
Query Rewriting with Symmetric Constraints

Christoph Koch

Database and Artificial Intelligence Group
Technische Universität Wien, A-1040 Vienna, Austria

koch@dbai.tuwien.ac.at

Abstract. We address the problem of answering queries using expres-
sive symmetric inter-schema constraints which allow to establish map-
pings between several heterogeneous information systems. This prob-
lem is of high relevance to data integration, as symmetric constraints
are essential for dealing with true concept mismatch and are general-
izations of the kinds of mappings supported by both local-as-view and
global-as-view approaches that were previously studied in the literature.
Moreover, the flexibility gained by using such constraints for data inte-
gration is essential for virtual enterprise and e-commerce applications.
We first discuss resolution-based methods for computing maximally con-
tained rewritings and characterize computability aspects. Then we pro-
pose an alternative but semantically equivalent perspective based on a
generalization of results relating to the database-theoretic problem of
answering queries using views. This leads to a fast query rewriting algo-
rithm, which has been implemented and experimentally evaluated.

1 Introduction

This paper addresses the query rewriting problem in semantic data integration in
a very general form, as a proper generalization of the well-known local-as-view
(e.g., [17,11,2]) and global-as-view approaches (e.g., [10,1,5]). To start some-
where, we focus on the relational case. Given a conjunctive query Q, we attempt
to find a maximally contained rewriting in terms of a set of distinguished source
predicates S only – under a given set of constraints, the positive relational queries
as the output query language (i.e., a rewriting is a set of conjunctive queries),
and the classical logical semantics. Under the classical semantics,

1. for each conjunctive query Q′ in the maximally contained rewriting of Q, the
constraints taken as a logical theory imply Q ⊇ Q′ and Q′ uses predicates
of S only, and

2. for each conjunctive query Q′′ over predicates in S only for which the con-
straints imply that Q ⊇ Q′′, there is a conjunctive query Q′ in the rewriting
such that the constraints imply Q′ ⊇ Q′′.

We support inter-schema constraints in the form of what we call Conjunctive
Inclusion Dependencies (cind’s), containment relationships between conjunctive
queries. We refer to cind’s as symmetric because they are syntactically sym-
metric with respect to the inclusion resp. implication symbol, while for instance
materialized view definitions used for local-as-view query rewriting are not.

T. Eiter and K.-D. Schewe (Eds.): FoIKS 2002, LNCS 2284, pp. 130–147, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Query Rewriting with Symmetric Constraints 131

Example 1.1. Consider a conjunctive query

Q(x1)← parent(x1, x2), parent(x2, x3), parent(x3, x4).

asking for great-grandparents in terms of a schema which contains a predi-
cate “parent”. Now let “parent” be a “logical” relation to which database re-
lations first need to be mapped before any queries over it can be answered.
Let “parent” be conceived to represent parent-child relationships between liv-
ing persons only. We want to rewrite Q into a query over source predicates in
S = {grandparent, alive}, where “grandparent” contains grandparent relation-
ships between persons of which the grandparents may possibly have deceased
and the source relation “alive” holds persons still alive. We may assert the cind

{〈x, z〉 | ∃y : parent(x, y)∧ parent(y, z)} ⊇ {〈x, z〉 | grandparent(x, z)∧ alive(x)}
between the schema of “parent” and S, i.e., a mapping formulated as a contain-
ment relationship between conjunctive queries. Then,

Q′(x1)← grandparent(x1, x3), alive(x1), grandparent(x3, z), alive(x3).

is the maximally contained rewriting of Q, i.e. the largest query logically con-
tained in Q with respect to the constraint given (and thus cannot return any
wrong answers) that can be computed by only considering query and constraint,
but not the data in the relations of S, and which only uses relations from S. �

Note that the problem we attack in this paper is different from work on
query answering using integrity constraints [8,9,12] or the problem of optimizing
queries in mediated systems. Our constraints are meant to encode mappings
between the schemata of several information systems as in [4,3]; as such, they
compare to materialized view definitions in the local-as-view approach rather
than to classical integrity constraints.

cind’s may represent mappings between complex networks of information
systems in which each information system may have its own schema and make
use of integrated data. We are thus not restricted to a single layer of constraints
(which map sources against a so-called “global” schema) as in the local-as-view
approach. Starting from a set of actual source relations which contain data, views
or “logical relations” can be defined and used to extend any of the schemata. To
facilitate practical usability, a logical relation may map to sources through several
indirections. Such an architecture is essential for large and open environments
such as experienced in the modern e-economy [4,14].

The relevance of query rewriting with symmetric constraints stems from the
observation that both local-as-view and global-as-view approaches to data inte-
gration are unable to deal with concept mismatch requiring mappings between
pairs of complex query expressions. This problem is particularly common in
complex technical domains [14].

Example 1.2. Assume that we have a number of sources holding information
about computer models as-built (in fact, we only consider computer mainboards

132 Christoph Koch

in this short example), their constituent parts, and technical specifications. We
want to integrate these sources against a reference design view R with predicates
“mb” (for mainboards), “cpu”, “cache”, “conn” (for connections or part-of rela-
tionships between component parts), and possibly others. Let a source schema
S represent mainboards using a CPU model called “p1” which has an on-chip
cache. We cannot directly map cache components in this example, but we can
map characteristics represented by both schemata (say, MHz rates r and cache
sizes s) to mainboards and CPUs and mediate useful queries over R. We encode
the desired mapping using the cind

{〈x, y, r, s〉 | ∃z : R.mb(x), R.conn(x, y), R.conn(x, z), R.cpu(y, r), R.cache(z, s)} ⊇
{〈x, y, r, s〉 | S.mb(x), S.conn(x, y), S.p1(y, r, s)} �

Local-as-view and global-as-view approaches assume that mediated schemata
can be designed beforehand using intuitions concerning the likely sources to be
added to an integration system later. Both large data integration settings and
changing requirements render such an assumption unsustainable (see [14]). Our
approach allows to “patch” local-as-view or global-as-view integration systems
when sources need to be integrated whose particularities have not been foreseen
when designing the schemata against which data are to be integrated.

