
Path Queries on Compressed XML∗

Peter Buneman Martin Grohe Christoph Koch
peter@cis.upenn.edu grohe@dcs.ed.ac.uk koch@dbai.tuwien.ac.at

Laboratory for Foundations of Computer Science
University of Edinburgh, Edinburgh EH9 3JZ, UK

Abstract

Central to any XML query language is a path
language such as XPath which operates on
the tree structure of the XML document. We
demonstrate in this paper that the tree struc-
ture can be effectively compressed and ma-
nipulated using techniques derived from sym-
bolic model checking . Specifically, we show
first that succinct representations of document
tree structures based on sharing subtrees are
highly effective. Second, we show that com-
pressed structures can be queried directly and
efficiently through a process of manipulating
selections of nodes and partial decompression.
We study both the theoretical and experimen-
tal properties of this technique and provide
algorithms for querying our compressed in-
stances using node-selecting path query lan-
guages such as XPath.

We believe the ability to store and manipulate
large portions of the structure of very large
XML documents in main memory is crucial
to the development of efficient, scalable native
XML databases and query engines.

1 Introduction

That XML will serve as a universal medium for data
exchange is not in doubt. Whether we shall store large
XML documents as databases (as opposed to using
conventional databases and employing XML just for
data exchange) depends on our ability to find specific
XML storage models that support efficient querying
of XML. The main issue here is how we represent the
document in secondary storage. One approach [9] is to
index the document and to implement a cache policy

∗This work was supported in part by a Royal Society Wolf-
son Merit Award. The third author was sponsored by Erwin
Schrödinger grant J2169 of the Austrian Research Fund (FWF).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

for bringing subtrees of the document tree into main
memory on demand. Another approach [8, 11, 19] is
to store information about each node in the document
tree in one or more tuples in a relational database. In
both cases the structure is fragmented and substantial
I/O is required to evaluate a complex path expression;
and this increases with the size of the source document.

An alternative approach is to extract the text (the
character string data) from the document and to store
it in separate containers, leaving the bare structure,
a tree whose nodes are labeled with element and at-
tribute names. We shall call this structure the skele-
ton of the document. This separation of the skele-
ton from string data is used in the XMILL compres-
sor [15], which, as internal model of data representa-
tion in query engines, is reminiscent of earlier vertical
partitioning techniques for relational data [3] which
have recently been resurrected [2] for query optimiza-
tion. Even though the decomposition in XMILL is
used for compression only, it is natural to ask whether
it could also be used for enabling efficient querying.

The promise of such an approach is clear: We only
need access to the skeleton to handle the navigational
aspect of (path) query evaluation, which usually takes
a considerable share of the query processing time; the
remaining features of such queries require only mostly
localized access to the data. The skeleton of an XML
document is usually relatively small, and the efficiency
of query evaluation will depend on how much of the
skeleton one can fit into main memory. However for
large XML documents with millions of nodes, the tree
skeletons are still large. Thus compressing the skele-
ton, provided we can query it directly, is an effective
optimization technique.

In this paper, we develop a compression technique
for skeletons, based on sharing of common subtrees,
which allows us to represent the skeletons of large
XML documents in main memory. Even though this
method may not be as effective in the reduction of
space as Lempel-Ziv compression [22] is on string data,
it has the great advantage that queries may be effi-
ciently evaluated directly on the compressed skeleton
and that the result of a query is again a compressed
skeleton. Moreover, the skeleton we use is a more gen-
eral structure than that used in XMILL, where it is
a tree containing just tag and attribute information
of nodes. Our skeletons may be used to express other
properties of nodes in the document tree, e.g. that they

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

contain a given string, or that they are the answer to
a (sub)query.

Our work borrows from symbolic model checking,
an extremely successful technique that has lead for-
mal hardware verification to industrial strength [16, 6].
Model checking is an approach to the verification of fi-
nite state systems which is based on checking whether
the state space of the system to be verified satisfies,
or is a model of, certain properties specified in some
temporal logic. It has already been observed that
checking whether the state space of a system satis-
fies a property specified in some logic and evaluating
a query against a database are very similar algorith-
mic problems, which opens possibilities for transferring
techniques between the two areas. The main practical
problem that researchers in verification are facing is
the “state explosion” problem – state spaces get too
large to be dealt with efficiently. The most success-
ful way of handling this problem is symbolic model
checking. Instead of representing the state space ex-
plicitly, it is compressed to an ordered binary decision
diagram (OBDD) [4], and model-checking is done di-
rectly on the OBDD rather than the original uncom-
pressed state space. The success of this method is due
both to the compression rates achieved and to the fact
that OBDDs have nice algorithmic properties which
admit model-checking.

Our compression of XML skeletons by subtree shar-
ing can be seen as a direct generalization of the com-
pression of Boolean functions into OBDDs. This en-
ables us to transfer the efficient algorithms for OBDDs
to our setting and thus provides the basis for new al-
gorithms for evaluating path queries directly on com-
pressed skeletons.

Example 1.1 Consider the following XML document
of a simplified bibliographic database.

<bib>
<book>
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>

</book>
<paper>
<title>A Relational Model for

Large Shared Data Banks</title>
<author>Codd</author>

</paper>
<paper>
<title>The Complexity of

Relational Query Languages</title>
<author>Vardi</author>

</paper>
</bib>

The skeleton is shown in Figure 1 (a). Its com-
pressed version, which is obtained by sharing common
subtrees, is shown in Figure 1 (b). It is important to
note that the order of the out-edges is significant.1

1Throughout this paper, we visualize order by making sure
that a depth-first left-to-right pre-order traversal of the in-

bib

paperpaper

title author

author

title

title

author

author author

(a)

bib

(b)

bib

(c)

(2)

author

book paper

title

paperbook

title author

book

(3)

Figure 1: A tree skeleton (a) and its compressed ver-
sions (b) and (c).

Thus the original skeleton (a) can be recovered by
the appropriate depth-first traversal of the compressed
skeleton (b). Further compression can be achieved by
replacing any consecutive sequence of out-edges to the
same vertex by a single edge marked with the appropri-
ate cardinality. Such a graph is shown in Figure 1 (c),
where the unmarked edges have cardinality 1. 2

This compressed representation is both natural and
exhibits an interesting property of most practical XML
documents: they possess a regular structure in that
subtree structures in a large document are likely to be
repeated many times. If one considers an example of
extreme regularity, that of an XML-encoded relational
table with R rows and C columns, the skeleton has size
O(C ∗ R), and the compressed skeleton as in Figure 1
(b) has size O(C + R). This is further reduced by
merging multiple edges as in Figure 1 (c) to O(C +
log R). Our experiments show that skeletons of less
regular XML files, which contain several millions of
tree nodes, also compress to fit comfortably into main
memory. In several cases, the size of the compressed
skeleton is less than 10% of the uncompressed tree.
We should also remark that an interesting property of
this technique is that it does not rely on a DTD or any
other form of schema or static type system. Indeed we
have evidence that common subtree compression can
exploit regularity that is not present in DTDs.

