
XPath LeashedMihael BenediktOxford University Computing Laboratorymihael.benedikt�omlab.ox.a.ukChristoph KohCornell Universitykoh�s.ornell.eduThis survey gives an overview of formal results on the XML query language XPath. We identifyseveral important fragments of XPath, fousing on subsets of XPath 1.0. We then give results onthe expressiveness of XPath and its fragments ompared to other formalisms for querying trees,algorithms and omplexity bounds for evaluation of XPath queries, and stati analysis of XPathqueries.Categories and Subjet Desriptors: H.2.3 [Languages℄: Query languages1. INTRODUCTIONXPath [World Wide Web Consortium 1999a℄ is a language for mathing paths and,more generally, patterns in tree-strutured data and XML douments. These pat-terns may use either just purely the tree struture of an XML doument or datavalues ourring in the doument as well.XPath is used as a omponent in XML query languages (in partiular, XQuery[World Wide Web Consortium 2002℄ and XSLT [World Wide Web Consortium1999b℄), spei�ations (e.g., XML Shema [World Wide Web Consortium 2001℄),update languages (e.g., [Sur et al. 2004℄), subsription systems (e.g., [Altinel andFranklin 2000; Chan et al. 2000℄) and XML aess ontrol (e.g., [Fan et al. 2004℄).Beause XPath is ubiquitous in programming tools for manipulating XML dou-ments, and XPath proessing is a key omponent of these tools, hundreds if notthousands of papers have appeared over the years dealing with the evaluation andanalysis of XPath. Indeed the popularity of XPath as a formalism may be a fatorin the explosive growth of XML, as well as an e�et.The XPath standard has its rough edges, but there is an essential navigationalore that is an elegant modal language. In this ore of XPath there is no expliitnotion of variable, and modal step expressions allow for navigation relative to aontext node and thus an only \see" one element of the doument at a time.An important property of XPath (whih follows from its syntati restritionsthat make it a modal language) is that fragments orrespond to ertain bounded-variable logis. From these logis, XPath inherits nie graph-theoreti propertieson the \dependeny graphs" of its queries. In partiular, the queries have boundedtree-width and bounded hypertree-width. These properties render them amenableto eÆient evaluation [Gottlob et al. 2005℄. XPath is quite unique in the sense that(1) it is a widely used pratial language that naturally obeys syntati restritionsthat lead to bounded (hyper)tree-width and (2) bounded (hyper)tree-width is ofimmediate pratial relevane to eÆient evaluation. (1) is true for modal languagesused in veri�ation, but (2) is not, as the query evaluation tehniques used in theontext of those languages are quite di�erent [Burh et al. 1990; Clarke et al. 2000℄.In this survey, we present the main fundamental results regarding XPath thathave been developed sine its introdution. These results an be grouped into theategories expressiveness , omplexity , and stati analysis of XPath.|We give a detailed aount of the known expressiveness results for XPath, but also
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give a number of new results. In partiular, we review the onnetions betweenXPath and �rst-order logi. The main results are that there are �rst-order queriesnot expressible in navigational XPath, but that navigational XPath expressespreisely the two-variable �rst-order queries over the navigational struture ofXML douments. We show that the navigational XPath fragment extended bythe aggregation features of XPath does express all �rst-order queries. We alsosurvey haraterizations of fragments of XPath in terms of tree-pattern queries,and haraterize XPath in terms of automata.|We present an in-depth study of XPath omplexity and eÆient evaluation thatrevolves around graph-theoreti properties of XPath queries. Large portions ofthe XPath language an be proessed by algorithms that an work in parallel orin streaming fashion. These issues have been studied extensively in the literature,but we present an overview here as well.|We also survey stati analysis problems for XPath, in partiular the satis�abilityand the ontainment problem. These have diverse appliations suh as in theontext of XML query optimization, maintaining integrity, and answering queriesusing views.The struture of this artile is as follows. In Setion 2, we present the datamodel and XPath fragments onsidered in this artile, and give their semantis.Setion 3 studies the expressive power of our XPath fragments, relating them tovarious logis, and the ost (and blow-up) of translating between suh languages.Setion 4 disusses the main results on the omplexity of XPath and of eÆientquery evaluation, addressing eÆient algorithms both in a lassial and a streamproessing framework, as well as lower bounds. Finally, Setion 5 surveys the stateof the art of researh on stati analysis problems for XPath.For the entral results in this survey, proofs are given. In some ases, we giveproofs that are simpli�ations of those in the literature, while in other ases we givenew proofs.2. FRAMEWORKAny fundamental researh study of XPath has to deide what XPath really is { thatis, to distinguish whih language features of many to fous on. XPath oÆially refersto the World Wide Web Consortium's (W3C) standard language. This is a movingtarget, and indeed while virtually all researh on XPath has foussed on the XPath1.0 standard [World Wide Web Consortium 1999a℄, there is an extension, XPath 2.0[World Wide Web Consortium 2007℄, whih has reently reahed Reommendationstatus.Thus the �rst task for a formal study is to isolate a partiular subset of the lan-guage with attrative properties, and to distinguish essential language features fromprovisional design deisions. In this survey we fous exlusively on XPath 1.0, andtake the modal and step primitives that haraterize XPath 1.0 as the de�nitivefeatures of the language. Furthermore, sine XPath 1.0 is still a large language,we onentrate on a sublanguage that exhibits the basi navigation and data ma-nipulation features. The prinipal aspets that we ignore are string-manipulation,type onversions, and onstrution of string values from doument fragments. Forthe most part the operations available at the value level do not a�et our basi re-sults, but we will omment briey on their impat in the appropriate setions. Thelargest language we onsider, denoted OrdXPath, allows for the seletion of nodesbased on navigation within the tree struture, data value omparisons, aggrega-tion, and node position arithmeti. Within OrdXPath, we will delineate a hierarhyof sublanguages of XPath 1.0 to whih more preise expressiveness or omplexitybounds apply. We will refer to these sublanguages as XPath fragments. Of par-tiular interest will be Navigational XPath (NavXPath), whih deals only with the2



underlying tree struture of the doument. All the fragments onsidered in thissurvey are formally introdued in Setion 2.2.The languages of this survey an thus be thought of as subsets of XPath 1.0 ap-turing the more important features of the language. In our de�nition of NavXPath,we make some small super�ial departures from the onrete syntax of XPath 1.0.We do this beause lean syntax in some ases allows for more readable proofs. Wedisuss these deviations from standard syntax in the text.2.1 Data ModelA signature (or voabulary) is a set of relation and funtion names. A relationalsignature is one onsisting only of relation names (i.e., a relational shema). A�-struture is a struture (or database) of signature �. As a onvention, given astruture A, we use A (the name of the struture set in roman font) to denoteits domain and jAj to denote the size of the struture in a reasonable mahine-representation (f. e.g. [Immerman 1999; Libkin 2004℄).Let � be a �nite alphabet of labels. An unranked ordered tree is a tree in whihnodes may have a variable number of hildren, with an order among them. AnXML-tree is a relational struture T of signature�nav = ((LabL)L2�; Rhild; Rnext-sibling);representing an unranked, ordered tree whose nodes are labeled using the symbolsfrom �: eah LabL, for L 2 �, is a unary relation representing the set of nodeslabeled L, Rhild is the binary parent-hild relation among nodes, and Rnext-sibling isthe binary immediate right-sibling relation. That is, Rhild(x; y) means that y is ahild of x and Rnext-sibling(x; y) means that y is the immediate right-sibling of x. Wesay that an XML-tree T of signature �nav represents the navigational struture ofan XML doument.An XML doument is a struture of signature �dom = �nav[f�A1; : : : ;�Ang overa two-sorted domain of nodes and values, where the relations from �nav over nodesare as above and the �A1; : : : ;�An are a �xed �nite set of assoiated attributefuntions, whih map nodes to values. For simpliity we assume the attributefuntions to be total and to take values in the integers. Partial funtions an bemodeled in this way, by (for example) adding a speial \null" value. We useNode(D)to mean the nodes of XML doument D; sine D is usually lear from the ontext,we will generally write simply Node. Similarly, we write NodeSet(D) for the set ofall sets of nodes of doument D, omitting the argument D when it is lear.Navigational Primitives. In XPath, the primitives employed for navigation alongthe tree struture of a doument are alled axes . We will onsider the axes self,hild, parent, desendant, desendant-or-self, anestor, anestor-or-self, next-sibling,following-sibling, previous-sibling, preeding-sibling, following, and �nally preeding.The meaning of axis � is best given by a binary axis relations R�, where Rhildand Rnext-sibling were introdued above, Rself = f(n; n) : n 2 Nodeg, Rdesendant isthe transitive losure of Rhild, Rdesendant-or-self is the reexive and transitive losureof Rhild, Rfollowing-sibling is the transitive losure of Rnext-sibling. By the inverse of abinary relation R, we refer to the relation f(n0; n) : R(n; n0)g. The relations Rparent,Ranestor, Ranestor-or-self , Rpreeding-sibling , and Rprevious-sibling are the inverses of therelations Rhild, Rdesendant, Rdesendant-or-self , Rnext-sibling, Rfollowing-sibling, respetively.Finally, Rfollowing is the omposition Ranestor-or-self Æ Rfollowing-sibling Æ Rdesendant-or-selfwhile Rpreeding is the inverse of Rfollowing . We say that an axis � is the inverse of anaxis � i� R� is the inverse of R� .Orders among Nodes. We onsider two well-known total orders on �nite ordered3



trees. The pre-order <pre and the post-order <post an be de�ned byx <pre y :, Rdesendant(x; y) _Rfollowing(x; y)x <post y :, Rdesendant(y; x) _Rfollowing(x; y):Intuitively, the pre- and postorder orrespond to the order in whih the openingresp. losing tag of eah node of a tree is seen when reading the orrespondingXML doument from left to right. In XML jargon, <pre is also known as doumentorder [World Wide Web Consortium 1999a℄.2.2 XPath Fragments Considered in this SurveyMany results on XPath apply to the fragment that deals only with the navigationalstruture of an XML doument. We will look at two fragments that look only atthe navigational struture.Navigational XPath and Core XPath. We de�ne here a lean language fornavigating the tag struture whih we denote NavXPath. It onsists of expressionswhose input is a node and whose output is either a set of nodes (an element ofNodeSet) or a Boolean. The latter are also referred to as quali�ers or �lters. Wewill generally use p; p0 : : : to vary over general XPath expressions, of any type, whileq; q0 : : : will be used to denote quali�ers. Expressions are built up from the grammarp ::= step j p=p j p [ pstep ::= axis j step[q℄q ::= p j lab() = L j q ^ q j q _ q j :q;where axis stands for the axes named above, L denotes the labels in �, and ^;_;:stand for and (onjuntion), or (disjuntion) and not (negation), respetively.An expression p in NavXPath over a �nav-struture D is interpreted as a funtion[[p℄℄NodeSet from a node to a set of nodes, while a quali�er q is interpreted as a unaryprediate [[q℄℄Boolean : Node ! ftrue; falseg. In both ases, we refer to the inputnode of these funtions as the ontext node. The semanti funtions are de�nedindutively on the struture of p; q. For NodeSet expressions p we have(P1) [[axis℄℄NodeSet(n) := fn0 : Raxis(n; n0)g.(P2) [[step[q℄℄℄NodeSet(n) := fn0 : n0 2 [[step℄℄NodeSet(n) ^ [[q℄℄Boolean(n0) =trueg.(P3) [[p1=p2℄℄NodeSet(n) := fv : 9w 2 [[p1℄℄NodeSet(n) ^ v 2 [[p2℄℄NodeSet(w)g.(P4) [[p1 [ p2℄℄NodeSet(n) := [[p1℄℄NodeSet(n) [ [[p2℄℄NodeSet(n).For quali�ers q we have(Q1) [[lab() = L℄℄Boolean(n) := LabL(n)(Q2) [[p℄℄Boolean(n) := [[p℄℄NodeSet(n) 6= ;(Q3) [[q1 ^ q2℄℄Boolean(n) := [[q1℄℄Boolean(n) ^ [[q2℄℄Boolean(n)(Q4) [[q1 _ q2℄℄Boolean(n) := [[q1℄℄Boolean(n) _ [[q2℄℄Boolean(n)(Q5) [[:q℄℄Boolean(n) := :[[q℄℄Boolean(n)In the above, we have departed from standard XPath syntax in several ways: i)we have a label test as a �lter, while in XPath one has testing a label as part ofa step, ii) union is allowed nested arbitrarily within expressions, while in XPathit is allowed only at top-level, and iii) the set of axes inludes the next-sibling andprevious-sibling axes. As we will see, this gives us a fragment with nier theoretialproperties.CoreXPath is a faithful (i.e., stritly syntatial) fragment of XPath apturingnavigational properties. It is de�ned by making the following hanges to NavXPath:|We eliminate the �lter lab() = L and replae the prodution step ::= axis j step[q℄by step ::= axis::L[q℄ j axis::*[q℄, where L is a label. axis::L[q℄ has the samesemantis as axis[lab() = L℄[q℄ in NavXPath, while axis::*[q℄ is the same as axis[q℄in NavXPath. 4



|We disallow nested union, replaing the �rst prodution by the following two:p0 ::= p [ p j p ; p ::= step j p=p. p0 is now the root nonterminal of the grammar.|We remove the axes next-sibling and previous-sibling.|We add absolute paths, ap ::= "="p, and allow them in �lters, i.e. adding a pro-dution q ::= ap. A �lter q = =p has semantis [[q℄℄Boolean(n) := [[p℄℄Boolean(n0),where n0 is the root of the doument.CoreXPath is thus properly a syntati subset of XPath 1.0.First-Order XPath (FOXPath). We extend CoreXPath above to allow queriesthat an look at the data value struture of an input doument of signature �dom.FOXPath adds path expressions of the formid(p=�A)and quali�ers of the formsi RelOp i p=�A RelOp i p=�A RelOp p0=�Bto the syntax of NavXPath, where p and p0 are path expressions, �A and �B areattributes, RelOp 2 f=;�; <;>;�; 6=g, and i is a nonterminal denoting the onstantintegers.FOXPath operates on �dom-strutures with an attribute funtion �ID. The id(p=�A)expressions model the id() funtion of XPath, and to be fully faithful we ould as-sume that the attribute funtion �ID is injetive.The semanti funtions [[�℄℄NodeSet : Node ! NodeSet and [[�℄℄Boolean : Node !Boolean of NavXPath are extended as follows to handle the additional onstruts:(P5) [[id(p=�A)℄℄NodeSet(n) := fn0 : 9n00 2 [[p℄℄NodeSet(n) �ID(n0) = �A(n00)g,(Q6) [[i RelOp i0℄℄Boolean(n) := [[i℄℄Int(n) RelOp [[i0℄℄Int(n),(Q7) [[p=�A RelOp i℄℄Boolean(n) := 9n0 2 [[p℄℄NodeSet(n) �A(n0) RelOp [[i℄℄Int(n),and(Q8) [[p=�A RelOp p0=�B℄℄Boolean(n) := 9n0 2 [[p℄℄NodeSet(n) 9n00 2 [[p0℄℄NodeSet(n)�A(n0) RelOp B(n00),where [[℄℄Int(n) =  for onstant .Aggregate XPath (AggXPath). Next, we add on expressions to FOXPath thatmanipulate integers and ompute aggregates.The syntax of AggXPath is obtained from FOXPath by extending number-typedexpressions i (from exlusively integer onstants in FOXPath) toi ::= `' j i+ i j i � i j ount(p) j sum(p=�A)where p ranges over path expressions and �A is an attribute funtion. We all \+"and \�" arithmeti operators and \ount" and \sum" aggregate operators .The semanti funtion [[i℄℄Int : Node ! Int for numerial expressions of FOXPathis extended to(I1) [[℄℄Int(n) := (I2) [[i Æ i0℄℄Int(n) := [[i℄℄Int(n) Æ [[i0℄℄Int(n) (Æ 2 f+; �g)(I3) [[ount(p)℄℄Int(n) := j[[p℄℄NodeSet(n)j(I4) [[sum(p=�A)℄℄Int(n) := �f�A(n0)jn0 2 [[p℄℄NodeSet(n)gAggregate XPath with position arithmeti (OrdXPath). Finally, we add thenumerial operations \position()" and \last()" to AggXPath; these are alled posi-tional operators .If we look at the semanti funtions [[�℄℄NodeSet, [[�℄℄Int, and [[�℄℄Boolean of AggXPath,we say that they map from a ontext node (e.g., the root node of the doumenttree) to either a node set, a Boolean, or an integer value. In OrdXPath, quali�ers5



