
The VLDB Journal (2007)

REGULAR PAPER

Christoph Koch · Stefanie Scherzinger

Attribute grammars for scalable query processing
on XML streams

Received: 6 January 2005 / Accepted: 8 July 2005 / Published online: 2 February 2006
c© Springer-Verlag 2006

Abstract We introduce the notion of XML Stream Attribute
Grammars (XSAGs). XSAGs are the first scalable query lan-
guage for XML streams (running strictly in linear time with
bounded memory consumption independent of the size of
the stream) that allows for actual data transformations rather
than just document filtering. XSAGs are also relatively easy
to use for humans. Moreover, the XSAG formalism provides
a strong intuition for which queries can or cannot be pro-
cessed scalably on streams. We introduce XSAGs together
with the necessary language-theoretic machinery, study their
theoretical properties such as expressiveness and complex-
ity, and discuss their implementation.

Keywords Stream processing · Query languages · Attribute
grammars · XML

1 Introduction

In recent years, XML has become a standard format for doc-
ument exchange and now seems to evolve into a popular
representation language for streaming data as well. This de-
velopment calls for flexible query languages for processing
streams which support data transformations.

In [16, 25, 29], fragments of the standard XQuery lan-
guage [34] are evaluated on XML streams. These fragments
tend to support powerful data transformations. In conse-
quence, query processing neither scales in terms of runtime
nor memory consumption. Indeed, in these works, memory
buffers are required that can grow arbitrarily large, depend-
ing on the amount of data communicated via stream.

This problem is due to the nature of XQuery, which
renders it ill-suited for stream processing: Features such as
nested for-loops with transitive paths (e.g. using descendant
axis), which may lead to a nonlinearly-sized output, and
nonlocal computations such as joins and the reordering and

C. Koch · S. Scherzinger (B)
Lehrstuhl für Informationssysteme
Universität des Saarlandes, Saarbrücken, Germany
E-mail: scherzinger@infosys.uni-sb.de

sorting of data cannot be handled scalably on streams. In ad-
dition, the syntax of XQuery makes it difficult for a user to
tell whether a query can – at least in principle – be evaluated
scalably, in linear time using little memory.

While XQuery was not designed to be evaluated on XML
streams, the STX scripting language [12] employs a process-
ing model where stylesheets are evaluated in a single pass
over the input. Via memory buffers that store XML events,
parts of the input stream may be revisited.

Yet query languages that require unbounded buffers con-
stitute a scalability issue on streams. Thus, they are not in
the spirit of the database community’s quest for tailored for-
malisms that provide the appropriate tradeoffs between ex-
pressiveness and complexity for the data management chal-
lenge at hand.

XML streams may be very long, or should even be as-
sumed to be infinite. For query processing to be feasible on
streams, there is a need for special-purpose query languages
and evaluation algorithms which scale to streams, that is,

(a) which can be evaluated strictly in linear time in the size
of the input,

(b) which work by one linear forward scan of the data,
(c) and for which, at any time during query evaluation,

memory consumption is bounded w.r.t. the length of the
stream but not the depth of the XML tree.1

Among the models of computation that allow for better
control of complexity than languages such as XQuery (see
[22], where it is shown that already nonrecursive XQuery
is NEXPTIME-hard. Thus, under widely held complexity-
theoretic assumptions, XQuery is even exponentially harder
than relational algebra. In any case, both XQuery and rela-
tional algebra support joins, and it is well known that even
single-join queries cannot be processed scalably on streams,

1 Note that a stack of memory proportional to the maximum depth of
the XML tree is necessary for even the most basic sequential navigation
and parsing tasks (see e.g. [18, 20, 21, 30]). To be precise, in (c) we thus
call for memory consumption that is bounded w.r.t. the length of the
stream but not the depth of the XML tree (an indication of its structural
complexity). XML trees tend to be very shallow but wide, therefore
such a stack is not considered a bottleneck to scalability.

DOI 10.1007/s00778-005-0169-1
16: 317–342

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C. Koch, S. Scherzinger

cf. [19]), there are various forms of automata/transducers
and certain attribute grammars. The former are, however, te-
dious to specify queries with, because their specifications
tend to be large, technical, and hard to read. The latter ap-
proach is pursued in the current paper.

In this work, we develop and investigate a formalism
for processing XML streams called XML Stream Attribute
Grammars (XSAGs), a new class of attribute grammars
specifically designed for scalable XML stream processing.
XSAGs can be evaluated strictly in linear time in a stream-
ing fashion, consuming only a stack of memory bounded by
the depth of the XML tree being streamed. Thus, XSAGs
satisfy our desiderata (a) through (c).

XSAGs are based on extended regular tree grammars,
i.e., regular tree grammars in which the right-hand sides of
productions may contain regular expressions, allowing the
specification of nodes in the parse tree that have an un-
bounded number of children. Extended regular tree gram-
mars are thus well-suited for specifying classes of unranked
trees denoting XML documents. We assume that extended
regular tree grammars are often available for XML streams
in the dialect of Document Type Definitions (DTDs). This
adds to the relevance of the present formalism.

An XSAG is obtained by annotating a given extended
regular tree grammar with attribution functions, which de-
fine the output to be produced from the input stream when
the annotated production is matched. In the tradition of
L-attributed grammars [1], which can be evaluated in a sin-
gle pass over the input, XSAGs are assumed to perform a
single scan of the XML stream. This amounts to a single
depth-first left-to-right traversal of the document tree.

Also in the tradition of L-attributed grammars, right-
hand sides of productions can be annotated with two attri-
bution functions. The first is placed at the beginning of the
right-hand side and is executed when reaching the start tag
of a node in the XML document (or equivalently, when de-
scending into a subtree). The second is placed at the end of
the right-hand side and is executed when reaching the corre-
sponding end tag (or, equivalently, when returning from the
depth-first left-to-right traversal of the subtree).

We illustrate the use of XSAGs by an example.

Example 1 (a) Consider the extended regular tree grammar
G = (Nt, T, P, bib) with nonterminals

Nt = {bib, book, article, year, title, author},

grammar start symbol bib, and terminals

T = {bib, book, article, year, title, author, PCDATA}.

The productions consist of a nonterminal on the left-hand
side and a terminal on the right-hand side, with ε or a regular
expression over nonterminals enclosed in parentheses. For
instance, the production for grammar start symbol bib below
declares that the root node is labeled “bib” and may have an
arbitrary number of “book” or “article” children in no given

order. Grammar G with productions P ,

bib ::= bib((book ∪ article)∗)
book ::= book(year.title.author.author∗)

article ::= article(year.title.author.author∗)
year ::= year(PCDATA)

title ::= title(PCDATA)

author ::= author(PCDATA)

defines an XML bibliography database.

(b) By changing the first production to

bib ::= {ECHO} bib((book ∪ article)∗)

we obtain an XSAG which simply outputs the input stream.
Indeed, the start production matches the root node of the
document and ECHO writes the entire subtree under the
matched node to the output as XML.

(c) If we are only interested in books arriving on the stream
we can use the XSAG obtained by changing the bib and book
productions to

bib ::= {print 〈books〉}
bib

(
(book ∪ article)∗

) {print 〈/books〉}
book ::= {ECHO} book

(
year.title.author.author∗)

Here, we apply ECHO to book subtrees, but not to articles.
We explicitly output the start and end tags of the root node,
and label the root node of the output produced by this XSAG
“books”, rather than “bib”.

We extend the notion of basic XSAGs (bXSAGs) ex-
emplified so far to introduce the easy XSAGs (yXSAGs). In
yXSAGs, we may additionally annotate the regular expres-
sions inside productions with attribution functions which
adds to the flexibility of the formalism. To this end, we in-
troduce the class of regular expressions which allow us to
unambiguously assign the attribution functions to both sym-
bols and operators while parsing the input stream with a
lookahead of one token.

Example 2 The yXSAG with production

article ::= {print 〈article〉}
article

(
({ECHO}(year.title)).

({print 〈authors〉; ECHO}
(author.author∗)
{print 〈/authors〉}))

{print 〈/article〉}
outputs articles as they arrive on the stream, but groups
the authors of each article under a common authors node.
The second appearance of ECHO in the production ap-
plies to the tree region matched by the regular expression
author.author∗, i.e., to the subtrees below article nodes that
are rooted by author nodes.

318

Attribute grammars for scalable query processing on XML streams

In the previous examples, attributes were implicitly em-
ployed by the ECHO macro (see Sect. 4.4). The following
example makes explicit use of attributes. In order to assure
scalability in the strictest sense, we require that attributes
range over a finite domain fixed with the XSAG.

Example 3 The following yXSAG

bib ::= {print 〈books〉}
bib((book ∪ article)∗) {print 〈/books〉}

book ::= book(({MATCH_CHILDREN(2003,c)} year).

({if c = true then

begin print 〈book〉; ECHO end}
(title.author.author∗)
{if c = true then print 〈/book〉}))

(with the remaining productions as in Example 1(a)) outputs
books published in “2003” with their title and author chil-
dren, but without the year.

For a given year node, macro MATCH_CHILDREN sets
the Boolean-valued condition attribute2 c to true if the string
of characters encountered while scanning the children of the
year node from left to right matches “2003”. Otherwise, c is
set to false. This condition attribute is passed on during the
traversal of the document tree.

The regular expression title.author.author∗ describes a
tree region among the children of a book node. Just before
we first enter this tree region, we examine the value of c.
If c is true as the current book has been published in 2003,
we print start tag "〈book〉" and echo the tree region to the
output. In this case, we further output end tag "〈/book〉" on
leaving the tree region.

Note that this yXSAG is equivalent to the XQuery

〈books〉
{ for $x in //book
where $x/year = "2003"
return 〈book〉 {$x/title} {$x/author} 〈/book〉 }

〈/books〉
on documents conforming to our grammar.

Attribute grammars are well known in the field of com-
pilers. Recently, they have been revisited in the context of
XML, for instance for grammar-directed XML publishing
[4, 5, 7] and querying [6, 33]. Some of their theory relevant
in the context of structured documents has been studied in
[14, 27, 28].

Our emphasis is on designing a practical formalism for
query processing that is relatively easy to use. Attribute
grammars are widely agreed to carry a strong intuition for
specifying syntax-directed translations. In our setting, they
provide a metaphor for strictly linear-time one-pass XML
transformations that can be grasped very intuitively. This
renders it relatively easy for a user to recognize or design
queries which can be executed (scalably) on a stream, even

2 In the technical sections of this paper, we will use a more explicit
syntax when employing attributes (e.g. see Example 30).

if this intuition is paid for by our formalism being more op-
erational than languages such as XQuery.

While ease of use cannot be conclusively asserted based
only on our own observations and the examples we pro-
vide, alternative formalisms such as deterministic pushdown
transducers (DPDTs) are unsuitable as query languages to be
used by humans: Unless DPDTs are generated from queries
(e.g. from XPath expressions as in [18]), the tediousness
of specifying DPDTs by hand makes them unattractive as
query languages; query processors for languages such as
XML Query, on the other hand, do not scale to streams. We
can therefore argue that XSAGs achieve our goal of relative
ease of use. Already, bXSAGs are much more practical than
DPDTs. yXSAGs permit very convenient and elegant nest-
ing of attributions, which, as can be seen in Example 2 and
others throughout the paper, allow us to specify many inter-
esting data transformations conveniently.

Contributions

The technical contributions of this paper are as follows:

– We examine the framework of extended regular tree
grammars appropriate for attribution and in the context
of XML stream processing.

– In order to characterize yXSAGs properly, we intro-
duce the notion of strongly one-unambiguous regu-
lar expressions. The strongly one-unambiguous regu-
lar expressions are precisely those for which the parse
tree of a word (analogously to the derivation tree of
a grammar) can be unambiguously constructed online,
with just a one-symbol lookahead, while processing the
stream. yXSAGs allow for attributions to be nested in-
side regular expressions by only permitting strongly one-
unambiguous regular expressions on the right-hand sides
of productions.

– We introduce and formally define our two notions of
XML stream attribute grammars, bXSAGs and yXSAGs,
which we compare with respect to usability.

– We define XML-DPDTs as deterministic pushdown
transducers with a natural stack discipline that assures
that the size of the stack remains strictly proportional to
the depth of the XML tree and which can only accept
well-formed XML documents. In a sense, XML-DPDTs
capture the intuition of scalable XML stream processing
and serve as an expressiveness yardstick for XSAGs.

– We show that both bXSAGs and yXSAGs are pre-
cisely as expressive as XML-DPDTs. XSAGs provide
the same quasi-optimal trade-off between expressiveness
and evaluation cost as do XML-DPDTs.

– Finally, we study the complexity of XSAG query evalu-
ation and its implementation.

Structure

The structure of this paper basically follows the order of
contributions described above. In Sect. 2 we study the

319

C. Koch, S. Scherzinger

language-theoretic foundations of one-unambiguous and
strongly one-unambiguous regular expressions and classes
of regular tree grammars suitable for the deterministic pars-
ing of XML streams. In Sect. 3, we present an efficient
method to check whether a regular expression is strongly
one-unambiguous.

The subsequent sections explore the XSAG formalism:
The syntax and semantics of basic and easy XSAGs are de-
fined in Sect. 4. In Sect. 5, we introduce the XML-DPDTs
as deterministic pushdown transducers for XML stream
processing and show their equivalence to bXSAGs and
yXSAGs. Thus we may evaluate XSAGs by translating them
to XML-DPDTs. We discuss the complexity of XSAG evalu-
ation in Sect. 6. In particular, we contrast the aforementioned
technique with a hybrid evaluation where only the grammar
component is translated to an XML-DPDT while the attribu-
tion functions are interpreted at runtime.

Section 7 concludes with a discussion of the XSAG for-
malism and future work.

2 Preliminaries

2.1 Regular expressions and one-unambiguity

We assume that regular expressions are constructed from
a set of atomic symbols, using the concatenation operator,
union operator, and the Kleene star, denoted ., ∪, and ∗ re-
spectively. We denote by L(ρ) the language defined by the
regular expression ρ and by symb(ρ) the atomic symbols
that occur in ρ.

By a marking of a regular expression ρ over alphabet �,
we denote a regular expression ρ′ such that each occurrence
of an atomic symbol in ρ is replaced by the symbol with its
position among the atomic symbols of ρ added as subscript.
For instance, the marking of (a∪b)∗.a.a∗ is (a1∪b2)

∗.a3.a∗
4 .

The reverse of a marking, indicated by #, is obtained by
dropping the subscripts.

A regular expression ρ is called ambiguous [8] if there
are two words w1, w2 ∈ L(ρ′) such that w1 �= w2 but w#

1 =
w#

2. A regular expression is called unambiguous if it is not
ambiguous.

Example 4 The language defined by the regular expression
ρ = (a ∪ b)∗.a.a∗ is ambiguous because the language de-
fined by its marking ρ′ = (a1 ∪ b2)

∗.a3.a∗
4 contains the

words a1.a3 and a3.a4 which correspond to the same word
aa of L(ρ).