Compressed skeletons are easy to compute and al-
low us to query the data in a natural way. Compressed
and uncompressed instances are naturally related via
bisimulation. Each node in the compressed skeleton
represents a set of nodes in the uncompressed tree.
The purpose of a path query is to select a set of nodes
in the uncompressed tree. However this set can be
represented by a subset of the nodes in a partially de-
compressed skeleton, and – as our experiments show –
the amount of decompression is quite small in practice.
Moreover there are efficient algorithms for producing

stances as depicted in our figures corresponds to the intended
order of the nodes.

these partially decompressed skeletons, which we out-
line in this paper.

We use a large fragment of XPath as the query lan-
guage of choice, and we use a simplified model of XML
without attributes. These simplifications are not crit-
ical: the same succint representation extends to full
XML and can be used for more general query lan-
guages (including languages that support joins such
as XQuery). We plan to generalize from the current
work in the future.

In general, if the evaluation of a query can be per-
formed in main memory, we expect it to outperform
any query processor that needs to page in fragments of
data from secondary storage. Compression that places
large amounts of the most heavily accessed data into
main memory in an easily manageable form is clearly
valuable. Moreover, path query evaluation using our
techniques is very efficient, and runs in linear time
on uncompressed (i.e., tree) instances, with a small
constant. On compressed instances, it can also beat
existing main memory query processors that do not
employ compression, for some computations need to
be performed only once on a shared subtree.

The authors are aware of only two published works
on querying compressed XML, XGRIND [20] and
DDOM [18], which both simply compress character
data in a query-friendly fashion. No attempt is made
to compress the skeleton or to do any form of “global”
compression. Our approach to representing data us-
ing bisimulation may appear reminiscent of graph
schemata [5, 10] and data guides [13, 1] (these ap-
proaches use simulation rather than bisimulation) and
index structures such as T-indices [17]. However, it
must be stressed that these formalisms preserve nei-
ther structure nor order of a database instance; they
are intended as auxiliary data structures for query opt-
mization. In our model, we preserve a compact repre-
sentation of the skeleton and of the results of queries.

Technical Contributions

The main contributions of this paper are as follows.

• We propose a novel approach to querying XML doc-
uments compressed by sharing subtrees of the skele-
ton tree, using path query languages such as XPath.

• We provide a formal description of the compression
technique and the relationship – that of bisimula-
tion – between compressed and uncompressed skele-
tons.

• We study algorithmic aspects of compression and
primitive operations needed for evaluating path
queries on compressed instances. We adapt tech-
niques previously used in symbolic model checking
– such as OBDD reduction [4] – to the XML setting
of ordered, unranked, node-labeled trees and edges
with multiplicities.

• From this we obtain an algebra of efficient query
operators for compressed XML trees, which we use
to evaluate queries of our XPath fragment.

• We demonstrate the feasibility and practical rele-
vance of our approach by a prototype query engine
implementation and a number of experiments:

We provide experimental evidence that subtree
sharing is effective by testing it on a number of XML
corpora.

We also provide evidence that queries over com-
pressed skeletons are efficient and that their results,
represented as partially decompressed skeletons, are
typically not much larger than the compressed in-
put skeletons.

By and large, the structure of the paper follows this
order. Some proofs and illustrations had to be omitted
here because of space limitations but will be presented
in the long version of this paper.

2 Compressed Instances

In this section, we give a formal framework for our
compression technique. We introduce a general no-
tion of instance, which we use to model both the orig-
inal XML documents and the compressed versions of
these documents. We then define an appropriate no-
tion of equivalence on these instances; equivalent in-
stances are representations of the same XML docu-
ment in possibly different states of compression. Us-
ing bisimilarity relations, we define a lattice structure
on each class of equivalent instances. The maximum
element of this lattice is the original XML document,
whereas the minimum element is the fully compressed
version of the document. We sketch a linear time com-
pression algorithm. Finally, we show how to find com-
mon extensions of partially compressed instances that
carry different information.

2.1 Instances

We construct instances from a set V of vertices and a
function γ : V → V ∗ which assigns to each vertex the
sequence of its child vertices. Such a function imme-
diately defines the edges of a directed graph: (v, w) is
an edge if w ∈ γ(v). We shall require such graphs to
be acyclic – there are no directed cycles, and rooted
– there is just one vertex that has no incoming edge.
Figure 2 (a) shows the same graph as in Figure 1 (b)
with explicit names for the vertices. For this graph
the set of vertices is V = {v1, v2, v3, v4, v5}, and the
function γ is defined by

γ(v1) = v2v4v4

γ(v2) = v3v5v5v5

γ(v4) = v3v5

γ(v3) = γ(v5) = ∅

If vertex w occurs in the ith position of γ(v) we

write v
i
→ w. Figure 2 (a) also shows these positions.

In addition to the graph we shall want to distin-
guish certain sets of nodes. For instance, we might
want to indicate that all vertices of a certain set de-
scribe nodes in the source document with a given tag,
or we might wish to indicate that a certain subset of
nodes describes the answer to a query. In Figure 2, for
example, we have used names such as Sbib to indicate
that the vertices all correspond to vertices in the source

21

4

Sbib

Spaper

Sauthor

3

w1

w4

w5 w7

w611

Stitle

2

1

v3

v4

v5

v2Sbook

1

v1
3

2

Spaper

Sauthor

22

w2

1
2

3

w3Stitle

Sbook
4

1
2

3

Sbib

(a)

(b)

Figure 2: Skeleton instances

tree with the same tag. However, Figure 2 (b) – a “par-
tially decompressed” instance – has enough structure
to distinguish papers written by “Vardi” (the vertex
w6) from the other papers, and this is a property that
we may also want to be part of the schema.

Formally, a schema is a finite set of unary rela-
tion names. Let σ = {S1, . . . , Sn} be a schema. A
σ-instance is a tuple I =

(

V I, γI, rootI, SI
1, . . . , S

I
n

)

,
where

• V I is a set of vertices.

• γI : V I → (V I)∗ is a function whose graph is acyclic
and has root rootI.

• SI
1, . . . , S

I
n are subsets of V I.

If the instance I is clear from the context, we often
omit the superscript I. We say that (V I, γI, rootI) is
the DAG of I.

If v0 and vn are vertices in an instance, and there

are intermediate vertices v1, . . . , vn−1 such that v0
i1→

v1 . . . vn−1
in→ vn, we say that the integer sequence

i1 . . . in is an edge-path between v0 and vn. For each
vertex v ∈ V we define

Π(v) = {P | P is an edge-path from root to v},

and for a set S ⊆ V we let Π(S) =
⋃

v∈S Π(v).
The two examples in Figure 2 have exactly the same

set of edge paths from the root, and the paths that end
in any set in the schema are also the same. Thus the

paths
2
→

2
→ and

3
→

2
→ give the vertex set for Sauthor in

both instances. This prompts our definition of equiv-
alence of instances:

Definition 2.1 Two σ-instances I and J are equiv-
alent if Π(V I) = Π(V J) and Π(SI) = Π(SJ) for all
S ∈ σ.