and numerial expressions are de�ned with respet to a more extensive \ontext"onsisting of a node and two additional integers, whih an be aessed by thepositional operators.(1) [[�℄℄NodeSet : Node ! NodeSet is as in AggXPath exept for(P20) [[step[q℄℄℄NodeSet(n) := fnj j [[step℄℄NodeSet(n) = fn1; : : : ; nkg^n1 � n2 � � � � � nk ^ 1 � j � k ^ [[q℄℄Boolean(nj ; j; k)g;where � denotes either the doument order , i.e. the total ordern � n0 , Rdesendant(n; n0) _ Rfollowing(n; n0);if step begins with a forward axis (hild; desendant; following; : : : ) or the inverseof the doument order if step begins with any of the other axes (parent, anestor,preeding-sibling, : : : ).(2) [[�℄℄Boolean : Node � Int� Int! Boolean is de�ned analogously to [[�℄℄Boolean ofAggXPath, however taking a ontext onsisting of a triple (n; j; k) and pass-ing it on to all quali�er and numerial subexpressions (for instane, [[q1 ^q2℄℄Boolean(n; j; k) := [[q1℄℄Boolean(n; j; k) ^ [[q2℄℄Boolean(n; j; k)), and(3) [[�℄℄Int : Node � Int � Int ! Int is de�ned analogously to [[�℄℄Int of AggXPath,however passing on the full ontext triple (n; j; k) to its numerial subexpres-sions (for instane, [[i + i0℄℄Int(n; j; k) := [[i℄℄Int(n; j; k) + [[i0℄℄Int(n; j; k; )). Forthe new operators of OrdXPath, we have:(I5) [[position()℄℄Int(n; j; k) := j(I6) [[last()℄℄Int(n; j; k) := kBy positive FOXPath, denoted PFOXPath, (resp., NavXPath, denoted PNavXPath),we will refer to FOXPath (resp., NavXPath) without negation and inequalities (i.e.,expressions pRelOp p0 with RelOp di�erent from \="). We say that a FOXPathquery (resp., NavXPath query) is onjuntive (and onneted) if it does not usedisjuntion, union, negation, or inequalities.Remark 2.1. The XPath fragments just presented { just like XPath 1.0 { al-low for multiple quali�er brakets as part of a step expression. In all our XPathlanguages exept for OrdXPath, this ability is redundant, sine steps ontainingmultiple quali�er brakets axis[�℄ : : : [�℄ an be simpli�ed to axis[� ^ � � � ^ �℄. Inthe proofs of our survey, we will sometimes assume the simpli�ed syntax withoutmultiple quali�ers for onveniene.In OrdXPath this simpli�ation is not appliable in general, and hene for thisfragment the ability to use multiple quali�ers does add expressiveness.Example 2.2. On a ontext node n with three hildren n1; n2; n3, of whih the�rst is labeled B and the seond and third are labeled A,[[hild[lab() = A℄[position() = 1℄℄℄NodeSet(n) = fn2g;sine n2 is the �rst hild of n in doument order that is labeled A. One an showthat this query annot be phrased with a single quali�er braket in eah step. Forinstane,[[hild[lab() = A ^ position() = 1℄℄℄NodeSet(n) =fnj j 1 � j � 3 ^ [[lab() = A ^ position() = 1℄℄Boolean(nj ; j; 3)g = ;;while[[hild[lab() = A℄=self[position()=1℄℄℄NodeSet(n) =[f[[self[position()=1℄℄℄NodeSet(ni) j ni 2 [[hild[lab() = A℄℄℄NodeSet(n)g =[[self[position()=1℄℄℄NodeSet(n2) [ [[self[position()=1℄℄℄NodeSet(n3) = fn2; n3g:6



2The example above also shows that �lters do not ommute in OrdXPath.2.3 Query EquivaleneBy a query, we mean any expression from one of the XPath fragments introduedabove. Two queries p and p0 with domain Node are fully equivalent (or simplyequivalent when it is lear from the ontext), denoted by p � p0, i� for any XMLdoument D and all nodes n 2 D, [[p℄℄NodeSet(n) = [[p0℄℄NodeSet(n), and similarly forOrdXPath queries with ontext Node � Int� Int.Let true be a shortut for the quali�er (lab() = A) _ :(lab() = A). We saytwo queries are equivalent over �0 (denoted by ��0) where �0 is a �xed �nitelabel alphabet, if the above holds for any doument D whose labels are in �0. Forexample, true is equivalent to lab() = A _ lab() = B over the alphabet fA;Bg, butnot in general. We will usually work with the stronger notion of general equivalene�, and speify when results also hold for restrited equivalene { equivalene w.r.t.some �nite alphabet �0.For queries with domain Node (whih inlude all NavXPath expressions), a weakerequivalene relation is de�ned as follows: p and p0 are alled root equivalent , denotedby p �r p0, i� for any XML doument D, [[p℄℄NodeSet(rt) = [[p0℄℄NodeSet(rt), where rtis the root of D. For NavXPath queries de�ned using upward axes, root equivalenean be weaker than general equivalene: for example self[parent℄ �r self[:true℄,sine the root node has no parent, but learly these two expressions are not fullyequivalent.2.4 Historial and Bibliographi RemarksXPath was initially developed by James Clark and formalized and promulgated asan independent standard by the W3C starting in 1999, as XPath 1.0 [World WideWeb Consortium 1999a℄. The standard de�nes the syntax of the language, alongwith use ases, but gives the semantis only informally. An early attempt to give aformal semantis is found in [Wadler 2000; 1999℄. A omplete and yet very oniseformal semantis of XPath 1.0 an be found in [Gottlob et al. 2002℄.In the proess of the development of XQuery, a signi�ant extension of XPath 1.0was developed, released as XPath 2.0 [World Wide Web Consortium 2007℄. XPath2.0 is the result of the integration of XPath and XQuery into a ommon syntax andsemantis de�nition, and its semantis is presented as part of the XQuery 1.0 FormalSemantis [World Wide Web Consortium 2002℄. XPath 2.0 is a radially di�erentlanguage from XPath 1.0, inluding variables and expliit quanti�ation. From atheoretial perspetive, no polynomial time bounds an be given on basi problemslike XPath 2.0 evaluation (while this is possible for XPath 1.0, see Setion 4).From a pratial point of view the breadth of XPath 2.0 and XQuery would requiredisussion to subsume nearly every aspet of general-purpose program optimizationand analysis.The extensions of XPath 2.0 over XPath 1.0 are mostly by programming languageonstruts that do not preserve the theoretial properties of XPath pointed outin the introdution. The largest language studied in this artile, OrdXPath is asubset of XPath 1.0 (and hene, of XPath 2.0) whih subsumes most of the XPathfragments for whih fundamental results have been presented in the literature.3. EXPRESSIVENESSWe now investigate where XPath \�ts" in terms of other formalisms for queryingtrees and tree-strutured data. One natural benhmark is �rst-order logi (FO), butwe will also onsider Monadi Seond Order logi (MSO), the existential fragmentof FO (9FO), the positive existential fragment of FO (9+FO) and the fragment7



FOk of FO formulas that use at most k distint variables. The semantis of theselanguages is standard [Libkin 2004℄. For a logial language L, we will use L[�℄ todenote the formulas of L over voabulary �. We disuss our hoie of prediatelogis as a benhmark, and mention alternatives, at the end of this setion.3.1 Expressiveness of NavXPath and CoreXPathWe start by investigating how NavXPath and CoreXPath ompare to �rst-order logiover the navigational struture of XML douments, and to eah other. Note thata formula of �rst-order logi with two free variables an be thought of as de�ninga mapping from Node to NodeSet , while a formula with one free variable de�nes amapping from Node to Boolean. We say that a Boolean query q in one of our XPathfragments is fully equivalent to a �rst-order formula �(x) if for any XML doumentD and all nodes n 2 D, [[p℄℄Boolean(n)$ D j= �(n). We say that a nodeset query pin one of our XPath fragments is fully equivalent to a �rst-order formula �(x; y) if forany XML doument D and all nodes m;n 2 D, n 2 [[p℄℄NodeSet(m)$ D j= �(m;n).The semantis of NavXPath presented in Setion 2.2 already gives a translationinto these �rst-order languages.Reall that �transnav is the voabulary extending �nav with Rdesendant andRfollowing-sibling .Then,Proposition 3.1. For every NavXPath expression e one an �nd (in linear time)a orresponding formula � in FO[�transnav ℄ fully equivalent to e. Furthermore,|� 2 FO[(LabL)L2�; Rhild℄ if e uses only hild and parent axes,|� 2 FO[(LabL)L2�; Rdesendant℄ if e uses only upward and downward axes, and|� 2 FO[�nav ℄ if e uses only hild; parent; next-sibling; previous-sibling.CoreXPath an be translated into NavXPath in linear time, just by expanding outthe de�nitions. Hene this proposition holds for CoreXPath as well. Note also thatthis proposition holds both for path expressions returning nodesets (in this ase �has two free variables) and for those returning Boolean expressions (here � has onefree variable).However, this is not an exat haraterization of the expressiveness of NavXPath.It is easy to �nd �rst-order queries over trees that are not expressible in NavXPath:for example, the query that asks whether the tree has two nodes labeled C that arein an anestor relationship, and suh that all nodes between them are labeled B.We now show that NavXPath does have an exat haraterization, orrespondingpreisely to two-variable logi.We �rst work on haraterizing NavXPath nodeset queries. To do this we in-trodue a normal form for queries with two free variables that are built from FO2formulas in one free variable. over voabulary �transnav . XPNF is the set of queriesthat are disjuntions of �transnav formulas (z1; zn) of the form:9z2 : : : 9zn�1 �1(z1) ^ �1(z1; z2) ^ �2(z2) ^ : : : ^ �n�1(zn�1; zn) ^ �n(zn)where the zi here are distint variables, the �i are FO2 formulae, and the �i(zi; zi+1)are disjuntions of binary atomi formulas over prediates from �transnav .Theorem 3.2 [Marx and de Rijke 2004℄. NavXPath orresponds to FO2 inexpressiveness, in the following sense.|For every NavXPath expression returning a Boolean there is a orresponding fullyequivalent expression in FO2 over the signature �transnav, and for every FO2expression there is a orresponding fully equivalent NavXPath expression.|For every NavXPath expression returning a NodeSet, there is a orrespondingexpression in XPNF and vie versa. 8



Proof (Sketh). We �rst show the diretion from NavXPath NodeSet expressionsto XPNF and from NavXPath Boolean expressions to FO2. We will restrit tounnested NavXPath expressions , that is, NavXPath expressions that have union onlyat top-level. These have the same expressiveness as general NavXPath expressions.Sine the target lasses FO2 and XPNF are losed under disjuntion, it suÆes totranslate expressions that have no ourrene of the union operator. So it suÆesto show that all NavXPath NodeSet expressions that do not use the union operatortranslate to XPNF expressions without top-level disjuntion, and every NavXPathBoolean expression that does not use the union operator translates to an FO2expression. We show this pair of statements by simultaneous indution. The basease for lab() = A is simple, as is the ase for Boolean operations in Booleanexpressions (sine FO2 is losed under Boolean operators). The ase step[q℄ an betranslated into XPNF formula �(x; y) ^ �(y), where � is a XPNF formula withouttop-level disjuntion formed indutively for step, and � is an FO2 formula formedfor q. We now do the indutive proof for p = p1=p2. By indution, we assumewe have XPNF formulas (without top-level disjuntion) 1 equivalent to p1 and 2equivalent to p2. If we have1 = 9z2 : : : 9zm�1 �m�1̂i=1 �0i(zi) ^ �i(zi; zi+1)� ^ �0m(zm)and 2 = 9zm : : :9zn�1 � n�1̂i=m �00i (zi) ^ �i(zi; zi+1)� ^ �00n(zn)then we an write 1=2 as9z2 : : : 9zn�1� n�1̂i=1 �i(zi) ^ �i(zi; zi+1)� ^ �n(zn) (1)where �i(zi) is �0i(zi) for i < m, �0i(zi) ^ �00i (zi) for i = m, and �00i (zi) for i > m.The other interesting indutive ase is that of quali�ers of the form p. By indu-tion we have a XPNF formula  representing p. We will assume (z1; zn) to be asshown in equation (1).We need to show that the formula 9zn(z1; zn) is in FO2. Suppose that n isodd (the ase where n is even is similar). Let var(i) = z1 for i odd and z2 for ieven. Let �([x 7! y℄) denote the formula obtained by substituting all ourrenesof variable x by y in �. De�ne  n = �n([zn 7! var(n)℄) and  i�1 = �i�1([zi�1 7!var(i� 1)℄) ^ 9var(i) �i(var(i� 1); var(i)) ^  i. Then  i is an FO2 sentene withvar(i) free. We an verify that  1 is equivalent to 9zn(z1; zn).The onverse diretion is to show by indution that formulas in XPNF an betranslated to NavXPath NodeSet expressions, while FO2 formulas with one free vari-able an be translated to NavXPath Boolean expressions. Sine the �rst statementfollows easily from the seond, we fous on the proof of the seond. The transla-tion funtion T is formed by indution on the struture of an FO2 formula. Theatomi ases are straightforward, as are the Boolean operations. The interestingase is 9y �(x; y), where � is in FO2. Formula � an be assumed to be a Booleanombination of atomi binary formulas and FO2 formulas in one free variable oflower quanti�er rank. Let �0 be a formula equivalent to � obtained by turning� into a Disjuntive Normal Form (DNF) over formulas of the two forms above,and then replaing eah disjunt �(x; y) that does not ontain a binary atom by(�(x; y) ^ x = y) _ (�(x; y) ^ x 6= y). This replaement preserves the DNF.The atomi binary prediates in �0 are either equality, inequality, or axis relations;however, equality x = y an be replaed by self(x; y), and an inequality x 6= y anbe replaed by a disjuntion of four axis relations (y is either and anestor or9



desendant of x or follows or preedes x). Let �00 be obtained by applying thesesubstitutions to �0 and again turning the formula into DNF.Sine two axis prediates are either inonsistent with one another (i.e., the axisrelations have an empty intersetion) or subsume eah other, we an assume �00(x; y)to be of the form _i �i(x) ^R�i(x; y) ^  i(y);that is, eah disjunt ontains preisely one binary atom.We an easily translate �00(x; y) into NavXPath asT (�00) ::=[i self[T (�i)℄=�i[T ( i)℄: 2We note that the argument from NavXPath to FO2 shows that there is a poly-nomial time translation from unnested NavXPath to FO2; for general NavXPathexpressions the best translation we know of is in exponential time. This mappingintrodues atomi prediates in the output orresponding only to axes mentionedin the input; hene NavXPath �lters without the next-sibling or previous-sibling axesmap to FO2 formulas that do not use (atomi relations for) these axes.In the diretion from FO2 to NavXPath, the translation also yields an outputthat is exponential in the input in the worst ase, and this has been shown to beunavoidable. See [Marx and de Rijke 2004℄ for disussion and proof of this; we willgive a further argument that there is no polynomial translation in Setion 5.1 Thisdiretion does introdue new axes. The sibling axes may appear in the output evenwhen the original formula mentions only the hild axis; the XPNF formula x 6= yannot be translated into NavXPath unless the sibling axis is present. Similarly,transitive axes are introdued in the translation.On the other hand, next-sibling and previous-sibling are not introdued in thistranslation unless the orresponding atomi prediates our in the input. Sinenext-sibling and previous-sibling are not introdued in either diretion, we have thatNavXPath �lters without these axes orrespond exatly to FO2 formulas that donot have atomi relations for these axes. Sine CoreXPath expressions are, up tosyntati sugar, exatly those NavXPath expressions that do not inlude the non-transitive sibling axes, we have:Theorem 3.3. CoreXPath orresponds in expressiveness to two-variable logiover the voubulary formed by removing the relation Rnext-sibling from �transnav.From these two results and prior known results about FO2, we obtain:Proposition 3.4. There are queries expressible in NavXPath (and hene in FO2)that are not expressible in CoreXPath.Proof. If we restrit to trees of depth 2, all axes ollapse to sibling axes, andhene CoreXPath orresponds to FO2 with only the transitive sibling axes whileNavXPath orresponds to all sibling axes. Taking the natural orrespondene be-tween trees of depth 2 orrespond and words, CoreXPath maps to FO2 with onlythe linear order relation, while NavXPath orresponds to FO2 with suessor andlinear order. But it is known that a suessor relation of a linear order annot beexpressed in FO2 over the signature whose only binary prediate is for the linearorder (see e.g. Setion 7 of [Th�erien and Wilke 1998℄). 2We now turn to the onsequenes of this haraterization for losure propertiesof NavXPath and CoreXPath. It is lear that NavXPath quali�ers are losed under1Although the argument there is relative to a omplexity-theoreti assumption.10



