
On the role of composition in XQuery

Christoph Koch
Lehrstuhl für Informationssysteme

Universität des Saarlandes
Saarbrücken, Germany

koch@cs.uni-sb.de

ABSTRACT
Nonrecursive XQuery is known to be hard for nondetermin-
istic exponential time. Thus it is commonly believed that
any algorithm for evaluating XQuery has to require expo-
nential amounts of working memory and doubly exponential
time in the worst case. In this paper we present a property –
the lack of a certain form of composition – that virtually all
real-world XQueries have and that allows for query evalua-
tion in singly exponential time and polynomial space. Still,
we are able to show for an important special case – our non-
recursive XQuery fragment restricted to atomic value equal-
ity – that the composition-free language is just as expressive
as the language with composition. Thus, under widely-held
complexity-theoretic assumptions, the composition-free lan-
guage is an exponentially less succinct version of the lan-
guage with composition.

1. INTRODUCTION
XQuery is the principal data transformation query lan-

guage for XML. Full XQuery is Turing-complete, but queries
without recursion are guaranteed to terminate in straightfor-
ward functional implementations of the XQuery language.
Recursion in XQuery is rarely used in practice (see also [15]);
recursive XML transformations are usually implemented in
XSLT. It was shown in [7] that nonrecursive XQuery is
NEXPTIME-hard. As a consequence, it is commonly be-
lieved that any query evaluation algorithm for nonrecursive
XQuery must consume doubly exponential time and expo-
nential space for query evaluation in the worst case (cf. e.g.
[6]). This is by an exponential factor worse than the com-
plexity of relational algebra or calculus [11]. The paper [7]
also introduced a clean fragment of nonrecursive XQuery
called Core XQuery that was shown to be the expressive
counterpart of nested relational algebra [5] (or similar lan-
guages such as complex value algebra without powerset [1]
or monad algebra [12]) for XML.

In this paper we present a syntactic property – the lack
of a certain form of composition – that virtually all real-
world XQueries have and which renders composition-free
Core XQuery just as hard as relational algebra.

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

By composition, informally, we refer to the use of data
value construction (rather than selection using XPath) any-
where except for the construction part of an XQuery (that
is, in a for-let-where-return (FLWR) construct, anywhere
except for the return clause). For example, the query

<books_2004>

{ for $x in /bib/book where year=2004 return

<book>

{$x/title}

<authors>

{ for $y in $x/author return

<author> {$y/lastname} </author>

}

</authors>

</book>

}

</books_2004>

is a composition-free query (so nesting queries, e.g., FLWR-
statements in their return clauses, is not a problem) while

<books>

{ let $x := <a>{ for $w in /bib/book

return <b> {$w} </b> }</a>

for $y in $x/b return $y/*

}

</books>

is not composition-free because it uses a let-expression that
constructs a tree as an intermediate result. The equivalent
query

<books>

{ for $y in (for $w in /bib/book

return <b> {$w} </b>)

return $y/*}

}

</books>

is still not composition-free because the “in”-expression of
the outer for-loop contains a for-loop. However, there is an
equivalent composition-free query,

<books>

{ for $w in /bib/book return $w }

</books>

The technical contributions of this paper are as follows.

• It is shown that composition-free Core XQuery can be
evaluated in polynomial space and thus also in singly
exponential time. In fact, composition-free nonrecur-
sive XQuery is PSPACE-complete.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


With composition [7]:
with negation without negation

deep equality in EXPSPACE; TA[2O(n), O(n)]-hard

equality on atomic values TA[2O(n), O(n)]-complete NEXPTIME-complete

Without composition:
with negation without negation

deep equality PSPACE-complete NP-complete
equality on atomic values PSPACE-complete NP-complete

Table 1: Summary of results on query/combined complexity of Core XQuery.

• We also show that composition-free nonrecursive XQuery
without negation is NP-complete.

• Still, we are able to show for an important special
case – equality is restricted to atomic values – that
composition-free Core XQuery is just as expressive as
Core XQuery with composition. Thus, under the usual
complexity-theoretic assumptions, the composition-free
language is an exponentially less succinct version of the
language with composition.