Let ρ be a regular expression, ρ′ its marking, and �′ =
symb(ρ′) the marked alphabet used by ρ′. Then ρ is called
one-ambiguous [11] iff there are words u, v, w over �′ and
symbols x �= y ∈ �′ with x# = y# such that uxv, uyw ∈
L(ρ′). A regular expression is called one-unambiguous if it
is not one-ambiguous.

Intuitively, a one-unambiguous regular expression ρ al-
lows us to determine which atomic symbol in ρ matches the

next symbol from an input word w ∈ L(ρ) while we parse
w from left to right with a lookahead of one token.

Example 5 Consider the regular expression ρ = a∗.a and
its marking ρ′ = a∗

1 .a2. Let u = a1, x = a2, v = ε, y = a1,
and w = a2. Clearly, uxv = a1a2 and uyw = a1a1a2 are
both words of L(ρ′), so ρ is one-ambiguous. The equivalent
regular expression a.a∗ is one-unambiguous.

For a given regular language L over alphabet �, the
set first(L) consists of precisely those symbols x such that
there is a word w with xw ∈ L . For each x ∈ �, the set
follow(L , x) consists of those symbols y such that there are
words v, w with vxyw ∈ L . Finally, last(L) consists of
those symbols x such that there is a word w with wx ∈ L .

Definition 1 ([11]) Let ρ be a regular expression and let
ρ′ be its marking. The Glushkov automaton of ρ is the
nondeterministic finite-state automaton (NFA) G(ρ) =
(Q, symb(ρ), δ, q0, F) with

– Q = symb(ρ′) ∪ {q0}, i.e. the states of G(ρ) contain the
marked symbols in ρ′ and a new initial state q0.

– For each a ∈ symb(ρ),

δ(q0, a) = {x | x ∈ first(ρ′) ∧ x# = a}.
– For x ∈ symb(ρ′), a ∈ symb(ρ),

δ(x, a) = {y | y ∈ follow(ρ′, x) ∧ y# = a}.
– F = last(ρ′) ∪ {q0 | ε ∈ L(ρ)}.

The Glushkov automaton G(ρ) for a regular expression
ρ has no transitions that lead to the initial state and any two
transitions that lead to the same state have identical labels
[11]. This property is apparent for the Glushkov automata in
Fig. 1.

Proposition 1 ([11]) A regular expression ρ is one-unambi-
guous iff its Glushkov automaton G(ρ) is deterministic.

Fig. 1 Examples of Glushkov automata

320

Attribute grammars for scalable query processing on XML streams

Fig. 2 Parse trees of regular expressions

Deterministic finite-state automata (DFAs) can be
constructed from one-unambiguous regular expressions in
just quadratic time [11]. Note that the Glushkov automaton
for a one-unambiguous regular expression can be computed
in even linear time [10] if the alphabet is considered fixed.
However, we believe that this is not a realistic assumption
in the context of grammars for XML data: for instance,
in DTDs, there cannot be more productions than alphabet
symbols.

Example 6 The regular expressions (a∗)∗, a.a∗, and a∗ ∪b∗
are one-unambiguous as the Glushkov automata in Figs. 1a,
b, and d are deterministic. However, the Glushkov automa-
ton of the regular expression a∗.a in Fig. 1c has several dis-
tinct transitions leading from states q0 and a1 under input
symbol a, so it is not deterministic. Thus, a∗.a is not one-
unambiguous.

2.2 Strong one-unambiguity

Intuitively, by a bracketing of a regular expression ρ we
refer to a labeling of the nodes in the parse tree of ρ us-
ing distinct indices. We realize this by assigning the indices
in a depth-first left-to-right traversal of the parse tree. See
Fig. 2 for two examples. The bracketing ρ[] is then obtained
by inductively mapping each subexpression π of ρ with
index i to [i .π.]i . Thus, a bracketing of a regular expres-
sion is a regular expression over the alphabet � ∪ �, where
� = {[i ,]i | i ∈ {1, 2, 3, . . . }}. We assume that � and � are
disjoint.

Example 7 The bracketing of regular expression a∗ ∪ b∗,
derived from the parse tree in Fig. 2a, is

[1.
(
([2.([3.a.]3)

∗.]2) ∪ ([4.([5.b.]5)
∗.]4)

)
.]1.

The bracketing of regular expression a.a∗

[1.[2.a.]2.[3.([4.a.]4)
∗.]3.]1.

can be derived from the parse tree in Fig. 2b.

Let #[] denote the reverse of the bracketing, obtained by
dropping the brackets. Let w ∈ L(ρ[]), then the subsequence
of brackets in w is called a bracketing of w#[].

Example 8 Consider a∗∪b∗ from the previous example. For
ε ∈ L(a∗ ∪ b∗), we may find the two bracketings [1[2]2]1
and [1[4]4]1, while the bracketing for a ∈ L(a.a∗) is unique,
namely [1[2]2[3]3]1.

There is a strong correspondence between the bracketing
of a word and its parse tree (see Sect. 2.6). We now define
the class of regular expressions for which we may unam-
biguously derive bracketings or parse trees for input words
with just one token lookahead.

Definition 2 Let ρ be a regular expression and let ρ[] be its
bracketing. A regular expression ρ is called strongly one-
unambiguous iff there do not exist words u, v, w over � ∪
�, words α �= β over �, and a symbol x ∈ � such that
uαxv, uβxw ∈ L(ρ[]) or uα, uβ ∈ L(ρ[]).

Example 9 The regular expression ρ = a∗ ∪ b∗ from Ex-
ample 7 is one-unambiguous but it is not strongly one-
unambiguous: The empty word in L(ρ) can be matched
as [1[2]2]1 ∈ L(ρ[]) and as [1[4]4]1 ∈ L(ρ[]), so u = [1,
α = [2]2]1, and β = [4]4]1. The equivalent regular expres-
sion a.a∗ ∪ b∗ is strongly one-unambiguous.

Example 10 The bracketing of regular expression ρ =
(a∗)∗ is ρ[] = [1.([2.([3.a.]3)

∗.]2)
∗.]1. ρ is not strongly

one-unambiguous, as for the word aa ∈ L(ρ) there are
words [1[2[3a]3[3a]3]2]1 and also [1[2[3a]3]2[2[3a]3]2]1 in
L(ρ[]), so u = [1[2[3a, α =]3[3, β =]3]2[2[3, x = a, and
v = w =]3]2]1.

Example 11 The bracketing of a regular expression is
strongly one-unambiguous.

Note that in order to define strong one-unambiguity of a
regular expression ρ, we could just as well consider a sim-
pler version of ρ[] in which only opening, but not closing
brackets are inserted, i.e., which is obtained by inductively
mapping each subexpression π of ρ with index i to [i .π .
However, the symmetric brackets better suit our needs.

It is easy to see that the condition required for a regular
expression to be strongly one-unambiguous is a strengthen-
ing of the condition for one-unambiguity:

Proposition 2 Each strongly one-unambiguous regular ex-
pression is also one-unambiguous.

Proof In the course of computing the bracketing ρ[] for a
regular expression ρ, we assign a unique identifier to each
node in the parse tree of ρ. In particular, there is such an
identifier for each leaf node (corresponding to an atomic
symbol that is marked in ρ′). W.l.o.g., we assume that the in-
dices of brackets immediately surrounding atomic symbols
in ρ[] are the same as the indices assigned to atomic symbols
in ρ′. (For instance, for ρ[] = [1.[2.a.]2.[3.b.]3.]1, ρ′ must
be a2.a3.)

Assume that ρ is not one-unambiguous. Then there are
words u, v, w over �′ and symbols xi , x j ∈ �′ with i �= j
and x#

i = x#
j such that uxiv, ux jw ∈ L(ρ′). Let us now

consider the corresponding word in L(ρ[]). It follows that
there are words û, v̂, ŵ over �∪� and α, β over � such that
ûα[i x]i v̂, ûβ[j x] j ŵ ∈ L(ρ[]). Since i �= j and thus α[i �=
β[j , by Definition 2, ρ is not strongly one-unambiguous. �

321

C. Koch, S. Scherzinger

2.3 Extended regular tree grammars

We regard XML documents [9] without attributes as our data
model. This causes no restriction on the applicability of our
work, as attributes can be modeled as special children of a
node which precede all other children. Throughout this pa-
per, we will frequently use the terms XML document and
XML stream synonymously.

We now introduce the extended regular tree grammars,
a natural grammar mechanism for XML documents.

Definition 3 (ERTG, [26]) Let Tag be a set of node labels
(“tags”) and let Char be a set of characters distinct from the
tags. An extended regular tree grammar3 is a grammar G =
(Nt, T, P, s) where

1. Nt is a set of nonterminals,
2. T = Tag ∪ Char is a set of terminals,
3. P is a set of productions nt ::= t (ρ) where nt ∈ Nt,

t ∈ T , and
– if t ∈ Tag then ρ is either ε or a regular expression

over alphabet Nt,
– if t ∈ Char then ρ = ε and nt �= s, and

4. s ∈ Nt is the grammar start symbol.

Definition 4 An XML document D is well-formed w.r.t. an
ERTG G if D ∈ L(G).

The restriction that the grammar start symbol of an
ERTG may only derive tag nodes ensures that in each well-
formed XML document there is at least one element (the
root node) and that all XML start and end tags are properly
nested. Furthermore, the first symbol in the document is the
start tag for the root node. An XML document is malformed
if it is not well-formed. The process of checking whether a
document is well-formed with respect to a specific ERTG is
called validation.

Remark 1 (PCDATA) We introduce a syntactic macro to de-
scribe character content of leaf nodes. Let the set of char-
acters be Char = {c1, . . . , cn}. As a shortcut, we define the
regular expression macro PCDATA := (ĉ1 ∪· · ·∪ ĉn)

∗ using
new nonterminals ĉ1, . . . , ĉn and productions ĉi ::= ci (ε)
for each 1 ≤ i ≤ n. PCDATA can be used just like a terminal
on the right-hand sides of grammar productions. For sake of
syntactic simplicity and brevity, we will consider PCDATA
as a terminal as we already did in Example 1.

Example 12 The ERTG G = (Nt, T, P, bib) with Nt =
{bib, publication, year, title, author}, T = {bib, book, arti-
cle, year, title, author, PCDATA}, grammar start symbol bib,

3 Strictly speaking we use a two-sorted alphabet of characters and
tags, but we still consider these grammars ERTGs.

and productions in P ,

bib ::= bib(publication∗)
publication ::= book(year.title.author.author∗)
publication ::= article(year.title.author.author∗)

year := year(PCDATA)

title ::= title(PCDATA)

author ::= author(PCDATA)

defines the same language as the grammar of Example 1.
Note that the two publication productions carry different ter-
minals (book and article) on their right-hand sides.

Example 13 Consider the ERTG G = (Nt, T, P, bib) with
Nt = {bib, book, citation, cited_book, title, author}, further
T = {bib, book, citation, title, author, PCDATA}, grammar
start symbol bib, and productions in P ,

bib ::= bib(book∗)
book ::= book(title.author.author∗.citation)

citation ::= citation(cited_book∗)
cited_book ::= book(title.author.author∗)

title ::= title(PCDATA)

author ::= author(PCDATA).

G defines a bibliography database with two kinds of books:
Books derived from a book production may again cite books,
yet cited_books only consist of a title and one or more
authors.

Here, the nonterminals book and cited_books define sub-
trees which share the same node label “book” yet differ in
their children.

It is always possible to remove productions and nonter-
minals from an ERTG that cannot be reached from its gram-
mar start symbol, thus constructing an equivalent reduced
extended regular tree grammar [13]. In the following, we as-
sume that all ERTGs are reduced.

2.4 Extended regular tree grammars for XML streams

Consider an ERTG with a nonterminal nt. Let θ(nt) denote
the set of terminals t such that the grammar contains a pro-
duction nt ::= t (ρnt,t) (where ρnt,t identifies the regular ex-
pression for this particular production). Given a regular ex-
pression ρ, let τ(ρ) denote the regular expression in which
each nonterminal nt in ρ is replaced by the union of termi-
nals ∪θ(nt).

Example 14 Consider the ERTG from Example 12. For reg-
ular expression ρ = publication∗ from the right-hand side
of the bib production, τ(ρ) = (book ∪ article)∗.

Clearly, if τ(ρ) is (strongly) one-unambiguous, so is ρ,
while the reverse does not necessarily hold.

322

Attribute grammars for scalable query processing on XML streams

Each extended regular tree grammar can be alterna-
tively considered as an extended context-free word grammar
(CFG) which is obtained by simply rewriting each tag(ρ) in
the right-hand side of a production into 〈tag〉ρ〈/tag〉. De-
terministic context-free languages are precisely those rec-
ognizable by the deterministic pushdown automata (DPDA,
see e.g. [2]). DPDAs run comfortably on streams requiring
only a stack of memory bounded by the depth of the input
tree. Using automata, we can thus scalably recognize the de-
terministic context-free languages.

The problem of processing an (extended) attribute gram-
mar on a document requires an additional, different restric-
tion on the grammar besides determinism to allow for de-
terministic computation: We need to unambiguously refer to
the atomic symbols in the regular expressions to be able to
access or assign attributes. In attribute grammars, a straight-
forward solution [27] is to require for right-hand side regular
expressions ρ that τ(ρ) be unambiguous.

Example 15 Consider a grammar with productions

bib ::= bib((book1 ∪ book2)
∗)

book1 ::= book(ε)

book2 ::= book(ε)

The regular expression (book1 ∪ book2)
∗ is unambiguous,

but τ((book1 ∪ book2)
∗) = (book ∪ book)∗ is not. There-

fore, when processing the tags of the children of the bib
node, we cannot determine which of the two book produc-
tions (with their possibly different attributions when we con-
sider attribute grammars) are to be applied.

On streams, we cannot look ahead beyond a nonterminal
(as the nonterminal may stand for a large subtree that we do
not want to buffer) when parsing the input. Thus, we will
assume the stronger notion of one-unambiguity for regular
expressions τ(ρ) in the definition of TDLL(1) grammars be-
low. That is, we will require that τ(ρ) can be unambiguously
parsed with just one symbol of lookahead.

Definition 5 ([24]) A TDLL(1) grammar4 is an extended
regular tree grammar G = (Nt, T, P, s) where τ(s) is unam-
biguous5 and in which for each regular expression ρ on the
right-hand side of a production, τ(ρ) is one-unambiguous.

Example 16 The grammars of Examples 1, 12, and 13 are
TDLL(1). Meanwhile, since the grammar of Example 15
contains a regular expression ρ such that τ(ρ) is not even
unambiguous, that grammar is not TDLL(1).