Boolean operations, sine we have expliit operators for these; it an also be seen tofollow from Theorem 3.2, sine FO2 is obviously Boolean losed. What about thelosure properties of NavXPath expressions? In [Marx 2005℄, the following is shown:Theorem 3.5 [Marx 2005℄. NavXPath and CoreXPath expressions returningnodesets are losed under intersetion and union, but not under omplement.Closure under union is obvious, sine NavXPath has a built-in union operator.Closure under intersetion follows from the fat that the onjuntion of XPNFqueries an be rewritten as a onjuntion of atomi �transnav formulas and a singleFO2 formula. Every onjuntive query on trees an be transformed into an equiva-lent union of ayli onjuntive queries [Benedikt et al. 2003; Gottlob et al. 2004℄(f. Theorem 3.9 below), and unions of ayli onjuntive queries an be easilytranslated into NavXPath. The same argument holds for CoreXPath.The lak of losure under omplementation may seem surprising. In fat, [Marx2005℄ shows a stronger result: any extension of NavXPath losed under omplemen-tation an express all �rst-order properties. The proof is by showing that an \until"operator an be de�ned by omplementing NavXPath expressions. The following ex-ample is taken from page 7 of [Marx 2005℄: Let �(x; y) hold i� y is an A-labeleddesendant of x and every desendant of x that is an anestor of y is labeled B.Then � is expressible in NavXPath extended with a omplement operator (�) as:desendant[lab() = A)℄ \ (desendant[lab() 6= B℄=desendant)Above, we use also the intersetion operator \, but this an easily be de�ned usingomplementation and union.The translation of unnested NavXPath to FO2 an be extended as follows: letNavXPath\ be the extension of NavXPath with the intersetion operator \, and letunnested NavXPath\ be the same but with union allowed only at top-level. ByTheorem 3.5 above, we have NavXPath\ has the same expressiveness as NavXPath(for both expressions and quali�ers). Hene NavXPath\ quali�ers have the sameexpressiveness as FO2 formulas. Using the argument of [Olteanu et al. 2002℄, onean show that even unnested NavXPath\ formulas an be exponentially more su-int than NavXPath formulas. However, unnested NavXPath\ formulas an still betranslated into FO2 eÆiently:Proposition 3.6. There is a polynomial time funtion taking an unnested NavXPath\�lter and produing a FO2 formula �(x) fully equivalent to it.Proof. We extend the dual translations from the proof of Theorem 3.2 to gofrom NavXPath\ NodeSet expressions without union to XPNF queries and fromNavXPath Boolean expressions without union to FO2 queries. We use exatly thesame onstrution of a translation funtion, let us all it f , as for NavXPath, butfor the indutive step for f(E1 \ E2) we translate into f(E1) ^ f(E2). 2We now provide an example of a navigational FO query that we prove not tobe expressible in NavXPath. Our example, a new immediately-following axis, has apratial motivation. Computational linguists have proposed the addition of suh anaxis to XPath to ask pratial queries on linguisti trees [Bird et al. 2005℄. We angive a semantis to this axis using a orresponding binary relationRimmediately-following ,whih holds of (x; y) i�Rfollowing(x; y) ^ :9z (Rfollowing(x; z) ^ Rfollowing(z; y)):In [Bird et al. 2005℄ an extension of XPath with immediately-following is proposed.We show here the following:Proposition 3.7. There is no NavXPath expression E fully equivalent as anodeset query to immediately-following. 11



Proof. Consider douments that inlude a hain of A elements starting from theroot to a leaf, with one of the following holding for eah element x in the hain:(1) x has a single A hild (the next element of the hain), and no other hildren,(2) x has no hildren (i.e. it is the lowest element of the hain),(3) x has a single A hild and a single B hild, or(4) x has a single A hild and a single C hild.It is easy to onstrut a NavXPath quali�erQ0 that holds of the root of a doumenti� the doument is of the above form. Consider the quali�er Q1lab() = A ^ immediately-following[lab() = B℄in NavXPath extended with immediately-following.That is, Q1 holds of an A node i� it has an immediately-following node that is aB. For a node n in a tree whose root satis�es Q0, Q holds at n i� the �rst anestorof n whih has a non-A hild has a B hild. We laim that there is no NavXPathquali�er equivalent to Q1 ^Q0. From this, the proposition follows. From Theorem3.2, it suÆes to show that no two-variable logi formula an express Q1 ^Q0.We will redue expressibility of Q1 ^Q0 over trees to a statement about express-ibility of a ertain property in two-variable logi over strings. Let FO� be the logibuilt up using quanti�ation only over A nodes, where the voabulary inludes thebinary prediates Rdesendant and Rhild and unary prediates P1; P2; P3; P4, wherePi holds of x i� ase i holds above.Claim 3.8. For every FO[�transnav ℄ sentene �(x) there is an FO� sentene��(x) with the same number of variables as � whih is equivalent to � over allA-nodes within all douments whose root satis�es Q0.Informally, �� is obtained indutively by replaing variables over B;C nodes byvariables over their A parents. A sentene � = 9x B(x) would map to �� = 9x 2A P3(x). Formally, we proeed as follows. Let SeChild(D; x) be the partial funtionon nodes of D that maps a node labeled A to its seond hild, if suh a hild exists,and Self(D; x) be the identity funtion on nodes labeled A. We reate a funtionT (�; b) for � 2 FO[�transnav ℄, b a funtion from the free variables of � to eitherSeChild or Self, returning a formula �0 2 FO� with the same free variables as �,and suh that: for all douments D, T (�(x; y); b) holds of A nodes m;n i� �(x; y)holds when applied to b(D;m); b(D;n), and similarly for �(x); �(y).The main atomi ases for T are:|T (Rnext-sibling(x; y); b) is (P3(y) _ P4(y)) ^ Rhild(y; x) if b(x) = Self and b(y) =SeChild, and is false otherwise.|T (Rhild(x; y); b) is Rhild(x; y) if b(x) = Self and b(y) = Self, is (P3(x) _ P4(x)) ^x = y if b(x) = Self and b(y) = SeChild, and is false otherwise.|T (Rdesendant(x; y); b) is Rdesendant(x; y) if b(x) = Self and b(y) = Self, is P3(y) _P4(y) if b(x) = Self and b(y) = SeChild, and is false otherwise.|T (B(x); b) is P3(x) if b(x) = SeChild, and is false otherwise.|T (C(x); b) is P4(x) if b(x) = SeChild and is false otherwise.|T (A(x); b) is true if b(x) = Self, and is false otherwise.The other atomi ases are similar. The indutive ases are:|T (9x�(x; y); b) = Wb0:b0jfyg=b 9x 2 A T (�(x; y); b0)|T (8x�(x; y); b) = Vb0:b0jfyg=b 9x 2 A T (�(x; y); b0)|T (�1 ^ �2; b) = T (�1; b) ^ T (�2; b)|T (�1 _ �2; b) = T (�1; b) _ T (�2; b) 12



|T (:�; b) = :T (�; b)Finally, for a sentene we let ��(x) be Wb T (�(x); b), where in the disjuntion branges over all the bindings for x. One an verify indutively that T , and hene ��has the required properties.From this onstrution, we see that if �(x) 2 NavXPath expresses Q0 ^Q1, then��(x) must hold of an A-node n i� the �rst anestor of n whih satis�es P3 _ P4satis�es P3. Let S0 be the set of strings from alphabet � = fP1; P2; P3; P4g, endingwith the symbol P1. There is an obvious bijetion F from douments whose rootsatis�es Q0 to strings in S0. Using this funtion, we an see that ��(x), onsideredas a prediate on strings in S0, holds at node n i� the �rst anestor of n whihsatis�es P3 _ P4 satis�es P3. But then by ipping the variables in every prediateRdesendant or Rhild in �� we obtain a two-variable formula ��(x) that holds atnode n of string s i� the �rst desendant of n satisfying P3 _ P4 satis�es P3. Fromthis we easily get a ontradition of prior results about the inexpressibility of theUntil operator in two variable logi (for strings, those of [Etessami and Wilke 2000;Etessami et al. 2002℄, or for trees those of [Marx 2004b℄). Consider the query Q thatholds of a string s i� s has a substring that ontains two nodes satisfying P3 butnone satisfying P4. If ��(x) were expressible in two-variable logi, then Q wouldbe expressible over strings in two-variable logi over the voabulary onsisting ofthe labels, the desendant prediates, and the hild prediate. But in [Etessamiand Wilke 2000℄ it is shown that Q (denoted there by FAIR2) is not expressible inUnary Temporal Logi, and by [Etessami et al. 2002℄ Unary Temporal Logi is thesame as two-variable logi over strings. Hene Q is not expressible in two-variablelogi, and we have a ontradition. 2Note that the problem of deiding whether a given FO sentene over trees is inNavXPath (i.e. is a two-variable sentene in �transnav) is still open, as is the mem-bership problem for CoreXPath. The analogous problem for strings (membership inFO2) is known to be deidable [Beauquier and Pin 1989℄.3.2 Expressiveness of Fragments of NavXPathNavXPath is still a large language, and many appliations make use only of thepositive fragment.Following [Benedikt et al. 2003℄, we haraterize NavXPath both using logi anda visual query formalism, tree patterns.A tree pattern (over label alphabet �) is a node and edge-labeled tree. Edges arelabeled with a forward axis (hild, desendant, following-sibling). In a Boolean treepattern node labels have one omponent that is either a label from � or wildardand another omponent that identi�es whether a node is the distinguished ontextnode or not. In a unary tree pattern the additional omponent identi�es a nodeas either the ontext node, the seleted node, or neither. Figure 1 shows a unarytree pattern. Following the standard onvention for drawing patterns, double linesare used for a desendant edge and single lines for a hild edge. A star is usedto denote the seleted node, and the ontext node is impliitly the root node. ABoolean pattern orresponds to a Boolean query, returning true at ontext noden in a doument i� there is a homomorphism from the pattern to the doumentmapping the ontext to n. A unary tree pattern orresponds to a NodeSet query,whih returns node n0 on input n i� there is a homomorphism from the pattern tothe doument whih maps a node labeled ontext to n and the seleted node to n0.The pattern in the �gure is equivalent to the XPath expressionself::A[hild::B℄[desendant::D℄=hild::CA �nite set of tree patterns an be onsidered as a query, returning the unionof the results of the individual patterns in the ase of unary tree patterns, and13
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DFig. 1. Tree patternreturning the disjuntion of the results in the ase of Boolean tree patterns.Theorem 3.9. The following have equal expressiveness (up to full equivalene)|PNavXPath NodeSet queries,|9+FO formulas �(x; y) in the signature �transnav, and|sets of unary tree patterns.A similar result holds for negation-free CoreXPath, but where the formulas do notinlude Rnext-sibling . Note that this result is inomparable to Theorem 3.2. Theorem3.2 applies to arbitrary NavXPath, and says that they are fully equivalent to aylionjuntive queries over atoms that inlude arbitrary FO2 formulas, possibly withnegation. This result applies only to PNavXPath queries, but states that that theyan be written as onjuntions of only atomi formulas, where the the onjuntionmust onstrain the variables to be \tree-like".We give a sketh of why the above holds: further details (for the ase wherethere are only upward or downward axes, but no sideways axes suh as following orfollowing-sibling) an be found in [Benedikt et al. 2003℄; the general ase is proved in[Gottlob et al. 2004℄. For every PNavXPath NodeSet query, and unary tree patterns,the orresponding equivalent 9+FO formula an be found in linear time, simply bytranslating the semantis of PNavXPath or of tree patterns into logi. Translatingfrom unary tree pattern queries to PNavXPath queries is likewise straightforward:path steps are used to traverse the path from the ontext node upward to theleast ommon anestor of the ontext and seleted node, then downwards from thisanestor to the seleted node. The existene of subtrees sprouting o� from this pathis asserted using �lters. Translation of 9+FO formulas into tree patterns is done by�rst translating them into ayli positive queries, whih immediately orrespondto forests of tree patterns:Lemma 3.10 [Olteanu et al. 2002; Benedikt et al. 2003; Gottlob et al. 2004℄.For every onjuntive query over trees there is an equivalent ayli positive query.This query an be omputed in exponential time.Proof. For notational simpliity, we will assume that the input query 9x1 � � �xk Q(k � 0), with Q a onjuntion of atomi formulas that uses variables x1; : : : ; xk,is Boolean. The proof, however, immediately generalizes to onjuntive queries ofarbitrary arity. W.l.o.g., we assume that Q ontains no Rfollowing-atoms. (Eah atomRfollowing(x;w) an be rewritten using R�hild and R+next-sibling atoms as R�hild(x; y) ^R+next-sibling(y; z) ^ R�hild(z; w), where y and z are new variables.)Consider the onjuntive normal form formula� := ^1�i<j�k(xi = xj _ xi <pre xj _ xj <pre xi):14



R n S Rhild R+hild Rnext-sibling R+next-siblingRhild unsat unsat sat satR+hild sat sat sat satRnext-sibling unsat unsat unsat unsatR+next-sibling unsat unsat sat satTable I. Satis�ability of R(x; z) ^ S(y; z) ^ x <pre y for pairs of axes R; S.Let 	 be the set onsisting of the 3(k2) disjunts of the disjuntive normal form of�. For  2 	 let Q be the onjuntion of atomi formulas obtained from Q ^  by the following steps, in the indiated order.(1) We remove all ourrenes of equality atoms x = y in arbitrary order andreplae, for eah suh atom, all ourrenes of y by x.(2) For R 2 fRhild; Rnext-siblingg, we remove all atoms R�(x; x) from Q and replaeall ourrenes of R�(x; y) (where x and y are di�erent variables) by R+(x; y).The latter is an equivalent rewriting sine Q ontains either atom x <pre yor y <pre x, thus x and y must map to di�erent nodes.(3) ForR 2 fRhild; Rnext-siblingg, ifQ ontains atomsR(x; y), R+(x; y) then R+(x; y)is removed from Q .Observe that the binary atoms orQ use only Rhild, R+hild, Rnext-sibling, R+next-sibling ,and <pre as prediates. We an verify that 9~x Q is true if and only if 9~x Q ^  .Let Q = f9~x Q j  2 	g. ThenQ � 9~x Q ^ � � _f9~x Q ^  j  2 	g � _Q:In the following, we will all the binary relation E withxEy :, there is an atomi formula R(x; y) in Q (with R a binary prediate { either an axis or <pre) the graph of Q . Note that Eis either yli or de�nes a total order on the variables in Q beause there is anedge between any two variables of Q .Now, for eah Q of Q, we repeat the following steps until we terminate:|If the graph of Q is yli, Q is unsatis�able and is removed from Q. Termi-nation. Otherwise, the graph of Q is ayli and thus onstitutes a total orderof the variables in Q .|IfQ ontains atomsR(x; y); S(x; y) whereR 2 fRhild, R+hildg and S 2 fRnext-sibling ,R+next-siblingg, Q is unsatis�able and is removed from Q. Termination.|If there are no two atoms R(x; z); S(y; z) in Q with x and y distint variablesand R;S di�erent from <pre then Q is ayli. Termination.|We hoose the pairs of atoms R(x; z); S(y; z) (x and y distint variables andR;S di�erent from <pre) suh that z is maximal with respet to the total ordergiven by the graph of Q . From among these, we hoose a pair suh that x isminimal with respet to the total order. By our hoie, x <pre y is in Q . IfR(x; z) ^ S(y; z)^ x <pre y is unsatis�able (the unsatis�able ases an be foundin Table I), remove Q from Q and terminate. Otherwise, replae atom R(x; z)by R(x; y).The above algorithm terminates beause there are no more than �k2� non-<pre-atoms and whenever we replae an atom R(x; z) by an atom R(x; y), y is smallerthan z with respet to the total order. One we have proessed a pair of atomsR(x; z), S(y; z), we never have to proess pairs of atoms R0(x; z), S0(y0; z) for thesame x and z again. Thus proessing a single Q takes polynomial time and theomplete rewriting of Q takes exponential time.15



It an be veri�ed that replaingR(x; z) in the satis�able ases of R(x; z)^S(y; z)^x <pre y by R(x; y) is an equivalent rewriting:|R = R+hild, S 2 fRhild; R+hildg: if x and y are anestors of z, then x <pre yimplies that x is an anestor of y.|R = R+next-sibling , S 2 fRnext-sibling, R+next-siblingg: analogous.|R 2 fRhild; R+hildg, S 2 fRnext-sibling, R+next-siblingg: Sine x is a parent/anestor ofz and y is a left sibling of z, x is also a parent/anestor of y.Eah onjuntive query Q in the set Q obtained as desribed above is ayliif all the <pre-atoms are removed. Doing just that is an equivalent rewriting: LetQ0 be the onjuntion of atoms of Q exluding the <pre-atoms of Q . Then9~x Q � 9~x Q0 � 9~x Q; thus, 9~x Q � WQ � Wf9~x Q0 j Q 2 Qg � 9~x Q. 2The translations from PNavXPath into FO2 and from tree pattern queries intoboth PNavXPath and (hene) FO2 are linear, but every other translation in theabove theorem is exponential in the worst ase; from 9+FO to PNavXPath andfrom 9+FO to tree patterns, this is shown in [Gottlob et al. 2004℄. For the trans-lation from PNavXPath to tree patterns, note that PNavXPath an enode a Con-juntive Normal Form of a propositional formula (e.g. proposition pi enoded by[Rhild=[lab() = Ai℄). A set of tree patterns would orrespond to a Disjuntive Nor-mal Form representation of the same formula. Sine it is known that there is anexponential blow-up in going from CNF to DNF, the exponential blow-up of thistranslation follows.A similar argument gives:Theorem 3.11. The following have equal expressiveness (up to full equivalene)|Boolean PNavXPath queries,|9+FO formulas �(x) in the signature �transnav,|9+FO formulas �(x) in the signature �transnav with at most two variables, and|sets of Boolean tree patterns.It is easy to show that 9+FO[�transnav ℄ is losed under intersetion and union,but not omplement. From this and the theorem above, one has:Corollary 3.12. Boolean PNavXPath queries are losed under intersetion andunion, but not under omplementation.Another onsequene of the above is:Corollary 3.13 [Olteanu et al. 2002℄. For every PNavXPath query p, thereis a query p0 that ontains none of the axes preeding-sibling, previous-sibling, andis equivalent to p. In addition there is a query p0 ontaining none of the \bakwardaxes" (parent, anestor, anestor-or-self, preeding-sibling, previous-sibling) suh thatp �r p0.To see this, onsider the translation of a tree pattern into PNavXPath. Thistranslation an be done in suh a way as to never introdue preeding-sibling orprevious-sibling. The upward axes parent and anestor are introdued only when theontext node in the pattern is not the root. But under root equivalene, a treepattern an always be taken to have the ontext node to the root (sine otherwisethe pattern is root equivalent to true).[Olteanu et al. 2002℄ gives a rewrite system that removes the bakward axes(parent, anestor, anestor-or-self, preeding-sibling), assuming root equivalene.It is known that upward axes and bakward axes annot be removed in thepresene of negation or data values: for negation, one an onsider the query p =desendant[lab() = B ^ :anestor[lab() = A℄℄. One an show by an analysis of16



