path – it could only be refer-
enced by cnl,p.sub(k) of the last cnode in the path. We know that
∀t, t0 ≤ t < t1 reference cn points to the same cnode. We know
from 2 that cnodes are immutable. The check to cn.bmp preceed-
ing the CAS ensures that ∀t, t0 ≤ t < t1 cn.sub(k) = null. In the
other case, we check that the key k is not contained in sn. We know
from 5 that cn is reachable during this time, because in is reach-
able. Therefore, hasKey(root, k) does not hold ∀t, t0 ≤ t < t1.

3., 4. We know that ∀t, t0 ≤ t < t1 reference cn points to the
same cnode. Cnode cn is reachable as long as its parent inode in
is reachable. We know that in is reachable by lemma 5, since in is
live ∀t, t0 ≤ t < t1. We know that cn is immutable by lemma 2
and that it contains a reference to sn such that sn.k = k. Therefore,
sn is reachable and hasKey(root, k) holds ∀t, t0 ≤ t < t1.

Lemma 13. Assume that the Ctrie is valid and consistent with
some abstract set A ∀t, t1 − δ < t < t1. CAS instructions from
lemma 12 induce a change into a valid state which is consistent
with the abstract set semantics.

Proof. From lemma 12, we know that a successful CAS in line 6
means that the Ctrie was consistent with an empty abstract set ∅
up to some time t1. After that time, the Ctrie is consistent with the
abstract set A = k. Successful CAS instructions in lines 14 and 26
mean that the Ctrie was consistent with an empty abstract set ∅ up
to some time t1 and are also consistent with ∅ at t1.

Observe a successful CAS in line 58 at some time t1 after cn
was read in line 51 at time t0 < t1. From lemma 12 we know that
∀t, t0 ≤ t < t1, relation hasKey(root, k) does not hold. If the
last CAS instruction in the Ctrie occuring before the CAS in line
126 was at tδ = t1 − δ, then we know that ∀t,max(t0, tδ) ≤
t < t1 the hasKey relation does not change. We know that at
t1 cn is replaced with a new cnode with a reference to a new
snode sn such that sn.k = k, so at t1 relation hasKey(root, k)
holds. Consequently, up to ∀t,max(t0, tδ) ≤ t < t1 the Ctrie is
consistent with an abstract set A and at t1 it is consistent with an
abstract set A ∪ {k}. Validity is trivial.

Proofs for the CAS instructions in lines 67, 71 and 92 are
similar.

Lemma 14. Assume that the Ctrie is valid and consistent with
some abstract set A ∀t, t1 − δ < t < t1. If one of the operations
clean, tombCompress or contractParent succeeds with a CAS
at t1, the Ctrie will remain valid and consistent with the abstract
set A at t1.

Proof. Operations clean, tombCompress and contractParent
are atomic - their linearization point is the first successful CAS
instruction occuring at t1. We know from lemma 3 that methods
toCompressed and toWeakTombed produce a compression and
a weak tombing of a cnode, respectively.

We first prove the property ∃k, hasKey(cn, k)⇒ hasKey(f(cn), k),
where f is either a compression or a weak tombing. We know from
their respective definitions that the resulting cnode ncn = f(cn)
or the result null = f(cn) may only omit nonlive inodes from cn.
Omitting a null-inode omits no key. Omitting a tomb-inode may
omit exactly one key, but that is compensated by adding new snodes
– sn† in the case of a one-way node or, with compression, resur-
rected copies sn of removed inodes in such that in.main = sn†.
Therefore, the hasKey relation is exactly the same for both cn and
f(cn).

We only have to look at cases where CAS instructions succeed.
If CAS in line 126 at time t1 succeeds, then ∀t, t0 < t < t1
in.main = cn and at t1 in.main = toCompressed(cn). As-
sume there is some time tδ = t1− δ at which the last CAS instruc-
tion in the Ctrie occuring before the CAS in line 126 occurs. Then
∀t,max(t0, tδ) ≤ t < t1 the hasKey relation does not change.
Additionally, it does not change at t1, as shown above. Therefore,
the Ctrie remains consistent with the abstract set A. Validity is triv-
ial.