The only previous work dealing with symmetric constraints is the descrip-
tion logics approach to data integration (e.g., [3,4]), which, however, requires
high-complexity reasoning over the data (thus, there is a scalability issue) and
to import all data to be integrated into the description logics reasoner. This is
usually not an option in open e-economy or WWW data integration environ-
ments. Solving the integration problem on the level of queries and mappings
only is essential for being able to deal with large amounts of data and restricted
(e.g., screen-scraping) query interfaces.
Contributions and Structure. After some preliminaries (Section 2), we
discuss a simple resolution-based method for generating rewritings and provide
characterizations of the main theoretical properties of our problem in Section 3.
Unfortunately, positive (and thus non-recursive) maximally contained rewritings
may be infinite and the major decision problems (such as the non-emptiness or
boundedness of the result) are undecidable. However, given that the predicate
dependency graph (with respect to the inclusion direction) of a set of constraints
is acyclic, we can guarantee to find the maximally contained rewritings, which
are finite. The acyclic case is a proper generalization of both local-as-view and
global-as-view approaches.

In Section 4, we propose an alternative algorithm for computing maximally
contained rewritings which is based on a generalization of the MiniCon Algo-
rithm [18] for the problem of answering queries using views, and demonstrate its
soundness and completeness. When using this algorithm, all intermediate rewrit-
ings are guaranteed to be function-free and thus conjunctive queries. Because
of that, one can make use of classical database techniques for optimizing the
rewriting process. Section 5 presents refinements of the algorithm of Section 4,
which we have implemented in a practical system.

Query Rewriting with Symmetric Constraints 133

We evaluate our implementation, which is publicly available, experimentally
in Section 6. It turns out that it scales to thousands of constraints and realistic
applications. Section 7 concludes with a discussion of our new algorithm.

2 Preliminaries

We define a conjunctive inclusion dependency (cind) as a constraint of the form
Q1 ⊆ Q2 where Q1 and Q2 are conjunctive queries of the form

{〈x1, . . . , xn〉 | ∃xn+1 . . . xm : (p1(X̄1) ∧ . . . ∧ pk(X̄k))}
with a set of distinct1 unbound variables x1, . . . , xn, without arithmetic compar-
isons, but possibly with constants. We may write {Q1 ≡ Q2} as a short form of
{Q1 ⊆ Q2, Q1 ⊇ Q2}. The normal form NF (Σ) of a set Σ of cind’s – i.e., Σ
taken as a logical formula transformed into (implication) normal form – is a set
of Horn clauses of a simple pattern. Every cind σ of the form Q1 ⊆ Q2 with

Q1 = {〈x1, . . . , xn〉 | ∃xn+1 . . . xm : v1(X̄1) ∧ . . . ∧ vk(X̄k)}
Q2 = {〈y1, . . . , yn〉 | ∃yn+1 . . . ym′ : p1(Ȳ1) ∧ . . . ∧ pk′(Ȳk′)}

translates to k′ Horn clauses pi(Z̄i) ← v1(X̄1) ∧ . . . ∧ vk(X̄k)). where each
zi,j of Z̄i is determined as follows: If zi,j is a variable yh with 1 ≤ h ≤ n, replace
it with xh. If zi,j is a variable yh with n < h ≤ m′, replace it with Skolem
function fσ,yh

(x1, . . . , xn) (the subscript assures that the Skolem functions are
unique for a given constraint and variable).

Example 2.1. Let σ be the cind

{〈y1, y2〉 | ∃y3 : p1(y1, y3)∧ p2(y3, y2)} ⊇ {〈x1, x2〉 | ∃x3 : v1(x1, x2)∧ v2(x1, x3)}
Then, NF ({σ}) is

p1(x1, fσ,y3(x1, x2))← v1(x1, x2) ∧ v2(x1, x3).
p2(fσ,y3(x1, x2), x2)← v1(x1, x2) ∧ v2(x1, x3). �

Whenever a cind translates into a function-free clause in normal form, we
write it in datalog notation. This is the case for cind’s {〈X̄〉 | p(X̄)} ⊇ Q, i.e.,
where the subsumer queries are ∃-free single-literal queries.

The dependency graph of a set C of Horn clauses is the directed graph con-
structed by taking the predicates of C as nodes and adding, for each clause
in C, an edge from each of the body predicates to the head predicate. The
diameter of a directed acyclic graph is the longest directed path occurring in
it. The dependency graph of a set of cind’s Σ is the dependency graph of
the logic program NF (Σ). A set of cind’s is cyclic if its dependency graph
is cyclic. An acyclic set Σ of cind’s is called layered if the predicates appearing
in Σ can be partitioned into n disjoint sets P1, . . . , Pn such that there is an
index i for each cind σ : Q1 ⊆ Q2 ∈ Σ such that Preds(Body(Q1)) ⊆ Pi and
Preds(Body(Q2)) ⊆ Pi+1 and Sources = P1.
1 Note that if we would not require unbound variables in constituent queries to be

distinct, the transformation into normal form would result in Horn clauses with
equality atoms as heads.

134 Christoph Koch

3 Query Containment and Rewriting

Let us begin with a straightforward remark on the containment problem for
conjunctive queries under a set of cind’s Σ, which, since they are themselves
containment relationships between conjunctive queries, is the implication prob-
lem for this type of constraint. If we want to check a containment {〈X̄〉 | ∃Ȳ :
φ(X̄, Ȳ)} ⊇ {〈X̄〉 | ∃Z̄ : ψ(X̄, Z̄)} of two conjunctive queries under Σ by refu-
tation (without loss of generality, we assume Ȳ and Z̄ to be disjoint and the
unbound variables in the two queries above to be the same, X̄), we have to show
Σ,¬(∀X̄ : (∃Ȳ : φ(X̄, Ȳ)) ← (∃Z̄ : ψ(X̄, Z̄))) � ⊥ i.e. the inconsistency of
the constraints and the negation of the containment taken together. In normal
form, ψ becomes a set of ground facts where all variables have been replaced
one-to-one by new constants and φ becomes a clause with an empty head, where
all distinguished variables xi have been replaced by constants also used in ψ.