NavXPath queries without upward axes that this annot be expressed without theuse of anestor.3.3 Expressiveness of FOXPathMuh less is known about the expressiveness of FOXPath and AggXPath than forNavXPath. It is easy to see that FOXPath expressions an be translated into �rst-order logi over the signature�+val = �nav [ fRelOp�Ai;�Aj j i; j 2 f1; : : : ; ng;RelOp 2 f=; 6=; <;�; >;�gg[ fRdesendant; Rfollowing-siblingg;where RelOp�Ai;�Aj (x; y) holds of nodes x and y i� x:Ai RelOp y:Aj . An importantobservation is the following, analogous to one diretion of Theorem 3.2:Proposition 3.14. Every FOXPath expression p an be translated (in lineartime) to a fully equivalent formula �p over voabulary �+val suh that �p uses atmost three variables. In ase p is a Boolean expression, p will have one free vari-able, and in ase p is a NodeSet expression it will have two free variables.Proof. The translation is indutive; the only new ase over NavXPath is the ase ofa quali�er F = E RelOp E0. Letting �E(x; y); �E0(x; y) be the translations formedindutively from E;E0 respetively. Then we an set�F = 9y 9y0 �E(x; y) ^ �E0(x; y0) ^ RelOp(y; y0);and note that �F has at most 3 variables. 2However, it is lear that the onverse does not hold: there are �rst-order logiformulas using only three variables that have no equivalent in FOXPath. This isbeause FOXPath gives no added expressiveness on the navigational struture ofa doument. Formally, we say that a Boolean query Q over XML douments isnavigational if Q annot distinguish two douments that are isomorphi as unrankedordered trees (that is, the two douments have isomorphi interpretations for �nav).Then we haveProposition 3.15. Any navigational Boolean query expressible in FOXPath isexpressible in NavXPath, and hene is expressible in FO2. In partiular (by [Etes-sami et al. 2002℄), there are FO[�nav ; Rdesendant℄ queries not expressible in FOXPath.Proof Sketh. We say that a set of XML douments R is a representative familyi� for eah XML-tree t there is an XML doument d suh that d is an expansion oft and d 2 R (i.e. the redut-map is surjetive).Let � be an arbitrary FOXPath query that is navigational.Perform the following rewriting of �. Replae eah atomi �lter of form �=�a =�0=�b or �=�a � �0=�b by � ^ �0 and eah atomi �lter of form �=�a 6= �0=�b or�=�a < �0=�b by false. Call the NavXPath query obtained by this rewriting �0. Itis easy to observe that for any labeled tree t, it is true for the expansion to the XMLdoument d obtained by mapping eah node to the same value, say val : x 7! 1for all x, that �(t) � �0(d). Thus the set of these expansions is a representativefamily, and for all navigational queries � and all d from that representative family,�(d) � �0(d). The theorem then follows from the followingClaim 3.16. If � and �0 are navigational queries and �(d) � �0(d) for all XMLdouments d in a representative family, then �(d0) � �0(d0) on all XML doumentsd0.Proof of laim: Assume that there exists a representative family R suh that�(d) � �0(d) for all d 2 R. Given an arbitrary XML douments d, we take itsredut d0 to �nav . Of ourse there exists an expansion dR 2 R of d0. By assumption,17



FOXPath

NavXPath=

NavXPathÅ=FO2( transnav )

CoreXPath=FO2( transnav-NextSib)

AggXP

FO3( +
val )

FO( transnav )

=FO3( transnav)

Fig. 2. Expressive power of XPath Language fragments versus �rst-order languages.�(dR) � �0(dR). If � and �0 are navigational, �(dR) � �(d) and �0(dR) � �0(d).Thus �(d) = �0(d).In the ase of AggXPath, in ontrast, it is known that all navigational �rst-orderqueries are expressible:Proposition 3.17. Any FO[�transnav ℄ boolean query is expressible in AggXPath.In partiular, the axis immediately-following is expressible in AggXPath.Proof Sketh. We use a result of [Marx 2004a℄, whih states that it is suÆient toshow losure under the following variant of the modal until operators. For an axis� 2 fhild; parent; next-sibling; previous-siblingg, we write �+ for the orrespondingtransitive axis (hild+ = desendant , et.) and �� for the union of �+ with the selfaxis (hild+ = desendant-or-self, et.). For axis � 2 fhild; parent; next-sibling; previous-siblinggand queries Q1(x); Q2(x), the query Until�(Q2; Q1)(x) (\propertyQ1 until propertyQ2") holds at a node n i� there is n0 suh that R�+(n; n0) holds, Q2(n0) holds, andfor all n00 suh that R�+(n; n00) and R�+(n00; n0) we have Q1(n00). Marx has shown(ombination of Theorems 6 and 7 of [Marx 2004a℄) that any language ontainingunary label tests and losed under boolean operations and the until operators abovean express any �rst-order formula in one free variable. Sine AggXPath is losedunder boolean operations, it is thus suÆient to show losure under until. But if E1and E2 are AggXPath expressions returning Booleans, then Until�(E2; E1) an beexpressed as �+::� [E2℄^:�ount(�+::� [:E1℄=�+::� [E2℄) = ount(�+::� [E2℄)�. 2A summary of our expressiveness results is shown in Figure 2.3.4 Further Bibliographi RemarksIn this setion, we have disussed exat haraterizations of sublanguages of XPathvia logi and tree patterns. We have foused on the relationship between NavXPathand logis, beause this is where the leanest haraterization an be shown. How-ever, the relationship between XPath 1.0 and logis with few variables extendsto logis that manipulate data, as shown in our results on FOXPath above. Thisrelationship will play a role in the omplexity results of the next setion. The re-lationship between PNavXPath queries and ayli �rst-order queries is exploredfurther in [Gottlob et al. 2004℄.There are other formalisms in whih NavXPath and CoreXPath an be embeddedas a strit subset, and we review them below.[Neven and Shwentik 2002℄ deals with query automata, an automata modelthat de�nes NodeSet queries. Query automata have the expressiveness of Monadi18



Seond Order Logi, hene they are stritly more powerful than NavXPath. [Friket al. 2003; Koh 2003℄ deal with a variant of non-deterministi tree automata thatan de�ne unary rather than Boolean queries. [Carme et al. 2004℄ de�ne querieson unranked trees via automata that work on binary enodings. As with queryautomata, both these formalisms stritly subsume NavXPath in expressiveness. Onestarting point in looking for an automata haraterization of XPath is [Shwentiket al. 2001℄, whih gives a haraterization of two-variable logi over strings in termsof partially-ordered two-way deterministi automata. We do not know of a similarharaterization for two-variable logi on trees. A omprehensive survey of therelationship of XML queries to automata is given in [Shwentik 2007℄.As mentioned in the introdution, there is a natural onnetion between navi-gational XPath and modal logis, whih was �rst observed in [Miklau and Suiu2002℄ and [Gottlob and Koh 2002℄ and subsequently revisited in several works(e.g. [Marx 2004b; 2004a; Afanasiev et al. 2004℄). The losest relation is to lineartemporal logi (LTL) and Propositional Dynami Logi (PDL). LTL formulas giveproperties of nodes within a string. They are built up from formulas heking thelabel of a node via boolean operators and the operators \at the next plae �" \even-tually �" and \� until  ". The restrition of LTL obtained by removing the untiloperator is alled Unary Temporal Logi. NavXPath quali�ers an be onsideredas an extension of Unary Temporal Logi from strings to trees. In partiular, theexpressiveness of NavXPath quali�ers over strings is exatly that of Unary TemporalLogi. Branhing time temporal logis, suh as CTL�, generalize LTL from stringsto graphs, rather than to trees. The tehniques for proving expressiveness resultsfor NavXPath quali�ers borrow heavily from the prior work on LTL and CTL�expressiveness.PDL formulas give formulas mapping nodes to nodesets within an edge-labeledgraph. They are built up from operators that an move forward on any labeled edge.XPath nodeset expressions an be onsidered, roughly as PDL formulas where theedge-labeled graph is obtained from an ordered tree. Many of the stati analysisresults (see, for example, Theorem 5.8) follow from modifying prior results for PDL.We do not pursue the relationship with either automata or modal logis in detailbeause the expressiveness of XPath does not exatly math either PDL or LTL. Anapproah to �lling this gap would be to de�ne natural extensions of either temporallogi or PDL to deal with trees. For temporal logis, see [Barelo and Libkin 2005℄for an extended disussion of this approah, while for PDL see [Afanasiev et al.2005℄.A natural question is what should be added to NavXPath to apture all of �rst-order logi. It is known that �rst-order logi with 3 variables aptures FO (estab-lished in [Marx 2004a℄ for ordered unranked trees). Marx [Marx 2004a℄ proposestwo extensions of NavXPath to apture FO3, and thus be �rst-order omplete. Oneis by adding a path omplementation feature to NavXPath and the other is by in-troduing onditional axes in the spirit of the until operator of CTL. These resultsan be seen as extensions of Kamp's Theorem [Kamp 1968℄, whih states that lineartemporal logi (with \until") aptures �rst-order logi over in�nite words, to thesetting of unranked trees.4. COMPLEXITY AND EFFICIENT EVALUATIONThis setion studies the omplexity of XPath queries. XPath is a variable-freequery language in whih many queries { in partiular, all NavXPath queries { aretree-shaped in a natural sense when onverted into �rst-order logi. At the sametime the navigational struture of XML douments is tree-shaped. We �rst look atsome of the lassial results about tree-like queries and queries on tree-like stru-tures. Then we explore the onnetions between the powerful notion of hypertree-width and XPath and show the new result that onjuntive FOXPath queries have19



hypertree-width 2. After that, we generalize from XPath evaluation based on hy-pertree deompositions and illustrate the dynami programming tehnique that hasyielded a polynomial time algorithm for full XPath 1.0. Then we survey the par-allel omplexity of XPath and give a new simpli�ed proof that XPath is hard forpolynomial time. Finally, we study XPath proessing on data streams and give anoverview over further work on eÆient XPath proessing.4.1 Complexity BakgroundThroughout this setion, we will onsider logis and query languages as problemlasses and will simply identify the languages with their evaluation problems. Twokinds of omplexity of query evaluation will be onsidered, data omplexity (wherequeries are assumed to be �xed and data variable) and ombined omplexity (whereboth data and query are onsidered variable) [Vardi 1982℄.We briey disuss the omplexity lasses and some of their haraterizations usedthroughout the remainder of this survey. For more thorough surveys of omplexitylasses and the related theory see [Johnson 1990; Papadimitriou 1994; Greenlawet al. 1995℄.By PTime, ExpTime, NExpTime, LogSpae, NLogSpae, and PSpae wedenote the well-known omplexity lasses of problems solvable on Turing mahinesin deterministi polynomial time, deterministi exponential time, nondeterminis-ti exponential time, deterministi logarithmi spae, nondeterministi logarithmispae, and (deterministi) polynomial spae, respetively. By NP, we denote thedeision problems solvable in nondeterministi polynomial time and o-NP denotesthe lass of their omplements.It is a widely-held onjeture that problems omplete for PTime are inherentlysequential and annot pro�t from parallel omputation (f. e.g. [Greenlaw et al.1995℄). Instead, a problem is alled highly parallelizable if it an be solved withinthe omplexity lass NC of all problems solvable in polylogarithmi time on apolynomial number of proessors working in parallel [Greenlaw et al. 1995℄.A simple model of parallel omputation is that of Boolean iruits. By a monotoneiruit, we denote a iruit in whih only the input gates may possibly be negated.All other gates are either ^-gates or _-gates (but no :-gates). A family of iruitsis a sequene G0;G1;G2; : : : , where the n-th iruit Gn has n inputs. Suh a familyis alled LogSpae-uniform if there exists a LogSpae-bounded deterministiTuring mahine whih, on the input of n bits 1 (the string 1n), outputs the iruitGn. A family of iruits has bounded fan-in if all of the gates in these iruitshave fan-in bounded by some onstant. On the other hand, a family of monotoneiruits is alled semi-unbounded if all ^-gates are of bounded fan-in (without loss ofgenerality, we may restrit the fan-in to two) but the _-gates may have unboundedfan-in.NCi denotes the lass of languages reognizable using LogSpae-uniform Booleaniruit families of polynomial size and depth O(logi n) (in terms of the size n of theinput). SAC1 is the lass of languages reognizable by LogSpae-uniform familiesof semi-unbounded iruits of depth O(log n) (SAC1 iruits).A nondeterministi auxiliary pushdown automaton (NAuxPDA) is a nondeter-ministi Turing mahine with a distinguished input tape, a worktape, and a stak(of whih stritly only the topmost element an be aessed at any time).LogCFL is usually de�ned as the omplexity lass onsisting of all problemsLogSpae-reduible to a ontext-free language. There are two important alterna-tive haraterizations of LogCFL that we are going to use. They are realled inProposition 4.1 and 4.2, respetively.Proposition 4.1 [Venkateswaran 1991℄. LogCFL = SAC1. SAC1 CiruitValue is LogCFL-omplete. 20



Proposition 4.2 [Sudborough 1977℄. LogCFL is the lass of all deisionproblems solvable by a NAuxPDA with a logarithmi spae-bounded worktape inpolynomial time.We have LogSpae � NLogSpae � LogCFL � NC2 � NC � PTime � NP� PSpae � ExpTime � NExpTime. All inlusions � are suspeted to be strit,and all these omplexity lasses are losed under LogSpae-redutions.Unless stated otherwise, we assume the input represented as a �dom-strutureenoded in the usual way.4.2 Tree-like Data and Tree-like QueriesAs a warm-up, we use the well-studied graph-theoretial notion of tree-width toderive a few results about the omplexity of XPath that follow immediately fromthe literature.Let G = (V G; EG) be a graph. A tree deomposition of G is a pair (T; �) suh thatT is a rooted tree with nodes V T , � is a funtion � : V T ! 2V G that maps eah nodeof tree T to a subset of V G, for eah edge (u; v) 2 EG there exists a node w 2 V Tsuh that u; v 2 �(w), and for eah node u 2 V G, the set fv 2 V T j u 2 �(v)gindues a onneted subtree of T . The width of tree deomposition (T; �) is de�nedas �maxfj�(v)j j v 2 V T g�� 1. The tree-width of a graph G is the smallest widthover all tree deompositions of G. Intuitively, graphs of low tree-width are verytree-like. As a speial ase, the onneted graphs of tree-width one are preisely thetrees. An example of a graph and a tree deomposition (of width 2) for it is givenin Figures 3 (a) and (b), respetively.We say that a struture onsisting only of unary and binary relations has tree-width k if the union of (the symmetri losure of) its binary relations has tree-widthk. We do not give a formal de�nition of the general ase of queries of bounded tree-width here; however, for onjuntive queries Q over a voabulary of at most binaryrelation symbols, the tree-width of Q is de�ned as the tree-width of the graphG = (V;E) where V onsists of the variables of Q and (x; y); (y; x) 2 E if there isan atom a(x; y) in Q.x1: Tree-like data lead to linear-time data omplexity. The Boolean MSO querieson trees labeled with a �nite alphabet (e.g. �nav-trees) de�ne preisely the regu-lar tree languages , whih orrespond to the deterministi bottom-up tree automata[Thather and Wright 1968; Doner 1970; Br�uggemann-Klein et al. 2001℄. EahBoolean MSO query an be mapped to suh an automaton, whose aeptane ofa given input tree an be heked in linear time in the size of the tree (traversingit one bottom-up). Thus, Boolean MSO queries on trees have linear-time dataomplexity. A slightly more general version of this fat for bounded tree-widthstrutures is known as Courelle's Theorem [Courelle 1990℄, whih an be furthergeneralized toTheorem 4.3 [Flum et al. 2002℄. Let C be a lass of strutures of boundedtree-width. For a �xed MSO formula �, there is an algorithm that evaluates � oneah struture A 2 C in time O(jAj + j�(A)j).That is, this algorithm runs in time linear in the size of the input and the output,and in partiular in linear time in the size of the input on MSO formulas with atmost one free variable.It an be veri�ed that unranked ordered trees represented by �nav-strutures, thatis, the union of their binary relations Rhild and Rnext-sibling , have tree-width two22Note, however, that in the ontext of MSO, it is more wide-spread [Neven 2002; Gottlob and Koh2004℄ to use a signature �0nav obtained from �nav by replaing Rhild by a relation FirstChild suhthat FirstChild(x; y) i� y is the leftmost hild of x. Then, MSO on �nav and �0nav are equivalentand all �0nav-strutures have tree-width 1. 21



v1v2v3 v4 v5v6v7 v8 v9 v10 v11v12 v13v14 v15(a)v1; v2; v5v2; v3; v4 v1; v5; v11v5; v6; v9v6; v7; v8 v5; v9; v10 v1; v11; v13v11; v12 v13; v14; v15(b)Fig. 3. A �nav-tree is a graph of tree-width two.(see Figure 3, where eah node v is labeled with �(v)). Transitive axis relationssuh as Rdesendant or Rfollowing-sibling (f. Setion 2.1) do not have bounded tree-widthin general, but it is not diÆult to map NavXPath queries with transitive axes toMSO over signature �nav [Gottlob and Koh 2002℄. The onstrution is similar tothe one of Theorem 3.2 mapping NavXPath to FO2, de�ning R�(x; y), where R� isthe reexive and transitive losure of relation R, in MSO as 8S �S(x)^8u8v S(u)^R(u; v)! S(v)�! S(y): From this we an onlude the following bound.Corollary 4.4. NavXPath NodeSet queries (and hene, CoreXPath NodeSetqueries) are in linear time with respet to data omplexity.x2: Tree-like data do not yield low ombined omplexity. The usual tehnique forproving linear-time data omplexity of MSO is by redution to automata. For unaryMSO formulas, somewhat sophistiated automata with a apability for seletingnodes are required. It has been observed that suh automata with the power ofunary MSO an be designed to traverse the data tree only twie [Neven and Vanden Busshe 2002; Frik et al. 2003℄. Redutions fromMSO to automata do not yieldgood upper bounds on the ombined omplexity of NavXPath, however. Indeed, theyare neessarily nonelementary [Meyer 1975; Reinhardt 2002℄ (i.e., their ost annotbe bounded by any tower of exponentials 222�2n of �xed height). For NavXPath,a doubly exponential translation to seleting tree automata [Frik et al. 2003℄ isimpliit in [Koh 2003℄.x3: Tree-like queries yield polynomial-time ombined omplexity. While MSO overtrees is known to be PSpae-omplete with respet to ombined omplexity, FOk(even over arbitrary relational strutures) is known to be in time O(nk � jQj): 3Proposition 4.5 [Kolaitis and Vardi 2000℄. Conjuntive FOk+1 queries havetree-width � k.3This an be shown diretly without tree-width as well [Vardi 1995℄, however.22