TDLL(1) grammars allow us to use attributed extended
regular tree grammars on XML streams. However, as we
show in the following section, the ability to use attribution
functions inside the regular expressions in the right-hand

4 TDLL(1) is an acronym for top-down left-to-right parsing, yield-
ing the leftmost derivation tree, with a 1-token lookahead.

5 Note that τ(s) is guaranteed to be a very simple form of regular
expression, a disjunction of atomic symbols. In this special case, un-
ambiguity implies one-unambiguity and even strong one-unambiguity.

sides of productions will allow us to write many practical
queries in a much more user-friendly fashion. Our machin-
ery for achieving this is the novel notion of STDLL(1) gram-
mars, where we require for a right-hand side regular expres-
sion ρ that τ(ρ) is strongly one-unambiguous.

Definition 6 An STDLL(1) grammar is an extended reg-
ular tree grammar G = (Nt, T, P, s) where τ(s) is
unambiguous5 and in which for each regular expression ρ
on the right-hand side of a production, τ(ρ) is strongly one-
unambiguous.

As all strongly one-unambiguous regular expressions are
also one-unambiguous, all STDLL(1) grammars are obvi-
ously also TDLL(1) grammars.

Example 17 The grammars of Examples 1, 13, and 12 are
also STDLL(1) grammars.

2.5 Document type definitions

Document type definitions (DTDs) are a special dialect of
extended regular tree grammars. For XML elements that
exclusively have elements as children (but no character
data), the W3C recommendation6 explicitly requires one-
unambiguous content models (that is, right-hand side regular
expressions) in order to assure compatibility with SGML.

Productions defining elements which contain character
data, so-called mixed-content models, must be constructed
according to either the pattern

nt0 ::= (PCDATA ∪ nt1 ∪ · · · ∪ ntm)∗

or nt0 ::= PCDATA (where nt0, . . . , ntm are distinct DTD
element names, i.e., nonterminals). Clearly, regular expres-
sions such constructed are one-unambiguous.

Since DTDs also contain at most one production nt ::=
t (ρ) for each “element” t , so if regular expression ρ over
nonterminals is one-unambiguous, the regular expression
τ(ρ) over terminals is also one-unambiguous. Thus, DTDs
are TDLL(1) grammars (see also [24]).

In fact, we suspect that most practical DTDs actually use
only strongly one-unambiguous regular expressions in pro-
ductions which makes them STDLL(1) grammars. Strong
one-unambiguity is only a short way from one-unambiguity,
and many of the most widely used forms of regular ex-
pressions are actually strongly one-unambiguous, e.g. con-
sider regular expressions of the form (e1 ∪ · · · ∪ em)∗ where
e1, . . . , em are distinct element names.

However, the definition of macro PCDATA in Remark 1
causes mixed-content models to be strongly one-ambiguous.
For now, we define mixed content in the productions of
STDLL(1) grammars using the syntactic macro “PCDAT :=
ĉ1 ∪ · · · ∪ ĉn” instead of PCDATA, and refer to Sect. 4.2 for
further discussion.

Figure 3 gives an overview of the classes of ERTGs con-
sidered in this paper.

6 Sections. 3.2.1, 3.2.2, and Appendix E in [9].

323

C. Koch, S. Scherzinger

Fig. 3 Subclasses of extended regular tree grammars

Fig. 4 Parse trees for words in L
(
a.a∗)

Fig. 5 Parse trees for word aa in L
(
(a∗)∗

)

2.6 TDLL(1) and STDLL(1) parse trees

Given a regular expression π defined over atomic symbols
T , we obtain an equivalent (extended) regular grammar
G = (V, T, P, π) by recursively decomposing π into pro-
ductions P ,

ρ1.ρ2 ::= ρ1 ρ2 ρ1 ∪ ρ2 ::= ρ1 | ρ2 ρ∗ ::= ρ∗

for regular expressions ρ, ρ1, and ρ2. Here, by ρ, we refer
to a symbol of V ∪ T rather than a regular expression. The
nonterminals V consist precisely of the symbols ρ such that
ρ is non-atomic. (For the special case that π is atomic, P
is empty and the start symbol π is allowed to be a terminal.
This is somewhat nonstandard but fits ours needs.)

Regular grammars provide us with a natural way of as-
signing parse trees to words. For the sake of simplicity, we
will use interior nodes of the forms “∪”, “.”, and “∗”, rather
than nonterminals ρ1 ∪ ρ2, ρ1.ρ2, and ρ∗.

Example 18 Figure 4 shows parse trees for words a, aa, and
aaa in L(a.a∗).

Example 19 Consider the regular expression ρ = (a∗)∗
which is not strongly one-unambiguous. Figure 5 shows two
alternative parse trees for word aa ∈ L(ρ). In contrast, the
parse trees for words defined by strongly one-unambiguous
regular expressions, as in the previous example, are
unique.

For TDLL(1) grammars, the parse trees are simply the
usual document trees associated with XML documents.
However, the parse trees for STDLL(1) grammars also in-
corporate the parse trees for matching the input against the

regular expressions on the right-hand sides of productions.
If a regular expression contains a nonterminal nt, we assign
it the terminal t as its unique child in the parse tree if the
production used to rewrite nt is of the form nt ::= t (ρ).

We illustrate the two forms of parse trees by an example.

Example 20 Consider the XML document

〈bib〉
〈article〉

〈year/〉〈title/〉〈author/〉〈author/〉〈author/〉
〈/article〉

〈/bib〉

and the ERTG G from Example 1. Then we may observe the
following:

1. If G is viewed as a TDLL(1) grammar, the document
parses into the tree depicted in Fig. 6a.

2. The parse tree for the same document, if G is viewed as
an STDLL(1) grammar, is shown in Fig. 6b, where nodes
associated with nonterminals are set in italics. Here, we
assume that the operation “.” associates to the right and
that the production

article ::= article(year.title.author.author∗)

is thus equivalent to

article ::= article(year.(title.(author.(author∗)))).

3. If the article-production of G were changed to

article ::= article((year.title).(author.author∗))

then the TDLL(1) parse tree for the above XML docu-
ment would remain unchanged. However, the STDLL(1)
parse tree would differ from Fig. 6b in the subtree rooted
at the node with subscript 5, as shown in Fig. 6c.

3 Checking for strong one-unambiguity

Next we describe our algorithm for checking whether a
given regular expression is strongly one-unambiguous.

Given a regular expression ρ, let � be a new symbol
that does not occur in ρ. In the following, we require that all
input words are terminated by symbol � to precisely capture
the end of words. When processing XML, � has the role of
reading the closing tag of the parent node.

In a Glushkov automaton G(ρ[].�), i.e. of the bracket-
ing, with state set Q, initial state q0, and the single final state
�′, let Q̂ = {q ∈ Q | q ∈ symb(ρ′)}∪{q0}∪{�′} denote the
non-auxiliary states, i.e., the states not introduced for brack-
ets. Let δG be the transition function of G(ρ[].�).

For a DFA with transition function δ and an input word
w = w1 . . . wn , we will use the notation δ∗(q, w) as a short-
cut for δ(. . . δ(δ(q, w1), w2), . . . , wn).

324

Attribute grammars for scalable query processing on XML streams

Fig. 6 Parse trees of Example 20

Proposition 3 Let ρ be a regular expression. Then ρ is
strongly one-unambiguous iff for G(ρ[].�) there do not ex-
ist words α �= β over �, and states x ∈ Q̂ and y, z ∈
Q̂ \ {q0} with y# = z#, such that (δG)∗(x, αy#) = y and
(δG)∗(x, βz#) = z.

Observe that y and z do not have to be distinct.

Proof Let ρ be a regular expression and let G(ρ[].�) be a
Glushkov automaton recognizing L(ρ[].�).

⇒ Assume that ρ is not strongly one-unambiguous, then
there exist words r, s, t over �∪�, words α �= β over �,
and a symbol x ∈ � such that (1) rαxs, rβxt ∈ L(ρ[])
or (2) rα, rβ ∈ L(ρ[]). Let r = r1 . . . rn . We define a
state q ∈ Q̂ and words α̂ �= β̂ ∈ �∗ as follows:
(a) If r ∈ �∗, then q := q0 and α̂ := rα and β̂ := rβ,

(b) otherwise, r contains at least one symbol from �.
Let ri be the rightmost symbol from � in r , i.e.
ri+1, . . . , rn ∈ �. Then q := δ(q0, r1 . . . ri). If i = n
then α̂ := α and β̂ := β, otherwise α̂ := ri+1 . . . rnα

and β̂ := ri+1 . . . rnβ.
Thus in case (1), there are transitions (δG)∗(q, α̂x) = y
and (δG)∗(q, β̂x) = z where y and z are in Q̂ \ {q0} and
x = y# = z#. Similarly, in case (2), there are transitions
(δG)∗(q, α̂�) = �′ and (δG)∗(q, β̂�) = �′ where �′ is
in Q̂ \ {q0}.

⇒ Let q ∈ Q̂ and let u be a word over � ∪ � such that
(δG)∗(q0, u) = q . Assume that there are words α �= β

over � and states y, z ∈ Q̂ \ {q0} with y# = z# = x
such that (δG)∗(q, αy#) = y and (δG)∗(q, βz#) = z.
It follows from the construction of Glushkov automata
that we may reach a final state from any given state.
That is, there are words v, w over � ∪ � such that
(δG)∗(y, v) = (δG)∗(z, w) = �′ where �′ is the single
final state of G(ρ[].�). But then there are words uαxv
and uβxw ∈ L(ρ[].�). Consequently, ρ is not strongly
one-unambiguous. �

Example 21 ρ = (a∗)∗ is a one-unambiguous regular ex-
pression, because the Glushkov automaton G(ρ) in Fig. 1a is
deterministic. However, the Glushkov automaton G(ρ[].�)
in Fig. 7 has several distinct paths between pairs of states
in Q̂ = {q0, a1, �′}, e.g.]3[3a and]3]2[2[3a leading from
state a1 back to the same state. So by Proposition 3, ρ is not
strongly one-unambiguous.

A finite-state transducer (FST) is a NFA with output
which issues a fixed word w in each transition q

a/w→ q ′
from state q to q ′ on input symbol a. A deterministic finite-
state transducer (DFT) is an FST that is deterministic, i.e., a
DFA if the output is ignored and for which no two transitions
q

a/v→ q ′ and q
a/w→ q ′ exist such that v �= w.

Theorem 1 For each strongly one-unambiguous regular ex-
pression ρ there exists a DFT A[](ρ) which

Fig. 7 Glushkov automaton of Example 21

325

C. Koch, S. Scherzinger

1. recognizes L(ρ.�) and
2. outputs the bracketing of word w for input w.� ∈

L(ρ.�).

Proof Let ρ be a strongly one-unambiguous regular expres-
sion over alphabet � and let ρ[] be its bracketing over alpha-
bet � ∪ �.

Let G(ρ[].�) be a Glushkov automaton which recognizes
L(ρ[].�). G(ρ[].�) has state set Q, initial state q0, transition
function δG , and the single final state �′. By Proposition 1,
as ρ[].� is (strongly) one-unambiguous G(ρ[].�) is deter-
ministic.

Let A[](ρ) = (Q̂, �̂, �, δ̂, q0, {�′}) be the DFT with

– state set Q̂ as the non-auxiliary states of G(ρ[].�),
– input alphabet �̂ = � ∪ {�}, output alphabet �,
– the transition function δ̂ mapping from Q̂ × �̂ to finite

subsets of Q̂ × �∗ such that

δ̂(q, a) := {〈q, w〉 | (δG)∗(q, wa) = q ′},
i.e., iff state q ′ is reachable from q via input word wa,
where q, q ′ ∈ Q̂, atomic symbol a ∈ �̂, and word of
brackets w ∈ �∗, and

– the same initial and final state as G(ρ[].�).

We now verify the correctness of our claims. Below,
given an FST A, let α(A) denote the NFA obtained from
A by ignoring its output.

1. The NFA α(A[](ρ)) is precisely the Glushkov automaton
G(ρ.�) which we know recognizes L(ρ.�). Therefore,
α(A[](ρ)) recognizes the same language.

2. We argue that A[](ρ) is deterministic:
i. As ρ.� is one-unambiguous, α(A[](ρ)) is determin-

istic by Proposition 1.
ii. As ρ is also strongly one-unambiguous, it follows

from Proposition 3 that there are no words α �= β

over � and states x ∈ Q̂, and y, z ∈ Q̂ \ {q0}
with a = y# = z#, s.t. (δG)∗(x, αa) = y and
(δG)∗(x, βa) = z. Thus, there are no transitions
〈y, α〉, 〈z, β〉 ∈ δ̂(x, a) where α �= β.

3. The construction of A[](ρ) renders it easy to see that for
a strongly one-unambiguous regular expression ρ, the
output on a word w.� ∈ L(ρ.�) is the bracketing of
w. �

Theorem 2 Let ρ be a regular expression. There is an
O(|ρ|3) algorithm that checks whether ρ is strongly one-
unambiguous, and if so, outputs A[](ρ).

Proof Let ρ be a regular expression. We examine the steps
involved in the construction of A[](ρ).

1. We compute ρ[] in time O(|ρ|).
2. We may compute the Glushkov automaton G(ρ[].�) in

quadratic time. If G(ρ[].�) is not deterministic, then ρ is
not one-unambiguous by Proposition 1 and consequently
cannot be strongly one-unambiguous (see Prop. 2).

3. Let δG be the transition function of G(ρ[].�). Let Q be
the state set of G(ρ[].�) and let Q̂ be the subset of non-
auxiliary states.
If ρ is not strongly one-unambiguous, then there may
be infinitely many output words for a transition between
two states for a given word of input symbols. So as
soon as (any) two distinct output words v and w over
� have been discovered with p ∈ (δG)∗(q, vx) and
p ∈ (δG)∗(q, wx), with q, p ∈ Q̂ and x ∈ �, we know
that ρ is not strongly one-unambiguous.
More formally, let G be the directed graph with nodes
Q and edges {〈q, p〉 | ∃q, p ∈ Q : δG(q, a) = p}.
For each state q ∈ Q̂, we compute a spanning (at best)
subtree Tq of G, where states in Q̂ must be leaves. Ob-
viously, we only visit each edge at most once (but not
passing through nodes of Q̂), and if we return to a node
already visited, ρ is not strongly one-unambiguous and
the computation terminates.
For each q , the computation of Tq can be done in time
O(|G(ρ[].�)|) and thus in O(|ρ|2).

4. Finally, for each pair of states q ∈ Q̂ and p ∈ Q̂ \ {q0},
the tree Tq has to be traversed backward from the leaf p,
if it is part of Tq , to the root q to obtain the output word
w for transition 〈p, w〉 ∈ δ̂(q, p#) of A[](ρ).
This takes time O(|ρ|2) for each of the q (of which there
are |Q̂| = O(|ρ|) many).