Example 3.1. For proving

Σ � {〈x1, x2〉 | ∃x3 : (p1(x1, x3)∧p2(x3, x2))} ⊇ {〈y1, y2〉 | ∃y3 : (r1(y1, y3)∧r2(y3, y2))}

for a set of cind’s Σ, we have to create the logic program

P := NF (Σ) ∪ { ← p1(α1, x3) ∧ p2(x3, α2). r1(α1, α3)← . r2(α3, α2)← . }

where α1, α2, α3 are constants not appearing elsewhere. By the correctness of
resolution for logic programs, the containment above holds iff there is a refutation
of the goal ← p1(α1, x3) ∧ p2(x3, α2). with the remaining clauses in P. �

Definition 3.1. A set of conjunctive queries Q is a maximally contained posi-
tive rewriting of a conjunctive query Q with respect to a set of cind’s Σ and a
set of source predicates S iff

1. for each Q′ ∈ Q, Σ � Q ⊇ Q′ and Preds(Q′) ⊆ S and
2. for each conjunctive query Q′′ with Σ � Q ⊇ Q′′ and Preds(Q′′) ⊆ S, there

is a Q′ ∈ Q such that Σ � Q ⊇ Q′ ⊇ Q′′. �

In the finite case, a minimal2 such set Q is of course unique up to reordering
and variable renaming.

For simplicity, we assume that no source predicates appear in any heads of
Horn clauses in NF (Σ) throughout this paper. This does not cause any loss
of generality, since we can always replace a source predicate that violates this
assumption by a new virtual predicate in all cind’s and then add a cind that
maps the source predicate to that new virtual predicate.

Informally, we can obtain such a maximally contained rewriting by a method
based on SLD resolution in the following way. Given a conjunctive query Q, a
set of cind’s Σ, and a set of source predicates S, we first create a logic program
2 A set of conjunctive queries is minimal if and only if the constituent queries are

individually minimal and pairwise non-redundant.

Query Rewriting with Symmetric Constraints 135

NF (Σ) and add a unit clause s(X̄) ← . (with a tuple X̄ of distinct variables)
for each predicate s ∈ S. Then we try to refute the body of Q. (Differently from
what we do for containment, we do not freeze any variables.) If we have found
a refutation with a most general unifier θ, we collect the unit clauses used and
create a Horn clause with θ(Head(Q)) as head and the application of θ to the
copies of unit clauses involved in the proof as body. If this clause is function-free,
we output it. After that we go on as if we had not found a “proof” to compute
more rewritings. Given an appropriate selection rule or a breath-first strategy
for computing derivations, it is easy to see that this method will compute a
maximally contained rewriting of Q in terms of multi-sets of conjunctive queries
in the sense that for each conjunctive query Q′′ contained in Q, a subsumer Q′

will eventually be produced s.t. Σ � Q ⊇ Q′ ⊇ Q′′. See Example 4.2 for query
rewriting by an altered refutation proof.

Computability and Complexity.

Theorem 3.1. Let Σ be a set of cind’s, S a set of predicates, and Q and Q′ be
conjunctive queries. Then the following problems are undecidable:

1. Σ � Q ⊆ Q′, the containment problem.
2. ∃Q′ : Σ � Q ⊇ Q′ s.t. Preds(Q′) ⊆ S, i.e. it is undecidable whether the

maximally contained rewriting of a conjunctive query Q w.r.t. Σ and S is
nonempty (that is, it contains at least one conjunctive query). �

Moreover, the boundedness problem for maximally contained positive rewrit-
ings is undecidable, as any datalog program can be written as a set of cind’s.

We next give an intuition for the undecidability results of Theorem 3.1. Post’s
Correspondence Problem (PCP, see e.g. [20]), a simple and well-known unde-
cidable problem, is defined as follows. Given nonempty words x1, . . . , xn and
y1, . . . , yn over the alphabet {0, 1}, the problem is to decide whether there are
indexes i1, . . . , ik (with k > 0) s.t. xi1xi2 . . . xik

= yi1yi2 . . . yik
. Pairs of words

〈xi, yi〉 are also called dominos. In the following example, we show, by an exam-
ple, an encoding of PCP in terms of our query rewriting problem.

Example 3.2. Let s be a source, q ← inc(0, 0). a boolean query, and
inc(x, y)← one(x, x1), zero(x1, x2), one(x2, x3), one(y, y1), inc(x3, y1). (1)
inc(x, y)← one(x, x1), zero(y, y1), one(y1, y2),

one(y2, y3), one(y3, y4), zero(y4, y5), inc(x1, y5). (2)
inc(x, y)← dec(x, y). (3)
{〈x, y〉 | dec(x, y)} ⊆ {〈x, y〉 | ∃x1, y1 : zero(x, x1) ∧ zero(y, y1) ∧ dec(x1, y1)} (4)
{〈x, y〉 | dec(x, y)} ⊆ {〈x, y〉 | ∃x1, y1 : one(x, x1) ∧ one(y, y1) ∧ dec(x1, y1)} (5)
dec(0, 0)← s. (6)

six cind’s of which the leading two stand for the instance

I = {〈x1 = 101, y1 = 1〉, 〈x2 = 1, y2 = 01110〉}

136 Christoph Koch

and the remaining four constitute the core PCP encoding. The constraints (1)
and (2) “guess” two words represented as chains of “one” and “zero” atoms by
the nondeterminism by which resolution (or MCD rewriting using Algorithm 4.1,
for that matter) chooses a clause to resolve an “inc” atom, (3) finalizes the guess
phase, constraints (4) and (5) “check” whether the two words are equal (which
indicates the existence of a solution to the PCP problem) by proceeding from
the right to the left, and constraint (6) “terminates” if the search was successful.

For showing the PCP instance I satisfiable, one can compute a contained
rewriting by applying the constraints in the following order (we only describe
the proof but no dead-end branches): (guess phase) (1), (2), (1), (3), (check
phase) (5), (4), (5), (5), (5), (4), (5), (termination) (6)3. We find a solution
x1x2x1 = y1y2y1 = 1011101 to I. Generally, a PCP instance is satisfiable iff
the maximally contained rewriting is {q ← s.}. (Furthermore, a PCP instance
is satisfiable iff Σ � {〈〉 | inc(0, 0)} ⊇ {〈〉 | s}.) �

For the important case that Σ is acyclic, the above problems are decidable
(and those of Theorem 3.1 are NEXPTIME -complete).