Theorem 4.6 [Chekuri and Rajaraman 1997℄. Given a Boolean onjuntivequery Q of tree-width k and a database A with domain size n, Q an be evaluatedon the database in time O((nk+1 + jAj) � jQj).Both results generalize from onjuntive to FO queries [Flum et al. 2002℄.Sine boolean NavXPath queries an be translated eÆiently, in linear time, intoequivalent FO2 queries (Theorem 3.2) and FOXPath queries an be translated inlinear time into FO3 (Proposition 3.14),Corollary 4.7. Boolean NavXPath and FOXPath an be evaluated in time O(jDj2�jQj) and O(jDj3 � jQj), respetively, on a �dom struture D.As we will see later on in this setion, these ombined omplexity bounds an beimproved upon.4.3 Hypertree-width and Conjuntive XPathAll results of Setions 4.3 and 4.4 will apply both to nodeset and to Boolean queriesof the respetive fragments indiated.LetQ be a onjuntive query over a relational database, and let vars(Q), free(Q),and atoms(Q) denote the set of variables, free variables, and atoms ourring in Q,respetively.A (omplete) hypertree deomposition of Q is a triple (T; �; �) suh that T is arooted tree with nodes V (T ) and root node r, � : V (T )! 2vars(Q) maps eah nodeof tree T to a set of variables from Q, � : V (T ) ! 2atoms(Q) maps eah node of Tto a set of body atoms of Q,(1) free(Q) � �(r),(2) for eah atom A 2 atoms(Q), there exists a node v 2 V (T ) suh that A 2 �(v)and vars(A) � �(v),(3) for eah variable x 2 vars(Q), the set fv 2 V (T ) j x 2 �(v)g indues aonneted subtree of T , and(4) for eah node v 2 V (T ), �(v) � vars(�(v)) andvars(�(v)) \[f�(v0) j v = v0 or v0 is a desendant of v in Tg � �(v):The width of a hypertree deomposition (T; �; �) is the maximum number ofatoms ourring in any single node of T , i.e. maxfj�(v)j j v 2 V (T )g. The hypertree-width of a onjuntive query Q is the smallest width over all hypertree deomposi-tions of Q. The onjuntive queries of hypertree-width 1 oinide with the so-alledayli onjuntive queries (f. e.g. [Abiteboul et al. 1995℄). As shown in [Yan-nakakis 1981℄, the ayli onjuntive queries an be evaluated in time O(n � jQj).Yannakakis' result was generalized to hypertree-width k, for arbitrary k:Theorem 4.8 [Gottlob et al. 2002℄. Let Q be a onjuntive query and H ahypertree deomposition of width k of Q. Then Q an be evaluated on a database Ain time O((jHj+ jAj)k).Let �0dom be the signature obtained from �dom by replaing eah attribute funtion�A by its graph (i.e., the binary relation f(n;�A(n)) j n 2 Nodeg) and adding therelations Rdesendant and Rfollowing-sibling.A onsiderable fragment of FOXPath an be modeled by onjuntive queries overa struture of relational signature �0dom. We say that a FOXPath query (resp.,NavXPath query) is onjuntive (and onneted) if it does not use disjuntion,negation, inequalities (i.e., expressions pRelOp p0 with RelOp 6= \="), or the rootslash =. The notions of hypertree deomposition and hypertree-width an be read-ily applied to onjuntive FOXPath (and thus NavXPath) queries. A onjuntiveFOXPath query maps to a onjuntive query over �0dom, and we an speak of itshypertreewidth using this mapping. 23



Example 4.9. The onjuntive FOXPath querydesendant::A=hild::B[hild::C=�D = hild::E=�F ℄an be phrased as a onjuntive query over signature �0domQ(v; x) Rdesendant(v; w); A(w); Rhild(w; x); B(x); Rhild(x; x1); C(x1);�D(x1; z);Rhild(x; y1); E(y1);�F (y1; z):Consider the following hypertree deomposition, H, of Q, where the nodes v havebeen labeled with �(v) and �(v) = vars(�(v)):Rdesendant(v; w); Rhild(w; x)A(w) B(x) Rhild(x; x1);�D(x1; z)C(x1) Rhild(x; y1);�F (y1; z)E(y1)Note that H is of width 2. There exists obviously no hypertree deomposition ofwidth 1: the atoms fRhild(x; x1);�D(x1; z); Rhild(x; y1);�F (y1; z)g of Q indue ayle. Thus Q is of hypertree-width 2. 2By Propositions 4.5 and 3.14, onjuntive FOXPath queries have tree-width � 2.It is known that onjuntive queries of tree-width k have hypertree-width � k + 1[Gottlob et al. 2002℄, so we an obtain the O(n3) data omplexity bound observedin Corollary 4.7 also from Theorem 4.8. However, fortunately,Theorem 4.10. The onjuntive FOXPath NodeSet queries have hypertree-width� 2.Proof. We �rst ompute a �rst-order query (using just 9 and ^) over �0dom for agiven onjuntive FOXPath query and then show that it yields a hypertree deom-position of width � 2. From the �rst-order formula an equivalent relational algebraplan an be obtained immediately by rewriting ^ by a join and 9 by a projetionWe will assume that our query is a path expression p. The proof works analogouslyfor quali�ers. We translate p into a �rst-order formula FO(p)2 as follows:FO(axis)2(x; y) := Raxis(x; y)FO(step[q℄)2(x; y) := FO(step)2(x; y) ^ FO(q)1(y)FO(p=step)2(x; z) := 9y FO(p)2(x; y) ^ FO(step)2(y; z)FO(lab() = L)1(x) := L(x)FO(p)1(x) := 9y FO(p)2(x; y)FO(q ^ q0)1(x) := FO(q)1(x) ^ FO(q0)1(x)FO(p=�A = p0=�B)1(x) := 9z �9y1 FO(p)2(x; y1) ^�A(y1; z)� ^�9y2 FO(p0)2(x; y2) ^�B(y2; z)�Without loss of generality, we will assume that there are no two distint our-renes of existential quanti�ation over the same variable in FO(p)2; thus, any twoourrenes of the same variable name in formula FO(p)2 indeed refer to the samevariable.FO(�)2 is only a minor variation of [[�℄℄NodeSet and it is easy to verify that FO(p)2de�nes a binary relation f(n; n0) j n0 2 [[p℄℄NodeSet(n)g.24



We now onstrut a hypertree deomposition of FO(p)2. Consider the parse treeT of formula FO(p)2. This parse tree has relation atoms as its leaves and 9x- and^-labels on its internal nodes. Eah node of the tree orresponds to a subformula� of FO(p)2. We will identify eah tree node with the subformula � it denotes.We de�ne a funtion � that maps eah node � of T to a set of leaf nodes (andthus relational atoms). We do this indutively, bottom-up:(i) for eah leaf node �, �(�) := f�g;(ii) for eah node � of the form  1(x)^ 2(x),  1(x; y)^ 2(y), or  1(x; y)^ 2(x; y),let �(�) := �( 1);(iii) for eah node � =  1(x; y)^ 2(y; z), let �(�) := f 0g[�( 2), where  0 is anyatom over x from �( 1); �nally,(iv) for eah node � = 9x , �(�) := �( ).Note, in partiular, that eah free variable of � ours in at least one atom of�(�). Now let funtion � map eah node � of T to vars(�(�)).To verify that (T; �; �) is indeed a hypertree deomposition of p, we have tohek points (1) to (4) of the de�nition. (1) and (4) are due to the de�nition of� as � 7! vars(�(�)). (2) is immediate from (i). The onnetedness ondition (3)follows from the fat that in a �rst-order query without any two distint ourrenesof existential quanti�ation over the same variable, the nodes of parse tree T thathave x as a free variable plus the node 9x if x is not free in the query indue aonneted subtree of T .Let us now onsider the sizes j�(�)j for all nodes � of T . The most interesting aseis � =  1(x; y) ^  2(y; z). Observe that in this ase  2 is either a step expressionor a leaf, and thus j�( 2)j = 1, so j�(�)j = 2. It an be shown by a straightforwardindution that for all nodes �, j�(�)j � 2, so our query has hypertree-width � 2. 2This result by onstrution of ourse holds for nodeset queries and thus also forBoolean queries.Example 4.11. For the query of Example 4.9,FO(desendant::A=hild::B[hild::C=�D = hild::E=�F ℄)2(v; x)evaluates to the �rst-order formula9w (Rdesendant(v; w) ^A(w)) ^ �Rhild(w; x) ^ �B(x)^9z (9x1 (Rhild(x; x1) ^ C(x1) ^�D(x1; z)))^(9y1 (Rhild(x; y1) ^ E(y1) ^�F (y1; z)))��the parse tree of whih is shown in Figure 4. The leaf nodes in the �gure have beenlabeled l1; l2; l3; : : : from left to right and the interior nodes � of the parse tree ofthe formula have been annotated with �(�). Again, �(�) = vars(�(�)). This yieldsthe hypertree deomposition onstruted in the proof. 2The transformation of the previous proof an be implemented so as to omputeboth �rst-order query and hypertree deomposition in linear time. By the latter ob-servation and Theorem 4.8 we thus see that Conjuntive FOXPath an be evaluatedin time O((jQj+ jDj)2).We give a diret proof of the following (lose but inomparable) bound.Proposition 4.12. Conjuntive FOXPath NodeSet queries an be evaluated on�0dom-strutures D in time O(jQj � jDj2).Proof. Let us now onsider relational algebra queries ALG(p) and ALG(q) orre-sponding to the �rst-order (alulus) queries FO(p)2 and FO(q)1 of the previous25



9w fl1; l3g^ fl1; l3g^ fl1gl1Rdesendant(v; w) l2A(w) ^ fl3gl3Rhild(w; x) ^ fl4gl4B(x) 9z fl5; l7g^ fl5; l7g9x1 fl5; l7g^ fl5; l7g^ fl5gl5Rhild(x; x1) l6C(x1) l7�D(x1; z) 9y1 fl8; l10g^ fl8; l10g^ fl8gl8Rhild(x; y1) l9E(y1) l10�F (y1; z)Fig. 4. Hypertree deomposition of the query of Example 4.9 as onstruted in the proof ofTheorem 4.10.proof. The translation is standard [Abiteboul et al. 1995℄ and just requires rewritingexistential quanti�ation by projetion and onjuntion by join.As with the subformulas of � in FO(p)2, eah subexpression of ALG(p) de�nesa relation that is a subset of the produt of at most two base relations �(�), and isthus of size at most O(jDj2).Query evaluation requires no more than jQj relational algebra operations (pro-jetions or joins). The projetions � ~AR are obviously operations that run in timelinear in jRj. Joins guarded by one of the input relations (orresponding to formulae 1(x; y) ^  2(x; y),  1(x; y) ^  2(y), and  1(y) ^  2(y)) an be evaluated in timelinear in the sum of the sizes of the two relations joined by �rst building a bit�eldfor testing whether tuples are true in  2 and then using it to �lter the tuples of  1.The most interesting ase is a join orresponding to formula  1(x; y) ^  2(y; z).Let [[�℄℄ be the relation de�ned by �rst-order formula �. We �rst ompute the rela-tions Ry1 = fx j  1(x; y)g, for eah y suh that 9z  2(y; z), in total time O(j[[ 1℄℄j+j[[ 2℄℄j). Then we ompute our join as the union of the sets f(x; y; z) j Ry1(x)g, foreah tuple  2(y; z). As mentioned in the previous proof,  2 always de�nes a subsetof an input relation, so this union an be formed in time O(jDj � j[[ 2℄℄j) = O(jDj2).2Conjuntive NavXPath queries are ayli (see [Gottlob et al. 2005℄) and antherefore be evaluated using Yannakakis' algorithm (or by preisely the tehniquesfrom the previous two proofs) both in linear time in the data and eÆiently in thesize of the query.Proposition 4.13. Conjuntive NavXPath NodeSet queries an be evaluated intime O(jDj � jQj) on (�nav ; Rdesendant; Rfollowing-sibling)-strutures D.26



4.4 Beyond Conjuntive QueriesThe onjuntive query proessing tehniques based on hypertree deompositions ofthe previous setion leave three features of FOXPath unaddressed:(1) Conjuntive FOXPath exludes disjuntion, union, negation, inequalities, anddisonneted queries (via the root / in onditions).(2) We assumed that the data tree is given by �+val-strutures, whih inlude bi-nary relations for transitive axes suh as desendant. If we assume transitiveaxis relations present in the struture D representing a tree with domain Aand therefore jDj = O(jAj2), our upper bound on time of O(jDj2 � jQj) fromProposition 4.12 deteriorates to time O(jDj4 � jQj) when the input struture Dis now in �dom.(3) Finally, we did not deal with inequalities RelOp 2 f6=; <;�g in expressionseRelOp e0.The following result deals with all these issues.Theorem 4.14. A FOXPath NodeSet query Q an be evaluated on �dom-strutureswith domain A in time O(jAj2 � jQj).Proof.(1) We omplete the mapping ALG of the previous proof by the operations ofFOXPath missing from onjuntive FOXPath:|ALG(p j p0) := ALG(p) [ ALG(p0)|ALG(q _ q0) := ALG(q) [ ALG(q0)|ALG(:q) := A�ALG(q)(2) Next we would like to eliminate transitive axis relations suh as desendant fromthe signature.[Gottlob et al. 2005℄ gives algorithms for omputing, given a set S of tree nodesand any XPath axis �, the set of nodes�(S) = fy j x 2 S ^R�(x; y)gin time O(jNode j). Consider the unary operations./�[q℄: R 7! f(x; z) j 9y R(x; y) ^R�(y; z) ^ [[q℄℄Boolean(z)g;whih an be evaluated in quadrati time by �rst partitioning R into sets Sx =fy j R(x; y)g, for eah x, and then omputing the union over x of the setsf(x; y) j y 2 �(Sx) ^ [[q℄℄Boolean(y)g.Now we an evaluate [[p=�[q1℄ : : : [qn℄℄℄ as �[q1 ^ � � � ^ qn℄([[p℄℄) in quadrati time,for any axis �, even if our struture is just of signature �dom.(3) Let ��1 denote the inverse of axis � (i.e., R��1 is the inverse of R�). Toompute a query plan for an inequality�1[q1℄=�2[q2℄= � � � =�n[qn℄=�A RelOp �1[q01℄=�2[q02℄= � � � =�n[q0n℄=�Bwith RelOp 6= \=", we �rst ompute the binary relation RelOp�A;�B (see thede�nition of �+val in Setion 3.3) in time O(jAj2). Using the fat that the joinsabove an be omputed in quadrati time, we see that we an ompute thefollowing relation S in quadrati time jAj2 times the size of S:S := ./��11 (./��12 [q01℄ (./��13 [q02℄ (� � � ./��1n [q0n�1℄ (./self[q0n℄ (RelOp�A;�B)) � � � )))Finally,�./��11 (./��12 [q1℄ (./��13 [q2℄ (� � � ./��1n [qn�1℄ (./self[qn℄ (S�1)) � � � )))��1is the desired inequality relation above. Using this algorithm indutively, The-orem 4.14 follows. 227