In the original (fully uncompressed) skeleton, there
is a unique edge-path from the root to each vertex (the
edge-paths are addresses of nodes in the tree), and it
is this observation that allows us to construct the tree
from a compressed instance, by taking the node set of
all edge paths from the root, a prefix closed set, as the
vertices of the tree.

Proposition 2.2 For each instance I there is exactly
one (up to isomorphism) tree-instance T(I) that is
equivalent to I.

Proof. The vertices of T(I) are edge-paths in Π(V I).
Uniqueness follows from the fact that for each vertex
of a tree there is exactly one path from the root to this
vertex. 2

2.2 Bisimilarity Relations and Compression

A bisimilarity relation on a σ-instance I is an equiva-
lence relation2 ∼ on V s.t. for all v, w ∈ V with v ∼ w
we have

• for all i, if v ∼ w and v
i
→ v′ then there exists

w′ ∈ V s.t. w
i
→ w′ and v′ ∼ w′, and

• for all S ∈ σ:
(

v ∈ S ⇐⇒ w ∈ S
)

.

Let us remark that this notion of bisimilarity relation
coincides with the standard notion on transition sys-
tems with labeled transitions and states. In our setting
the vertex labels are given by the unary relations in the
schema.

If I is an instance and ∼ a bisimilarity relation on I

then I/∼ is the instance obtained from I by identifying
all vertices v, w with v ∼ w (that is, mapping them to
their equivalence class w.r.t. ∼).

Proposition 2.3 For all instances I and bisimilarity
relations ∼ on I, I is equivalent to I/∼.

Proposition 2.4 For every instance I there is a
bisimilarity relation ∼ on T(I) such that I is isomor-
phic to T(I)/∼.

Proof. The vertices of T(I) can be identified with
the elements of Π(V), which in turn can be identified
with paths in the graph of γI. We define two vertices
to be in relation ∼ if the corresponding paths have the
same endpoint. 2

The bisimilarity relations ∼ on an instance I (as
well as the instances I/∼) form a lattice: The great-
est lower bound of two bisimilarity relations ∼ and ≈

2Thus, it is also the case that for all i, if v ∼ w and w
i
→ w′

then there exists v′ ∈ V s.t. v
i
→ v′ and v′ ∼ w′.

is their intersection, and the least upper bound is the
transitive closure of the union of ∼ and ≈. The equal-
ity relation is the minimum element of this lattice.

An instance I is minimal if equality on V is the
only bisimilarity relation on I. Note that an instance
is minimal if, and only if, the bisimilarity relation ∼
on T(I) with I = T(I)/∼ is the (unique) maximum
element of the lattice of bisimilarity relations on T(I).
This immediately implies the following:

Proposition 2.5 For each instance I there is exactly
one (up to isomorphism) minimal instance M(I) that
is equivalent to I. There is no instance equivalent to I

with fewer vertices than M(I).

If a tree-instance T represents an XML document,
then M(T) represents its compression. Other equiva-
lent instances I are “partially compressed”.

Proposition 2.6 There is an algorithm that, given
an instance I, computes M(I) in linear time.

In our implementation, we use an algorithm that
traverses the original XML-tree only once in docu-
ment order (post-order, corresponding to a bottom-up
traversal, which however can be easily effected in a
SAX parsing run using a stack holding lists of siblings
for the path from the root to the current node) and
maintains a hash table of nodes previously inserted
into the compressed instance. Whenever a new node
is to be inserted, its children have already been in-
serted and the redundancy check using the hash table
can be made in (amortized) constant time.3

Compressed or partially compressed instances usu-
ally have multiple edges (see Figures 1 and 2) between
pairs of vertices. Instead of representing these explic-
itly, in our implementation (discussed later on in this
paper) for the compressed instances, we represent suc-
cessive multiple edges by just one edge labeled by the
number of edges it represents (see Figure 1 (c)). This
implicit representation improves the compression rate
quite significantly, because XML-trees tend to be very
wide4, which means that there are usually many paral-
lel edges in the compressed instances. Indeed, all of the
results in Sections 2 and 3 can be extended straight-
forwardly to DAGs in which each edge is labeled with
a multiplicity.

2.3 Reducts and Common Extensions

In the data model discussed so far, instances are (pos-
sibly compressed versions of) ordered trees with node
labels from a fixed alphabet, the schema σ. String
data may be represented in this model in two ways.

The first is to make each string character a node in
the tree, which has the disadvantages of considerably
increasing its size and of worsening the degree of com-
pression obtained. Moreover, this makes it difficult to
use indices or specific algorithms for string search to
deal with conditions on strings in queries.

3A strictly linear-time algorithm (which, however, needs
more memory) is discussed in the long version of this paper.

4OBDDs, in contrast, are compressed binary trees.

The alternative is to have the schema only represent
“matches” of tags and strings relevant to a given query.
This requires to be able, given a compressed instance
I1 representing the result of a subquery and a compat-
ible instance I2 (obtained from the same tree but con-
taining different labelings) representing e.g. the set of
nodes matching a given string condition, to efficiently
merge I1 and I2 to obtain a new instance I3 contain-
ing the labelings of both I1 and I2. Together with the
results of the next section, this will provide us with a
method of combining fast tree-structure-based query
evaluation with efficient string value-based search (us-
ing indexes on strings if they are available).

Let σ′ ⊆ σ be schemas. The σ′-reduct of a σ-
instance I is the σ′-instance I

′ with the same DAG
as I and SI

′

= SI for all S ∈ σ′. In the following, the
σ′-reduct of a σ-instance I will be denoted by I|σ′ .

Let σ and τ be schemas. A σ-instance I and a
τ -instance J are compatible if the reducts I|σ∩τ and
J|σ∩τ are equivalent. A common extension of I and
J is a σ ∪ τ -instance K such that K|σ is equivalent
to I and K|τ is equivalent to J. Note that a common
extension of I and J can only exist if I and J are
compatible. Furthermore, if I and J are compatible
then the σ ∪ τ -tree-instance T with T|σ = T(I) and
T|τ = T(J) is a common extension of I and J. This
is the case because if I and J are compatible then the
tree-instances T(I) and T(J) have the same σ ∩ τ -
reduct.

Lemma 2.7 There is an algorithm that, given in-
stances I and J, computes a common extension of I

and J in quadratic time.

The construction in the proof of the lemma is the
product construction for finite automata. It should
be implemented as it is for automata, that is, only
the states that have actually been reached should be
constructed. This reduces the running time to being
linear in the size of the output (and of course, the size
of the output is at most as large as the size of the un-
compressed instance). It can be shown that this con-
struction always produces the least upper bound of the
input instances in the lattice of bisimilarity relations
of their (common) tree version. The construction can
be easily extended to support edge multiplicities.

It is important to emphasize that the running time
is linear in the size of the output, because of which it
is also at worst linear in the size of the uncompressed
tree-instance. Of course, in the worst case, this can
still be quadratic in the size of the compressed input
instance. Quadratic running time is only required if
the input instances I and J compressed very well ini-
tially, and the common extension needed to accommo-
date the labeling information is much larger (which we
assume will be rare).