We thus construct A[](ρ) in time O(|ρ|3) in total. �

Example 22 Consider the regular expression ρ = (a∗.b)∗
and its bracketing ρ[] = [1.([2.[3.([4.a.]4)

∗.]3.
[5.b.]5.]2)

∗.]1. The Glushkov automaton G(ρ.�), shown
in Fig. 8a, is deterministic, so ρ.� and also ρ are one-
unambiguous. Figure 8b depicts the Glushkov automaton
G(ρ[].�), while the FST A[](ρ) from our construction
is shown in Fig. 8c. As this FST is deterministic, ρ is
also strongly one-unambiguous. Note that the DFA ob-
tained from A[](ρ) by ignoring its output is the Glushkov
automaton G(ρ.�).

As the following example demonstrates, the size of a
FST A[](ρ) from our construction can be cubic in the size
of ρ, which shows that our algorithm for computing A[](ρ)
is in a sense optimal.

Example 23 Consider the family (ρn)n≥1 of strongly one-
unambiguous regular expressions with n-th member

ρn = ((((((a∗
1 .a2)

∗.a3)
∗.a4)

∗ . . .)∗.an−1)
∗.an)

∗.
and n-th member alphabet �n = {a1, . . . , an}.

Figure 9 shows the labeled parse tree of ρ4 for n = 4
and Fig. 10 shows the structure of FST A[](ρ4) and some
labelings of transitions. We observe the following:

– Each state a′
i has i+1 outgoing transitions, of which i−1

are backward transitions, i.e., the transitions δ(a′
j , ai) =

(a′
i , b) where i < j . Thus, the overall number of transi-

tions of FST A[](ρn) is �(n2).

326

Attribute grammars for scalable query processing on XML streams

Fig. 8 Stepwise DFT construction of Example 22

– We now study the lengths of the output words of back-
ward transitions. The bracketing of ρn assigns each node
in the parse tree of ρn an identifier. Let l j be the identifier
assigned to node a j and let p j be the identifier assigned
to the parent node of a j . Analogously, li and pi are the
identifiers of node ai and its parent node respectively. As
the nodes are labeled by a depth-first left-to-right traver-
sal of the parse tree, p j < pi ≤ 2n and

b =
{]l j]p j [p j [p j +1[p j +2 . . . [pi [pi +1]pi +1[li i �= 1

]l j]p j [p j [p j +1[p j +2 . . . [2n i = 1

Thus, |b| is �(n).
Consequently, the size of A[](ρn) is �(n3).

4 XML stream attribute grammars

We are now in the position to define our main grammar for-
malism, the XML Stream Attribute Grammars (XSAGs).

Fig. 9 Parse tree for ρ4 = (((a∗
1 .a2)

∗.a3)
∗.a4)

∗

Fig. 10 FST from Example 23

4.1 XSAGs in the abstract

Definition 7 (Syntax) Let Att = {a1, . . . , ak} be a set of
attributes and Dom be a finite set of domain values.7 Let
string be a set of fixed character strings.

Let F$[denote the class of partial functions

f$[: Domk → Domk × string

called first-visit attribution functions, and let F$] denote the
class of partial functions

f$] : Dom2k → Domk × string

called second-visit attribution functions. (We will intro-
duce a language for implementing these partial functions in
Sect. 4.3).

A basic XSAG (bXSAG) is an attributed extended regu-
lar tree grammar G = (Nt, T, P, s) with nonterminals Nt,
grammar start symbol s, terminals T = Tag ∪ Char, and
productions in P where each production is of one of the four
forms

nt ::= t (ρ) nt ::= { f$[} t (ρ)

nt ::= t (ρ) { f$]} nt ::= { f$[} t (ρ) { f$]}
where nt ∈ Nt, t ∈ T , f$[∈ F$[, f$] ∈ F$], and

7 Alternatively, we may regard attributes as states, encoding the
current evaluation state.

327

C. Koch, S. Scherzinger

– if t ∈ Tag then ρ is either ε or a regular expression over
alphabet Nt,

– if t ∈ Char then ρ = ε and nt �= s.

The abstract syntax of an attributed regular expression
over symbols � can be specified by the EBNF

aregex ::= (“{” F$[“}”)? aregex0 (“{” F$] “}”)?

aregex0 ::= � | aregex “.” aregex |
aregex “∪” aregex | aregex “∗”

An easy XSAG (yXSAG) is an attributed extended reg-
ular tree grammar G = (Nt, T, P, s) with nonterminals Nt,
grammar start symbol s, terminals T = Tag∪Char, and pro-
ductions in P where each production is of one of the four
forms

nt ::= t (α) nt ::= { f$[} t (α)

nt ::= t (α) { f$]} nt ::= { f$[} t (α) { f$]}
where nt ∈ Nt, t ∈ T , f$[∈ F$[, f$] ∈ F$], and

– if t ∈ Tag then α is either ε or an attributed regular ex-
pression over symbols Nt such that the following holds:
For the regular expression ρ obtained from α by remov-
ing the attributions (enclosed in curly braces), τ(ρ) is
strongly one-unambiguous, and

– if t ∈ Char then α = ε and nt �= s.

The only differences between bXSAGs and yXSAGs are
that the former use TDLL(1) grammars while the latter use
STDLL(1) grammars, and that in yXSAGs, right-hand side
regular expressions may be attributed. (In fact, it is precisely
the restriction to STDLL(1) grammars which makes it safe
to attribute regular expressions in yXSAGs.) Note that there
are XSAGs which are both bXSAGs and yXSAGs. At the
same time there are bXSAGs which are not yXSAGs and
vice versa.

bXSAGs and yXSAGs are (attributed) extended regular
tree grammars. For such grammars, nodes of the parse tree
may have an arbitrary number of children. When dealing
with streams, we generally cannot store the attribute values
of all these children in memory. We thus have to introduce
special restrictions to be able to deal with streams on the one
hand and at the same time assure ease of use and expressive-
ness to cover practical queries on the other.

We define XSAGs as L-attributed grammars, i.e., at-
tribute grammars whose attributes are evaluated in a single
depth-first left-to-right traversal of the document tree. Each
node v of the parse tree is visited twice (the visits are re-
ferred to by $[and $]), first from the previous sibling or the
parent of v (if v has no previous sibling) and a second time
on returning from the rightmost child of v. In the first visit
to a node, a first-visit attribution function is evaluated. In the
second visit to a node, a second-visit attribution function is
evaluated.

We thus assume that each node v in the parse tree is
assigned two attribution functions f v

$[∈ F$[and f v
$] ∈

F$], and we refer to such parse trees as attributed parse
trees.8

The main purpose of the XSAG grammar component is
to unambiguously map XML documents to parse trees. Note
that for the evaluation of XSAGs, it will not be necessary at
any time to maintain entire parse trees in memory. It remains
to specify how our attribute grammars are evaluated on parse
trees.

(1) Let us first consider the case of bXSAGs. For a given
node v, let p be the production that was used to parse it.
Then, let

f v
$[:=

⎧
⎪⎨

⎪⎩

f p
$[. . . if p : nt ::= { f p

$[} t (ρ) { f p
$]}

or p : nt ::= { f p
$[} t (ρ)

f d
$[. . . otherwise

and

f v
$] :=

⎧
⎪⎨

⎪⎩

f p
$] . . . if p : nt ::= { f p

$[} t (ρ) { f p
$]}

or p : nt ::= t (ρ) { f p
$]}

f d
$] . . . otherwise

where f p
$[∈ F$[and f p

$] ∈ F$], t ∈ T , and ρ is either ε or a
one-unambiguous regular expression over nonterminals, and
where further

f d
$[: 〈x1, . . . , xk〉 �→ 〈x1, . . . , xk, ε〉 and

f d
$] : 〈x1, . . . , xk, xk+1, . . . , x2k〉 �→ 〈xk+1, . . . , x2k, ε〉.

The default semantics introduced by f d
$[and f d

$] corre-
sponds to the usual notion of copy semantics.

(2) For yXSAGs, all nodes labeled with terminals are
assigned just as in the case of bXSAGs. For a given node v
which is not labeled with a terminal, let α be the attributed
regular (sub)expression that was used to parse v. Then, let

f v
$[:=

⎧
⎪⎨

⎪⎩

f α
$[. . . if α = { f α

$[} α′ { f α
$]}

or α = { f α
$[} α′

f d
$[. . . otherwise

and

f v
$] :=

⎧
⎪⎨

⎪⎩

f α
$] . . . if α = { f α

$[} α′ { f α
$]}

or α = α′ { f α
$]}

f d
$] . . . otherwise

where f α
$[∈ F$[, f α

$] ∈ F$], and α′ is an attributed regular
expression, and where the defaults f d

$[and f d
$] are defined as

for bXSAGs.
During the evaluation of yXSAGs, this assignment can

be computed incrementally: For each symbol read from the

8 Note that attributed parse trees differ from the annotated parse
trees frequently used in literature [1]: An annotated parse tree shows
the actual values of attributes at nodes rather than the attribution func-
tions assigned to the nodes.

328

Attribute grammars for scalable query processing on XML streams

input stream, the DFTs from Theorem 1 output a sequence of
brackets which describes the depth-first left-to-right traver-
sal of the STDLL(1) parse tree. The brackets are then in-
terpreted as identifiers of attribution functions. Thus, upon
reading one input symbol, we execute the composition of all
attribution functions represented by the brackets as output
by such DFTs.

Example 24 For the yXSAG from Example 2 and the
parse tree from Fig. 6c, we assign attribution functions
f v5
$[:= {print 〈article〉} and further f v5

$] :=
{print 〈/article〉} to the node with subscript 5. We
further set f v7

$[:= {ECHO} and f v7
$] := f d

$]. Similarly,

f v12
$[:= {print 〈authors〉; ECHO} and also f v12

$] :=
{print 〈/authors〉}. For all other nodes w, f w

$[:= f d
$[

and f w
$] := f d

$].

To provide a clear picture of the evaluation of XSAG at-
tributes, we distinguish between the states of attribute values
before (using the subscript “in”) and after (using the sub-
script “out”) the application of an attribution function.

In the following, we will allow for assignments of an ex-
pression returning an m-tuple to a term 〈v1, . . . , vm〉, mean-
ing the component-wise assignment of elements of the m-
tuple to v1, . . . , vm .

Definition 8 (Semantics) Let q⊥ ∈ Dom be a special
“uninitialized” value. We evaluate an XSAG on a parse tree
P in a depth-first left-to-right traversal of P in which we
compute, for each attribute ai ∈ Att and each node v of
P , the four assignments (ai)

v
$[.in , (ai)

v
$[.out , (ai)

v
$].in , and

(ai)
v
$].out (inductively) as follows.

(ai)
v
$[.in :=

⎧
⎪⎨

⎪⎩

q⊥ . . . v is the root node

(ai)
v0
$[.out . . . v is the first child of v0

(ai)
v0
$].out . . . v is the right sibling of v0

(ai)
v
$].in :=

{
(ai)

v
$[.out . . . v has no children

(ai)
w
$].out . . . w is the rightmost child of v

In the first visit to node v, we compute

〈(a1)
v
$[.out , . . . , (ak)

v
$[.out , σ 〉 :=

f v
$[

(
(a1)

v
$[.in, . . . , (ak)

v
$[.in

)

and write σ to the output. In the second visit to v, we com-
pute

〈(a1)
v
$].out , . . . , (ak)

v
$].out , σ 〉 :=

f v
$]

(
(a1)

v
$[.out , . . . , (ak)

v
$[.out , (a1)

v
$].in, . . . , (ak)

v
$].in

)

and write σ to the output. In case f v
$[or f v

$] is undefined on
its input, the evaluation terminates and the input is rejected.

Let L(G) be the language accepted by XSAG G. For
input w ∈ L(G), we define G(w) ∈ string∗ to be the output
produced by G in accepting w. The translation defined by

Fig. 11 Attributed bXSAG parse tree and traversal of Example 25

an XSAG G, denoted T (G), is defined as T (G) = {(w, o) |
w ∈ L(G) and o ∈ G(w)}.

The result of the evaluation of an XSAG on an input tree
is the output (rather than attribute values) it computes, if it
accepts its input.

Even though this semantics may seem involved, we be-
lieve that its application is natural.

Note that an XSAG may reject an XML document in two
ways: A document that does not conform to the grammar
component is rejected. Further, the document can also be
rejected if an attribution function is not defined for its input.

Example 25 Consider bXSAG G, Dom = {q⊥, qb, qa},
Att = {prev}, the productions

bib ::= { f bib
$[} bib((book ∪ article)∗) { f bib

$] }
book ::= { f book

$[} book(ε)

article ::= { f article
$[} article(ε)

and the attribution functions

f bib
$[: x �→ 〈x, 〈bib〉〉

f bib
$] : (x1, x2) �→ 〈x2, 〈/bib〉〉

f article
$[: x �→ 〈qa, 〈article/〉〉

f book
$[: x �→

{ 〈qb, 〈book/〉〉 . . . x = qa

〈qb, ε〉 . . . otherwise

The grammar requires the input to consist of a dummy bibli-
ography database containing book and article nodes without
children. As output, the XSAG writes a root node labeled
“bib”, to which it assigns nodes labeled “book” and “article”
as children, filtering out books that are not right neighbors
of articles.9

The TDLL(1) parse tree of the XML document

〈bib〉〈article/〉〈book/〉〈book/〉〈/bib〉
is shown in Fig. 11. Naturally, we assign f bib

$[to f v1
$[, f bib

$]
to f v1

$] , f article
$[to f v2

$[, f book
$[to f v3

$[and f v4
$[, and have f v2

$] ,

f v3
$] , f v4

$] as f d
$] : (x1, x2) �→ (x2, ε), i.e. the default copy

semantics. (prev is initialized with q⊥.)
G is evaluated on the parse tree as shown in Table 1.

The five columns have the following meanings. The first col-
umn shows the current XML start or end tag being read. The

9 This is a somewhat contrived example but it illustrates a number
of important points related to the evaluation of XSAGs.

329

C. Koch, S. Scherzinger

Table 1 Run of bXSAG G of Example 25

Attribute value prev

Input F Before After Output

〈bib〉 f v1
$[q⊥ q⊥ 〈bib〉

〈article〉 f v2
$[q⊥ qa 〈article/〉

〈/article〉 f v2
$] (qa, qa) qa ε

〈book〉 f v3
$[qa qb 〈book/〉

〈/book〉 f v3
$] (qb, qb) qb ε

〈book〉 f v4
$[qb qb ε (!!)

〈/book〉 f v4
$] (qb, qb) qb ε

〈/bib〉 f v1
$] (q⊥, qb) qb 〈/bib〉

second column shows what attribution function is applied
in this step. The third and fourth columns show the value
of attribute prev before and after the application of the at-
tribution function, respectively. For second-visit attribution
functions, we show both input values. The rightmost column
shows which output is produced and written to the output
stream. Clearly, G outputs

〈bib〉〈article/〉〈book/〉〈/bib〉
and accepts its input.