An overview of the complexity results of this paper – to-
gether with the results from [7] is given in Table 1. Since the
variables in composition-free XQuery range only over sub-
trees of the input tree, supporting deep value equality has
no influence on the complexity of queries, differently from
the case of Core XQuery with composition.

Nonrecursive composition-free XQuery is an important
class of queries, and indeed, most practical XQueries be-
long to this class. (For instance, only a handful of the
XML Query Use Case queries [15] employ composition.)
Composition-free (Core) XQuery is also popular among im-
plementors of limited prototype XQuery engines, e.g. [8].
Our preliminary expressiveness results show that restricting
oneself to implementing composition-free Core XQuery does
not cause a loss of generality, at least if equality checking is
limited to atomic value equality. The expressiveness result
also gives a partial explanation for why practical XQueries
tend to be composition-free, as observed above. Writing
more succinct queries takes an effort, and apparently does
not pay off for many queries.

Note that other functional languages such as monad al-
gebra [12] do not seem to have natural “composition-free”
fragments that remain expressive.

A major motivation of this work is to define simple but
relevant fragments of XQuery suitable for research prototype
implementations and theoretical study (see also [4] for an-
other attempt towards this goal). Indeed, composition-free
Core XQuery may allow for special, efficient implementa-
tion techniques because all variables only range over nodes
in the input tree (never over nodes from intermediate query
results).

The structure of this paper is as follows. In Section 2, we
introduce a clean fragment of nonrecursive XQuery, Core
XQuery , that will be the language studied in the remainder
of the paper. In Section 3 we introduce composition-free
Core XQuery. In Section 4, we prove the PSPACE- and NP-
completeness results for the complexity of composition-free
Core XQuery. Finally, in Section 5, we prove the expressive-
ness result that composition-free Core XQuery captures full
Core XQuery with “child” and atomic equality.

We assume basic complexity classes such as TC0, NC1,
LOGSPACE, NP, PSPACE, and NEXPTIME known and
refer to [6] for the relevant complexity-theoretic background.

By TA[2O(n), O(n)], we denote the class of all problems
solvable by alternating Turing machines in linear exponen-
tial time with a linear number of alternations (see [6] for
definitions). Closure and hardness are under LOGSPACE-
reductions for NP, PSPACE, and NEXPTIME and under
LOGLIN-reductions (that is, LOGSPACE-reductions whose

output is linear) for TA[2O(n), O(n)].
We use the now standard notions of data, query, and com-

bined complexity introduced by Vardi [13].

2. CORE XQUERY
We consider the fragment of XQuery with abstract syntax

query ::= () | 〈a〉query〈/a〉 | query query

| var | var/axis :: ν

| for var in query return query

| if cond then query

| (let var := 〈a〉query〈/a〉) query

cond ::= var = var | query

where a denotes the XML tags, axis the XPath axes “child”
and “descendant”, var a set of XQuery variables $x, $x1,
$x2, . . . , $y, $z, . . . with a distinguished root variable (which
is the unique free variable in the query), and ν a node test
(either a tag name or “*”). We refer to this fragment as
Core XQuery , or XQ for short.

For simplicity, we will work with pure node-labeled un-
ranked ordered trees, and by atomic values, we will refer to
leaves (or equivalently, their labels).

XQuery supports several forms of equality. We will not
try to use the same syntax (=, eq, or deep equal) as in
the current standards proposal – it is not clear whether the
syntax has stabilized. Throughout this paper, equality is by
value (that is, by value as a tree rather than by the yield of
strings at leaf nodes of the tree). We will write =deep and
=atomic for deep and atomic equality, respectively. We will
use = for statements that apply to both forms of equality.

Our only other divergence from XQuery syntax is that we
assume if-expressions of the form “if φ then α” rather than
“if φ then α else β”. Of course, our if-expressions can be
considered as a shortcut for “if φ then α else ()” and else-
branches can be simulated using negation, “if not(φ) then β”.