3 Query Evaluation

Next, we study the problem of evaluating a Core
XPath query on a compressed instance. Core XPath
[14] constitutes a large, practical fragment of XPath,
and subsumes a large variety of tree pattern languages
(e.g. [7]).

*

6

Y

6

6

I�� I

I�

6

� I

6

� I

6

∩

∩

parent

∪∩

∩

child −LT

b

LT
adescendant

{rootT}

LT
c parent

LT

d

V T preceding

V T

Figure 3: A query tree.

3.1 The Core XPath Language

We assume the notion of an XPath axis known and
refer to [21] for reference. Let T be a tree-instance.
We define each axis χ that maps between ordinary
tree nodes, i.e., each of the axes self, child, parent,
descendant, descendant-or-self, ancestor, ancestor-or-
self, following-sibling, preceding-sibling, following, and

preceding, as a function χ : 2V T

→ 2V T

encoding its
semantics (e.g., n ∈ child(S) iff the parent of n is in S;
see Section 4 of [14] for a precise definition and efficient
algorithms for computing these functions). As shown
in [14], each Core XPath query can be mapped to an
algebraic expression over

• node sets ST from the instance T,

• binary operations ∪, ∩, −: 2V T

× 2V T

→ 2V T

,

• axis applications χ, and

• an operation V |root(S) = {V T | rootT ∈ S}.5

A node set at a leaf of a query expression is either the
singleton set {rootT}, the set of all nodes labeled with
a certain tag, the set of all nodes containing a certain
string in their string value, or the so-called context of
the query (cf. [21]), a user-defined initial selection of
nodes.

The intuition in Core XPath, which reduces the
query evaluation problem to manipulating sets rather
than binary relations, is to reverse paths in conditions
to direct the computation of node sets in the query
towards the root of the query tree.

Example 3.1 Let T be a tree-instance over the
schema σ = ({rootT}, LT

a , LT

b , LT
c , LT

d), where LT

l ⊆
V T denotes the set of all nodes in T labeled l. The
Core XPath query

/descendant::a/child::b[child::c/child::d or

not(following::*)]

5This operation is needed for technical reasons, to support
paths relative to the root node in conditions, as in /descen-
dant::a[/descendant::b].

procedure downward axis(vertex v, bool sv)
{
1: mark v as visited;
2: v.Sj := sv;

3: for each w ∈ γ(v) do {
4: bool sw := (v.Si ∨

(sv ∧ (axis is descendant or
descendant-or-self)) ∨

(axis is descendant-or-self ∧ w.Si));
5: if(w has not been visited yet)

downward axis(w, sw);
6: else if(w.Sj != sw) {
7: if(w.aux ptr = 0) {
8: create new node w′ as copy of w;
9: w′.Sj := sw;

10: if(axis is descendant or
descendant-or-self) {

11: mark w′ as not visited yet;
12: downward axis(w′, sw);

}
13: w.aux ptr := w′;

}
14: w := w.aux ptr;

}
}

}

Figure 4: Pseudocode for downward axes.

is evaluated as specified by the query tree shown in
Figure 3. (There are alternative but equivalent query
trees due to the associativity and commutativity of ∩
and ∪.) 2

It is known [14] that Core XPath queries Q can be
evaluated on a tree-instance T in time O(|Q| ∗ |T|).

3.2 Operations on Compressed Instances

Next, we discuss query operations analogous to the
Core XPath operations discussed earlier, but which
work on compressed instances. As mentioned earlier,
in certain cases, decompression may be necessary to be
able to represent the resulting selection. Our goal is
to avoid full de-compression when it is not necessary.

Proposition 3.2 There are linear time algorithms
implementing the downward axes child, descendant-or-
self, and descendant on compressed instances. More-
over, each such axis application at most doubles the
number of nodes in the instance.

Proof. The idea of the algorithm(s) is to traverse the
DAG of the input instance starting from the root, vis-
iting each node v only once. We choose a new selection
of v on the basis of the selection of its ancestors, and
split v if different predecessors of v require different
selections. We remember which node we have copied
to avoid doing it repeatedly.

Let Si be a node set of the input instance to which
the axis χ is to be applied, creating a new selection
Sj := χ(Si). The schema of the output instance is

the schema of the input instance plus Sj . A (recur-
sive) pseudocode procedure is given in Figure 4, which
we initially invoke as downward axis(root, root.Si) if
χ is descendant-or-self and downward axis(root, false)
otherwise. The first argument is the node to be pro-
cessed – each node is only visited once – and the sec-
ond argument, sv , always passes a new selection down
to a child. We assume the following data structures:
each node has an associated bit “visited” and a handle
“aux ptr” for possibly linking to a copy. We represent
selections Si, Sj of the instance as bits v.Si, v.Sj stored
with the node. Initially, for all nodes, “visited” is false
and the aux ptr handles are “null”.

The algorithm proceeds as follows. Starting with
the root node, we assign a new selection and then tra-
verse the list of children. We compute a new selection
for each child using the formula of line 4. If a child has
not been visited yet, we do that by a recursive invoca-
tion of downward axis. Otherwise, we check whether
the child has the desired selection (line 6). If this is
not the case, we have to create a copy of the child,
assign the desired (opposite) truth value as selection,
and for the descendant and descendant-or-self axes re-
cursively assure that also the reachable descendants
will be selected. We also store a handle to the copy
in the aux ptr of the node in order to avoid to make
multiple redundant copies. By copying a node w and
creating a new node w′, we mean that we also copy all
the selections of w w.r.t. the node sets of the schema
and the links to children (but not the children them-
selves), γ(w′) := γ(w), and insert w′ into the modified
instance.

It is easy to see that this algorithm leads to the
desired result and that each node is copied at most
once. If instances also contain edge multiplicities, the
algorithm remains unchanged; these are completely or-
thogonal to downward axis computations. 2

Upward axes and the set operations never require
us to split nodes and thus (partially) decompress the
instance.

Proposition 3.3 The union, intersection, and set-
theoretic difference operators, and the upward axes

χ ∈ {self, parent, ancestor, ancestor-or-self}

do not change the instance. Moreover, there are linear-
time algorithms implementing these operators.

Proposition 3.4 There are linear-time algorithms
implementing the following-sibling and preceding-
sibling axes.

The algorithm for upward axes is simple, as they
do not change the instance DAG. Basically, all we
need to do is to recursively traverse the DAG with-
out visiting nodes twice, and to compute the selec-
tion when returning from the recursion. Algorithms
for following-sibling and preceding-sibling are slightly
more involved when edge multiplicities are taken into
account, but not difficult. The semantics of the follow-
ing and preceding axes can be obtained by composition

of the other axes (cf. [14]). Namely,

following(S) = descendant-or-self(

following-sibling(ancestor-or-self(S)))

and

preceding(S) = descendant-or-self(

preceding-sibling(ancestor-or-self(S))).