Example 26 Consider again the XSAG of the previous ex-
ample. Alternatively, to reject the input10 if two books arrive
in sequence, we define f book

$[as

f book
$[: x �→

⎧
⎨

⎩

〈qb, 〈book/〉〉 . . . x = qa

undefined . . . x = qb.

〈qb, ε〉 . . . otherwise

This XSAG rejects the input from Example 25.

4.2 Mixed-content with yXSAGs

Ad hoc, we cannot specify yXSAGs with mixed content
models in productions. For for a nonterminal A, the regu-
lar expression ρ = (PCDATA ∪ A)∗ is not strongly one-
unambiguous by the Definition of macro PCDATA (see Re-
mark 1). Consequently, a grammar with such a production
is not STDLL(1) and cannot serve as a yXSAG grammar
component. Yet it is possible to specify such attribute gram-
mars and then translate them to valid yXSAGs, as we briefly
sketch out below. We refrain from presenting this translation
in all its technical details and rather concentrate on the basic
idea.

Replacing occurrences of macro PCDATA in mixed-
content regular expressions with macro PCDAT yields an
attributed strongly one-unambiguous regular expression.

10 This could be alternatively achieved by modifying the grammar
rather than the attributions as done in this example, but the goal here is
to illustrate the use of partially undefined attribution functions.

However, we still need to ensure that the attribution func-
tions are properly evaluated.

Assume the attributed regular expression α

= (({ f PCDATA
$[}PCDATA{ f PCDATA

$] }) ∪ ({ f A
$[}A{ f A

$] }
))∗

on the right-hand side of a production. If we simply replace
PCDATA by PCDAT, then the attribution functions f PCDATA

$[
and f PCDATA

$] are evaluated for every single character symbol
matched by this production. Most likely, the user intended
that f PCDATA

$[and f PCDATA
$] should only be evaluated on the

first and last characters in a contiguous character sequence.
In other words, we want to match the longest contiguous
string of characters as one PCDATA tree region.

We introduce an additional attribute in order to find these
character strings. On reading a character symbol, we evalu-
ate f PCDATA

$[when we are at the beginning of a string. We
only know for sure that we have reached the end of a string
when we read the next non-character symbol. We encode
this decision and the evaluation of f PCDATA

$] into the first-
visit attribution functions which can be evaluated after we
have read a character symbol. Yet by “delaying” the execu-
tion of f PCDATA

$] , we cannot access the same attribute values.
This can be solved by introducing a fixed number of addi-
tional attributes (depending on the maximum depth of all
parse trees of attributed regular expressions in the XSAG).
These additional attributes simulate a bounded stack on
which we can store the attributes computed by first-visit at-
tribution function f PCDATA

$[, so that the delayed second-visit

attribution function f PCDATA
$] may have access to them when

it is finally executed.

4.3 Concrete XSAGs

We introduce the simple imperative programming language
CT-Pascal for the definition of attribution functions. This
language is basically a fragment of Pascal, comprising the
following constructs which can be executed in constant time:
(1) if-then-else statements, (2) blocks of multiple commands
starting with the keyword “begin” and ending with “end”,
(3) Boolean formulas – using “and”, “or”, and “not” – over
equality conditions (used in if-statements), (4) assignments,
(5) the keyword “reject” for terminating the computation and
rejecting the input, and (6) “print” statements taking a con-
stant string as arguments.

An assignment is a statement of the form x := y, where
x is an l-value and y is an r-value.11 An equality condition is
a statement of the form x = y, where x and y are r-values.

Attribution functions are specified using copy semantics,
i.e., if an attribute is not explicitly assigned then the XSAG
evaluation assumes the default copy semantics. More pre-
cisely, the semantics of such a program is defined using the

11 We call constructs of our language which may appear on the right-
hand side of an assignment r-values while we call those which may
appear on the left-hand side of an assignment l-values.

330

Attribute grammars for scalable query processing on XML streams

usual notion of an environment as a function E : Att → Dom
that maps each attribute name to a domain value. Let Att =
{a1, . . . , ak} be a set of attributes with domain Dom.

Consider a program defining a first-visit attribution func-
tion f$[: Domk → Domk × string and its execution
f$[($[.�x) on attribute values

$[.�x = 〈$[.x1, . . . , $[.xk〉 ∈ Domk .

At the start of the execution of attribution function f$[($[.�x),
E(ai) = $[.xi for 1 ≤ i ≤ k. During the execution of
f$[($[.�x), the attributes ai may be read as well as written
(by assignment “:=”).

f$[($[.�x) evaluates to 〈Eω(a1), . . . , Eω(ak), o〉, where
Eω is the environment at the end of the execution and o is
the concatenation of the symbols printed. Thus, for (partial)
functions in F$[, the l-values consist of the set {$[.a | a ∈
Att} and the r-values consist of the set {$[.a | a ∈ Att}∪Dom.

Consider a program defining a second-visit attribution
function f$] : Dom2k → Domk × string and its execution
f$]($[.�x, $].�x) on attribute values $[.�x, $].�x ∈ Domk . At the
start of the execution of attribution function f$]($[.�x, $].�x),
〈$[.�x, $].�x〉 is copied into the environment. However, the at-
tributes of $[.�x are read-only and must therefore not appear
on the left-hand sides of assignments. For (partial) functions
in F$], the l-values are {$].a | a ∈ Att} and the r-values are
{$[.a | a ∈ Att} ∪ {$].a | a ∈ Att} ∪ Dom.

Such a program defines functions in F$[resp. F$] in the
obvious way, with the notable fact that the functions are as-
sumed undefined for inputs for which the “reject” state-
ment is called.

Example 27 Using our Pascal-like syntax, we define the at-
tribution functions of Example 25 as

f bib
$[= {print 〈bib〉}

f bib
$] = {print 〈/bib〉}

f article
$[= {print 〈article/〉; $[.prev := qa}
f book
$[= {if $[.prev = qa then print 〈book/〉;

$[.prev := qb}
Thus, we can write the bXSAG of Example 25 as

bib ::= {print 〈bib〉}
bib((book ∪ article)∗) {print 〈/bib〉}

book ::= {if $[.prev = qa then print 〈book/〉;
$[.prev := qb} book(ε)

article ::= {print 〈article/〉; $[.prev := qa}
article(ε)

To modify the XSAG to reject its input if two books arrive
in sequence on the stream, as in Example 26, we define
f book
$[as

{if $[.prev = qa then
begin print 〈book/〉; $[.prev := qb end

else if $[.prev = qb
then reject
else $[.prev := qb}

4.4 Built-in macros

We introduce three built-in macros for the convenient
definition of XSAGs, namely (1) ECHO, (2) ECHO_OFF, and
(3) MATCH_CHILDREN. These are redundant with the for-
malism presented so far but they allow us to define queries
in a more concise way.

Output macros echo and echo off

Let v be a node in an attributed parse tree. If macro ECHO
is used in the first-visit attribution function assigned to v,
then the subtree rooted at v will be copied to the output.
Correspondingly, macro ECHO_OFF can be used to override
ECHO and thus to suppress the output of certain subtrees.

While Example 1 already illustrates the use of ECHO, the
example below combines macros ECHO and ECHO_OFF.

Example 28 The yXSAG wit grammar start symbol bib and
productions

bib ::= {ECHO} bib
(
book∗)

book ::= book
(
title.author.

({ECHO_OFF}(author∗)).year
)

title ::= title(PCDATA)

author ::= author(PCDATA)

year ::= year(PCDATA)

outputs each book with its title, first author, and year, while
any further authors are dropped.

We now describe macro expansion for output macros
ECHO and ECHO_OFF. Let G = (Nt, T, P, s) be an XSAG.
We assume that all nodes in the attributed parse tree are
assigned two attribution functions, with default attribution
functions where this has not been explicitly defined. We ex-
pand echo macros in the first-visit attribution functions of
G as follows: We define two attributes echo and echo_old
with domain {q⊥, true, false}, and initialize echo with false.
Setting attribute echo determines whether nodes in the parse
tree are to be copied to the output. Attribute echo_old is used
to properly reset echo in second-visit attribution functions.

1. When processing the start tag of the XML root
node, echo is initialized with false. To this end,
we add the command “if $[.echo = q⊥ then
$[.echo := false” as a prefix to each first-visit func-
tion assigned to a start production.

2. In every first-visit attribution function, we replace oc-
currences of ECHO by “$[.echo := true,” and occur-
rences of ECHO_OFF by “$[.echo := false.”

331

C. Koch, S. Scherzinger

3. In the attribution functions f$[and f$] of every produc-
tion nt ::= { f$[} t (ρ) { f$]}, we generate output de-
pending on the value of echo:
– If t ∈ Tag, we append

if $[.echo = true then print 〈t〉
to f$[and we append the following to f$]:

if $[.echo = true then print 〈/t〉
– likewise, if t ∈ Char, we append the command

“if $[.echo = true then print t” to f$[.
4. We add a prefix “$[.echo_old := $[.echo” to every

first-visit attribution function f v
$[which uses an echo

macro. This statement stores the value of attribute echo
just before the remaining commands are executed.
Correspondingly, we add a postfix to the second-visit
attribution function f v

$] assigned to the same node v:
“$].echo := $[.echo_old” resets echo to the value it
had before the subtree rooted at node v was processed.

Example 29 Figure 12 shows the STDLL(1) parse tree of
the input document

〈bib〉
〈book〉

〈title/〉〈author/〉〈author/〉〈author/〉〈year/〉
〈/book〉

〈/bib〉
for the yXSAG of Example 28. We refer to the nodes by
their identifiers vi with 0 ≤ i ≤ 17. The modified attribu-
tion functions f vi

$[and f vi
$] , assigned to every node vi in the

attributed parse tree, are also shown in Fig. 12.
The attribution functions are evaluated along the depth-

first left-to-right traversal of the attributed parse tree: Ini-
tially, echo is set to false. The declaration of ECHO in the
first-visit attribution function at node v0 changes echo to
true. In consequence, the attribution functions for nodes v0,
v3, v6, and v9, (nodes with labels in Tag ∪ Char), generate
output. Attribute echo is set to false in the first-visit attri-
bution function assigned to node v11, thus suppressing the
output of the subtree rooted at this node. As attribute echo
is reset to true by f v11

$] , the tags of node v17 are output cor-
rectly.

Macro expansion may introduce redundant code, yet we
can eliminate many redundant statements by a simple pro-
gram analysis which takes into account the XSAG seman-
tics. For instance, we could simplify the attribution function
f v0
$[to “{$[.echo := true; print 〈bib〉}” and change

f v0
$] to “{print 〈/bib〉}”.

Conditional macro match

Conditional output is a typical task in query processing.
We introduce conditional macro MATCH_CHILDREN which

Fig. 12 Parse tree and attribution functions of Example 29

matches strings of characters from the input stream by reg-
ular expressions. Let v be a node in the attributed parse tree
with attribution functions f v

$[and f v
$] assigned to it, and

let s be the string obtained from concatenating the char-
acter data encountered in the left-to-right traversal of the
children of v. Let ρ be a regular expression over terminals
and let c be a Boolean-valued attribute. Assume that macro
MATCH_CHILDREN(ρ, c) is declared in first-visit attribu-
tion function f v

$[. If s ∈ L(ρ), then c is set to true, other-
wise c is set to false. Naturally, the result becomes first avail-
able in attribution function f v

$], as this is the earliest moment

332

Attribute grammars for scalable query processing on XML streams

where we have seen the complete string s. Note that within
f v
$] we can access the final value of c by $].c, whereas $[.c

will still be set to false.
MATCH_CHILDREN can be easily implemented by com-

piling ρ into a DFA which is then simulated by the attribu-
tion functions: We represent the current state of the DFA by
an XSAG attribute and realize the state transitions with cor-
responding CT-Pascal statements.

Example 30 We modify Example 3 such that the new
yXSAG production

book ::= book(({MATCH_CHILDREN(2003, $[.c)} year).
({if $[.c = true then
begin print 〈book〉; ECHO end}

(title.author.author∗)
{if $[.c = true then
print 〈year〉2003〈/year〉〈/book〉}))

selects those books whose child year has string value
“2003”; moreover, the year is output as the rightmost child
of book, rather than as the leftmost as required for the input.

4.5 bXSAGs versus yXSAGs

As we show in the next section, bXSAGs and yXSAGs have
the same expressive power. However, yXSAGs are generally
more convenient to use. In particular, it is often necessary to
introduce more attributes and more complicated attribution
functions to encode a given query as a bXSAG as when en-
coding it as a yXSAG.

Example 31 Consider the following STDLL(1) grammar

bib ::= bib(article∗)
article ::= article

(
(title.author.author∗) ∪

(year.title.author.author∗.pub)
)

title ::= title(PCDATA)

author ::= author(PCDATA)

year ::= year(PCDATA)

pub ::= publisher(PCDATA)

where article entries appear either in a short version with a
title and at least one author, or in a long version which also
contains a year and a publisher. By changing the bib and
article productions to

bib ::= {print 〈bib〉} bib(article∗) {print 〈/bib〉}
article ::= article(({print 〈article_short〉; ECHO}

(title.author.author∗)
{print 〈/article_short〉}) ∪

({print 〈article_long〉; ECHO}
(year.title.author.author∗.pub)

{print 〈/article_long〉}))

we obtain a yXSAG where short articles are relabeled as
“article_short”, and long articles are relabeled as “arti-
cle_long”. Note that if both short and long articles had the
first child node year then we could not encode this transfor-
mation using XSAGs.

The following bXSAG is equivalent to the yXSAG
above. It uses an attribute state ∈ {q⊥, qinit, qshort, qlong}
(where q⊥ is the “uninitialized” value) to distinguish the ti-
tles of short articles from those of long articles.

bib ::= {print 〈bib〉} bib(article∗) {print 〈/bib〉}
article ::= {$[.state := qinit}

article
(
(title.author.author∗) ∪

(year.title.author.author∗.pub)
)

{if $].state = qshort
then print 〈/article_short〉
else if $].state = qlong

then print 〈/article_long〉}
title ::= {if $[.state = qinit

then begin

$[.state := qshort;
print 〈article_short〉

end; ECHO} title(PCDATA)

author ::= {ECHO} author(PCDATA)

year ::= {$[.state := qlong;
print 〈article_long〉;
ECHO} year(PCDATA)

pub ::= {ECHO} publisher(PCDATA)

While there are other ways of encoding our query using a
bXSAG, it does not seem possible to represent the query as
a bXSAG without using attributes (other than those required
to implement ECHO).

It is easy to verify that bXSAGs equivalent to the
yXSAGs of Examples 2, 3, and 30 are also much more com-
plicated.

5 Expressive power of XSAGs

In this section, we explore the expressiveness of XSAGs.
First, we define a class of deterministic pushdown trans-
ducers tailored towards XML stream processing, called
XML-DPDTs. We then present our main result, namely that
XSAGs are precisely as expressive as XML-DPDTs. In the
proofs to our expressiveness theorems, we also specify the
corresponding translation algorithms.