We define the semantics of an XQ expression α with k free
variables using a function [[α]]k – given in Figure 1 – that
takes a k-tuple of trees as input. On input tree t, query
Q evaluates to [[Q]]1(t). The symbol ] in Figure 1 denotes
list concatenation, li the i-th element of list l, <t

doc is the



[[()]]k(~e) := [ ]

[[〈a〉α〈/a〉]]k(~e) := [〈a〉[[α]]k(~e)〈/a〉]

[[α β]]k(~e) := [[α]]k(~e) ] [[β]]k(~e)

[[for $xk+1 in α

return β]]k(~e) := let l = [[α]]k(~e);

return
]

1≤i≤|l|

[[β]]k+1(~e, li)

[[(let $xk+1 := α) β]]k(~e) := let l = [[α]]k(~e);

return [[β]]k+1(~e, l1)

[[$xi]]k(t1, . . . , tk) := [ti]

[[$xi/χ :: ν]]k(t1, . . . , tk) := list of nodes v of tree ti s.t.

χti(rootti , v) ∧ labti

ν (v)

in order <ti

doc

[[if φ then α]]k(~e) := if [[φ]]k(~e) then [[α]]k(~e) else [ ]

[[$xi = $xj ]]k(t1, . . . , tk) := if ti = tj then [〈yes/〉] else [ ]

Figure 1: Semantics of Core XQuery.

depth-first left-to-right traversal order through tree t, χt is
the axis relation χ on t, labt

∗ is true on all nodes of t, and
labt

a, for a a tag name, is true on those nodes of t labeled a.
All XQ queries evaluate to lists of nodes. However, we as-
sume that XQ variables always bind to single nodes rather
than lists; our fragment assures this. This semantics is
(observationally) consistent with XQuery as currently un-
dergoing standardization through the W3C [14] restricted
to Core XQuery.

In our definition of the syntax of Core XQuery, we have
been economical with operators introduced. Since condi-
tions are true iff they evaluate to a nonempty collection,

true := 〈a/〉

φ or ψ := φ ψ

φ and ψ := if φ then ψ

some $x in α satisfies φ := for $x in α return φ

Using deep equality, we can define negation,

not φ :=
`

() =deep if φ then 〈b/〉
´

.

Conditions “every $x in α satisfies φ” can be defined us-
ing “not” and “some”. We will use the shortcut 〈a/〉 for
〈a〉()〈/a〉. It is clear that

Proposition 2.1. Let X be a set of operations and axes.

• Each XQ [=deep, not, every,X] query can be translated
in LOGLIN into an equivalent XQ [=deep,X] query.

• Each XQ [and, or, some,X] query can be translated in
LOGLIN into an equivalent XQ [X] query.

Previous results on XQ
The following results on the complexity and expressive power
of XQ have been established in [7].

Proposition 2.2 ([7]). W.r.t. combined complexity,

• XQ [=deep, all axes] is in EXPSPACE;

• XQ [=atomic, all axes, not] is in TA[2O(n), O(n)]; and

• XQ [=atomic, all axes] is in NEXPTIME.

Proposition 2.3 ([7]). W.r.t. query complexity,

• XQ [=deep, child] is TA[2O(n), O(n)]-hard;

• XQ [=atomic, child, not] is TA[2O(n), O(n)]-hard; and

• XQ [=atomic, child] is NEXPTIME-hard.

Proposition 2.4 ([7]). W.r.t. data complexity,
XQ [=deep, all axes] is

• LOGSPACE-complete under NC1-reductions if the XML
input is given as a DOM tree and

• in TC0 if the XML input is given as a character string.

It has been shown that many query languages for complex
values that were developed earlier, such as nested relational
algebra [5], complex value algebra without powerset [1], and
monad algebra [12], share the same expressive power. Core
XQuery is an interesting fragment of XQuery because it cap-
tures precisely this degree of expressiveness, which is com-
monly deemed “right” for nested, deeply structured data.

Proposition 2.5 ([7]). XQ[=, child] captures – up to
data representation issues – monad algebra on lists [12].