3.3 Evaluation of Core XPath

Given the axis operators of the previous section, query
evaluation is easy: Each expression of the Core XPath
algebra of Section 3.1 can be immediately evaluated
on a compressed instance I = (V, γ, root, S1, . . . , Sn).
Given that the node sets at the leaves of the expression
are present in I,

• an expression Sk ◦ Sm (where the binary operation
◦ is either ∪, ∩, or − and 1 ≤ k, m ≤ n) evaluates
to instance J = (V, γ, root, S1, . . . , Sn, (Sk ◦ Sm)),

• an expression χ(SI

k) evaluates to an instance J to
which the new selection has been added and which
possibly has been partially de-compressed to ac-
commodate this selection, and

• V |root(SI

k) evaluates to an instance J to which the
new selection {v ∈ V I | root ∈ SI

k} has been added.

Example 3.5 Consider the instance

I = (V I, γI, rootI, {rootI}, LI

a, L
I

b)

of Figure 5 (a) and the query //a/b. In our query
algebra, this reads as the expression

child(descendant({rootI}) ∩ LI

a) ∩ LI

b.

We start by putting the operator applications of the
associated expression tree into any total order; in this
example, this order is unique. Then we process one
expression after the other, always adding the result-
ing selection to the resulting instance for future use
(and possibly partial decompression). We start with
DI1 := descendant({rootI}). I1 is obtained from I by
applying the descendant axis to {rootI} (in this case,
there is no decompression) and adding the new set DI1

to the instance. Then, we compute the intersection
AI2 := DI1 ∩ LI

a and add it to I1 to obtain instance
I2 = (V I, γI, rootI, {rootI}, LI

a, LI

b, D
I1 , AI2). This in-

stance is also shown in Figure 5 (b). Next we compute
CI3 := child(AI2) which leads to some decompression
of instance I3 relative to I2. Finally, we add the selec-
tion CI3 ∩ LI3

b to new instance I4, which is the result
of our query. I4 is also shown in Figure 5 (c).

Further examples of query evaluation are depicted
in Figure 5, (d – i). 2

Of course, selections that have been computed as
intermediate results and are not needed anymore can
be removed from an instance.

In general, an instance resulting from a query is not
necessarily in optimal state of compression (even if the
input instance was). It is easy to re-compress, but we
suspect that this will rarely pay off in practice.

	 R

R	?

	 R?

?	 R

R

R

R

?

?

�

�

b

b

b

b

b

b

ba

a

a

a	 R

R	? ?

	 R? ?

?	 R?

b

b

b

ba

a

a

a 	 R

R	? ?

	 R? ?

?	 R?

b

b

b

ba

a

a

a

	 R

R	? ?

	 R? ?

?	 R?

b

b

b

ba

a

a

a 	 R

R	 ?	

?	 R?	

? R	 ?

�

b

b

a

a

a

a b

b

a

	 R

R	 ?

R?

?	

	

	

	 R?

?�

�

R

b

b

b

b

b

a

a

a

a

a

	 R

R	? ?

	 R? ?

?	 R?

b

b

ba

a

a

a b 	 R

R	? ?

	 R? ?

?	 R?

b

b

ba

a

a

a

b

	 R

? ?

?

? ?

?

R

	

?	 R ?R	

	 R?

ja

a

a

a

a

a

a

b

b

b

b

b

b

g: [[*]]I

a: I c: [[//a/b]]I

d: [[a]]I

h: [[*/a]]I

f: [[a/a/b]]Ie: [[a/a]]I

b: [[//a]]I

i: [[*/a/following::*]]I

Figure 5: (a) Optimally compressed version of com-
plete binary tree of depth 5, with the root node be-
ing selected as context for queries, and eight XPath
queries on it (b–i). Nodes selected by the queries are
highlighted by circles.

3.4 Complexity and Decompression

In theory, our method of compression by sharing sub-
trees can lead to an exponential reduction in instance
size, and even to doubly exponential compression using
edge multiplicities. Unfortunately, compressed trees
may decompress exponentially in the worst case even
on very simple queries (although of course not beyond
the size of the completely decompressed instance) 6.

This is a folklore phenomenon in the similar setting
of symbolic model checking with OBDDs [4] and a con-
sequence of the great potential for compression offered
by bisimulation on trees (respectively, OBDDs).

It is unlikely that better algorithms can improve on
the worst-case exponential degree of de-compression7.

6In real-life XML documents, we expect to see neither such
extreme compression nor decompression through queries.

7It is known that exponential degrees of de-compression can
always occur unless P = PSPACE. To be precise, while all Core

However, surprisingly, the decompression is only expo-
nential in the size of the queries (but not the data),
which tend to be small. Thus, query evaluation is
fixed-parameter tractable in the following sense:

Theorem 3.6 Let Q be a Core XPath query and I a
compressed instance. Then, Q can be evaluated on I

in time O(2|Q| ∗ |I|).

Proof. As can be easily verified, each of the oper-
ations of our algebra at most doubles the number of
edges and vertices in the instance (cf. Proposition 3.3).
Our result follows. 2

It must be emphasized that the exponential factor
for query evaluation times in Theorem 3.6 strictly de-
pends on decompression; if no decompression occurs
(as is the case when our algorithms are applied to
an uncompressed tree-instance I), our techniques only
take time O(|Q| ∗ |I|). Moreover, our O(2|Q| ∗ |I|) al-
gorithm never takes more than O(|Q| ∗ |T(I)|) time.

As a corollary of Proposition 3.3, we have

Corollary 3.7 Let Q be a query in our Core XPath
algebra where only upward axes are used, and let I be
a compressed instance. Then, Q can be computed in
time O(|Q| ∗ |I|).

Tree pattern queries (i.e., which are basically
boolean queries “selecting” the root node if success-
ful; see e.g. [7]) can be easily (in linear time in the size
of the query) transformed into the Core XPath alge-
bra and will only use upward axes. Thus, tree pattern
queries inherit this most favorable result.

4 Implementation

The main goals of our implementation and experi-
ments were to demonstrate that practical XML data
compress well using our techniques and that, as a con-
sequence, even large document structures can be put
into main memory. There, queries – even on com-
pressed instances – can be evaluated extremely effi-
ciently. We exploit the fact that at the time of writing
this, compiled code running on a commodity computer
can effect, say, a depth-first traversal8 of a tree data
structure of several millions of nodes in main mem-
ory in a fraction of a second. In our implementation,
DAG instances were represented by a straightforward
tree data structure in main memory, allowing several
child pointers to point to one and the same shared
node (without introducing cycles) to be able to repre-
sent DAGs.

In our model, an instance I over schema σ contains
a set of nodes SI for each S ∈ σ. These sets may rep-
resent XML tags, but also derived properties of nodes

XPath queries on XML trees T can be evaluated in time O(|Q|∗
|T|), the same Core XPath evaluation problem on compressed
trees is PSPACE-complete [12].

8All of the Core XPath operations discussed – except for the
computation of common extensions – can be carried out with
only a single depth-first (left-to-right or right-to-left) traversal
of the data structure “modulo decompressions”. (Consider Fig-
ure 4 to verify this for downward axes.)

such as the matching of a string condition or the mem-
bership in a (sub-)query result. Queries in Core XPath
build on this idea and consist of expressions created
from the names from the schema and the operations
introduced in Section 3.