5.1 Deterministic pushdown transducers for XML streams

We first introduce deterministic pushdown transducers
(DPDTs) as deterministic pushdown automata with output

333

C. Koch, S. Scherzinger

which accept by empty stack. As with pushdown automata
[2], the DPDTs accepting by empty stack are equivalent to
the DPDTs accepting by final state.

Definition 9 (DPDT) A deterministic pushdown transducer
is a tuple

T = (Q, �, �, �, δ, q0, Z0)

where Q is a finite set of states, �, �, and � are the finite
alphabets for input tape, stack, and output tape respectively,
δ is the partial transition function

δ : Q × (� ∪ {ε}) × � → Q × �∗ × �∗

q0 denotes the initial state, and Z0 the initial stack symbol.
For each q ∈ Q and X ∈ � such that δ(q, ε, X) is defined,
δ(q, a, X) is undefined for all a ∈ �. A transition δ(q, ε, X)
is called an ε-transition. A DPDT without ε-transitions is
called ε-free.

We define a run of T by means of instantaneous descrip-
tions (IDs). An ID describes the configuration of a DPDT at
a given instant. It is defined as a quadruple

(q, w, α, o) ∈ Q × �∗ × �∗ × �∗,

where q is a state, w is the remaining input, α a string of
stack symbols denoting the current stack, and o the output
generated so far. We make a transition

(q, aw, Xα, o) � (q ′, w, γ α, oσ)

if δ(q, a, X) = (q ′, γ, σ), where a ∈ � ∪ {ε}, X ∈ �,
α ∈ �∗, q ′ ∈ Q, and σ ∈ �∗. Here, γ ∈ �∗ is the string
of stack symbols which replace X on top of the stack. For
γ = ε, the stack is popped, whereas for γ = X , the stack
remains unchanged. If γ = Y X , then Y is pushed on top of
X .

Let �∗ be the reflexive and transitive closure of �. T
accepts an input word w ∈ �∗ by empty stack if

(q0, w, Z0, ε) �∗ (q, ε, ε, o)

for q ∈ Q and o ∈ �∗. We say o is the output for input w.
The language accepted by a DPDT T , denoted L(T), is

the set of strings accepted by T . The translation defined by
T , denoted by T (T), is defined as

{(w, o) | (q0, w, Z0, ε) �∗ (q, ε, ε, o) for q ∈ Q, o ∈ �∗}.
We call two DPDTs equivalent if they define the same

translation.

Throughout this paper, for a set S, we use S≤2 as a short-
cut for {ε} ∪ S ∪ S × S.

Definition 10 (XML-DPDT) Let the input alphabet

� = {〈t〉 | t ∈ Tag} ∪ {〈/t〉 | t ∈ Tag} ∪ Char

consist of matching XML start and end tags and characters.

An XML-DPDT is a DPDT

T = (Q, �, �, �, δ, q0, Z0)

where � = {Z0} ∪ Tag × �′ (i.e. the stack alphabet consists
of stack start symbol Z0 and a pair of a tag and some sym-
bol from a set �′), and for which the transition function δ is
restricted as follows:

δ : Q × (� ∪ {ε}) × � → Q × �≤2 × �∗

1. In the very first transition the initial stack symbol is re-
placed; in particular, we require

δ(q0, 〈t〉, Z0) = (p, (t, Y), σ)

for 〈t〉 ∈ �, p ∈ Q, (t, Y) ∈ �, and σ ∈ �∗.
2. For all other configurations of q ∈ Q and X ∈ �, a

symbol is only pushed on the stack when an XML start
tag is read from the input stream. We require

δ
(
q, 〈t〉, X) = (p, (t, Y)X, σ)

for 〈t〉 ∈ �, p ∈ Q, (t, Y) ∈ �, and σ ∈ �∗.
3. A symbol is only popped from the stack when a match-

ing XML end tag is encountered in the input stream, so

δ(q, 〈/t〉, (t, Y)) = (p, ε, σ)

for p, q ∈ Q, 〈/t〉 ∈ �, (t, Y) ∈ �, and σ ∈ �∗.

The conditions required in the XML-DPDT definition are
only natural in the context of XML stream processing: The
size of the stack is bounded by the maximum depth of the
incoming document tree. Due to the restriction on the first
transition, the input has to start with the root element of the
XML document being read. Items are only pushed on the
stack for XML start tags and are only popped from the stack
for matching end tags. We store the tag of the current pro-
duction on the stack in order to correctly match start and end
tags. Because of the acceptance by empty stack, only well-
formed XML documents are accepted.

All transitions not related to reading an XML start or end
tag, i.e., transitions on character symbols and ε-transitions,
leave the stack unchanged. The latter is a prerequisite for the
elimination of ε-transitions from XML-DPDTs which is not
possible for general DPDTs.

Note that in work subsequent to ours, [3] introduced the
so-called visibly pushdown automata and showed that the
languages accepted by these automata enjoy nice closure
properties. Visibly pushdown languages have recently been
used in the context of XML, see [31]. Even though visi-
bly pushdown automata are closely related to XML-DPDTs
without output, they differ in the treatment of ε-transitions
and the definition of the acceptance condition.

Lemma 1 For each XML-DPDT with ε-transitions there is
an equivalent ε-free XML-DPDT.

334

Attribute grammars for scalable query processing on XML streams

Fig. 13 ε-elimination for XML-DPDTs.

Proof Idea. Let T be an XML-DPDT an let δ be its transition
function. We construct an equivalent ε-free XML-DPDT by
computing the transitive closure of ε-transitions. Our strat-
egy is based on the following observations:

– By definition, all ε-transitions in XML-DPDTs are of the
form δ(q, ε, X) = (q ′, X, σ) for states q, q ′, stack sym-
bol X , and output σ . As such, ε-transitions leave the
stack unchanged.

– Each sequence of ε-transitions in accepting an XML in-
put document is followed by a transition on an input
symbol, e.g., the last transition in accepting an input doc-
ument processes the XML end tag of the document root
node.

– Let G be the digraph with nodes in Q × �≤2 and
edges {〈(q, X), (q ′, X ′)〉 | δ(q, a, X) = (q ′, X ′, σ)}. An
edge from node (q, X) to (q ′, X ′) which has been intro-
duced for a transition δ(q, a, X) = (q ′, X ′, σ) is labeled
“a/σ .” Figure 13a shows some transitions in graph rep-
resentation.
If a node 〈q, X〉 is reachable from another node via a
path of ε-transitions, then this path is unique: As T is
deterministic, a node with an outgoing ε-transition can-
not have any other outgoing transitions.

Thus, for each finite sequence of ε-transitions and
the following transition on an input symbol, we define
a single transition which produces the collected output.
Figure 13b shows the new transitions after the elimination
of ε-transitions from Fig. 13a.

Proof Let T with T = (Q, �, �, �, δ, q0, Z0) be an
XML-DPDT with ε-transitions. Then we construct an
XML-DPDT T ′ which differs from T only in its transition
function δ′:
– For 〈t〉 ∈ �, δ′(q0, 〈t〉, Z0) := δ(q0, 〈t〉, Z0).

Fig. 14 Equivalence of XSAGs and XML-DPDTs

– For all other non-ε-transitions on an input symbol t ∈ �,
δ(q, t, X) = (q ′, Y, σ) with q, q ′ ∈ Q, X ∈ �, Y ∈
�≤2, and σ ∈ �∗, we consider all states p such that
(p, ε, X, ε) �∗ (q, ε, X, o) with o ∈ �∗. Consequently,
we define δ′(p, t, X) := (q ′, Y, oσ).

The resulting XML-DPDT T ′ has no ε-transitions. Its de-
terminism follows from the determinism of T : All nodes for
which transitions on input symbols are defined keep their
outgoing edges (and no additional edges are added). Nodes
for which an ε-transition is defined on δ are assigned the
outgoing edges of the next node reachable via ε-transitions
which has outgoing edges for reading input symbols.

It can be shown by induction over the input words that T
and T ′ are equivalent. �

5.2 Equivalence of XSAGs and XML-DPDTs

We call an XSAG G and an XML-DPDT T equivalent if
they define the same translation. To show that XSAGs and
XML-DPDTs are equivalent, we will introduce three theo-
rems, where Fig. 14 shows how these theorems relate to
each other. Theorem 3 states that every bXSAG can be
translated into an equivalent XML-DPDT. In proving The-
orem 5, we will show that the same holds for yXSAGs. As
there are bXSAGs which are no yXSAGs and vice versa,
these separate theorems are not redundant. Finally, given an
XML-DPDT we construct an XSAG which is both a bXSAG
and a yXSAG in the proof of Theorem 4.

Theorem 3 For each basic XSAG there is an equivalent
XML-DPDT.

Proof Idea. We construct an XML-DPDT T to simulate a
bXSAG G. T performs two tasks while processing the in-
put stream: (1) T validates the input stream and (2) T also
evaluates the attribution functions.

To validate the input, we construct DFAs which recog-
nize the regular expressions on the right-hand sides of the
productions of G. The DFA transitions are then encoded in
the transitions of T and we use the XML-DPDT stack to
switch between states of DFAs, or rather, the corresponding
productions.

Further, we realize the evaluation of attribution func-
tions within the transition function of T . If an attribution
function rejects the input stream for a certain combination
of attribute values, then we do not define a corresponding
transition of T .

335

C. Koch, S. Scherzinger

As a consequence of (1) and (2), input rejected by G will
not be accepted by T either.

Proof Let Dom be the finite set of domain values for k at-
tributes Att = {a1, . . . , ak} and let q⊥ ∈ Dom be an ini-
tial value. We will use vector notation to denote k-tuples
of attribute values, so �a denotes 〈a1, . . . , ak〉 ∈ Domk . Let
F$[and F$] be sets of first- and second-visit attribution
functions.

Let G be a bXSAG G = (Nt, T, P, s) with nonter-
minals Nt, terminals T = Tag ∪ Char, productions P =
{p1, . . . , pn}, and grammar start symbol s. We assume that
the TDLL(1) grammar component of G is reduced. Further,
we assume that all productions pi ∈ P are of the form

pi : ntpi ::= {
f pi
$[

}
t pi (ρ pi)

{
f pi
$]

}

with nonterminal ntpi , terminal t pi , ρ pi being either ε or
a regular expression over nonterminals such that τ(ρ pi) is
one-unambiguous, and attribution functions f pi

$[∈ F$[and

f pi
$] ∈ F$]. If f pi

$[or f pi
$] have not been explicitly declared,

we assume the default attribution functions f d
$[or f d

$] respec-
tively.

Let Api = (Q pi , Nt, δ pi , q pi
0 , F pi) be a DFA recogniz-

ing L(ρ pi). Api has state set Q pi , input alphabet Nt, transi-
tion function δ pi : Q pi × Nt → Q pi , initial state q pi

0 , and
F pi as the set of final states.

W.l.o.g., we assume that the state sets of all DFAs are
pairwise disjoint and define the set QDFA = ⋃

i Q pi as the
union of all such DFA state sets. Further, we assume the ex-
istence of a special state qroot /∈ QDFA.

We construct an XML-DPDT

T = (QT , �T , �T , �T , δT , qT
0 , ZT

0),

as follows:

1. The state set is QT = Domk × (QDFA ∪ {qroot}). A state
(a1, . . . , ak, q) is a (k + 1)-tuple consisting of the cur-
rent attribute values a1, . . . , ak and state marker q . The
state marker either corresponds to the state of the DFA
related to the current production, or it is set to qroot which
denotes the start or end of the input.

2. The initial state is qT
0 = (q⊥, . . . , q⊥, qroot), where all

attributes are initialized to q⊥ and the state marker is set
to qroot.

3. The input alphabet �T is finite and consists of XML
start and end tags and character symbols, i.e.,

�T = {〈t〉 | t ∈ Tag} ∪ {〈/t〉 | t ∈ Tag} ∪ Char.

4. The stack alphabet �T consists of symbols in {$}∪Tag×
QT . That is, the stack is either empty or holds a symbol
on top of the stack. This can be the initial stack symbol
ZT

0 = $ or a pair consisting of a tag and a state.12

12 For the sake of syntactic brevity, we will write stack symbols in
Tag × QT = Tag × (Domk × (QDFA ∪ {qroot})) as if they were tuples
in Tag × Domk × (QDFA ∪ {qroot}).

5. We obtain output alphabet �T as follows: σ ∈ �T iff
f$[∈ F$[is an attribution function in G and there exist
�a, �b ∈ Domk such that f$[(�a) = 〈�b, σ 〉, or, f$] ∈ F$] is
an attribution function in G and there exist �a ∈ Dom2k

and �b ∈ Domk s.t. f$](�a) = 〈�b, σ 〉.
6. We next define the transition function δT of T ,

δT : QT × �T × �T → QT × (�T)≤2 × (�T)∗.

First, we define the initial transitions. For each produc-
tion pi with ntpi = s, i.e., a production with grammar
start symbol s on the left-hand side, and its correspond-
ing DFA Api , we define a transition

δT
(
qT

0 , 〈t pi 〉, ZT
0

) =
δT ((q⊥, . . . , q⊥, qroot), 〈t pi 〉, $) :=

(
(�b, q pi

0), (t pi , �b, qroot), σ
)

where q pi
0 is the initial state of Api , and 〈�b, σ 〉 =

f pi
$[

(
q⊥, . . . , q⊥

)
with �b ∈ Domk and σ ∈ (�T)∗.

If f pi
$[

(
q⊥, . . . , q⊥

)
is undefined then the above transi-

tion is not defined either and T will reject all correspond-
ing XML documents.
To define the remaining transitions, we consider each
production pi ∈ P and its associated DFA Api .
(a) For every DFA transition δ pi (q, l) = q ′ with states

q, q ′ ∈ QDFA and nonterminal l and for each termi-
nal t such that there is a production p j : l ::= t (ρ)
for some ρ, we define a transition of T :
(i) If t ∈ Tag, then we define a transition for reading

an XML start tag from the input stream. This
involves pushing a symbol on the stack: For �a ∈
Domk and X ∈ �T ,

δT
(
(�a, q), 〈t〉, X

) := (
(�b, q

p j
0), (t, �b, q ′)X, σ

)

where q
p j
0 is the initial state of Ap j , the DFA for

the next production, and 〈�b, σ 〉 = f
p j

$[(�a) with
�b ∈ Domk and σ ∈ (�T)∗.
If f

p j

$[(�a) is undefined then the above transition
is not defined either and T will reject all corre-
sponding XML documents.