That is, there are fixed mappings “V2T” (from complex
values to trees), “T2V” (from trees to complex values), “M2X”
(from monad algebra on lists to XQ), and “X2M” (from XQ
to monad algebra on lists), s.t. for XQ query Q and tree T ,

X2M(Q)(T2V(T )) = T2V(Q(T ))

and for monad algebra query Q and complex value V ,

M2X(Q)(V2T(V )) = V2T(Q(V )).

The “representation issues” are that the mappings “V2T”
and “T2V” are needed. However these are independent from
the mappings between the queries.

Proposition 2.5 holds for = being either atomic or deep
value equality. From Proposition 2.5 it also follows that
XQ [=, child] is a conservative extension of relational algebra
up to representation issues in the spirit of [10], just like
monad algebra [12].

3. COMPOSITION-FREE XQ
Composition-free Core XQuery, XQ−[not], now is the frag-

ment of Core XQuery obtained by the grammar

query ::= () | 〈a〉query〈/a〉 | query query

| var | var/axis :: ν

| for var in var/axis :: ν return query

| if cond then query

cond ::= var = var | var = 〈a/〉 | true

| some var in var/axis :: ν satisfies cond

| cond and cond | cond or cond

| not cond

The keyword “every” can again be obtained from “some”
and “not”. Testing whether condition $x/χ :: ν (where χ is



an axis and ν is a node test) can be matched is of course
possible as “some $y in $x/χ :: ν satisfies “$y = $y”. Pos-
itive composition-free Core XQuery XQ− is again obtained
by removing negation “not” from the language.

For our expressiveness proof below, we will use a variant
of XQ− with less syntax, i.e. in which conditions are defined
using the usual query operations rather than “some”, “and”,
and “or”.

Let XQ∼ denote the XQ queries

• which do not contain “let”-expressions,

• for which for each expression “for $x in α return β”,
α is of the form $x/ν, and

• which in addition support conditions $x = 〈a/〉.

XQ∼ and XQ− are expressively equivalent.

Proposition 3.1. XQ∼ = XQ−.

Proof Sketch. ⇒: For a mapping from XQ∼ to XQ−,
we define an appropriate translation function f that we use
to rewrite all maximal if-conditions (i.e., conditions of if-
expressions that are not subexpressions of if-expressions):

f(α β) := f(α) or f(β)

f(for $y in $x/ν return α) := some $y in $x/ν

satisfies f(α)

f(if φ then α) := f(φ) and f(α)

f(not φ) := not f(φ)

f(〈a〉α〈/a〉) := true

On all other kinds of expressions, f is the identity.
⇐: For a mapping from XQ− to XQ∼, we only need

to eliminate “true”, “some”, “and”, and “or” using their
definitions from Section 2. 2

Example 3.2. It is easy to verify that the query

<result>

{ for $x in $root/a return

if not(for $y in $x/b return

if $y/c then ($y/d $y/e))

then $x/f }

</result>

is XQ∼. The corresponding XQ− query is

<result>

{ for $x in $root/a return

if not(some $y in $x/b satisfies

($y/c and ($y/d or $y/e)))

then $x/f }

</result> 2

The mappings from the proof of Proposition 3.1 can be
implemented efficiently, thus our complexity results estab-
lished below will hold for both XQ− and XQ∼.

4. COMPLEXITY RESULTS FOR XQ−

We now provide our complexity characterization of com-
position-free Core XQuery.

As announced in the introduction, the query evaluation
problem for XQ− is in polynomial space w.r.t. combined
complexity.

Proposition 4.1. XQ−[=deep, all axes, not] is in space
O(|Q| · log |t|), where |Q| is the size of the query and |t| is
the size of the data tree.

Proof Sketch. It is easy to check that by definition of the
fragment, XQuery variables always range exclusively over
nodes of the input tree. This can be verified by checking
the invariant that each variable is introduced using a “for”-
statement over a collection defined by an expression $x/ν,
starting at the root node of the input tree.