A practical query evaluation algorithm may thus
proceed by processing the subexpressions of a query
(cf. the query tree in Figure 3) bottom-up, starting
with a compressed instance I that holds at least one
property SI (i.e. I is an instance over schema σ with
S ∈ σ) s.t. S appears at a leaf in the query tree. Iter-
atively, an operation is applied to the instance, which
computes a new set of nodes R and possibly partially
decompresses I, creating an instance I

′ over schema
σ ∪ {R}. Whenever a property P is required that is
not yet represented in the instance, we can search the
(uncompressed) representation of the XML document
on disk, distill a compressed instance over schema {P},
and merge it with the instance that holds our current
intermediate result using the common extensions algo-
rithm of Section 2.3.

Our implementation basically follows this mode of
evaluation, and all operators discussed in this paper
were implemented and their algorithms tested for their
practical efficiency and robustness.

Our implementation was written in C++ and in-
cludes a new very fast SAX(-like) parser that cre-
ates our compressed instances. Given a set of tags
and string conditions, our SAX parser builds the com-
pressed instance in one scan of the document and lin-
ear time in total. It uses a stack for DAG nodes under
construction and a hash table of existing nodes already
in the compressed instance that is being created. The
hash function on a node v combines the membership of
v in the various node sets with the identities (pointer
values) of a bounded number of children. String con-
straints are matched to nodes on the stack on the fly
during parsing using automata-based techniques.

As an optimization, in our experiments, we create a
compressed instance from the document on disk once
every time a new query is issued and do not make
use of the common extensions algorithm. Given a set
of tags {L1, . . . , Lm} and a set of string conditions
{Lm+1, . . . , Ln}, our parser can create a compressed
instance over schema {L1, . . . , Ln}, containing all the
relevant information, in one linear scan. Subsequently,
we evaluate the query purely in main memory.

Although this is clearly a future goal, our current
system does not use a database to store XML data on
disk; instead, in the current prototype, we re-parse the
XML document every time we have to access it. Cur-
rently, we do not make use of index structures to op-
timize the matching of string data. However, it seems
interesting but not difficult to modify the creation of
compressed instances to exploit string indexes. 9

|V T| |V M(T)| |EM(T)| |EM(T)|

|ET|

SwissProt 10,903,569 83,427 792,620 7.3 % −
(457.4 MB) 85,712 1,100,648 10.1 % +
DBLP 2,611,932 321 171,820 6.6 % −
(103.6 MB) 4481 222,755 8.5 % +
TreeBank 2,447,728 323,256 853,242 34.9 % −
(55.8 MB) 475,366 1,301,690 53.2 % +
OMIM 206,454 962 11,921 5.8 % −
(28.3 MB) 975 14,416 7.0 % +
XMark 190,488 3,642 11,837 6.2 % −
(9.6 MB) 6,692 27,438 14.4 % +
Shakespeare 179,691 1,121 29,006 16.1 % −
(7.9 MB) 1,534 31,910 17.8 % +
Baseball 28,307 26 76 0.3 % −
(671.9 KB) 83 727 2.6 % +
TPC-D 11,765 15 161 1.4 % −
(287.9 KB) 53 261 2.2 % +

Figure 6: Degree of compression of benchmarked cor-
pora (tags ignored: “−”; all tags included: “+”).

5 Experiments

We carried out a number of experiments to assess the
effectiveness of our query evaluation techniques. All
experiments were run on a Dell Inspiron 8100 laptop
with 256 MB of RAM and a 1 GHz Pentium III pro-
cessor running Linux. As benchmark data, we chose10

SwissProt (a protein database), DBLP, Penn Tree-
Bank (a linguistic database containing text from the
Wall Street Journal that has been manually annotated
with its phrase structure), OMIM (Online Mendelian
Inheritance in Man, a database of human genes and
genetic disorders), XMark (generated auction data),
Shakespeare’s collected works, and the 1998 Major
League Baseball statistics, all in XML and of sizes in-
dicated in the figures.

For each data set, we created five representative
queries, Q1 through Q5, which are all listed in Ap-
pendix A. In each case, Q1 was a tree pattern query
selecting the root node if a given path can be matched
in the document. In their algebraic representations,
these queries use “parent” as the only axis, thus no de-
compression is required. Each Q2 was the same query
reversed, now selecting the nodes matched by the given
path. Q3 also incorporated the descendant axis, con-
ditions, and string constraints. Q4 added branching
query trees, and Q5 extended Q4 in that all the re-
maining axes were allowed. By this choice, we believe
to have covered a wide range of practical path queries,
and can study the costs of their features individually.
All queries were designed to select at least one node.

The experimental results are shown in Figures 6 and
7. They read as follows. In Figure 6, we study the de-
gree of compression obtained using bisimulation. As

9We intend to extend our system to use indexes, and to com-
bine it with vertical partitioning for string data mentioned in the
introduction. This combines efficient search for (string) values
in the database with fast navigation of the document structure
using our compressed instances in main memory.

10Figure 6 also shows the compression on some TPC-D data,
which we excluded from the query evaluation experiments be-
cause as purely XML-ized relational data, querying it with
XPath is not very interesting.

(1) (2) (3) (4) (5) (6) (7) (8)
parse bef. bef. query after after #nodes #nodes
time |V M(T)| |EM(T)| time |V Q(M(T))| |EQ(M(T))| sel. (dag) sel. (tree)

SwissProt Q1 56.921s 84,314 796,059 1.748s 84,314 796,059 1 1
(457.4 MB) Q2 56.661s 84,314 796,059 1.783s 84,344 796,087 1 249,978

Q3 64.971s 84,166 798,354 1.664s 84,184 798,371 106 46,679
Q4 79.279s 84,071 808,771 2.627s 84,071 808,771 1 1
Q5 60.036s 84,480 814,307 2.825s 84,999 815,281 3 991

DBLP Q1 8.805s 1,246 176,280 0.137s 1,246 176,280 1 1
(103.6 MB) Q2 8.795s 1,246 176,280 0.136s 1,265 176,302 1 100,313

Q3 10.954s 2,469 187,761 0.146s 2,469 187,761 18 32
Q4 14.056s 2,191 188,368 0.313s 2,196 188,368 1 3
Q5 13.866s 2,191 188,368 0.325s 2,200 188,368 1 3

TreeBank Q1 8.942s 349,229 913,743 8.884s 349,229 913,743 1 1
(55.8 MB) Q2 8.961s 349,229 913,743 9.048s 362,662 945,576 740 1,778

Q3 9.647s 357,254 938,785 4.659s 361,222 948,205 202 203
Q4 11.370s 348,582 912,549 4.234s 348,582 912,549 9 9
Q5 7.883s 350,671 917,197 9.910s 364,141 948,170 249 624

OMIM Q1 1.363s 963 13,819 0.011s 963 13,819 1 1
(28.3 MB) Q2 1.380s 963 13,819 0.011s 964 13,819 1 8,650