(ii) If t ∈ Char, then we define a transition for read-
ing a character symbol, so the stack remains un-
changed: For �a ∈ Domk and X ∈ �T ,

δT ((�a, q), t, X) := ((�c, q ′), X, σσ ′)

where 〈�b, σ 〉 = f
p j

$[(�a) and 〈�c, σ ′〉 = f
p j

$] (�b, �b)

with �b, �c ∈ Domk and σ, σ ′ ∈ (�T)∗.
If f

p j

$[(�a) or f
p j

$] (�b, �b) is undefined then the
above transition is not defined either and T will
reject all corresponding XML documents.

336

Attribute grammars for scalable query processing on XML streams

(b) Next, we consider transitions related to reading the
XML end tag 〈/t pi 〉 for the current production pi .
Here, the topmost symbol is popped off the stack:
For states qf ∈ F pi , a state of a previous production
qprev ∈ QDFA ∪ {qroot}, and attribute tuples �a, �b ∈
Domk , we define

δT ((�b, qf), 〈/t pi 〉, (t pi , �a, qprev)) := ((�c, qprev), ε, σ)

where 〈�c, σ 〉 = f pi
$] (�a, �b) with �c ∈ Domk and σ ∈

(�T)∗.
Again, if f pi

$] (�a, �b) is undefined then the above tran-
sition is not defined either and T will reject all cor-
responding XML documents.

T is an XML-DPDT by its very construction: T is deter-
ministic as T has no ε-transitions and δT is a function. Also,
T adheres to the stack discipline required for XML-DPDTs
and rejects malformed XML documents.

It can be shown by induction on the length of input words
that G and T are equivalent. �

Theorem 4 For each XML-DPDT there is an equivalent
XSAG which is both a basic and an easy XSAG.

Proof Idea. In brief, we construct an XSAG G which sim-
ulates a given XML-DPDT and is both a bXSAG and a
yXSAG. The grammar component of G will be very general,
defining the language of all well-formed XML documents
over the input alphabet of the XML-DPDT. We enforce the
equivalence of G and T by means of the attribution func-
tions, exploiting the ability of attribution functions to reject
the input.

Proof Let T = (QT , �T , �T , �T , δT , qT
0 , ZT

0). Then
�T = {〈t〉 | t ∈ Tag} ∪ {〈/t〉 | t ∈ Tag} ∪ Char and �T =
�T ×�′ for set of symbols �′. By Lemma 1 we may assume
T to be ε-free. Then we define an XSAG G = (Nt, T, P, s)
as follows:

1. Let Att = {a1, a2} be the set of attributes with domain
Dom = QT ∪ �′ ∪ {ZT

0 } ∪ {q⊥} where q⊥ is the special
“uninitialized” value. Attribute a1 represents the current
state of T while attribute a2 represents what is currently
stored on top of the stack of T besides the tag of the
current production.

2. We define Nt = {ntTag, ntChar}.
3. Naturally, T = Tag ∪ Char.
4. We successively define the set of productions which is

initially empty. For each terminal t ∈ T , we add a pro-
duction pt : ntt ::= { f t

$[} t
(
ρt

) { f t
$]}.

– If t ∈ Tag, then ntt := ntTag, ρt := (ntTag ∪ ntChar)
∗,

and the attribution functions are defined as follows:
(1) For each transition

δT (q0, 〈t〉, ZT
0) = (q ′, (t, Y), σ)

with q ′ ∈ QT , Y ∈ �′, and σ ∈ (�T)∗ we define
f t
$[(q⊥, q⊥) := 〈q ′, Y, σ 〉. At the beginning of the

XSAG evaluation, both attributes are set to q⊥. Thus,
f t
$[ensures that start tag of the document root node

has the label required by T . For each transition

δT (q, 〈t〉, (u, X)) = (q ′, (t, Y)(u, X), σ)

with q, q ′ ∈ QT , 〈u〉 ∈ �T , X, Y ∈ �′, and
σ ∈ (�T)∗ we define f t

$[(q, X) := 〈q ′, Y, σ 〉. For
all other input, f t

$[is undefined. Further, (2) for each
transition

δT (q, 〈/t〉, (t, X)) = (q ′, ε, σ)

with q, q ′ ∈ QT , X ∈ �′, σ ∈ (�T)∗, and for each
p ∈ QT and X ′ ∈ �′, we define f t

$](p, X ′, q, X) :=
〈q ′, X ′, σ 〉. For all other input, f t

$] is undefined.
– For each t ∈ Char, we assign ntt := ntChar, ρt :=

ε, and the attribution functions as follows: For each
transition

δT (q, t, (u, X)) = (q ′, (u, X), σ),

with q, q ′ ∈ QT , u ∈ Tag, X ∈ �′, and σ ∈ (�T)∗,
we define f t

$[(q, X) := 〈q ′, X, σ 〉. For all other in-
put, f t

$[is undefined. The second-visit attribution

function has default functionality, i.e. f t
$] := f d

$].
5. The grammar start symbol is s := ntTag, ensuring that

the grammar component is an ERTG.

The STDLL(1) grammar component of G accepts all
well-formed documents over �T , as for all productions for
a terminal t , τ(ρt) = (

⋃
T)∗. The partial definitions of δT

translate into partial attribution functions in the natural way,
and so does the use of the stack in T translate to the use of
the implicit stack of an XSAG.13

Note that G is a bXSAG, as the regular expressions on
the right-hand sides of productions are not attributed. More-
over, G is also a yXSAG: For each production pt , ρt is either
ε or τ(ρt) is strongly one-unambiguous.

It is not difficult to see that XSAG G of our construction
is indeed equivalent to XML-DPDT T . This can be shown
by induction on the length of input words. �

Theorem 5 For each easy XSAG there is an equivalent
XML-DPDT.

Proof Idea. Our strategy in designing an XML-DPDT T
to simulate a yXSAG G is very similar to the proof of
Theorem 3: We evaluate those attribution functions which
do not occur inside attributed regular expressions using the

13 XSAGs can be considered to have an implicit stack which is made
accessible through the second-visit attribution functions. Function f v

$]
in F$], assigned to node v in the attributed parse tree, has access to two
sets of attribute values: (1) the attribute values as current after return-
ing from the children of node v, and (2) the values of the attribute at
the time that were current just before the children of node v were pro-
cessed. For an attribute a ∈ Att, we denote (1) by (a)v$].in and (2) by
(a)v$[.out in our notation from Definition 8.

337

C. Koch, S. Scherzinger

stack of T (as done in the proof of Theorem 3). That is, we
push the attribute values computed in the first visit to a node
on the stack such that they are available in the second visit.

As stack operations are restricted to reading XML start
or end tags, we need to apply a trick to achieve this stack
functionality for the attribution functions inside attributed
regular expressions as well: We simulate a stack in the states
of T , exploiting the fact that the depth of this simulated stack
is bounded by the maximum height of the parse trees for
attributed regular expressions occurring in productions.

This allows us to evaluate both kinds of attribution func-
tions in a similar manner, using the stack of T in the first and
the stack simulated in the states of T in the second case.

Proof Let Dom, Att, F$[and F$] be defined as in the re-
lated proof. Let G = (Nt, T, P, s) be a yXSAG with set of
nonterminals Nt, terminals T = Tag ∪ Char, productions
P = {p1, . . . , pn}, and grammar start symbol s. We assume
that the grammar component of G is reduced and that all
productions pi ∈ P are of the form

pi : ntpi ::= {
f pi
$[

}
t pi (α pi)

{
f pi
$]

}

with ntpi ∈ Nt, t pi ∈ T , attribution functions f pi
$[∈ F$[

and f pi
$] ∈ F$], and with default attribution functions in

places where attribution functions have not been explicitly
declared. α pi is either ε or an attributed regular expression.

Let � be a special end-marker symbol {�} /∈ Nt. With
each production pi ∈ P , we associate an FST

Api = (Q pi , � pi ,�pi , δ pi , q pi
0 , F pi)

with state set Q pi , input alphabet � pi ⊆ Nt ∪ {�}, output
alphabet �pi ⊆ F$[∪ F$], initial state q pi

0 , and set of final
states F pi . The construction of this FST depends on α pi :

1. If α pi = ε, then let Api be a DFT recognizing L(�) and
producing no output.

2. If α pi is an attributed regular expression, then we as-
sume that every subexpression in α pi is of the form
“ f$[π pi f$]” with attribution functions f$[∈ F$[and
f$] ∈ F$] (or default attribution functions if these attri-
bution functions have not been explicitly declared).
Let ρ pi be the regular expression obtained from α pi by
removing the attributions. Clearly, as τ(ρ pi) is strongly
one-unambiguous, so is ρ pi and we can construct the
DFT A[](ρ pi) from Theorem 1. A[](ρ pi) accepts the lan-
guage L(ρ pi .�) and outputs the bracketing of a word w
such that w.� ∈ L(ρ pi .�).
We define Api in analogy to A[](ρ pi), yet with the dif-
ference that it outputs the identifiers of the attribution
functions instead of the bracketings of words.

W.l.o.g., for all productions pi ∈ P we may assume that the
state sets Q pi are pairwise disjoint and we define QDFT :=⋃

i Q pi as the union of all such states. Further, we assume a
special state qroot /∈ QDFT.

Let h be the maximum height of all parse trees for at-
tributed regular expressions in the productions of G. We de-
fine the simulated stack containing up to h k-tuples of at-
tributes. That is, S ∈ S = (Domk)≤h denotes the current
string of stack symbols and we write εS for the empty stack.

Next, we define a recursive and partial function comput-
ing a composition of attribution functions:

δ∗ : (F$[∪F$])∗×Domk ×S×string∗ → Domk ×S×string∗

δ∗ takes a sequence of attribution function identifiers, a tuple
of attribute values, the simulated stack, and the output pro-
duced so far as input. One by one, the attribution functions
are evaluated using the simulated stack. δ∗ is either unde-
fined for its input or it returns the resulting attribute values,
simulated stack, and the computed output.

1. For the empty word and �a ∈ Domk , S ∈ S and o ∈
string∗, δ∗(ε, �a, S, o) := (�a, S, o).

2. Consider a sequence of attribution functions f =
f1 . . . fr in (F$[∪ F$])+.
If f1 ∈ F$[, then for �a ∈ Domk , S ∈ S, and o ∈ string∗,
we evaluate

δ∗(f1 f2 . . . fr , �a, S, o) := δ∗(f2 . . . fr , �b, �bS, oσ)

where 〈�b, σ 〉 = f1(�a) with �b ∈ Domk , �bS ∈ S, and
σ ∈ string∗. If f1(�a) or δ∗(f2, . . . , fr , �b, �bS, oσ

)
are

not defined then δ∗(f, �a, S, o
)

is not defined either.
3. If f1 ∈ F$], then for �a, �b ∈ Domk , �aS ∈ S, and o ∈

string∗, we evaluate

δ∗(f1 f2 . . . fn, �b, �aS, o) := δ∗(f2 . . . fr , �c, S, oσ)

where 〈�c, σ 〉 = f1(�a, �b) with �c ∈ Domk , S ∈ S, and
σ ∈ string∗. If f1(�a, �b) or δ∗(f2 . . . fr , �c, S, oσ

)
are not

defined then δ∗(f, �b, �aS, o
)

is not defined either.

We then construct an XML-DPDT

T = (
QT , �T , �T , �T , δT , qT

0 , ZT
0

)

as follows:

1. The state set is QT = Domk × (QDFT ∪ {qroot}) × S. A
state (a1, . . . , ak, q, S) ∈ QT consists of the k current
attribute values a1, . . . , ak , state marker q denoting the
state of the currently active DFT (if q ∈ QDFT) or the
beginning and end of the input (if q = qroot), and the
simulated stack S ∈ S.

2. The initial state is qT
0 = (q⊥, . . . , q⊥, qroot, ε

S), where
all attributes are initialized with q⊥, the state marker is
set to qroot, and the simulated stack is empty.

3. Input alphabet �T , stack alphabet14 �T with initial
stack symbol ZT

0 = {$}, and output alphabet �T are
defined in analogy to the proof of Theorem 3.

14 For the sake of syntactic brevity, we will write stack symbols in
Tag × QT = Tag × (Domk × (QDFT ∪ {qroot}) × S) as if they were
tuples in Tag × Domk × (QDFT ∪ {qroot}) × S .

338

Attribute grammars for scalable query processing on XML streams

4. We next define the transition function

δT : QT × �T × �T → QT × (�T)≤2 × (�T)∗.

We begin with the transitions for reading the XML start
tag of the root node: For each start production pi , i.e.,
productions with nonterminal s on their left-hand sides,
with associated DFT Api , we define a transition

δT
(
qT

0 , 〈t pi 〉, ZT
0

) =
δT

(
(q⊥, . . . , q⊥, qroot, ε

S), 〈t pi 〉, $
) :=

(
(�b, q pi

0 , εS), (t pi , �b, qroot, ε
S), σ

)
,

where q pi
0 is the initial state of Api , further 〈�b, σ 〉 =

f pi
$[(q⊥, . . . , q⊥) with �b ∈ Domk and σ ∈ (�T)∗.

If f pi
$[(q⊥, . . . , q⊥) is undefined then the above transi-

tion is not defined either and T will reject all correspond-
ing XML documents.
Next, we attend to the remaining transitions of T . For
each production pi ∈ P we consider the corresponding
DFT Api : For each DFT transition

δ pi (q, l) = (p, w)

where q, p ∈ QDFT, l ∈ � pi , producing a sequence of
attribution functions w ∈ (F$[∪ F$])∗, we define a tran-
sition δT :
If l ∈ Nt, then for every terminal t such there is a pro-
duction of the form p j : l ::= t (ρ) for some ρ, we dis-
tinguish between two cases:
(a) If t ∈ Tag, then we define a transition for reading an

XML start tag. For �a ∈ Domk , S ∈ S, and X ∈ �T ,

δT ((�a, q, S), 〈t〉, X) :=
(
(�b, q

p j
0 , εS), (t, �b, p, S′)X, σσ ′)

where q
p j
0 is the initial state of the DFT correspond-

ing to the next production p j . The values �b ∈ Domk ,
σ, σ ′ ∈ (�T)∗, and S′ ∈ S are computed in two
steps. First, we simulate a composition of attribution
functions, as defined by w,

〈�a′, S′, σ 〉 = δ∗(w, �a, S, ε
)

with �a′ ∈ Domk . Next, we also evaluate the first-visit
attribution function from the next production p j ,

〈�b, σ ′〉 = f
p j

$[
(�a′).

If δ∗(w, �a, S, ε
)

or f
p j

$[
(�a′) are not defined then the

above transition is not defined either and T will re-
ject all corresponding documents.

(b) If t ∈ Char, then we define a transition for reading
a character symbol. For �a ∈ Domk , S ∈ S, and X ∈
�T , we define

δT ((�a, q, S), t, X) := ((�b, p, S′), X, σσ ′σ ′′).