Proof for tombCompress and contractParent is similar.

Corollary 2. From lemmas 13 and 14 it follows that invariants
INV4 and INV5 are always preserved.

Safety. We proved at this point that the algorithm is safe - Ctrie is
always in a valid (lemma 4 and corollary 2) state consistent with
some abstract set. All operations are consistent with the abstract set
semantics (lemmas 7, 9, 10, 11 13 and 14).

Theorem 2 (Linearizability). Operations insert, lookup and
remove are linearizable.

Linearizability. An operation is linearizable if we can identify its
linearization point. The linearization point is a single point in time
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when the consistency of the Ctrie changes. The CAS instruction
itself is linearizable, as well as atomic reads. It is known that a
single invocation of a linearizable instruction has a linearization
point.

1. We know from lemma 14 that operation clean does not
change the state of the corresponding abstract set. Operation clean
is followed by a restart of the operation it was called from and is
not preceeded by a consistency change – all successful writes in the
insert and iinsert that change the consistency of the Ctrie result
in termination.

CAS in line 6 that succeeds at t1 immediately returns. By
lemma 13, ∃δ > 0∀t, t1−δ < t < t1 the Ctrie is consistent with an
empty abstract set ∅, and at t1 it is consistent with A = {k}. If this
is the first invocation of insert, then the CAS is the first and the
last write with consistent semantics. If insert has been recursively
called, then it has not been preceeded by a consistency change – no
successful CAS instruction in iinsert is followed by a recursive
call to the method insert. Therefore, it is the linearization point.

CAS in line 58 that succeeds at t1 immediately returns. By
lemma 13, ∃δ > 0∀t, t1 − δ < t < t1 the Ctrie is consistent
with an empty abstract set A and at t1 it is consistent with A∪{k}.
If this is the first invocation of iinsert, then the CAS is the first
and the last write with consistent semantics. If iinsert has been
recursively called, then it was preceeded by an insert or iinsert.
We have shown that if its preceeded by a call to insert, then there
have been no preceeding consistency changes. If it was preceeded
by iinsert, then there has been no write in the previous iinsert
invocation. Therefore, it is the linearization point.

Similar arguments hold for CAS instructions in lines 67 and 71.
It follows that if some CAS instruction in the insert invocation is
successful, then it is the only successful CAS instruction. There-
fore, insert is linearizable.

2. Operation clean is not preceeded by a write that results in
a consistency change and does not change the consistency of the
Ctrie.

Assume that a check in line 25 succeeds. The state of the local
variable r does not change ∀t > t0 where t0 is the atomic read in
the preceeding line 23. The linearization point is then the read at
t0, by lemma 11.

Assume that a CAS in line 26 succeeds at t1. By lemma 13,
∃δ > 0∀t, t1 − δ < t < t1 the Ctrie is consistent with an empty
abstract set ∅, and at t1 it is consistent with ∅. Therefore, this
write does not result in consistency change and is not preceeded
by consistency changes. This write is followed by the restart of the
operation.

Assume that a node m is read in line 35 at t0. By lemma 2, if
cn.sub(k) = null at t1 then ∀t, cn.sub(k) = null. By corollary
1, cn is reachable at t0, so at t0 the relation hasKey(root, k)
does not hold. The read at t0 is not preceeded by a consistency
changing write and followed by a termination of the lookup so it
is a linearization point if the method returns in line 38. By similar
reasoning, if the operation returns in lines 43 or 44, the read in line
35 is the linearization point..

We have identified linearization points for the lookup, therefore
lookup is linearizable.

3. Operation clean is not preceeded by a write that results in
a consistency change and does not change the consistency of the
Ctrie.