Q3 1.669s 977 13,893 0.008s 977 13,893 1 26
Q4 2.085s 1,030 14,766 0.016s 1,042 14,781 1 3
Q5 2.098s 1,023 12,243 0.017s 1,024 12,243 4 4

XMark Q1 1.160s 3,780 11,993 0.074s 3,780 11,993 1 1
(9.6 MB) Q2 0.810s 3,780 11,993 0.439s 3,877 12,168 13 39

Q3 0.839s 3,755 13,578 0.033s 3,755 13,578 661 1,083
Q4 0.844s 3,733 14,747 0.042s 3,750 14,841 38 47
Q5 1.053s 4,101 12,639 0.061s 4,410 13,171 5 5

Shakespeare Q1 1.457s 1,520 31,048 0.054s 1,520 31,048 1 1
(7.9 MB) Q2 0.792s 1,520 31,048 0.055s 1,551 31,105 2 106,882

Q3 0.894s 1,560 31,253 0.038s 1,564 31,254 2 851
Q4 1.050s 1,586 31,364 0.046s 1,586 31,364 57 235
Q5 0.958s 1,194 29,418 0.045s 1,235 29,497 14 67

Baseball Q1 0.082s 26 76 0.001s 26 76 1 1
(671.9 KB) Q2 0.082s 26 76 0.001s 30 76 1 1,226

Q3 0.083s 46 805 0.001s 46 805 1 276
Q4 0.116s 1,215 14,413 0.023s 1,226 14,413 47 47
Q5 0.090s 48 870 0.003s 53 892 1 58

Figure 7: Parsing and query evaluation performance.

pointed out before, compression depends on which la-
beling information the trees to be compressed have to
carry, so we chose two settings for this initial exper-
iment (represented by the two rows in the table for
each corpus). In the upper rows (marked −), we show
the degree of compression for the simplest case, that
in which the schema is empty (tags have been erased)
and the bare tree structure is compressed. We believe
that this is a valuable indicator of the intrinsic com-
plexity of the structure of a document. In the lower
rows (those marked +), we include all tags of the doc-
ument into the compressed instance (+), but no other
labelings.

The degree of compression is measured as the ratio
|EM(T)|/|ET| of the number of edges |EM(T)| in the
compressed instance M(T) to the number of edges
|ET| in the tree skeleton T (as edges dominate the
vertices in the compressed instances). Of course,
|ET| = |V T| − 1.

Figure 7 reports on our experiments with queries.

As discussed in Section 4, the evaluation of each query
consists of two parts, first the extraction of the rele-
vant information from the document into a compressed
instance (The “parse time” in column (1) of Figure 7
thus includes the time taken for compression.) and
second the actual query evaluation in main memory.
The sizes of these compressed instances M(T) (ini-
tially, before query evaluation) are shown in columns
(2) and (3) of Figure 7. The query evaluation times
are presented in column (4), and the sizes of instances
after query evaluation (indicating how much decom-
pression occurred during query evaluation) are shown
in columns (5) and (6). We counted how many nodes
in the compressed instance were selected, as shown in
column (7). Finally, we also calculated to how many
nodes in the uncompressed tree-version of the result
these nodes corresponded (column (8)). The depth-
first traversal required to compute the latter is the
same as the one required to “decode” the query result
in order to compute “translate” or “apply” it to the

uncompressed tree-version of the instance.
Columns (2) and (3) of Figure 7 add to our discus-

sion of the degree of compression obtained. Figure 6
reported on the case where either just the bare tree
structure (−) or also all of the node tags in the doc-
ument (+) were included in the compressed instance.
Here, the information included into the compressed in-
stance was one node set for each of the tags and one for
each of the string constraints appearing in the queries;
all other tags were omitted. (Thus, whenever a query
does not contain string constraints, the initial degree
of compression obtained is certain to be between the
two numbers given for each data set in Figure 6.)

The experiments suggest that, given a new set
of data, we can expect compression to about one-
tenth to one-fifteenth of the original size of the skele-
ton. For highly structured documents, and particu-
larly databases that are (close to) XML-ized relational
data, we can expect a substantially better degree of
compression.

The notable outlier is Penn TreeBank (in which
trees often are very deep), which we suspect does not
compress substantially better than randomly gener-
ated trees of similar shape. This is further evidence
that linguistic data sets are among the most compli-
cated around, and deserve further study.

Regarding query performance, our results are ex-
tremely competitive. Indeed, we believe that the fact
that compression leads to reduced amounts of data
to be processed during query evaluation adds another
strong point to our approach, besides reduced main
memory consumption. It is worth mentioning that
while memory consumption is dominated by instance
sizes in terms of edges, query evaluation times are
dominated by node counts. This is not a surprise, as
our algorithms are very much centered around nodes
and their selections. While the compressed instances
of SwissProt and TreeBank are of similar size, Tree-
Bank’s query evaluation times are considerably higher,
as is the node count (see Figure 7).

6 Discussion and Conclusions

In this paper, we have presented a novel approach to
querying XML by keeping compressed representations
of the tree structure of documents in main memory. As
we have argued, our approach has a strong motivation
from symbolic model checking. Beyond algorithms,
we are able to borrow some of its theory and elegant
framework.

Most interesting, though, is that this approach sup-
ports very efficient XML query processing, a claim for
which we have provided experimental evidence. Three
reasons deserve to be given.

• Our notion of compression is based upon bisimu-
lation, allowing for natural evaluation techniques
with virtually no overhead compared with tradi-
tional main-memory techniques. Thus, our algo-
rithms are competitive even when applied to un-
compressed data.

• The separation of skeleton tree structure from
string data and the subsequent compression ensure

that very large parts of XML data (w.r.t. query
evaluation efficiency) – those that queries have to
access globally and navigate in – fit into main
memory. Minimizing the degree of fragmentation
(“shredding”) of such data is essential.

• Our compression technique uses sharing of com-
mon substructures. Thus, even for moderately-
sized documents that traditional main-memory en-
gines can process without difficulty, we may be more
efficient because such engines have to repetitively
re-compute the same results on subtrees that are
shared in our compressed instances.

We have observed that for moderately regular doc-
uments, the growth of the size of compressed instances
as a function of document sizes slows down when doc-
uments get very large, and we may indeed be able
to deal with extremely large instances of this kind in
main memory alone. However, in general, we want to
be able to apply some shredding and cache chunks of
compressed instances in secondary storage to be truly
scalable. Of course these chunks should be as large
as they can be to fit into main memory. Although it
seems not to be difficult, this is future work.

In this paper, we have focussed on path queries. For
the future, we plan to extend our work to evaluating
XQuery on compressed instances.

Acknowledgements

We want to thank Wang-Chiew Tan for providing us
with the XML-ized versions of SwissProt and OMIM.

References

[1] S. Abiteboul. “Querying Semistructured Data”. In
Proceedings of the 6th International Conference on
Database Theory (ICDT), Delphi, Greece, 1997.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Sk-
ounakis. “Weaving Relations for Cache Performance”.
In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), 2001.