Thus there is a straightforward algorithm – direct nested-
loop based evaluation – for XQ− queries that only takes
memory to store a pointer into the input tree (taking space
log |t|) for each of the O(|Q|) variables in the query. 2

For the remaining results, we study decision problems and
thus Boolean queries. Since valid XML query results have
to consist of at least a root node, we say that a Boolean
(XQ−) query 〈a〉α〈/a〉 returns true iff the root node of the
result tree has at least one child.

Proposition 4.2. XQ−[=atomic, child, not] is PSPACE-
hard w.r.t. query complexity.

Proof Sketch. The problem is PSPACE-hard already with
respect to query complexity (i.e., when the input tree is
fixed). The proof is a minor variation of the standard proof
of the PSPACE-hardness of the relational calculus (cf. [11]),
and is by reduction from the Quantified Boolean Formula
evaluation problem (QBF). We illustrate it with an exam-
ple, which should be easy to generalize. Consider the QBF
∀x∃y(x ⇔ y), which is true. This formula can be phrased
as the query

〈a〉

{ if every $x in $root/* satisfies

(some $y in $root/* satisfies

(not $x=“t” or $y=“t”) and

(not $y=“t” or $x=“t”))

then 〈yes/〉}

〈/a〉

over the fixed data tree consisting of a root node with two
children, one with string value “t” and the other with string
value “f”. (Of course, “every $x in Q satisfies φ” is the same
as “not(some $x in Q satisfies not(φ))”) 2

While negation and universal quantification were redun-
dant in XQ [=deep], and excluding them did not reduce the
complexity of the language [7], it is interesting to consider
the case of XQ− without negation.

Proposition 4.3. XQ−[=deep, all axes] is in NP w.r.t.
combined complexity.

Proof Sketch. If the result of the query is to be nonempty,
a node has to be written at a certain for-depth k (so the
subexpression responsible for the node has up to k free
XQuery variables). We can guess the value assignments
of these and then check the conditions (this includes axes,
node-tests, and if-conditions) along the for-loops up to depth
k in polynomial time. (Note that negation only applies to
conditions that contain XPath, but no XQuery.) 2



Proposition 4.4. XQ−[=atomic, child] is NP-hard w.r.t.
query complexity.

Proof Sketch. This follows immediately from the NP-
hardness of conjunctive (relational) queries [2], and a proof
can be given e.g. by reduction from 3-Colorability: The fixed
data tree consists of a root node and three children, which
are labeled “red”, “green”, and “blue”, respectively.

Given a graph G = (V,E) with V = {v1, . . . , vm} and

E = {{vi(1,1), vi(1,2)}, . . . , {vi(n,1), vi(n,2)}}

(1 ≤ i(·, ·) ≤ m), we construct the query

<result>
{ for $x1 in $root/* return

. . .

for $xm−1 in $root/* return
for $xm in $root/* return
if (not $xi(1,1) =atomic $xi(1,2)) and ... and

(not $xi(n,1) =atomic $xi(n,2)) then
<yes/>

}
</result>

It is easy to verify that indeed this query computes “yes”
nodes precisely if G is 3-colorable. Obviously, the query can
be computed from G in logarithmic space. 2

5. EXPRESSIVENESS OF XQ−

In this final section, we show that surprisingly, for an im-
portant case (atomic equality and “child” as the only sup-
ported axis), composition-free Core XQuery is actually just
as expressive as full Core XQuery. This is true even though
XQ− is in PSPACE and XQ is hard for TA[2O(n), O(n)].
Thus under commonly-held complexity theoretic assump-
tions, XQ is exponentially more succinct than XQ−.

We use the shortcut (〈a〉α〈/a〉)/χ::ν for $x/χ::ν such that
$x has been defined using “let” as (〈a〉α〈/a〉). Below, “dos”
is a shortcut for the “descendant-or-self” axis; it will be
redundant because $x/dos::ν is equivalent to

(if $x/self::ν then $x) $x//ν.