Theorem 3.2. Let Σ be an acyclic set of cind’s and Q and Q′ be conjunctive
queries. Then the containment problem Σ � Q ⊆ Q′ and the query rewriting
problem for conjunctive queries (under acyclic sets of cind’s) are NEXPTIME-
complete. �

Membership in NEXPTIME follows from the more general result on nonre-
cursive logic programming [7,21] and hardness can be shown by a modification
of the reduction from the TILING problem of [7]. For lack of space, we have
refer to [14] for a proof.

4 Generalizing Local-as-View Rewriting

The results of this section generalize from work on algorithms for the problem of
answering queries using views [16], for instance the Bucket Algorithm [17], the
Inverse Rules Algorithm [8], OCCAM [15], the Unification-join Algorithm [19],
and particularly the MiniCon Algorithm [18]. For space reasons, we introduce
necessary notions as needed and refer to [18] for a discussion and comparison of
such algorithms.

We adapt the notion of MiniCon descriptions [18] to our framework based
on query rewriting with cind’s decomposed into Horn clauses.

Definition 4.1. (Inverse MiniCon Description). Let Q be a conjunctive query
with n = |Body(Q)| and Σ be a set of cind’s. An (inverse) MiniCon description
for Q is a pair of a tuple 〈c1, . . . , cn〉 ∈ (NF (Σ) ∪ {ε})n with at least one ci �= ε
and a substitution θ that satisfies the following two conditions.
3 One can easily verify this proof using the intuition of fully replacing parts of (inter-

mediate) goals by subsumed queries of cind’s whose subsumer queries fully match
those parts. Due to the special structure of the cind’s, at any point, all MCDs are
“isomorphic” to some subsumer query of a cind.

Query Rewriting with Symmetric Constraints 137

1. For the most general unifier θ �= fail arrived at by unifying the heads of
all the ci �= ε with Bodyi(Q), the unfolding of Q and 〈c1, . . . , cn〉 under θ is
function-free and

2. there is no tuple 〈c′1, . . . , c′n〉 ∈ {c1, ε}× . . .×{cn, ε} with fewer entries differ-
ent from ε than in 〈c1, . . . , cn〉, such that the unfolding of Q with 〈c′1, . . . , c′n〉
is function free. �

Example 4.1. Consider again the query Q and the constraint (which we now call
σ) of Example 1.1. NF ({σ}) is

c1 : parent(x, fσ,y(x, z))← grandparent(x, z) ∧ alive(x).
c2 : parent(fσ,y(x, z), z)← grandparent(x, z) ∧ alive(x).

We have two MCDs, 〈〈c1, c2, ε〉, θ〉 with the unifier

θ = {[x1/x
(1)], [x2/fσ,y(x(1), z(1))], [x2/fσ,y(x(2), z(2))], [x3/z

(2)]}
and 〈〈ε, ε, c1〉, θ′〉 with θ′ = {[x3/x

(3)], [x4/fσ,y(x(3), z(3))]}. Note that 〈c1, c2, c1〉
violates condition 2 of Definition 4.1, while all other MCD candidates violate
condition 1. �

Note that the inverse MiniCon descriptions of Definition 4.1 exactly coincide
with the MCDs of [18] in the local-as-view case. Algorithm 4.1 shown below
can easily be reformulated so as to use a slight generalization of the notation of
[18] to cover clause bodies consisting of several atoms. That way, one can even
escape the need to transform cind’s into Horn clauses and can reason completely
without the introduction of function terms. However, to support the presentation
of our results (particularly the equivalence proof of the following section), we do
not follow this path in this paper.

Algorithm 4.1 (Query rewriting with MCDs).
Input. A conjunctive query Q, a set of cind’s Σ, and a set S of source predicates
Output. A maximally contained rewriting of Q w.r.t. Σ and S

Qs := [Q];
while Qs is not empty do {

[Q,Qs] := Qs;
if Preds(Q) ⊆ S then output Q;
else {
M := compute the set of all inverse MCDs for Q and Σ;
for each 〈〈c1, . . . , cn〉, θ〉 ∈M do {
Q′ := unfold(Q, θ, 〈c1, . . . , cn〉);
Qs := [Qs,Q′];

} } } �

In Algorithm 4.1, maximally contained rewritings of a conjunctive query Q
are computed by iteratively unfolding queries with single MiniCon descriptions4

4 In this respect, Algorithm 4.1 differs from the MiniCon algorithm for the problem
of answering queries using views, where MCDs are packed so as to rewrite all body
atom at once.

138 Christoph Koch

until a rewriting contains only source predicates in its body. In order to handle
cyclic sets of cind’s (and attain completeness), we manage intermediate rewrit-
ings using a queue and, consequently, follow a breath-first strategy.

The function “unfold” accepts a conjunctive query Q with |Body(Q)| =
n, a unifier θ and a tuple of n Horn clauses or ε s.t. if ci �= ε, θ unifies
Bodyi(Q) with Head(ci). It produces a new clause from Q (which in fact is
again guaranteed to be function-free and thus a conjunctive query) by replac-
ing Head(Q) by θ(Head(Q)) and each of the non-source body atoms Bodyi(Q),
with ci �= ε, by θ(Body(ci)). (i.e. after applying substitutions from the uni-
fier). If ci = ε, Bodyi(Q) is replaced by θ(Bodyi(Q)). Of course, for each MCD
〈〈. . . , ci, . . . , cj , . . .〉, θ〉 we have θ(Body(ci)) = θ(Body(cj)), and thus only one
rule body needs to be added for each MCD during unfolding.