Applying the �rst two parts of the previous proof to NavXPath yields:Proposition 4.15 [Gottlob et al. 2005℄. A NavXPath NodeSet query Q anbe evaluated on �nav-strutures D in time O(jDj � jQj) and spae O(jDj).Note that this improves the linear data omplexity bound of Corollary 4.4.Beyond FOXPath, we are faed with queries ontaining possibly nested numeriexpressions involving the arithmeti operations + and � (whose graphs are in�nite)and aggregations. For that reason, it is helpful to digress from the framework usedabove (i.e., relations � A2 or � A) and view every expression e of type t (eitherNodeSet , Boolean, or Int) as de�ning a table f(n; [[e℄℄t(n)) j n 2 Ag: Eah node ndenotes a ontext in whih expression e evaluates to value [[e℄℄t(n). Thus suh tableswere alled ontext-value tables in [Gottlob et al. 2005℄. The ontext-value table ofan expression e an be eÆiently omputed from the ontext-value table of the diretsubexpressions of e. For FOXPath, the method for doing so was given in the previousproof, up to the notational subtleties that now for NodeSet-typed expressions, thevalue olumn may hold sets (nodes grouped by their ontext) while in the proofthe relations de�ned were at, and that ontext-value tables for Boolean-valuedexpressions are binary, with either \true" or \false" in the value olumn.This method an be adapted to AggXPath without a runtime penalty, sine ona binary relation [[p℄℄ over the domain of nodes { and thus of quadrati size { therelations f(n; i) j [[ount(p)℄℄Int(n) = ig and f(n; i) j [[sum(p=�A)℄℄Int(n) = ig anbe omputed in quadrati time without diÆulty. For the arithmeti operation �(multipliation), numbers an grow linearly with the query, thus a binary relationrepresenting the result of a numeri relation may be of size O(jAj � jQj). Thus,Proposition 4.16. The AggXPath NodeSet queries Q an be evaluated on �dom-strutures with domain A in time O�jAj�(jAj+jQj)�jQj� and spae O�jAj�(jAj+jQj)�.So far we have been moving only moderately beyond queries obtained from hy-pertree deompositions. However, XPath (and OrdXPath) supports position arith-metis whih require more sophistiated ontexts than AggXPath, where ontextsare simply nodes. For OrdXPath, a single ontext node is not suÆient; for instane,the expression \position() = last()" relies on the position of a node within a set andthe ardinality of that set as ontexts (see (P2') in Setion 2).We extend ontext-value tables to be sets of tuples (n; j; k; v), where n is a ontextnode, j and k are integers denoting a position j in and the size k of a set of nodes,v is a value, and the ontexts n; i; k identify their tuples.Values (inluding strings and numbers) were shown in [Gottlob et al. 2005℄ toremain small in XPath. The algorithm of [Gottlob et al. 2005℄ indutively omputesontext-value tables f(n; j; k; v) j [[e℄℄Type(e)(n; j; k) = vg for eah subexpression eof a query bottom-up. Taking into ontext all the built-in funtions of XPath, thisyields the following upper bound.Theorem 4.17 [Gottlob et al. 2005℄. Full XPath 1.0 is in time O(jAj5 �jQj2).We state this result without a proof and refer to [Gottlob et al. 2005℄ for theformal de�nition of full XPath 1.0 and the proof, whih are beyond our sope andyield little further insight. Improvements yielding somewhat better bounds an befound in [Gottlob et al. 2005℄.Example 4.18. Consider the numerial expression position() � 2 < last(). We28



ompute the ontext-value tables of its subexpressions bottom-up asCV Tposition() := f(n; j; k; j) j (n; j; k) a ontextgCV Tposition()�2 := f(n; j; k; 2 � v) j (n; j; k; v) 2 CV Tposition()gCV Tlast() := f(n; j; k; k) j (n; j; k) a ontextgCV Tposition()�2<last() := f(n; j; k; (v1 < v2)) j (n; j; k; v1) 2 CV Tposition()�2;(n; j; k; v2) 2 CV Tlast()gIn summary, there is a lose onnetion between the ontext-value table-baseddynami programming algorithm of [Gottlob et al. 2005℄ and the hypertree-widthbased tehniques presented before. However, beyond the diÆulties dealt with inthe proof of Theorem 4.14, XPath supports built-in funtions (e.g. arithmeti andstring funtions) whose graphs are in�nite, as well as aggregations, so non-trivialextensions of hypertree deomposition tehniques are needed to obtain the PTimeombined omplexity of XPath.We summarize the time omplexity bounds in the following table; below the inputis assumed to be a �dom struture D with domain A:Fragment ComplexityNavXPath jDj � jQj (Proposition 4.15)FOXPath jAj2 � jQj (Theorem 4.14)AggXPath jAj � (jAj+ jQj) � jQj (Proposition 4.16)XPath 1.0 jAj5 � jQj2 (Theorem 4.17)4.5 Parallel ComplexityNow that the ombined omplexity of XPath is known to be polynomial, one mayask whether XPath is also PTime-hard, or alternatively, whether it is in the om-plexity lass NC and thus e�etively parallelizable. Apart from theoretial interest,a preise haraterization of XPath evaluation in terms of parallel omplexity lassesmay lead to a better understanding of what omputational resoures are neessarilyrequired for query evaluation. For example, it is strongly onjetured that all algo-rithms for solving PTime-hard problems atually require a polynomial amount ofworking memory. However, performing XPath query evaluation with limited mem-ory resoures is important in pratie, for instane in the ontext of data streamproessing.For an upper bound for onjuntive FOXPath, we an use the following resultabout onjuntive queries of bounded hypertree-width together with our Theo-rem 4.10.Theorem 4.19 [Gottlob et al. 2001℄. The onjuntive queries of boundedhypertree-width over arbitrary relational strutures are in LogCFL with respetto ombined omplexity.Corollary 4.20. Conjuntive FOXPath is in LogCFL (ombined omplexity).In [Gottlob et al. 2005℄, LogCFL membership is proven for a muh larger frag-ment of XPath without negation whih even supports arithmetis and aggregations.Here we give a diret proof for positive FOXPath.Proposition 4.21 [Gottlob et al. 2005℄. Positive FOXPath is in LogCFLwith respet to ombined omplexity.Proof Idea. By an enoding as a NAuxPDA that runs in polynomial time using aLogSpae worktape. We will atually show how to use a NAuxPDA to omputethe set of nodes to whih an XPath query evaluates, even though the omplexitylass LogCFL is de�ned in terms of deision problems and for the above-mentioned29



lower bound only a deision problem (e.g. that of heking whether a given node isseleted by an XPath query) makes sense.We will use the symbol & for reating referenes and � to dereferene them. Wewill assoiate eah query with its (binary) parse tree obtained in the usual fashion,using grammar rules p ::= axis :: A[q℄=p j axis :: A[q℄ to parse paths (i.e., produinga right-deep tree for a path). An example of suh a parse tree is shown in Figure 5.We identify nodes of the query tree with the expressions their subtrees represent.For a path expression p, we use sel(vQ) to denote the rightmost leaf in the subtreeof the query tree orresponding to p; thus sel(vQ) denotes the \right tip" of thepath whih selets nodes.We use four log-spae registers that will be kept on the worktape, sel (to iterateover the nodes of the data tree and hek whih are to be seleted by the query), vt(to hold a node from the data tree), rval (for a pointer to a data value in the datatree, represented by an integer indiating the starting position of the data value'srepresentation inside the representation of the data tree), and vQ (for a urrentnode from the parse tree of the query) on the worktape.The evaluation of the query proeeds by iterating over all the nodes of the datatree (using register sel), and for eah node does a single depth-�rst left-to righttraversal of its parse tree, starting with vQ the root node of the query tree, vt theroot of the input tree, and rval = ?.By default, query tree nodes vQ with two hildren are proessed as follows. Firstwe put (vQ; vt; rval) onto the stak. Then we proess the �rst hild of vQ. Onreturning we take (vQ; vt; rval) o� the stak (and set the registers). Finally proessthe seond hild of vQ.There are a few exeptions. When vQ = �::A[q℄=p and vt = n, we �rst put n onthe stak, nondeterministially guess a node n0 suh that �(n; n0) and A(n0), setvt to n0, and only then we proess the two hildren as just desribed. Expressionsp=�A=deref() are handled similarly.For p=�A = p0=�B, rval is not put on the stak before and taken o� the stakafter proessing the �rst hild. When arriving at sel(p), we set rval to �A(vt).When arriving at sel(p0), we verify that rval = �B(vt).If vQ = q _ q0, we nondeterministially hoose either q or q0 and verify that itholds relative to the urrent position vt.At sel(p), where p is the query, we hek whether vt = sel. If so, we output nodesel as a result.It is not diÆult to verify that this nondeterministi algorithm runs on an NAux-PDA in polynomial time, using only logarithmi spae on the worktape. 2Example 4.22. The FOXPath query .//A[.//B/�C = D[E/�F = G/�H℄/�I℄an be evaluated using a NAuxPDA given by the following pseudoode: (1) Guessw suh that [[:==A℄℄(vt; w); vt := w; (2) push vt; (3) guess w suh that [[:==B℄℄(vt; w);vt := w; (4) rval := & vt:�C; (5) vt :=pop; (6) guess w suh that [[:=D℄℄(vt; w);vt := w; push rval; push vt; (7) push vt; (8) guess w suh that [[:=E℄℄(vt; w); vt := w;(9) rval := & vt:�F ; (10) vt :=pop; (11) guess w suh that [[:=G℄℄(vt; w); vt := w; (12)hek that � rval = vt:�H ; (13) vt :=pop; rval :=pop; (14) hek that � rval = vt:�I ;(15) aept.Note that this program is faithful to the onstrution mentioned above exeptthat we do not push or pop the vQ register (the query has been ompiled into theprogram).The fat that the run of this NAuxPDA is intuitively a depth-�rst traversal ofthe parse tree of the query is illustrated in Figure 5. 2It was shown in [Gottlob et al. 2005℄ by a redution from the SAC1 iruitvalue problem that the LogCFL upper bound of Theorem 4.21 is tight: positiveNavXPath is LogCFL-omplete with respet to ombined omplexity.30
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Fig. 5. NAuxPDA run for query .//a[.//b/� = d[e/�f = g/�h℄/�i℄.
(b1)^ G3 G4(b0)(a0)^ ^_G8 G7G6G5G2G1(a1)Fig. 6. A 2-bit full adder arry-bit iruit.Unfortunately, the positive result on the parallel omplexity of positive XPathdoes not extend to full XPath, or even NavXPath.Theorem 4.23 [Gottlob et al. 2005℄. NavXPath is PTime-hard (ombinedomplexity).Proof. The proof is by redution from themonotone Boolean iruit value problem,whih is PTime-omplete. Note that the lassial redution from PTime-boundedTuring mahines to (monotone) Boolean iruits proving this (see e.g. the proof ofTheorem 8.1 in [Papadimitriou 1994℄) only produes layered iruits.4Given an instane of this problem, a monotone Boolean iruit and a mapping �that assigns either 0 or 1 to eah of the input gates, let M denote the number of4A iruit is alled layered is there is a mapping l that assigns to eah gate an integer suh thatif there is an edge from gate Gi to Gj , then l(Gj) = l(Gi) + 1.31



�1 = desendant::O1[parent5::*[ 1℄℄ 1 = not(hild5::I1[not(�1)℄)�1 = anestor::*[�0℄�0 = self::1 u5u6u7u8v1 : �(G1)w1;5 : I1w1;6 : I1w1;7w1;8
v2 : �(G2)w2;5 : I1w2;6w2;7 : I1w2;8

v3 : �(G3)w3;5w3;6 : I1w3;7 : I1w3;8
v4 : �(G4)w4;5w4;6 : I1w4;7 : I1w4;8

v5 : Gw5;5 : O1w5;6w5;7w5;8 : I2
v6 : Gw6;5w6;6 : O1w6;7w6;8 : I2

v7 : Gw7;5w7;6w7;7 : O1w7;8 : I2
v8 : Gw8;5w8;6w8;7w8;8 : O2Fig. 7. Doument tree orresponding to the arry-bit iruit. The �gure also illustrates that[[�1℄℄Boolean(v6), �(G1) = 1 ^ �(G3) = 1 ^ �(G4) = 1.input gates and let N � 1 denote the number of all other gates in the iruit (theinternal gates). Let K be the number of layers in the iruit, that is, the height ofthe iruit. Let the gates be named G1 : : :GM+N . Without loss of generality5, wemay assume that the gates G1 : : : GM+N are numbered in some order suh that nogate Gi depends on the output of another gate Gj with j > i. In partiular, theinput gates are named G1 : : : GM and the output gate is GM+N . We may assumethat there is preisely one gate at the topmost layer K, the output gate.Figure 6 shows an example of a iruit with appropriately numbered gates. Thisiruit omputes the arry-bit of a two-bit full-adder, that is, it tells whether addingthe two-bit numbers a1a0 and b1b0 leads to an overow. The arry-bit 1 is om-puted as (a1 ^ b1) _ (a1 ^ 0) _ (b1 ^ 0) where 0 = a0 ^ b0 is the arry-bit of thelower digit (a0 and b0).For a given instane of the monotone Boolean iruit value problem, we omputea pair onsisting of a doument tree and a NavXPath query as follows.The doument tree onsists of nodes uj , vi, and wi;j for all 1 � i � M +N ,M + 1 � j �M +N . The root node is uM+1, and there are edges|from uj to uj+1 for M + 1 � j < M +N ,|from uM+N to vi and from vi to wi;M+1 for all 1 � i �M +N , and|from wi;j to wi;j+1 for all 1 � i �M +N , M + 1 � j < M +N .Node labels are taken from the alphabet � = f0; 1; G; I1; : : : ; IK ; O1; : : : ; OKgand eah tree node is assigned at most one suh label. (We allow for \unlabeled"nodes, whih an be onsidered to simply arry a label not from �.) This is done asfollows. Eah node out of vi for 1 � i �M is assigned �(Gi) as a label (either 0 or1). The nodes vM+1 : : : vM+N are eah assigned the label G. We assign label Ik tonode wi;j i� internal gate Gj is in layer 1 � k � K and takes input from gate Gi.We assign label Ok to node wj;j i� internal gate Gj is in layer k. For our arry-bitexample of Figure 6 with M = 4 and N = 4, the data tree is as shown in Figure 7,5The gates an be \sorted" to adhere to suh an ordering in logarithmi spae. This is trivial ifthe iruit is layered, whih we may assume by the observation made above.32



where �(G1); : : : ; �(G4) 2 f0; 1g are the truth values a1; b1; a0, and b0, respetively,at the input gates.In the following, we will abbreviate the n-times repeated appliation of an axis�, (�::*/)n�1�::*, as �n::*. By �n::, we denote (�::*/)n�1�::.The query evaluating the iruit is/desendant::G[�K ℄with the ondition expressions�k := desendant::Ok [parentN+1::*[ k℄℄ k := ( hildN+1::Ik [�k℄ : : : layer k onsists of _-gatesnot(hildN+1::Ik[not(�k)℄) : : : layer k onsists of ^-gates�k := � anestor::G[�k�1℄ : : : k > 1anestor::*[�k�1℄ : : : k = 1for 1 � k � K and �0 := self::1.It uses the intuition of proessing the iruit one layer at a time.We will hek whether our query on our doument inludes the partiular nodevM+N . Indeed, by our onstrution, the query will selet node vM+N i� the iruitevaluates to true, and no other node will be seleted.It is easy to see that the redution an be e�eted in LogSpae. We next arguethat it is also orret.The �k,  k, and �k are ondition expressions (quali�ers), and we have alreadygiven a formal meaning [[�k ℄℄Boolean(w) to the notion \�k mathes node w" or equiva-lently \node w satis�es �k" (and analogously to [[ k℄℄Boolean(w) and [[�k ℄℄Boolean(w)).Claim. Let 0 � k � K. Then, for all gates Gi in layer k,[[�k ℄℄Boolean(vi), gate Gi evaluates to true:This an be shown by an easy indution.Indution start (k = 0). The gates of layer 0 are the input gates. By de�nition,an input gate Gi is true i� node vi is labeled 1. but on preisely these nodes�0 = self::1 is true. Thus our laim holds for k = 0.Indution step. Now assume that our laim holds for �k�1. We show that italso holds for �k.To start, it is easy to see that for all i, j,[[�k ℄℄Boolean(wi;j) , [[�k�1℄℄Boolean(vi):Now observe that by our onstrution of the data tree, the nodes w1;j ; : : : ; wj;j�1enode the onnetions of gate Gj with its inputs. Gate Gi is an input to gate Gjif and only if node wi;j is labeled Ik , for k the layer of gate Gj . The node wj;j islabeled Ok. Observe also that the node uj is preisely N +1 levels above the nodesw1;j ; : : : ; wM+N;j in the data tree.For _-gate Gj in layer k,[[ k℄℄Boolean(uj) , 9i Ik(wi;j) ^ [[�k ℄℄Boolean(wi;j), gate Gi is an input to Gj and Gi is truefor ^-gate Gj in layer k,[[ k ℄℄Boolean(uj) , 8i Ik(wi;j)! [[�k ℄℄Boolean(wi;j), all inputs to Gj are trueFinally, sine [[�k℄℄Boolean(vj), [[ k℄℄Boolean(uj);33