Lemma 5.1. Let a be a label, χ an axis, ν a nodetest, and
α an XQ∼[=atomic, child, descendant, self, dos, not] expres-
sion. Then there is an XQ∼[=atomic, child, descendant, self,
dos, not] expression equivalent to (〈a〉α〈/a〉)/χ::ν.

Proof Sketch. Rules to rewrite each such expression

(〈a〉α〈/a〉)/χ::ν

into an equivalent XQ∼[=atomic, child, descendant, self, not]
expression are easy to specify:

(〈a〉 α 〈/a〉)/ν ` α/self::ν

(〈a〉 α 〈/a〉)/self::b ` ()

(〈a〉 α 〈/a〉)/self::a ` 〈a〉 α 〈/a〉

(〈b〉 α 〈/b〉)/self::* ` 〈b〉 α 〈/b〉

(〈a〉 α 〈/a〉)//ν ` α/dos::ν

(〈a〉 α 〈/a〉)/dos::∗ ` 〈a〉 α 〈/a〉 (α//∗)

(〈a〉 α 〈/a〉)/dos::a ` 〈a〉 α 〈/a〉 (α//a)

(〈a〉 α 〈/a〉)/dos::b ` α//b

()/χ::ν ` ()

(α β)/χ::ν ` (α/χ::ν) (β/χ::ν)

(for $x in α return β)/χ::ν ` for $x in α

return (β/χ::ν)

(if φ then α)/χ::ν ` if φ then (α/χ::ν)

($x/χ::ν)/χ′::ν′ ` for $y in $x/χ::ν

return $y/χ′::ν′

(Note that ($x/χ::ν)/χ′::ν′ in the final rule is really equiv-
alent to the for-expression on the right-hand side of that
rule, and is in general not equivalent to $x/χ::ν/χ′::ν′, as
the former may produce duplicates if both χ and χ′ are “de-
scendant”.) 2

Theorem 5.2. XQ∼[=atomic, child, desc, self, not]
captures the XQ [=atomic, child, desc, self, not] queries.

Proof Sketch. We first replace each expression of the form
“(let $x := 〈a〉α〈/a〉) β” by an expression β′ := β[$x ⇒
〈a〉α〈/a〉] obtained by substituting each occurrence of vari-
able $x in β by 〈a〉α〈/a〉.

We now need to consider where such a replacement of a
variable $x by an expression 〈a〉α〈/a〉 can occur:

1. Inside an equality $x =atomic α (with α either a vari-
able or a constant 〈b/〉).

To rewrite $x with 〈a〉α〈/a〉, we may assume that α
is (); otherwise, we could not type 〈a〉α〈/a〉 to be an
atomic value. Thus we obtain 〈a/〉 =atomic α, which is
XQ∼. Conditions 〈a/〉 =atomic 〈a/〉 and 〈a/〉 =atomic

〈b/〉 are rewritten into “true” and “not(true)”, respec-
tively.

2. Inside an expression $x or $x/χ::ν (either in the “in”-
expression of a for-loop or as an expression construct-
ing “output”).

Here rewriting may lead to expressions of the form
(〈a〉α〈/a〉)/χ::ν, which is not XQ syntax. We can elim-
inate such expressions using Lemma 5.1.

Now the query obtained is already an XQ∼ query if in
all expressions “for $x in α return β”, α is of the form $z
or $z/χ::ν. Otherwise, we apply the rewrite rules from Fig-
ure 2. This may again produce expressions (〈a〉α〈/a〉)/χ::ν,
by rule (2). We eliminate such cases again using Lemma 5.1.

It can be verified that the rewrite system thus specified
indeed maps any XQ [=atomic, child, desc, self, not] query to
an equivalent XQ∼[=atomic, child, desc, self, not] query. An
example mapping to XQ∼ illustrating our rewrite system is
given in Figure 3. 2

Acknowledgments
I thank Dan Olteanu and Stefanie Scherzinger for their com-
ments on an earlier version of the paper.

6. REFERENCES
[1] S. Abiteboul and C. Beeri. “The Power of Languages

for the Manipulation of Complex Values”. VLDB J.,
4(4):727–794, 1995.