Theorem 4.2. Let Q be a conjunctive query, Σ be a set of cind’s, and S be a set
of “source” predicates. Then, for each conjunctive query Q′ with Preds(Q′) ⊆ S
we have Σ � Q ⊇ Q′ iff Algorithm 4.1 eventually computes a conjunctive query
Q′′ with Preds(Q′′) ⊆ S and Σ � Q ⊇ Q′′ ⊇ Q′. �

In other words, Algorithm 4.1 enumerates the maximally contained positive
rewriting of Q under Σ in terms of S. Note that given our requirement that
predicates of S do not appear in heads ofNF (Σ), we of course have Σ � Q′′ ⊇ Q′

iff Q′′ ⊇ Q′ (that is, classical conjunctive query containment [6]).
It is easy to see that the rewriting process of Algorithm 4.1 simply is equiv-

alent to resolution where only some of the subgoals of a goal may be rewritten
in a single step and each intermediate rewriting has to be function-free. Every
proof generated by Algorithm 4.1 is thus a correct resolution proof. Thus,

Lemma 4.1. (Soundness of Algorithm 4.1) Let Q be a conjunctive query, Σ a
set of cind’s, and S a set of source predicates. Then, for each conjunctive query
Q′ generated by Algorithm 4.1 for Q, Σ, and S, we have Σ � Q ⊇ Q′ and
Preds(Q′) ⊆ S. �

Completeness is a consequence of the following result.

Lemma 4.2. Let P be a resolution proof establishing a logically contained
rewriting of a conjunctive query Q under a set of cind’s Σ. Then, there is always
a proof P ′ establishing the same contained rewriting such that each intermediate
rewriting is function-free. �

Proof. Let us assume that each new subgoal a derived using resolution receives
an identifying index idx(a). Then, given the proof P, there is a unique next
premise to be applied cidx(a) out of the Horn clauses in NF (Σ) for each subgoal
a. This is the Horn clause from our constraints base that will be unfolded with
a to resolve it in P.

Note that the proof P is fully described by some unique indexing idx(a) of all
subgoals a appearing in the proof (while we do not need to know or remember
the atoms themselves), the clauses cidx(a), and a specification of which indexes
the subgoals in the bodies of these clauses are attributed with when they are
unfolded with subgoals.

Query Rewriting with Symmetric Constraints 139

In our original proof P, each subgoal a of a goal is rewritten with cidx(a)
in each step, transforming g0, the body of Q and at the same time the initial
goal, via g1, . . . , gn−1 to gn, the body of the resulting rewriting. We maintain
the head of Q separately across resolution steps and require that variables in the
head are not unified with function terms, but apply other unifications effected
on the variables in the goals in parallel with the rewriting process. Already P
must assure at any step that no variable from the head of Q is unified with a
function term, as otherwise no conjunctive query can result.

We know that resolution remains correct no matter in which order the next
due resolution steps cidx(a) are applied to the subgoals, and that we even may
unfold, given e.g. a goal with two atoms, the first goal and then a subgoal from
the unfolding of that first goal (and may do that any finite number of times)
before we unfold our second original subgoal.

Coming back to deriving a function-free proof starting from P, all we now
have to show is that at any intermediate step of a resolution proof with cind’s,
a nonempty set of subgoals X = {ai1 , . . . , aik

} ⊆ gi of the function-free interme-
diate goal gi exists such that, when only these subgoals are unfolded with their
next due premises to be applied cidx(ai1), . . . , cidx(aik

), the overall new goal gi+1

produced will be function-free5. The emphasis here lies on finding a nonempty
such set X, as the empty set automatically satisfies this condition. If we can
guarantee that such a nonempty set always exists until the function-free proof
has been completed, our lemma is shown.

Let there be a dependency graph Ggi = 〈V,E〉 for each (intermediate) goal
gi with the subgoals as vertices and a directed edge 〈a, b〉 ∈ E iff a contains
a variable v that is unified with a function term f(X̄) in Head(cidx(a)) and v
appears in b and is unified with a variable (rather than a function term with the
same function symbol) in Head(cidx(b)). (Intuitively, if there is an edge 〈a, b〉 ∈
E, then b must be resolved before a if a proof shall be obtained in which all
intermediate goals are function-free.) As mentioned, query heads are guaranteed
to remain function-free by the correctness of P. For instance, the dependency
graph of the goal ← a(x)(0), b(x, y)(1), c(y, z)(2), d(z, w)(3). with

c0 : a(x)← a′(x). c1 : b(f(x), x)← b′(x).
c2 : c(x, x)← c′(x). c3 : d(g(x), x)← d′(x).

would be G = 〈{0, 1, 2, 3}, {〈1, 0〉, 〈3, 2〉}〉, i.e. the first subgoal must be resolved
before the second and the third subgoal must be resolved before the fourth.

We can now show that such a dependency graph G is always acyclic. In fact,
if it were not, P could not be a valid proof, because unification would fail when
trying to unify a variable in such a cycle with a function term that contains that
variable. This is easy to see because each function term given our construction
used for obtaining Horn clauses from cind’s contains all variables appearing in
that same (head) atom. Consider for instance

5 The correctness of the proof P alone assures that the query head will be function-free
as well.

140 Christoph Koch

q(x)← a(x, y), a(y, z), b(w, z), b(z, y).

{〈x, y〉 | ∃z : a(x, z) ∧ a(z, y)} ⊇ {〈x, y〉 | s(x, y)}
{〈x, y〉 | ∃z : b(x, z) ∧ b(z, y)} ⊇ {〈x, y〉 | s(x, y)}

where s is a source. There is no rewriting under our two semantics, because the
dependency graph of our above construction is cyclic already for our initial goal,
the body of q.

However, since G is acyclic given a proof P, we can unfold a nonempty set of
atoms (those unreachable from other subgoals in graph G) with our intermediate
goals until the proof has been completed. �

As an immediate consequence of Lemma 4.2 (which assures that for each
resolution proof P showing Σ � Q ⊇ Q′ we can produce an equivalent function-
free proof P ′ that will be covered by Algorithm 4.1), we have

Lemma 4.3. (Completeness of Algorithm 4.1) If Σ � Q ⊇ Q′ and Preds(Q′) ⊆
S, then Algorithm 4.1 computes a conjunctive query Q′′ s.t. Σ � Q ⊇ Q′′ ⊇ Q′.

�

Lemma 4.1 and Lemma 4.3 taken together imply Theorem 4.2. Let us visu-
alize the implications of Lemma 4.2 with an example.