our laim is shown for �k, 0 � k � K.Figure 7 illustrates the omputation of the truth value of gate G6 of our iruitexample.The overall query /desendant::G[�K ℄ has a nonempty result (onsisting of pre-isely the node vM+N ) exatly if the output gate GM+N of the iruit evaluates totrue, beause GM+N is the only gate in layer K, vM+N is the only node labeled Gthat has an OK desendant, and [[�K ℄℄Boolean(vM+N ) if and only if GM+N evaluatesto true.In summary, we have provided a LogSpae redution that maps any monotoneBoolean iruit to a NavXPath query and a doument tree suh that the queryevaluated on the tree returns node vM+N preisely if the iruit evaluates to true.As the monotone Boolean iruit value problem is PTime-omplete, our theoremis proven. 2Note that the above proof of the PTime lower bound does not employ axis stepswith multiple quali�er brakets axis[�℄ : : : [�℄; indeed, as observed before, even forAggXPath, axis[q1℄ : : : [qn℄ is equivalent to axis[q1 ^ � � �^ qn℄, but this is not true forOrdXPath. And indeed, the interation of multiple quali�er brakets and positionarithmetis has an impat on the omplexity of XPath:Theorem 4.24 [Gottlob et al. 2005℄. Positive OrdXPath is PTime-hard withrespet to ombined omplexity.The PTime-hardness result atually only uses a fragment of OrdXPath with last()and steps with multiple quali�er brakets, but without position() or aggregationoperations.We give a brief overview over the remaining omplexity results known for XPath.First, the PTime-hardness result of Theorem 4.23 essentially depends on the pres-ene of both single-step axes and transitive axes: NavXPath using only the hild andparent axes is in LogSpae with respet to ombined omplexity [Gottlob et al.2005℄. Tree patterns (onjuntive NavXPath) using only the desendant axis are inLogSpae as well [G�otz et al. 2007℄.The data omplexity of XPath depends on enodings. XPath 1.0 on DOM trees(pointer strutures) is LogSpae-omplete if the onatenation operation on stringsand multipliation are exluded from the language.So far, we have always assumed that the input is basially given as a pointerstruture (using signature �dom). But XML douments an also be onsidered intheir natural textual (string) representation. The distintion is only relevant forthe very small omplexity lass inside LogSpae, for whih ompleteness is usuallyde�ned in terms of redutions not strong enough to map between DOM trees andstrings. On string representations, NavXPath was shown to be in TC0 [Gottlob et al.2005℄, a omplexity lass inside LogSpae. Of ourse, on a relational enoding ofthe tree with all binary axis relations part of the enoding, FOXPath is �rst-orderand inherits its AC0 upper bound (yet inside TC0) on the data omplexity.The query omplexity of XPath 1.0 is in LogSpae [Gottlob et al. 2005℄. Thisis a slightly urious fat. While for virtually all known traditional query languages,the query omplexity is greater than the data omplexity by at least an exponentialfator (f. e.g. [Abiteboul et al. 1995℄), this is not the ase of XPath.4.6 Stream ProessingBeause of the role of XML as a data exhange format, the problem of evaluatingXPath on streaming XML data has attrated quite some researh work.A streaming algorithm sans its input data one { and only one { from leftto right. Sine data streams for pratial purposes an be assumed to be in�nitelylong, one usually assumes that main memory is a limited resoure. We an formalizestreaming omputation using a deterministi Turing mahine with34



|a read-only input tape on whih the read head annot move to the left,|a write-only output tape on whih the write head annot move to the left, and|a read/write work tape.The resoure of the greatest interest in this formal model is the spae used on thework tape. Of ourse, the running time of the Turing mahine is important as well.However, proessing XPath is not an intrinsially hard problem: as explained in thiswork, it an be solved in main-memory in polynomial ombined omplexity, henein partiular in polynomial time in the data. The time upper bounds in terms ofthe data does not hange when we move to the more restritive streaming model.To our knowledge, no tehnique in the streaming XML literature requires runningtime greater than polynomial in the input (stream). Ideally, streaming algorithmsshould ope with a �xed amount of memory, independent of the input, but as wewill see below, onstant memory is not suÆient for evaluating even the simplestXPath queries.To begin with we will fous our attention on the XPath �ltering problem, forwhih better guarantees an be made. The �ltering problem is the problem oftesting whether a given XPath query relative to the root node has any mathes(i.e., the problem of testing whether [[p℄℄Boolean(root) is true for query p). Theusual senario is that of a stream of XML douments and a set of XPath queriesdesribing subsriptions to douments on the stream mathing the XPath queries,and has been referred to by Seletive Dissemination of Information. This problemhas been onsidered in [Altinel and Franklin 2000; Chan et al. 2000; Green et al.2003; Diao et al. 2002℄ with the additional diÆulty that algorithms have to saleto very large numbers { even millions { of queries to be mathed in parallel.Starting with [Bar-Yossef et al. 2007℄, tehniques from ommuniation omplexityhave been used for studying memory lower bounds of streaming XPath evaluationalgorithms [Bar-Yossef et al. 2007; 2005; Grohe et al. 2007℄. We only give one suhlower bound result whih uses the standard notion of omplexity for XPath queries.We denote the depth of a tree T by depth(T ). It has been observed thatProposition 4.25 [Grohe et al. 2007℄. There an be no streaming algorithmwith memory onsumption o(depth(T )), where T is the data tree, for the CoreXPath�ltering problem.Of ourse, there are trees whose depth is linear in their size, so one an read thisresult in the sense that there an be no streaming algorithm for NavXPath thattakes spae less than linear in the size of the XML stream, so memory-eÆient {and thus salable { streaming XPath �ltering is, from a ertain point of view, inthe worst ase impossible.Fortunately, XML trees tend to be shallow in pratie, so showing this lowerbound to be tight would be onsidered a positive result. As disussed early in thissetion, bottom-up tree automata allow to hek MSO sentenes in a single traversalof the tree. Using automata-based tehniques, heking MSO queries in streamingfashion, and thus solving the XPath �ltering problem, is feasible using only memoryof size bounded by the depth of the tree (whih in pratie, for XML, is small).Theorem 4.26 (impliit in [Neumann and Seidl 1998; Segoufin and Vianu 2002℄).Let T be a tree-language. If T is de�nable by an MSO-sentene over voabulary�nav, then T an be reognized by a streaming algorithm using memory O(depth(T )),where T is the data tree.Corollary 4.27. There is a streaming algorithm for the CoreXPath �lteringproblem with memory onsumption O(depth(T )).Of ourse, it remains to ask whether these algorithms use memory that is smallin the size of the XPath expression being �ltered. Automata are a natural target35



of ompilation for stream proessing. They an be exeuted very eÆiently on thestream, and for most forms of automata one an analyze the runtime memory usageeasily.Translating XPath queries into deterministi pushdown automata has been stud-ied in several works [Green et al. 2003; Gupta and Suiu 2003℄ (and slightly lessobviously in [Altinel and Franklin 2000; Chan et al. 2000; Diao et al. 2002℄). De-terministi pushdown automata also give depth-bounded spae usage. The blow-uprequired to ompute suh automata is exponential in the �lter, and the soures ofthis exponentiality were explored in [Green et al. 2003℄. In that work the automataare modularized by separation into two omponents. There is a deterministi �niteautomaton (DFA, de�ned on words, not on trees) for the path expression whihruns on the path from the root node of the data tree to the urrent data tree node.There is also a pushdown automaton, independent of the path expression, that atsas a ontroller for the DFA, managing the stak and advaning the DFA every timea new node in the stream is enountered.The �rst work to present a streaming algorithm for the XPath �ltering problemthat takes only memory linear in the depth of the tree and runs in time and spaepolynomial in the size of (the data and) the query was [Olteanu et al. 2003; Olteanu2007℄. They provide an algorithm that gives good bounds for any PNavXPath �lterwith only \forward" axes { i.e. hild; next-sibling; desendant; following.There, the exponential size of automata is avoided by not ompiling automatafor managing and reognizing the subexpressions of an XPath query into a single\at" automaton. These automata are instead kept apart, as a transduer network .A similar transduer-network based approah to streaming XPath proessing wasdeveloped in [Peng and Chawathe 2003℄. A di�erent algorithm for polynomial-timestreaming XPath proessing was presented in [Josifovski and Fontoura 2005℄.A transduer network onsists of a set of synhronously running transduers (here,deterministi pushdown transduers, f. [Hoproft and Ullman 1979℄) where eahtransduer runs, possibly in parallel with some other transduers, either on theinput XML stream, or on the output of another transduer (in whih ase the inputis the original stream where some nodes may have been annotated using labels).Two transduers may also be \joined", produing output whose annotations arepairs onsisting of the annotations produed by the two input transduers.We next formalize this and exhibit some of the transduers that form part of atransduer network.XPath queries are �rst rewritten into nested �lters with paths of length one;for instane, query hild::A=desendant::B is �rst rewritten into hild[lab() = A ^desendant[lab() = B℄℄. To emphasize that we do not aim to ompute nodes mathedby a path but to hek whether the query an be suessfully mathed, we willwrite axis �lters as 9hild[�℄ and 9desendant[�℄. The rewritten queries will now betranslated into transduer networks indutively.A deterministi pushdown transduer T is a tuple (�;�;
; Q; q0; F; Æ) with inputalphabet �, stak alphabet �, output alphabet 
, set of states Q, start state q0, setof �nal states F , and transition funtion Æ : Q � � � (� [ �) ! Q � �� � 
. Fordeterminism we require that for no q 2 Q; s 2 �;  2 �, both Æ(q; s; �) and Æ(q; s; )are de�ned. Here � denotes the empty word. All our transduers will have Q = F ;that is, all states are �nal states, so all valid runs will be aepting. If the transduerT is in state q and has uv on the stak, and if Æ(q; s; v) = (q0; w; s0), then T makes atransition to state q0 and stak uw (u; v; w 2 ��) on input s, and produes outputo, denoted (q; uv) s=o! (q0; uw): A run on input s1 : : : sn is a sequene of transitions(q0; �) s1=o1! � � � sn=on! (q; u) that produes output o1 : : : on.A transduer T [9desendant[�℄℄ running on the output stream of transduer T [�℄is a deterministi pushdown transduer with � = 
 = fhi; t; fg, � = ft; fg, Q =36



BBBA AAB T [�4 := �2 ^ �3℄T [h�2; �3i℄T [�2 := 9desendant[�1℄℄T [�1 := (lab() = B)℄ T [�3 := (lab() = A)℄
time �!input stream hBi hBi hBi hAi h=Ai h=Bi h=Bi hAi hAi hAi h=Bi h=Ai h=Ai h=Bitransduer synhronous outputT [�1 := (lab() = B)℄ hi hi hi hi f t t hi hi hi t f f tT [�2 := 9desendant[�1℄℄ hi hi hi hi f f t hi hi hi f t t tT [�3 := (lab() = A)℄ hi hi hi hi t f f hi hi hi f t t fT [h�2; �3i℄ hi hi hi hi (f; t) (f; f) (t; f) hi hi hi (f; f) (t; t) (t; t) (t; f)T [�4 := �2 ^ �3℄ hi hi hi hi f f f hi hi hi f t t fFig. 8. Doument tree (top left), transduer network (top right), and run of the transduer network(bottom).F = fqf ; qtg, q0 = qf , and transition funtionÆ : � (qx; hi; �) 7! (qf ; x; hi)(qx; y 2 ft; fg; z) 7! (qx_y_z; �; x):On seeing an opening tag of a node, this transduer memorizes on the stak whether� was mathed in the subtrees of the previously seen siblings of that node. Onreturning (i.e., seeing a losing tag), the transduer labels the node (by its proxythe losing tag) with t or f (true or false) depending on whether � was mathed inthe node's subtree, whih is enoded in the state.Example 4.28. On input hihihihiftthihihitfft, T [9desendant[�℄℄ has the run(qf ; �) hi=hi! (qf ; f) hi=hi! (qf ; ff) hi=hi! (qf ; fff) hi=hi! (qf ; ffff) f=f! (qf ; fff) t=f!(qt; ff) t=t! (qt; f) hi=hi! (qf ; ft) hi=hi! (qf ; ftf) hi=hi! (qf ; ftff) t=f! (qt; ftf) f=t!(qt; ft) f=t! (qt; f) t=t! (qt; �)and produes output hihihihiffthihihifttt (see Figure 8). 2A transduer T [9hild[�℄℄ an be de�ned similarly.The transduers for testing labels and omputing onjuntions of �lters do notneed a stak. The transduer T [lab() = A℄ has the opening and losing tagsof the XML doument as input alphabet �, 
 = fhi; t; fg, Q = F = fq0g,and Æ = f(q0; h�i; �) 7! (q0; �; hi); (q0; h=Ai; �) 7! (q0; �; t); (q0; h=Bi; �) 7! (q0; �; f)g(where B stands for all node labels other than A). The transduer T [� ^  ℄has � = fhig [ ft; fg2, 
 = fhi; t; fg, Q = F = fq0g and Æ = f(q0; hi; �) 7!(q0; �; hi); (q0; (x; y); �) 7! (q0; �; x ^ y)g.The overall exeution of a transduer network is exempli�ed in Figure 8, wherethe �lter that mathes the XPath expression self::A=desendant::B, rewritten into(9desendant[lab() = B℄) ^ lab() = A is evaluated using a transduer network.The transduers for the di�erent subexpressions run synhronously; eah symbol(opening or losing tag) from the input stream is �rst transformed by T [�1℄ andT [�3℄; the output of T [�1℄ is piped into T [�2℄ and the output of both T [�2℄ and37



T [�3℄, as a pair of symbols, is piped into T [�4℄. Only then do we proeed to thenext symbol of the input stream, whih is handled in the same way, and so on. Inthe example of Figure 8, the �nal transduer labels exatly those nodes t on whihthe �lter is true. Cheking whether the �lter an be mathed on the root node,whih is not the ase in this example, an be done using an additional pushdownautomaton { not exhibited here but simple to de�ne.We now omment on the problem of seleting nodes mathed by XPath queries.We �rst note that any streaming algorithm will have to bu�er most of the XMLdoument in the worst ase. Consider the following two trees.AB B B B C AB B B B DhAihB=i : : : hB=ihC=ih=Ai hAihB=i : : : hB=ihD=ih=AiConsider the query =hild::A[hild::C℄=hild::B. Any implementation of this querymust selet the B-nodes of the left tree but not those of the right tree. Hene suhan implementation will have to bu�er all B-hildren of the A-node before a C-nodeis seen (or not seen) on the stream. In the worst ase this may amount to bu�eringalmost all the nodes of the doument.The problem of seleting nodes using XPath on XML streams using polynomialtime ombined omplexity and small spae was studied in several works, inluding[Olteanu 2007; Peng and Chawathe 2003; Bar-Yossef et al. 2007; 2005; Ramanan2005; Gou and Chirkova 2007℄. The results in these papers are usually spae boundsdepending linearly on the depth of the data tree, a funtion of ertain properties ofthe query (suh as, e.g., query frontier size [Bar-Yossef et al. 2007℄), and the numberof andidate output nodes from the data tree: as we have seen immediately above,we an not hope to do better than this. The known bounds are for fragments ofPCoreXPath with only forward axes.4.7 Proessing XPath in DatabasesThere has been muh work on proessing XPath (as a fragment on XQuery) andtree pattern queries on XML douments stored in databases , that is, in seondarystorage, both in the ontext of native XML databases and even more so on relationalrepresentations of XML databases.A topi related to XPath proessing that has been addressed in many papers isstoring XML data in a way that allows for eÆient query proessing and updates[Shanmugasundaram et al. 1999; Fiebig and Moerkotte 2000; Tatarinov et al. 2002;Grust et al. 2004; 2003; O'Neil et al. 2004; Weigel et al. 2005; May et al. 2006℄.Clearly, one the data is to be stored in a database in a way other than a singlemonolithi doument (i.e., text �le) to allow for the addressing and indexing of data,the smaller data hunks (usually doument tree nodes) require identi�ers of someform. Muh work has been done on �nding appropriate shemes for storing XMLdata relationally (e.g. [Shanmugasundaram et al. 1999; Tatarinov et al. 2002℄), butnumbering shemes for XML nodes that assign unique identi�ers to tree nodes thatimpliitly ontain navigation information are also relevant in native XML databasesystems. It is impliit in [Tatarinov et al. 2002℄ that, when designing a node number-ing sheme for XML data, a tradeo� is neessary between the sheme's support foreÆient navigation (tree pattern queries) and the eÆieny of proessing updates.Numbering shemes in whih the node identi�ers ontain muh position informationallow for more eÆient query proessing than do shemes whih assign only loalinformation that is relative to parent and anestor nodes { but updates to the dataare more likely to require a relabeling of many nodes with numbers.38