By lemma 14 operations tombCompress and contractParent
do not cause a consistency change. Furthermore, they are only fol-
lowed by calls to tombCompress and contractParent and the
termination of the operation.

Assume that the check in line 13 succeeds after the read in line
11 at time t0. By applying the same reasoning as for lookup above,
the read at time t0 is the linearization point.

Assume CAS in line 14 succeeds at t1. We apply the same
reasoning as for lookup above – this instruction does not change
the consistency of the Ctrie and is followed by a restart of the
operation.

Assume that a node m is read in line 80 at t0. By similar rea-
soning as with lookup above, the read in line 80 is a linearization
point if the method returns in either of the lines 83 or 94.

Assume that the CAS in line 92 succeeds at time t0. By lemma
13, ∃δ > 0∀t, t1 − δ < t < t1 the Ctrie is consistent with an
empty abstract set A and at t1 it is consistent with A \ {k}. This
write is not preceeded by consistency changing writes and followed
only by tombCompress and contractParent which also do not
change consistency. Therefore, it is a linearization point.

We have identified linearization points for the remove, there-
fore remove is linearizable.

Definition 10. Assume that a multiple number of threads are in-
voking a concurrent operation op. The concurrent operation op is
lock-free if and only if after a finite number of thread execution
steps some thread completes the operation.

Theorem 3 (Lock-freedom). Ctrie operations insert, lookup and
remove are lock-free.

The rough idea of the proof is the following. To prove lock-
freedom we will first show that there is a finite number of steps
between state changes. Then we define a space of possible states
and show that there can only be finitely many successful CAS
instructions which do not result in a consistency change. We have
shown in lemmas 13 and 14 that only CAS instructions in lines
14, 26, 133, 149 and 153 do not cause a consistency change.
We proceed by introducing additional definitions and prooving the
necessary lemmas. In all cases, we assume there has been no state
change which is a consistency change, otherwise that would mean
that some operation was completed.

Lemma 15. The root is never a tomb-inode.

Proof. A tomb-inode can only be assigned to in.main of some in
in clean and tombCompress. Neither clean nor tombCompress
are ever called for the in in the root of the Ctrie, as they are pre-
ceeded by the check if parent is different than null.

Lemma 16. If a CAS that does not cause a consistency change
in one of the lines 58, 67, 71, 126, 133, 149 or 153 fails at some
time t1, then there has been a state change since the time t0 when a
respective read in one of the lines 51, 51, 51, 124, 129, 140 or 140
occured. Trivially, the state change preceeded the CAS by a finite
number of execution steps.

Proof. The configuration of nodes reachable from the root has
changed, since the corresponding in.main has changed. There-
fore, the state has changed by definition.

Lemma 17. In each operation there is a finite number of execution
steps between consecutive CAS instructions.

Proof. The ilookup and iinsert operations have a finite number of
executions steps. There are no loops in the pseudocode for ilookup
in iinsert, the recursive calls to them occur on the lower level of
the trie and the trie depth is bound – no non-consistency changing
CAS increases the depth of the trie.

The lookup operation is restarted if and only if there has been
a CAS in line 26 or if clean (which contains a CAS) is called in
ilookup. If clean was not called in ilookup after the check that
the parent is not null at t0, then root was in such that in.main =
null at t0 (it is not tombed by lemma 15). Assuming there has
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been no state change, the CAS will occur in the next recursive call
to lookup.

The insert operation is restarted if and only if there has been
a CAS in line 6 or if clean (which contains a CAS) is called in
iinsert. If clean was not called in iinsert after the check that the
parent is not null at t0, then root was in such that in.main =
null at t0. Assuming no state change, a CAS will occur in the next
recursive call to insert.

The insert operation can also be restarted due to a preceeding
failed CAS in lines 58, 67 or 71. By lemma 16, there must have
been a state change in this case.