Example 4.2. Given a boolean conjunctive query q ← b(x, x, 0). and the follow-
ing set of Horn clauses which, as is easy to see, are the normal form of a set of
cind’s, which we do not show in order to reduce redundancy.
b(x′, y′, 0)← a(x, y, 2), eε(x, x′), e1(y, y′). c0

b(x′, y′, 2)← a(x, y, 0), e1(x, x′), e0(y, y′). c4, c10, c11

b(x′, y′, 0)← a(x, y, 1), e0(x, x′), eε(y, y′). c12, c18, c19

b(x′, y′, 1)← a(x, y, 0), e1(x, x′), e1(y, y′). c20, c25

eε(x, x)← v(x). c2, c17

e1(x, f1(x))← v(x). c3, c8, c23, c24

e0(x, f0(x))← v(x). c2, c17

v(x)← b(x, y, s). c5, c13, c21

v(y)← b(x, y, s). c6, c14

a(x, y, s)← b(x, y, s). c1, c7, c15

where x, y, x′, y′, s are variables. Let P be the resolution proof

(0) ← b(x, x, 0)(0).
(1) ← a(x, y, 2)(1), eε(x, z)(2), e1(y, z)(3).
(2) ← b(f1(y), y, 2)(4), v(f1(y))(5), v(y)(6).
(3) ← a(x1, y1, 0)(7), e1(x1, f1(y))(8), e0(y1, y)(9), b(f1(y), v1, 2)(10),

b(v2, y, 2)(11). †10, †11
(4) ← b(f0(y1), y1, 0)(12), v(f0(y1))(13), v(y1)(14).
(5) ← a(x2, y2, 1)(15), e0(x2, f0(y1))(16), eε(y2, y1)(17), b(f0(y1), v1, 0)(18),

b(v2, y1, 0)(19). †18, †19
(6) ← b(y1, y1, 1)(20), v(y1)(21).
(7) ← a(x, x, 0)(22), e1(x, f1(x))(23), e1(x, f1(x))(24), b(y1, v1, 1)(25). †25
(8) ← a(x, x, 0)(22), v(x)(26).

Query Rewriting with Symmetric Constraints 141

which rewrites our query into q ← a(x, x, 0), v(x). and in which we have su-
perscribed each subgoal with its assigned index. In each resolution step, a goal
← A(i1), . . . , A(in). is unfolded with the clauses ci1 , . . . , cin

, as annotated above.
To keep things short, we have eliminated subgoals (marked with a dagger † and
their index) that are redundant with a different branch of the proof. As claimed
in our theorem, P can be transformed into the following proof in which each
intermediate step is function-free.

(0) ← b(x, x, 0)(0).
(1) ← a(x, y, 2)(1), eε(x, z)(2), [e1(y, z)(3)].
(2) ← b(x, y, 2)(4), v(x)(5), [e1(y, x)(3)].
(3) ← a(x1, y1, 0)(7), e1(x1, x)(8), e0(y1, y)(9), b(x, v1, 2)(10), [e1(y, x)(3)]. †10
(4) ← a(x1, y1, 0)(7), e1(x1, x)(8), [e0(y1, y)(9)], � [e1(y, x)(3)�].
(5) ← b(y, y1, 0)(12), v(y)(14), [e0(y1, y)(9)].
(6) ← a(x2, y2, 1)(15), e0(x2, y)(16), eε(y2, y1)(17), b(y, v1, 0)(18), � [e0(y1, y)(9)�]. †18
(7) ← b(y1, y1, 1)(20), v(y1)(21).
(8) ← a(x3, y3, 0)(22), e1(x3, y1)(23), e1(y3, y1)(24), b(y1, v1, 1)(25). †25
(9) ← a(x3, x3, 0)(22), v(x3)(26).

The subgoals that we have marked with brackets [] had been blocked at a
certain step to keep the proof function-free. �

Note that Example 4.2 constitutes another encoding of PCP that shows the
undecidability of query rewriting with cind’s. The PCP instance

I = {〈x1 = 10, y1 = 1〉, 〈x2 = 1, y2 = 01〉}
is encoded in the first four Horn clauses, which can be viewed as realizing a
nondeterministic automaton that accepts two words xi1 . . . xik

and yi1 . . . yik
if

they can be constructed using the dominos of I. In the start state s0, a domino
〈xi, yi〉 out of I is chosen. The symbols in xi and yi are then accepted one by
one. If one of the two words xi, yi is longer than the other one, the shorter one
is appended ε symbols. We return to the state s0 no sooner than all symbols of
a domino have been accepted. For the instance of Example 4.2, we thus have an
automaton with three states.

�� �� ����
〈1, 1〉

〈0, ε〉〈ε, 1〉

〈1, 0〉

s0 s1s2

The encoding again allows to show the undecidability of our query rewriting
problem (A PCP instance is satisfiable iff the maximally contained rewriting
of q ← b(x, x, 0). under Σ is nonempty.) as well as the undecidability of query
containment under a set of cind’s. (A PCP instance is satisfiable if and only if
Σ � {〈〉 | ∃x : v(x) ∧ a(x, x, 0)} ⊆ {〈〉 | ∃x : b(x, x, 0)}.)

Of course this correspondence between function-free and general resolution
proofs does not hold for Horn clauses in general.

Example 4.3. The boolean query q ← a1(u, v), b1(u, v). and the Horn clauses

142 Christoph Koch

a1(f(x), y) ← a2(x, y). a2(x, g(y)) ← a3(x, y).
b1(x, g(y)) ← b2(x, y). b2(f(x), y) ← b3(x, y).

taken together entail q ← a3(x, y), b3(x, y). even though one cannot arrive
at a function-free intermediate rewriting by either unfolding the left subgoal
(resulting in q ← a2(x, y), b1(f(x), y).) or the right subgoal (which would
result in q ← a1(x, g(y)), b2(x, y).) of our query first, neither by unfolding
both at once (resulting in q ← a2(x, g(y)), b2(f(x), y).). �

5 Implementation

Our implementation is based on Algorithm 4.1, but makes use of several opti-
mizations. Directly after parsing, Horn clauses whose head predicates are un-
reachable from the predicates of the query are filtered out. The same is done
with clauses not in the set X computed by

X := ∅;
do X := X ∪

{c ∈ C | Preds(Body(c)) ⊆ (Sources ∪ {Pred(Head(c′)) | c′ ∈ X})};
while X changed;

We have implemented the simple optimizations known from the Bucket Al-
gorithm [17] and the Inverse Rules Algorithm [11] for answering queries using
views which are used to reduce the branching factor in the search process. Be-
yond that, MiniCon descriptions are computed with an intelligent backtracking
method that always chooses to cover subgoals first for which this can be done
deterministically (i.e., the number of Horn clauses that are candidates for un-
folding with a particular subgoal can be reduced to one), thereby reducing the
amount of branching.