[3] D. S. Batory. “On Searching Transposed Files”.
ACM Transactions on Database Systems, 4(4):531–
544, 1979.

[4] R. E. Bryant. “Graph-Based Algorithms for Boolean
Function Manipulation”. IEEE Transactions on Com-
puters, C-35(8):677–691, Aug. 1986.

[5] P. Buneman, S. B. Davidson, M. F. Fernandez, and
D. Suciu. “Adding Structure to Unstructured Data”.
In Proceedings of the 6th International Conference
on Database Theory (ICDT), pages 336–350, Delphi,
Greece, 1997.

[6] J. Burch, E. Clarke, K. McMillan, D. Dill, and
L. Hwang. “Symbolic Model Checking: 1020

States and Beyond”. Information and Computation,
98(2):142–170, 1992.

[7] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and
R. Rastogi. “Tree Pattern Aggregation for Scalable
XML Data Dissemination”. In Proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB), Hong Kong, China, 2002.

[8] A. Deutsch, M. Fernandez, and D. Suciu. “Storing
Semistructured Data with STORED”. In Proceedings
of the 1999 ACM SIGMOD International Conference
on Management of Data (SIGMOD), 1999.

[9] P. Fankhauser, G. Huck, and I. Macherius. “Compo-
nents for Data Intensive XML Applications”. See also:
http://www.ercim.org/
publication/Ercim News/enw41/fankhauser.html.

[10] M. F. Fernandez and D. Suciu. “Optimizing Regu-
lar Path Expressions Using Graph Schemas”. In Pro-
ceedings of the 14th IEEE International Conference
on Data Engineering (ICDE), pages 14–23, Orlando,
Florida, USA, Feb. 1998.

[11] D. Florescu and D. Kossmann. “Storing and Querying
XML Data using an RDMBS”. IEEE Data Engineer-
ing Bulletin, 22(3):27–34, 1999.

[12] M. Frick, M. Grohe, and C. Koch. “Query Evaluation
on Compressed Trees”. In Proceedings of the 18th An-
nual IEEE Symposium on Logic in Computer Science
(LICS), Ottawa, Canada, 2003.

[13] R. Goldman and J. Widom. “DataGuides: Enabling
Query Formulation and Optimization in Semistruc-
tured Databases”. In Proceedings of the 23rd Interna-
tional Conference on Very Large Data Bases (VLDB),
pages 436–445. Morgan Kaufmann, 1997.

[14] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algo-
rithms for Processing XPath Queries”. In Proceedings
of the 28th International Conference on Very Large
Data Bases (VLDB), Hong Kong, China, 2002.

[15] H. Liefke and D. Suciu. “XMill: An Efficient Com-
pressor for XML Data”. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data (SIGMOD), 2000.

[16] K. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[17] T. Milo and D. Suciu. “Index Structures for Path
Expressions”. In Proceedings of the 7th International
Conference on Database Theory (ICDT), 1999.

[18] M. Neumüller and J. N. Wilson. “Improving XML
Processing Using Adapted Data Structures”. In Proc.
Web, Web-Services, and Database Systems Workshop,
pages 206–220. Springer LNCS 2593, 2002.

[19] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. “Relational
Databases for Querying XML Documents: Limita-
tions and Opportunities”. In Proceedings of the 25th
International Conference on Very Large Data Bases
(VLDB), pages 302–314, 1999.

[20] P. Tolani and J. R. Haritsa. “XGRIND: A Query-
friendly XML Compressor”. In Proceedings of the 18th
IEEE International Conference on Data Engineering
(ICDE), 2002.

[21] World Wide Web Consortium. XML Path Language
(XPath) Recommendation.
http://www.w3c.org/TR/xpath/, Nov. 1999.

[22] J. Ziv and A. Lempel. “A Universal Algorithm for
Sequential Data Compression”. IEEE Transactions
of Information Theory, 23(3):337–349, May 1977.

A Benchmark Queries

This appendix lists the queries used in the experi-
ments of Section 5. We write string constraints as
“abc”, meaning that a node matches the constraint if
the string “abc” is contained in its string value.

SwissProt
Q1: /self::*[ROOT/Record/comment/topic]
Q2: /ROOT/Record/comment/topic
Q3: //Record/protein[taxo["Eukaryota"]]
Q4: //Record[sequence/seq["MMSARGDFLN"] and

protein/from["Rattus norvegicus"]]
Q5: //Record/comment[topic["TISSUE SPECIFICITY"]

and following-sibling::comment/topic[
"DEVELOPMENTAL STAGE"]]

DBLP
Q1: /self::*[dblp/article/url]
Q2: /dblp/article/url
Q3: //article[author["Codd"]]
Q4: /dblp/article[author["Chandra"] and

author["Harel"]]/title
Q5: /dblp/article[author["Chandra" and

following-sibling::author["Harel"]]]/title

Penn TreeBank
Q1: /self::*[alltreebank/FILE/EMPTY/S/VP/S/VP/NP]
Q2: /alltreebank/FILE/EMPTY/S/VP/S/VP/NP
Q3: //S//S[descendant::NNS["children"]]
Q4: //VP["granting" and descendant::NP["access"]]
Q5: //VP/NP/VP/NP[following::NP/VP/NP/PP]

OMIM
Q1: /self::*[ROOT/Record/Title]
Q2: /ROOT/Record/Title
Q3: //Title["LETHAL"]
Q4: //Record[Text["consanguineous parents"]

]/Title["LETHAL"]
Q5: //Record[Clinical_Synop/Part["Metabolic"

]/following-sibling::Synop[
"Lactic acidosis"]]

XMark
Q1: /self::*[site/regions/africa/item/

description/parlist/listitem/text]
Q2: /site/regions/africa/item/

description/parlist/listitem/text
Q3: //item[payment["Creditcard"]]
Q4: //item[location["United States"] and

parent::africa]
Q5: //item/description/parlist/listitem[

"cassio" and
following-sibling::*["portia"]]

Shakespeare’s Collected Works
Q1: /self::*[all/PLAY/ACT/SCENE/SPEECH/LINE]
Q2: /all/PLAY/ACT/SCENE/SPEECH/LINE
Q3: //SPEECH[SPEAKER["MARK ANTONY"]]/LINE
Q4: //SPEECH[SPEAKER["CLEOPATRA"] or

LINE["Cleopatra"]]
Q5: //SPEECH[SPEAKER["CLEOPATRA"] and

preceding-sibling::SPEECH[
SPEAKER["MARK ANTONY"]]]

1998Baseball
Q1: /self::*[SEASON/LEAGUE/DIVISION/TEAM/PLAYER]
Q2: /SEASON/LEAGUE/DIVISION/TEAM/PLAYER
Q3: //PLAYER[THROWS["Right"]]
Q4: //PLAYER[ancestor::TEAM[TEAM_CITY["Atlanta"]]

or (HOME_RUNS["5"] and STEALS["1"])]
Q5: //PLAYER[POSITION["First Base"] and

following-sibling::PLAYER[
POSITION["Starting Pitcher"]]]