In iremove, calls to tombCompress and contractParent
contain no loops, but are recursive. In case they restart themselves,
a CAS is invoked at least once. Between these CAS instructions
there is a finite number of execution steps.

A similar analysis as for lookup above can be applied to the
first phase of remove which consists of all the execution steps
preceeding a successful CAS in line 92. The number of times
tombCompress and contractParent from the iremove in the
cleanup phase is bound by the depth of the trie and there is a finite
number of execution steps between them. Once the root is reached,
remove completes.

Therefore, all operations have a finite number of executions
steps between consecutive CAS instructions, assuming that the
state has not changed since the last CAS instruction.

Corollary 3. The consequence of lemmas 17 and 16 is that there
is a finite number of execution steps between two state changes.
At any point during the execution of the operation we know that
the next CAS instruction is due in a finite number of execution
steps (lemma 17). From lemmas 13 and 14 we know that if a CAS
succeeds, it changes the state. From lemma 16 we know that if the
CAS fails, the state was changed by someone else.

We remark at this point that corollary 3 does not imply that there
is a finite number of execution steps between two operations. A
state change is not necessarily a consistency change.

Definition 11. Let there at some time t0 be a 1-way cnode cn such
that cn.array(0) = in and in.main = sn† where sn† is tombed
or, alternatively, cn is a 0-way node. We call such cn a single tip
of length 1. Let there at some time t0 be a 1-way cnode cn such
that cn.array(0) = cn′ and cn′ is a single tip of length k. We call
such cn a single tip of length k + 1.

Definition 12. The total path length d is the sum of the lengths of
all the paths from the root to some leaf.

Definition 13. Assume the Ctrie is in a valid state. Let n be the
number of reachable null-inodes in this state, t the number of
reachable tomb-inodes, l the number of live inodes, r the number of
single tips of any length and d the total path length. We denote the
state of the Ctrie as Sn,t,l,r,d. We call the state S0,0,l,r,d the clean
state.

Lemma 18. Observe all CAS instructions which never cause a
consistency change and assume they are successful. Assuming there
was no state change since reading in prior to calling clean, the
CAS in line 126 changes the state of the Ctrie from the state
Sn,t,l,r,d to either Sn+j,t,l,r−1,d−1 where r > 0, j ∈ {0, 1} and
d ≥ 1, or to Sn−k,t−j,l,r,d′≤d where k ≥ 0, j ≥ 0, k + j > 0,
n ≥ k and t ≥ j.

Furthermore, the CAS in line 14 changes the state of the Ctrie
from S1,0,0,0,1 to S0,0,0,0,0. The CAS in line 26 changes the state
from S1,0,0,0,1 to S0,0,0,0,0. The CAS in line 133 changes the state
from Sn,t,l,r,d to either Sn+j,t,l,r−1,d−j where r > 0, j ∈ {0, 1}
and d ≥ j, or to Sn−k,t,l,r,d′≤d where k > 0 and n ≥ k. The
CAS in line 149 changes the state from Sn,t,l,r,d to Sn−1,t,l,r+j,d−1

where n > 0 and j ≥ 0. The CAS in line 153 changes the state from
Sn,t,l,r to Sn,t−1,l,r+j,d−1 where j ≥ 0.

Proof. We have shown in lemma 14 that the CAS in line 126 does
not change the number of live nodes. In lemma 3 we have shown
that toCompressed returns a compression of the cnode cn which
replaces cn at in.main at time t.

Provided there is at least one single tip immediately before time
t, the compression of the cnode cn can omit at most one single
tip, decreasing r by one. Omitting a single tip will also decrease d
by one. If it is removing a single tip which is 1-way cnode, it will
create a new null-inode in the trie, hence the n+ j.

Provided there are at least k null-inodes and j tomb-inodes in
the trie, compression may omit up to k null-inodes and up to j
tomb-inodes. Value d may decrease in the new state. If both k and
j are 0, then the state must have changed since a nonlive inode was
detected prior to calling clean.