In the implementation of the deterministic component of our algorithm for
generating MiniCon descriptions, we first check whether the corresponding pairs
of terms of two atoms to match unify independently before doing full unifica-
tion. This allows to detect most violations with very low overhead. Given an
appropriate implementation, it is possible to check this property in logarithmic
or even constant time.

Our unification algorithm allows to pre-specify variables that may in no case
be unified with a function term (e.g., for head variables of queries or atoms
already over source predicates). This allows to detect the impossibility to create
a function-free rewriting as early as possible.

Every time an MCD m is unfolded with a query to produce an intermediate
rewriting Q, we compute a query Q′ (a partial rewriting) as follows.

Body(Q′) := {Bodyi(Q) | mi �= ε}
Head(Q′) := 〈x1, . . . , xn〉 s.t. each xi ∈ V ars(Head(Q)) ∩ V ars(Body(Q′))

Q′ is thus created from the new subgoals of the query that have been intro-
duced using the MCD. If Q′ contains non-source predicates, the following check

Query Rewriting with Symmetric Constraints 143

is performed. We check if our rewriting algorithm produces a nonempty rewrit-
ing on Q′. This is carried out in depth-first fashion. If the set of cind’s is cyclic,
we use a maximum lookahead distance to assure that the search terminates. If
Q′ is not further rewritable, Q does not need to be further processed but can be
dropped. Subsequently, (intermediate) rewritings produced by unfolding queries
with MiniCon descriptions are simplified using tableau minimization.

An important performance issue in Algorithm 4.1 is the fact that MCDs are
only applied one at a time, which leads to redundant rewritings as e.g. the same
MCDs may be applicable in different orders (as is true for the classical problem
of answering queries using views, a special case) and thus a search space that
may be larger than necessary. We use dependency graph-based optimizations to
check if a denser packing of MCDs is possible. For the experiments with layered
sets of cind’s reported on in Section 6 (Figures 2 and 3), MCDs are packed
exactly as densely as in the MiniCon algorithm of [18].

Distribution. The implementation of our query rewriter consists of about 9000
lines of C++ code. Binaries for several platforms as well as examples and a Web
demonstrator that allows to run limited-size problems online are available on
the Web at [13].

6 Experiments

A number of experiments have been carried out to evaluate the scalability of
our implementation. These were executed on a 600 MHz dual Pentium III ma-
chine running Linux. A benchmark generator was implemented that randomly
generated example chain queries and sets of chain cind’s6. Chain queries are
conjunctive queries of the form

q(x1, xn+1)← p1(x1, x2), p2(x2, x3), . . . , pn−1(xn−1, xn), pn(xn, xn+1).

Thus, chain queries are constructed by connecting binary predicates via vari-
ables to form chains, as shown above. In our experiments, the distinguished
(head) variables were the first and the last. The chain cind’s had between 3 and
6 subgoals in both the subsuming and the subsumed queries.

In all experiments, the queries had 10 subgoals, and we averaged timings over
50 runs. Sets of cind’s were always acyclic. This was ascertained by the use of
predicate indexes such that the predicates in a subsumer query of a cind only used
indexes greater than or equal to a random number determined for each cind, and
subsumed queries only used indexes smaller than that number. Times for parsing
the input were excluded from the diagrams, and redundant rewritings were not
eliminated7. Diagrams relate reasoning times on the (logarithmic-scale) vertical
6 Experiments with various kinds of random queries and constraints were carried out,

too. In this paper, we only report on chain queries, but the experiments with random
queries were similarly favorable.

7 Note that our implementation optionally can make finite rewritings non-redundant
and minimal. However, for our experiments, these options were not active.

144 Christoph Koch

axis to the problem size expressed by the number of cind’s on the horizontal
axis.

We report on three experiments.

0 500 1000 1500 2000 2500 3000
 0.0001

 0.001

0.01

0.1

1

10

3−6 subgoals per query

classical, p=16

p=16

p=12

p=8

#cind’s

seconds

unlayered
chain queries

Fig. 1. Experiments with chain queries and nonlayered chain cind’s.

Figure 1 shows timings for non-layered sets of constraints. By the steep line
on the left we report on an alternative query rewriting algorithm that we have
implemented and which follows a traditional resolution strategy. This algorithm
(evaluated using instances with 16 predicates) is compared to and clearly outper-
formed by our new algorithm (with three different numbers of predicates; 8, 12,
and 16). Clearly, the more predicates are available, the sparser the constraints
get. Thus, more predicates render the query rewriting process simpler.

In Figure 2, we report on the execution times of our new algorithm with
cind’s generated with an implicit layering8 of predicates (with 2 layers). This
experiment is in principle very similar to local-as-view rewriting with p/2 global
predicates and p/2 source predicates (where the subsumer queries of cind’s corre-
spond to logical views in the problem of answering queries using views), followed
by view unfolding to account for the subsumed sides of cind’s. We again report
timings for three different total numbers of predicates, 8, 12, and 16.

In Figure 3, the new algorithm computes maximally contained rewritings for
20 and 40 predicates, which are grouped into stacks of five layers of 4 and 8
predicates each, respectively. Of the five sets of predicates, one constitutes the
sources and one the “integration schema” over which queries are asked, and four
equally sized sets of cind’s bridge between these layers.

8 See Section 2 for our definition of layered sets of cind’s.

Query Rewriting with Symmetric Constraints 145

0 500 1000 1500 2000 2500 3000
 0.001

0.01

0.1

1

10

p=8 p=16

seconds

#cind’s

chain queries
3−6 predicates per query
2 layers of predicates

p=12

Fig. 2. Experiments with chain queries and two layers of chain cind’s.

0 1000 2000 3000 4000 5000 6000
10−5

10−4

10−3

10−2

10−1

100

101
seconds

p=20 p=40

5 layers of predicates
3−6 predicates per query
chain queries

#cind’s

Fig. 3. Experiments with chain queries and five layers of chain cind’s.