The values �b ∈ Domk , σ, σ ′, σ ′′ ∈ (�T)∗, and S′ ∈
S are computed in two steps. First, we simulate a
composition of attribution functions denoted by w,
as

〈�a′, S′, σ 〉 = δ∗(w, �a, S, ε)

with �a′ ∈ Domk . Next, we also evaluate the first-
and second-visit attribution functions from produc-
tion p j by 〈�a′′, σ ′〉 = f

p j

$[(�a′) with �a′′ ∈ Domk, and

〈�b, σ ′′〉 = f
p j

$] (�a′′, �a′′).
If δ∗(w, �a, S, ε), f

p j

$[(�a′), or f
p j

$] (�a′′, �a′′) are not de-
fined then the above transition is not defined either
and T will reject all corresponding documents.

We now consider the case where l = �, and conse-
quently, p is final, and we define a transition for reading
an XML end tag. For �a, �b ∈ Domk , a state of a previous
production qprev ∈ QDFT ∪ {qroot}, and S, S′ ∈ S, we
define

δT ((�b, q, S), 〈/t pi 〉, (t pi , �a, qprev, S′)) :=
((�c, qprev, S′), ε, σσ ′).

Again, the values �c ∈ Domk and σ, σ ′ ∈ (�T)∗ are com-
puted by evaluating a composition of attribution func-
tions. First, by

〈�b′, S′′, σ 〉 = δ∗(w, �b, S, ε)

with �b′ ∈ Domk and S′′ ∈ S.15 Finally,

〈�c, σ ′〉 = f pi
$] (�a, �b′).

If δ∗(w, �b, S, ε) or f pi
$] (�a, �b′) are not defined then the

above transition is not defined either and T will reject
all corresponding documents.

T is an XML-DPDT by its very construction (we refer to the
arguments stated in the proof of Theorem 3).

It can be shown by induction on the length of the input
word that G and T are equivalent. �

15 Note that reading “�” corresponds to processing the matching
XML end tag, so the evaluation of the sequence of attribution func-
tions w will leave the simulated stack empty, i.e., S′′ = εS .

339

C. Koch, S. Scherzinger

6 Efficient evaluation of XSAGs

Evaluating an XSAG G on an input document or tree T re-
quires (1) the translation of an XSAG to a transducer and (2)
the evaluation of the transducer on T .

As shown in the proofs of Theorems 3 and 5, we
can translate an XSAG directly to an equivalent DPDT, a
straightforward strategy for XSAG evaluation. This yields
an exponential-time algorithm for query processing; how-
ever, the exponentiality is only with respect to the size of the
XSAG:

Corollary 1 An XSAG G can be evaluated on a tree T
in time O(f (|G|) + |T |) using a stack of memory of size
O(depth(T)).

Thus, the problem of evaluating an XSAG on an XML
tree is fixed-parameter linear [15] (with the XSAG as the
parameter).

Proof We first consider the translation step (1). The time to
translate an XSAG G to a DPDT depends on whether G is a
basic or an easy XSAG.

– For bXSAGs, the XML-DPDTs constructed in the proof
of Theorem 3 are of size exponential in the number k of
attributes in the XSAG, i.e., f is O(2k).

– For yXSAGs, the XML-DPDTs constructed in the proof
of Theorem 5 are additionally exponential in the max-
imum depth h of the parse trees of the regular expres-
sions used in productions, where h only depends on the
XSAG.

(2) Once the XML-DPDT has been created, the query evalua-
tion time is in principle independent of the size of the XSAG
or XML-DPDT and only depends on the input data.

Due to the nature of XML-DPDTs, memory consump-
tion is bounded at any time during query evaluation, being
proportional to the depth of the input tree. �

By using a simple hybrid evaluation method, the
exponential-time compilation phase can be avoided: The
grammars (and in particular the regular expressions appear-
ing in the grammar productions) are compiled into trans-
ducers which however interpret attribution functions (rather
than materializing the graphs of the attribution functions as
is done in our proofs). Thus, one obtains an XSAG evalu-
ation method which runs scalably on streams and which is
strictly polynomial in the size of the XSAG. These hybrid
transducers and their construction are presented in more de-
tail in [32].

Theorem 6 A basic XSAG G can be evaluated on a tree T
in time O(|G|2+|T |·|G|) using a stack of size O(depth(T)).

Proof In the XSAG translation (1), the grammar component
of bXSAG G is translated into a transducer T . The step dom-
inating runtime is that of computing the Glushkov automata
from the regular expressions on the right-hand sides of pro-
ductions. This can be done in quadratic time [11], where the
size of the automaton is quadratic in G.

During the evaluation of T (2), attribution functions are
interpreted according to their definition (see Sect. 4.3) dur-
ing transitions of T . As each statement in an attribution
function can be executed in constant time, the evaluation re-
quires time O(|T | · |G|).

As bXSAG productions carry at most two attribution
functions on their right-hand side, the stack discipline of T
can be restricted as follows: Upon reading an XML start tag,
a new set of attributes is computed and stored on the stack.
Upon reading an end tag, the attributes are removed from
the stack, while processing character data leaves the stack
unchanged. Memory consumption is thus linear in the depth
of the TDLL(1) parse tree for the input document. �

The main technical challenge we have to deal with when
evaluating yXSAGs in the hybrid approach is the match-
ing of attributed regular expressions on the stream and the
invocation of attribution functions at the right time. Using
the DFT construction of Theorem 1, preprocessing yXSAGs
takes time cubic in the size of each of the productions.

Theorem 7 An easy XSAG G can be evaluated on a tree T
in time O(|G|3 +|T |·|G|) using a stack of size O(depth(T)·
|G|).
Proof For XSAG translation (1) in the hybrid evaluation of
XSAGs, we translate the grammar component of a yXSAG
G into a transducer T . The exponential-time compilation
phase in the translation of yXSAGs to transducers in the
proof of Corollary 1 can be avoided by pushing attributes
onto the stack at yXSAG regular expression nodes as well.
We use the DFTs from Theorem 1 to derive the transitions
of T . By Theorem 2, this translation can be effected in time
cubic in the size of G.

During XSAG evaluation (2), T outputs a sequence of
identifiers of attribution functions in each transition, again
yielding an overall evaluation time of O(|T | · |G|).

As attributes are also stored on the stack at yXSAG reg-
ular expression nodes, T does not cohere to the stack dis-
cipline required for XML-DPDTs. However, the stack con-
sumption during query evaluation still remains proportional
to the depth of the STDLL(1) parse tree for the input docu-
ment, i.e., in O(depth(T) · |G|). �

7 Discussion and conclusion

The goal of this paper was to develop a framework for query
formulation which

1. satisfies our criteria for scalable query processing on
XML streams,

2. has a good and well-justified foundation, and
3. is user-friendly, i.e., allows us to state many common

queries quickly and easily.

We can argue that XSAGs satisfy these three desiderata.
(1) Each XSAG can be translated into a DPDT with a

stack discipline that assures that the size of the stack remains

340

Attribute grammars for scalable query processing on XML streams

proportional to the depth of the XML tree. This is known
to be the minimum amount of memory required to do any
meaningful (sequential) processing of XML data [21]. Of
course, queries are evaluated strictly in linear time in the
size of the input. A straightforward implementation of the
hybrid XSAG evaluation method [32] confirms these theo-
retical findings.

(2) Throughout the paper, we have explained and justi-
fied our design choices. Regular tree grammars are a com-
monly accepted grammar formalism for XML (as are DTDs,
which are restricted regular tree grammars). In the right-
hand side of the productions of such grammars, we use
regular expressions to be able to parse nodes with an un-
bounded number of children. Our restriction of these reg-
ular expressions to strongly one-unambiguous ones in the
case of yXSAGs allows for precisely those expressions for
which the parse trees of words can be unambiguously gen-
erated using a lookahead of only one symbol (a necessity
in stream processing). Having the regular expressions inside
grammar productions available for attribution allows us to
conveniently define attribute grammars for unranked trees,
and to approach the usability of XML Query with a formal-
ism that allows for much better control of complexity.

We have precisely characterized the expressive power of
XSAGs relative to deterministic pushdown transducers.

Note that our formalism fully fits into the classical
framework of attribute grammars (and more precisely, L-
attributed grammars), even if we did not introduce, say, the
distinction between synthesized and inherited attributes.

(3) A number of examples in this paper and our experi-
ences with many more demonstrate that XSAGs are of prac-
tical value, and that they fill an important void in the design
space of tailored query languages.

For instance, XSAGs can be used to evaluate Boolean
navigational XPath, also known as Core XPath [17], with
child and descendant location steps, and further Boolean
conditions with operators ∨, ∧, and ¬.

Proposition 4 (Folklore) Let Q be a Boolean navigational
XPath query using child and descendant axis and let G be a
DTD. Q can be evaluated on an XML document T ∈ L(G)
in time O((|Q| + |G|)2 + |T | · |Q|) using main memory
bounded by O(depth(T) · |Q|).

To encode queries from this XPath fragment with
bXSAGs, we define Boolean attributes for every location
step in the query. These attributes keep track of whether a
node in the query has already been matched, thus requiring
only memory linear in the size of the query and the depth of
the input document. We then evaluate these bXSAG in the
hybrid approach (see Theorem 6).

Earlier in this paper, we defined XSAGs with attributes
ranging exclusively over a finite domain to be able to as-
sure scalability and memory bounds in the strongest sense.
However, it is desirable and often justified to generalize this
framework to make certain uniformity assumptions and to
allow for values from an infinite domain.

In the future, we plan to carry out a more detailed
study of conservative extensions of our formalism with small
buffers (using uniformity assumptions for numbers, small
strings, and small subtrees). As a first step, we have devel-
oped a rewrite formalism for XQuery which aims at buffer
minimization by exploiting schema knowledge [23].

Acknowledgements S. Scherzinger has been partly funded by the
Austrian Federal Ministry for Education, Science, and Culture, and the
European Social Fund (ESF) under grant 31.963/46-VII/9/2002.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers – Principles, Tech-
niques, and Tools. (Addison-Wesley, 1986)

2. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and
Compiling. I: Parsing, vol. 1 (Prentice-Hall, 1972)

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc.
STOC ’04: 36th Annual ACM Symposium on Theory of Comput-
ing, pp. 202–211 (2004)

4. Benedikt, M., Chan, C.Y., Fan, W., Freire, J., Rastogi, R.: Captur-
ing both types and constraints in data integration. In: Proc. SIG-
MOD 2003, pp. 277–288 (2003)

5. Benedikt, M., Chan, C.Y., Fan, W., Rastogi, R., Zheng, S., Zhou,
A.: DTD-directed publishing with attribute translation grammars.
In: Proc. VLDB 2002, pp. 838–849 (2002)

6. Berlea, A., Seidl, H.: Binary Queries for Document Trees. Nordic
J. of Computing, 11(1), 41–71 (2004)

7. Bohannon, P., Buneman, P., Choi, B., Fan, W.: Incremental eval-
uation of schema-directed XML publishing. In: Proc. SIGMOD
2004, pp. 503–514 (2004)

8. R., Book, S., Even, S., Greibach, Ott, G.: Ambiguity in graphs
and expressions. IEEE Transactions on, Computers, 20(2), 149–
153 (1971)

9. Bray, T., Paoli, J. Sperberg-McQueen, C.M.: Extensible Markup
Language (XML) 1.0. Technical report, W3C, (1998)

10. Brüggemann-Klein, A.: Regular expressions into finite automata.
Theoretical Computer Science. 120(2), 197–213 (1993)

11. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular lan-
guages. Information and Computation. 142(2), 182–206 (1998)

12. Cimprich, P., O.B., et al.: Streaming Transformations for XML
(STX), (2004) Available at http://stx.sourceforge.net

13. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applica-
tions. (2002) Available at http://www.grappa.univ-lille3.fr/tata/.

14. Crescenzi, V., Mecca, G.: Grammars have exceptions. Inf. Syst.,
23(9), 539–565 (1998)

15. Downey, R.G., Fellows, M.R.: Parameterized Complexity
(Springer, 1999)

16. Fegaras, L., Levine, D., Bose, S., Chaluvadi, V.: Query Processing
of streamed XML data. In: Proc. CIKM 2002, pp. 126–133 (2002)

17. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for pro-
cessing XPath queries. In: Proc. VLDB 2002, pp. 95–106 (2002)

18. Green, T.J., Miklau, G., Onizuka, M., Suciu, D.: Processing XML
streams with deterministic automata. In: Proc. ICDT’03, pp. 173–
189 (2003)

19. Grohe, M., Koch, C., Schweikardt, N.: Tight lower bounds for
query processing on streaming and external memory data. In:
Proc. ICALP’05, pp. 1076–1088 (2005)

20. Gupta, A., Suciu, D.; Stream processing of XPath queries with
predicates. In Proc. SIGMOD 2003, pp. 419–430 (2003)

21. Koch, C.: Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree automata-based
approach. In: Proc. VLDB 2003, pp. 249–260 (2003)

341

C. Koch, S. Scherzinger

22. Koch, C.: On the complexity of nonrecursive XQuery and func-
tional query languages on complex values. In: Proc. PODS’05,
pp. 84–97 (2005)

23. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.:
Schema-based scheduling of event processors and buffer mini-
mization for queries on structured data streams. In: Proc. VLDB
2004, pp. 228–239 (2004)

24. Lee, D., Mani, M., Murata, M.: Reasoning about XML schema
languages using formal language theory. Technical Report RJ
10197 Log 95071, IBM Research (2000)

25. Ludäscher, B., Mukhopadhyay, P., Papakonstantinou, Y.: A
transducer-based XML query processor. In: Proc. VLDB 2002, pp.
227–238 (2002)

26. Murata, M., Lee, D., Kawaguchi, M.M.K.: Taxonomy of XML
schema languages using formal language theory. ACM Transac-
tions of Internet Technology, 2005. forthcoming.

27. Neven, F.: Extensions of attribute grammars for structured docu-
ment queries. In: Proc. DBPL 1999, pp. 99–116 (1999)

28. Neven, F., van den Bussche, J.: Expressiveness of structured docu-
ment query languages based on attribute grammars. Journal of the
ACM, 49(1), 56–100 (2002)

29. Olteanu, D., Furche, T., Bry, F.: Evaluating complex queries
against XML streams with polynomial combined complexity. In:
Proc. BNCOD 2004, pp. 31–44 (July 2004)

30. Peng, F., Chawathe, S.S.: XPath queries on streaming data. In:
Proc. SIGMOD 2003, pp. 431–442 (2003)

31. Pitcher, C.: Visibly pushdown expression effects for XML stream
processing. In: Proc. PLANX (2005)

32. Scherzinger, S.: Scalable Query Processing on XML streams.
Diploma thesis, University of Passau, Germany, (2004) Available
online at http://www.infosys.uni-sb.de/∼scherzin/thesis.pdf.

33. van der Steen, G.: A canonical query language and its efficient
implementation. In XML Europe 2000 Conference Proceedings,
pp. 543–548 (2000)

34. World Wide Web Consortium. XML Query (XQuery). http://
www.w3c.org/XML/query/.

342

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