This proves the statement for CAS in line 126, the rest are either
trivial or can be proved by applying a similar reasoning.

Lemma 19. If the Ctrie is in a clean state and n threads are exe-
cuting operations on it, then some thread will execute a successful
CAS resulting in a consistency change after a finite number of exe-
cution steps.

Proof. Assume that there arem ≤ n threads in the clean operation
or in the cleanup phase of the remove. Since the state is clean,
there are no nonlive inodes, so it is trivial to show that none of these
m threads will invoke a CAS after their next CAS (which will be
unsuccessful). This means that thesem threads will either complete
in a finite number of steps or restart the original operation after a
finite number of steps. From this point on, as shown in lemma 17,
the first CAS will be executed after a finite number of steps. Since
the state is clean, there are no more nonlive inodes, so clean will
not be invoked. Therefore, the first CAS will result in a consistency
change. Since it is the first CAS, it will also be successful.

Lock-freedom. Assume we start in some state Sn,t,l,r,d. We prove
there are a finite number of state changes before reaching a clean
state by contradiction. Assume there is an infinite sequence of
state changes. We now use results from lemma 18. In this infinite
sequence, a state change which decreases dmay occur only finitely
many times, since no state change increases d. After this finitely
many state changes d = 0 so the sequence can contain no more
state changes which decrease d. We apply the same reasoning to
r – no available state change can increase the value of r, so after
finitely many steps r = 0. At this point, we can only apply state
changes which decrease n. After finitely many state changes n = 0.
Therefore, the assumption is wrong – such an infinite sequence of
state changes does not exist.

From corollary 3 there are a finite number of execution steps
between state changes, so there are a finite number of execution
steps before reaching a clean state. By lemma 19, if the Ctrie is in a
clean state, then there are an additional finite number of steps until
a consistency change occurs.

This proves that some operation completes after a finite number
of steps, so all Ctrie operations are lock-free.

Definition 14. A tip is a cnode cn such that it contains at most
one reference to a tomb-inode or an snode. It may contain zero or
more null-inodes, but no cnodes. If the first ancestor cnode is k-way
where k > 1, then the tip has length 1.

The compression operations are designed so that they collect as
many null-inodes as possible, and to prevent that there are tips. We
now prove that they ensure that there are no tips in the trie.
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Theorem 4 (Compactness). Assume all remove operations have
completed execution. Then there is at most 1 tip of length 1 in the
trie.

Compactness. Assume that at some inode in in the trie some
remove operation created a tip cn at time t0 by invoking a CAS
instruction in line 92. The remove operation then repeatedly tries
to replace the cn with a new node mwt such that mwt is a weak
tombing of cn. It stops in 2 cases.

If at some time t1 > t0 the operation detects that in is not a tip,
it will stop. If in is not a tip, then it can safely abort the compression
operation, since only some other remove operation performing a
successful CAS in line 92 at some time t2 > t1 can create a tip,
and that remove operation will invoke the compression again.

If at some time t1 > t0 the CAS in line 133 succeeds, then
in will become nonlive – no longer a tip. Therefore, by lemma
1 in does not change the value of in.main ∀t > t0, and all
modifications to the values in that branch must occur at the first
inode ancestor of in – its parent. Method contractParent is
called next in this case. If it finds that bmp�flag = 0 or sub 6= in,
then in is no longer reachable, so there are no more tips created by
the current remove operation at in – some other remove operation
may create a tip after t1 at the same level and prefix as in, but in
this case subsequent operations will be responsible for removing
that tip. If in is reachable, a null-inode is removed from the cnode
below the parent (line 149) or a tomb-inode is resurrected into an
snode (line 153). Notice that this can create a tip one level higher,
but the whole procedure is repeated one level above for this reason.

The only case where we do not invoke tombCompress is the
root, where parent = null. The root can, therefore, contain at
most 1 tip of length 1.
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