As can be seen by comparing the second and third diagrams with the first, the
hardness of the layered problems is more homogeneous. Particularly in Figure 1
and Figure 2, one can also observe subexponential performance. Note that in
the experiment of Figure 3, timings were taken in steps of 20 cind’s, while in the
other experiments, this step length was 100.

146 Christoph Koch

7 Discussion and Conclusions

This paper has addressed the query rewriting problem in data integration from
a fresh perspective. We compute maximally contained rewritings with expressive
symmetric constraints, which we call Conjunctive Inclusion Dependencies. We
have proposed a new query rewriting algorithm based on techniques developed
for the problem of answering queries using views (i.e., the MiniCon algorithm),
which allows to apply time-tested (e.g., tableau minimization) techniques and
algorithms from the database field to the query rewriting problem.

The main advantage of the new algorithm is that intermediate results are
(function-free) queries and can be immediately made subject to query optimiza-
tion techniques. As a consequence, further query rewriting may start from sim-
pler queries, leading to an increase in performance and fewer redundant results
that have to be found and later be eliminated. Thus, it is often possible to detect
dead ends early. As a trade-off (as can be seen in Algorithm 4.1), an additional
degree of nondeterminism is introduced compared to resolution-based algorithms
that may temporarily introduce function terms.

In the context of data integration, there are usually a number of regularities
in the way constraints are implemented and queries are posed. We expect to
have a number of schemata, each one containing a number of predicates. Be-
tween the predicates of one schema, no constraints for data integration uses are
defined. Moreover, we expect inter-schema constraints to be of the form Q1 ⊆ Q2
where most (or all) predicates in Q1 belong to one and the same schema, while
the predicates of Q2 belong to another one. Queries issued against the system
are usually formulated in terms of a single schema, and such a layering often
propagates along intermediate rewritings. Given these assumptions, we suspect
our approach – when optimization techniques from the database area are ap-
plied to intermediate results – to have a performance advantage over classical
resolution-based algorithms, which do not exploit such techniques.

Our experiments show that our approach scales to very large and complex
data integration settings with many schemata.

References

1. S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. “Query
Caching and Optimization in Distributed Mediator Systems”. In Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data (SIG-
MOD’96), pages 137–146, Montreal, Canada, June 1996.

2. Y. Arens and C. A. Knoblock. “Planning and Reformulating Queries for
Semantically-Modeled Multidatabase Systems”. In Proceedings of the First In-
ternational Conference on Information and Knowledge Management (CIKM’92),
Baltimore, MD USA, 1992.

3. D. Calvanese, G. De Giacomo, and M. Lenzerini. “On the Decidability of Query
Containment under Constraints”. In Proc. PODS’98, pages 149–158, 1998.

4. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. “Information
Integration: Conceptual Modeling and Reasoning Support”. In Proc. CoopIS’98,
pages 280–291, 1998.

Query Rewriting with Symmetric Constraints 147

5. M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, R. Fagin, M. Flickner, A. Lu-
niewski, W. Niblack, D. Petkovic, J. Thomas, J. Williams, and E. Wimmers. “To-
wards Heterogeneous Multimedia Information Systems: The Garlic Approach”. In
Proceedings of the Fifth International Workshop on Research Issues in Data Engi-
neering: Distributed Object Management (RIDE-DOM’95), 1995.

6. A. K. Chandra and P. M. Merlin. “Optimal Implementation of Conjunctive Queries
in Relational Data Bases”. In Conference Record of the Ninth Annual ACM Sym-
posium on Theory of Computing (STOC’77), pages 77–90, Boulder, USA, 1977.

7. E. Dantsin and A. Voronkov. “Complexity of Query Answering in Logic Databases
with Complex Values”. In LFCS’97, LNCS 1234, pages 56–66, 1997.

8. O. M. Duschka and M. R. Genesereth. “Answering Recursive Queries using Views”.
In Proc. PODS’97, Tucson, AZ USA, 1997.

9. O. M. Duschka, M. R. Genesereth, and A. Y. Levy. “Recursive Query Plans for
Data Integration”. Journal of Logic Programming, 43(1):49–73, 2000.

10. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D.
Ullman, V. Vassalos, and J. Widom. “The TSIMMIS Approach to Mediation: Data
Models and Languages”. Journal of Intelligent Information Systems, 8(2), 1997.

11. M. R. Genesereth, A. M. Keller, and O. M. Duschka. “Infomaster: An Information
Integration System”. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data (SIGMOD’97), pages 539–542, 1997.

12. J. Gryz. “Query Rewriting Using Views in the Presence of Functional and Inclusion
Dependencies”. Information Systems, 24(7):597–612, 1999.

13. C. Koch. “Cindrew Home Page”. http://cern.ch/chkoch/cindrew/.
14. C. Koch. “Data Integration against Multiple Evolving Autonomous Schemata”.

PhD thesis, TU Wien, Vienna, Austria, 2001.
15. C. T. Kwok and D. S. Weld. “Planning to Gather Information”. In Proc. AAAI’96,

Portland, OR USA, Aug. 1996.
16. A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. “Answering Queries

Using Views”. In Proc. PODS’95, San Jose, CA USA, 1995.
17. A. Y. Levy, A. Rajaraman, and J. J. Ordille. “Querying Heterogeneous Informa-

tion Sources Using Source Descriptions”. In Proceedings of the 1996 International
Conference on Very Large Data Bases (VLDB’96), pages 251–262, 1996.

18. R. Pottinger and A. Y. Levy. “A Scalable Algorithm for Answering Queries Using
Views”. In Proceedings of the 26th International Conference on Very Large Data
Bases (VLDB’2000), 2000.

19. X. Qian. “Query Folding”. In Proceedings of the 12th IEEE International Confer-
ence on Data Engineering (ICDE’96), pages 48–55, New Orleans, LA USA, 1996.

20. M. F. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.
21. S. Vorobyov and A. Voronkov. “Complexity of Nonrecursive Logic Programs with

Complex Values”. In Proc. PODS’98, 1998.

	1 Introduction
	2 Preliminaries
	3 Query Containment and Rewriting
	4 Generalizing Local-as-View Rewriting
	5 Implementation
	6 Experiments
	7 Discussion and Conclusions
	References