[2] A. K. Chandra and P. M. Merlin. “Optimal
Implementation of Conjunctive Queries in Relational
Data Bases”. In Conference Record of the Ninth
Annual ACM Symposium on Theory of Computing
(STOC’77), pages 77–90, Boulder, CO, USA, May
1977.



for $x in () return α ` () (1)

for $x in (〈a〉 α 〈/a〉) return β ` β[$x ⇒ (〈a〉 α 〈/a〉)] (2)

for $x in (α β) return γ ` (for $x in α return γ) (for $x in β return γ) (3)

for $y in (for $x in α return β) return γ ` for $x in α return for $y in β return γ (4)

for $x in (if φ then α) return β ` for $x in α return if φ then β (5)

for $y in $x return α ` α[$y ⇒ $x] (6)

Figure 2: Rewrite rules for translating for-expressions to XQ∼.

(let $x := 〈a〉{ for $w in $root/* return 〈b〉{$w}〈/b〉 }〈/a〉) for $y in $x/b return $y/∗
elim.let

`

for $y in (〈a〉{ for $w in $root/* return (〈b〉{$w}〈/b〉) }〈/a〉)/b return $y/∗
Lem. 5.1

`

for $y in (for $w in $root/* return (〈b〉{$w}〈/b〉)) return $y/∗
4

`

for $w in $root/* return for $y in (〈b〉{$w}〈/b〉) return $y/∗
2

`

for $w in $root/* return (〈b〉{$w}〈/b〉)/∗
Lem. 5.1

`

for $w in $root/* return $w

Figure 3: Example rewriting.

[3] G. Gottlob, C. Koch, and R. Pichler. “Efficient
Algorithms for Processing XPath Queries”. In Proc.
VLDB 2002, pages 95–106, Hong Kong, China, 2002.

[4] J. Hidders, J. Paredaens, R. Verkammen, and
S. Demeyer. “A Light but Formal Introduction to
XQuery”. In Proc. XSYM, pages 5–20, 2004.

[5] G. Jaeschke and H.-J. Schek. “Remarks on the
Algebra of Non First Normal Form Relations”. In
Proc. PODS’82, pages 124–138, 1982.

[6] D. S. Johnson. “A Catalog of Complexity Classes”. In
J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 1, chapter 2, pages 67–161.
Elsevier Science Publishers B.V., 1990.

[7] C. Koch. “On the Complexity of Nonrecursive XQuery
and Functional Query Languages on Complex
Values”. In Proc. PODS’05, 2005.

[8] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. “Schema-based Scheduling of Event
Processors and Buffer Minimization for Queries on
Structured Data Streams”. In Proc. VLDB 2004,
Toronto, Canada, 2004.

[9] A. Marian and J. Siméon. “Projecting XML
Documents”. In Proc. VLDB 2003, pages 213–224,
2003.

[10] J. Paredaens and D. Van Gucht. “Possibilities and
Limitations of Using Flat Operators in Nested Algebra
Expressions”. In Proc. PODS, pages 29–38, 1988.

[11] L. J. Stockmeyer. The Complexity of Decision
Problems in Automata Theory. PhD thesis, Dept.
Electrical Engineering, MIT, Cambridge, Mass., USA,
1974.

[12] V. Tannen, P. Buneman, and L. Wong. “Naturally
Embedded Query Languages”. In Proc. of the 4th
International Conference on Database Theory (ICDT),
pages 140–154, 1992.

[13] M. Y. Vardi. “The Complexity of Relational Query
Languages”. In Proc. 14th Annual ACM Symposium

on Theory of Computing (STOC’82), pages 137–146,
San Francisco, CA USA, May 1982.

[14] World Wide Web Consortium. “XQuery 1.0 and
XPath 2.0 Formal Semantics. W3C Working Draft
(Aug. 16th 2002), 2002.
http://www.w3.org/TR/query-algebra/.

[15] “XML Query Use Cases. W3C Working Draft 02 May
2003”, 2003.
http://www.w3.org/TR/xmlquery-use-cases/.