Currently two numbering shemes have beome prominent in most major re-searh and ommerial implementations. The �rst is the Dewey numbering sheme[Tatarinov et al. 2002; May et al. 2006℄ in whih a node that is the j-th hild ofa node with identi�er i is assigned the identi�er i:j; thus the Dewey numberingsheme is the familiar sheme used to label hierarhies of setions and subsetionsin most books. Given a Dewey numbering sheme, the anestors of a given nodeare ompletely determined and heking whether another node satis�es one of theaxes is easily deided. The seond [Fiebig and Moerkotte 2000; Grust et al. 2004;2003℄ is a form of global numbering sheme (f. [Tatarinov et al. 2002℄). It assigns apreorder (<pre) and a postorder (<post) traversal index. In addition, the <pre-indexof the parent is stored with eah node. Here all axes an be omputed using simple�-joins. Thus the transitive axis relations, whih would take spae quadrati in thesize of the tree if they had to be expliitly stored in the database, an be omputedon demand using plain relational algebra, with no need for reursion.As shown in Setion 2.1, <pre and <post an be de�ned from Rdesendant andRfollowing . The onverse is also possible:Rdesendant(x; y) :, x <pre y ^ y <post xRfollowing(x; y) :, x <pre y ^ x <post yFrom these axis relations, all others an be de�ned in �rst-order logi. Thus, anode-labeled tree an be ompletely represented by one triple (i; j; a), onsisting ofa <pre-index i, a <post-index j, and a label a, for eah node of the tree. (Theseindexes are hosen in a way that if two nodes u and v have, say, <pre-indexes i andi0, then i < i0 i� u <pre v.)This sheme does not require nodes to be labeled onseutively. Reasonableupdate performane an be ahieved by not requiring <pre- and <post-indexes to beonseutive and initially leaving some indexes unused. Nodes an then be insertedby hoosing a suitable pre- and postorder index from the unassigned indexes. Aslight modi�ation of this idea uses oating point numbers for the indexes; insertionis done by assigning <pre- and <post-numbers halfway between those of the nodesbetween whih the new node is to be plaed.XML proessing within databases fouses heavily on the ase of onjuntiveXPath and its extensions to XQuery. For queries on XML, one an distinguishbetween joins over data values and so-alled strutural joins . The latter are usedto ompute tuples of doument nodes that are in a strutural relationship to eahother whih an be desribed by a CoreXPath path expression, for instane pairsof nodes and their \A"-labeled desendents. While data value joins our morefrequently in XQuery, both kinds of joins an appear even in XPath. For example,the query of Example 4.9 ontains four strutural joins { orresponding to the fouraxis steps of the query { and one value join, whih ompares ertain �D attributevalues with �F attribute values. Many queries ontain several strutural joins thatan be desribed by tree patterns (also alled twigs in this ontext) and an bemathed together.As doumented in the present setion, pairs of nodes de�ned by CoreXPath ex-pressions have speial properties that give eÆient strutural join algorithms. Themethods desribed in this survey have foused on a straightforward enoding of atree as a relational struture. But eÆient methods have also been disovered thateither work for individual strutural joins [Al-Khalifa et al. 2002; Grust et al. 2003℄or holistially ompute the mathes of entire tree patterns [Bruno et al. 2002℄, forXML stored using the more sophistiated enodings disussed above. Note that inthese enodings there is no need for a separate edge relation.For XPath 1.0 the fous is on semi-joins. A key advantage of the twig queryproessing approah is that it extends the low omplexity bounds of XPath to39



more general queries whih return all query nodes in a math of a pattern, notjust a single seleted node. Suh queries are important within the more generalontext of XQuery proessing. The use of large-grained twig join operators andtheir integration into optimizers for XQuery is disussed in [Al-Khalifa and Jagadish2002℄.4.8 Further Bibliographi RemarksThe dynami programming algorithm for full XPath 1 of [Gottlob et al. 2005℄demonstrates in a rather straightforward way that XPath 1 an be evaluated inpolynomial time. When introdued, this algorithm was the �rst of its kind, and itwas observed that all XPath engines available at the time where taking exponentialtime in the worst ase for evaluating XPath 1. However, the dynami programmingalgorithm omputes many useless intermediate results and onsumes muh memory.To �x this, a more eÆient top-down algorithm is given in [Gottlob et al. 2005℄ aswell. This algorithm still runs in polynomial time, with better worst-ase upperbounds on running time and memory onsumption. Further work on polynomial-time algorithms for full XPath 1 whih elaborates on the results of [Gottlob et al.2005℄ and integrates them into a native XML database management system an befound in [Brantner et al. 2005℄. This work also shows how to integrate XQuery andeÆient XPath proessing using a single native algebra.5. STATIC ANALYSIS5.1 Satis�abilityAnalysis of XPath originally foused on fragments of PNavXPath with only down-ward axes { basially, tree patterns (see Theorem 3.9). Suh queries are always sat-is�able, so analysis onentrated on the ontainment problem. However, as pointedout in [Benedikt et al. 2005℄, satis�ability beomes more diÆult as soon as one haseither negation or upward axes, or if one restrits trees to satisfy a shema, givenfor example, by a Doument Type De�nition (DTD). Simplifying for the purposesof this disussion, a DTD D an be thought of as a triple (Ele; P; r), where (1)Ele is a �nite set of labels, ranged over by A;B; : : :; (2) r is a distinguished labelin Ele, alled the root type; (3) P is a funtion that de�nes the labels of hildrenfor a given label A: for eah A in Ele, P (A) is a regular expression over Ele.An XML-tree T satis�es (or onforms to) a DTD D = (Ele; P; r), denoted byT j= D, if (1) the root of T is labeled with r; (2) eah node n in T is labeled with alabel in Ele, (3) for eah node n of label A 2 ELE, the list of labels of the hildrenof n, listed from leftmost to rightmost, is in the regular language de�ned by P (A).To onsider the impat of a DTD, �x n propositions P1 : : : Pn, and onsidertrees that are onstrained to onsist of 3 levels: a root element labeled with r,whih has n hildren labeled P1 : : : Pn, with eah Pi in turn having one hild, whihmust be labeled with T or F . The DTD with root element r and produtionsr ! P1 : : : Pn; P1 ! T jF : : : Pn ! T jF; T ! �; F ! � onstrains a doument to beof this form. Douments of this form ode in an obvious way to valuations for thepropositions P1 : : : Pn. If we take any CNF propositional formula � = ViWj �i;jover P1 : : : Pn, we an write a orresponding negation-free CoreXPath quali�er thatholds at the root of a tree i� the tree odes a model of �. For example, (P1_:P2)^(:P1_P2) translates to [(hild::P1=hild::T_hild::P2=hild::F )^(hild::P1=hild::F _hild::P2=hild::T )℄. This argument shows:Proposition 5.1. [Benedikt et al. 2005℄ It is NP-hard to hek whether a PNavXPathexpression with only the hild axis is satis�able with respet to a DTD.Satis�ability with respet to a DTD for PNavXPath turns out to be NP-omplete:roughly speaking, one an guess a polynomial size satisfying tree using non-determinism40



and then verify that it is a satis�er by evaluating the XPath expression on it, whihwe know from the prior setions an be done in polynomial time. The line betweentratability and intratability within PNavXPath is studied extensively in [Benediktet al. 2005℄.When general negation is added, as in NavXPath and CoreXPath, it is not im-mediately obvious that satis�ability is even deidable. One argument to establishdeidability is via Proposition 3.1, and the fat that �rst-order logi over �niteordered labeled trees is known to be deidable [Thather and Wright 1968℄. Thestandard proof of deidability for �rst-order logi is via an indutive translationinto a tree automaton. Beause omplementation of an automaton requires an ex-ponential blow-up in size at every negation step, the omplexity of satis�ability for�rst-order logi over trees is known to be non-elementary [Thather and Wright1968℄. However, in the previous setion we have shown that NavXPath Booleanqueries translate into two-variable �rst-order logi. The satis�ability problem forFO2 over arbitrary �nite strutures is known to be in NExpTime [Gr�adel et al.1997℄. In addition, [Gr�adel et al. 1997℄ shows that satis�able FO2 sentenes havemodels of size exponential in the size of the sentene. However, this does not implythat the satis�ability problem for FO2 is in NExpTime, sine for this problemwe have the onstraint that the models must be trees (a onstraint whih is notexpressible by an FO2 sentene).In [Etessami et al. 2002℄ it is shown that the satis�ability of FO2 sentenes overwords is in NExpTime. We modify this below to show the satis�ability problemfor trees is in NExpTime. Sine the translation of NavXPath into FO2 given inSetion 3 is polynomial, we get a NExpTime bound for NavXPath.Theorem 5.2. There is an NExpTime algorithm deiding for a given sentene� 2 FO2 whether or not it is satis�able by some ordered tree.Reall that Proposition 3.6 shows that unnested NavXPath\, the extension ofNavXPath with an intersetion operator but where union may only our on the toplevel, an be translated in polynomial time into FO2. From this and Theorem 5.2,it follows that:Corollary 5.3. The satis�ability problem for unnested NavXPath\ (and henefor unnested NavXPath and CoreXPath) is in NExpTime.We will see that this bound is not tight for NavXPath. We do not know theomplexity of satis�ability for full NavXPath\. A related language is PDL with anintersetion operator, where the satis�ability problem has reently been shown tobe 2-ExpTime hard even on one-letter trees [Lange and Lutz 2005℄. However, thislanguage is more expressive than NavXPath\.Sine we know of no proof of Theorem 5.2 in the literature, we sketh one, follow-ing losely the approah of [Etessami et al. 2002℄. First, we translate the problemof satis�ability on unranked trees to one on binary trees, using the standard en-oding of an unranked tree as a binary tree. Let FO2[�nav;bin℄ be FO2 over theunary signature � unioned with FChild, SChild (the �rst- and seond-hild rela-tions of the binary tree representation), SChild�, Rdesendant. We onsider a formulaof FO2[�nav;bin℄ to be interpreted over binary odes of unranked trees, struturesT = (V; : : :) in whih i) (V;FChild [ SChild) is a tree of outdegree at most two,ii) eah node is related to at most one node via FChild and at most one variableSChild, with these nodes being distint, and iii) Rdesendant is the transitive losureof FChild [ SChild, and SChild� is the transitive losure of SChild. The following issimple to show:Proposition 5.4. Satis�ability of FO2 sentenes over unranked trees is reduiblein polynomial time to satis�ability of FO2[�nav;bin℄ sentenes over binary odes ofunranked trees. 41



For an integer k, a k-type is a maximal onsistent set of FO2[�nav;bin℄ formulas(in some �xed set of variables) where the maximal number of nested quanti�ers (i.e.quanti�er rank) is at most k. We will deal with k-types in 1 free variable, with suha type typially denoted �(x). A binary ode struture (V; : : :) is k-ompat if:|We do not have nodes v1; v2 2 V with the same k-type, and with v2 a desendantof v1.|Any two nodes with the same k-type have idential subtrees.The next result shows that we an redue satis�ability to a searh for ompatstrutures:Lemma 5.5. An FO2[�nav;bin℄ sentene of quanti�er rank k > 1 is satis�able atthe root of some binary ode i� it is satis�able at the root of a k-ompat binaryode.Proof. Let � be an FO2[�nav;bin℄ sentene of quanti�er rank k, and suppose �is satis�able in B = (V; : : :), and B is the struture of minimal size satisfying �.Suppose there are nodes v1; v2 2 V with the same k-type , with v2 a desendantof v1. Let S1 be all nodes that are desendants of v1 but are not desendants ofv2 (inluding v2). Let B0 be the ode formed by removing all nodes in S1 andattahing the subtrees of v2 to v1 (i.e. the �rst hild of v2 beomes the �rst hildof v1, et.). Let f be the mapping from B0 to B that maps a node beneath v1 inB0 to the orresponding node beneath v2, and is the identity elsewhere on B0. Wenow show by indution on i that for eah i � k, the i-type of a node v 2 B0 is thesame as the i-type of f(v) 2 B.For i = 0 this is lear, sine the only atomi formulas in one variable are those thatassert the label of a node, and the mapping f preserves labels. For the indutivestep i + 1, note that a two-variable formula �(x) of rank i + 1 an be taken toassert the existene or non-existene of a y with a ertain axis relation to x andwith a �xed i-type. All formulas asserting the non-existene of suh a y are learlypreserved from x to f(x), by indution. Suppose that for x 2 B0 there is a y inB with i-type � and with a given axis relationship to f(x). If y = f(w) for somew in B0, then we an hoose w as a witness to � in B0, sine w will satisfy thesame axis relation to x as y does to f(x) (by de�nition of f), and will satisfy thesame i-type as y by indution. Otherwise, it must be that y lies below v1 but isinomparable to v2. Sine y lies below v1 and v2 has the same k-type in B (henethe same i+1-type) as v1, there is y0 below v1 satisfying the same axes with respetto v1 as y has to v2, and suh that the i-type of y0 in B is the same as the i-type ofy in B. Sine y0 is below v1, y0 = f(w) for some w 2 B0, and now we are done byindution.The result of the onstrution above is a smaller tree in whih the k-type of theroot has the same type as in the original tree, thus violating minimality.To get the seond part of ompatness, let � be the set of k-types �(x) suh thatthe seond part is violated in B0: that is, there are two nodes with type � withdistint subtrees. We proeed by downward indution on n = j�j. If n > 0, hoosea node v 2 B0 satisfying a type in � that has maximal depth in the tree. Let �be the k-type of v and Sv be the forest onsisting of all desendants of v in B0.All nodes in Sv must satisfy a type outside of �. For every other node v0 in B0satisfying � , we replae the forest below v0 with Sv (making the subtree below the�rst hild of v into the subtree below the �rst hild of v0, et.). Notie that the �rstondition of ompatness (already holding of B0) ensures that v0 is not omparableto v. One an on�rm by indution that the k-type of the root is unhanged by thissubstitution, by an argument idential to that used in the �rst part of this lemma.In this proess, n is dereased by one, and hene the proess terminates with ak-ompat tree. 242



From Lemma 5.5, Theorem 5.2 follows. The depth of a k-ompat tree is at mostthe number of k-types, whih is bounded by an exponential in �. Furthermore, ak-ompat tree an be represented via a DAG whose nodes are the k-types realizedin the tree. Suh a DAG represents the tree formed by dupliating shared subtrees.It is easy to see that one an hek whether a given sentene is satis�ed on a DAGrepresentation of a tree in polynomial time. Our NExpTime algorithm just guessesa DAG struture on the k-types, and then on�rms that the orresponding treesatis�es the sentene �.It is known that FO2 is NExpTime-hard [Etessami et al. 2002℄. The exampleshowing NExpTime hardness from [Etessami et al. 2002℄ an be oded easily inunnested NavXPath\, hene we have that:Theorem 5.6. The satis�ability problem for unnested NavXPath\ is ompletefor NExpTime.From this proof, we get further information:Corollary 5.7 to the proof of Theorem 5.2. Let � be an FO2 sentene.If � is satis�able in some �nite tree, then it is satis�able in some tree of depthexponential in j�j and size doubly exponential in j�j. The same holds for E anexpression in unnested NavXPath extended with the intersetion operator.Is this NExpTime-bound tight for NavXPath or CoreXPath? First note that thefat that FO2 is NExpTime-hard does not imply the same for NavXPath, sinethe translation from FO2 to NavXPath is exponential. [Marx 2004b℄ shows thatsatis�ability of NavXPath expressions an be deided in deterministi exponentialtime.Theorem 5.8 [Marx 2004b℄. NavXPath satis�ability is deidable in ExpTime.Furthermore, sine equivalene for NavXPath expressions an be redued to satis�-ability of a single expression, the equivalene problem an be deided in ExpTime.Sine CoreXPath expressions an be mapped into NavXPath in linear time, theseresults hold for CoreXPath as well.[Marx 2004b℄ atually shows this for an extension of NavXPath that allows regularexpressions on axes. Sine the treatment in Marx's papers [Marx 2004b; 2004a;Afanasiev et al. 2005℄ is quite detailed, we give here only some omments on theproof. The proof is by redution to the satis�ability problem for DeterministiPropositional Dynami Logi (PDL) with Converse. PDL is similar to XPath, inthat it is a modal language that allows the de�nition of binary relations (in dynamilogi \programs") as well as unary relations (\formulas"). As with XPath, thegrammars for binary relations and unary relations are mutually reursive. Dynamilogis have a di�erent data model than XPath, being de�ned over node and edge-labeled graphs. However, sine formulas in the language an see only a part of thegraph at a time, the behavior of the logi on general strutures is losely relatedto its behavior on trees. Deterministi PDL with onverse is formed over a set ofatomi programs (analogous to axes in XPath) eah of whih is a funtion mapsnodes in a graph to at most one other node. For eah atomi program there is a\onverse program" representing the inverse of the binary relation. In a binary treethe \�rst hild" and \seond hild" relations are funtional; hene we an interpretDeterministi PDL with Converse with two atomi program over binary trees, withthe two programs hosen to be �rst and seond hild. Using the standard enodingof ordered unranked trees as binary trees, deterministi PDL with Converse overtwo programs an be interpreted on ordered trees. Beause PDL allows new binaryrelations to be built up from old using regular expressions, the reursive axes, and infat all of NavXPath (and more [Marx 2004b℄), an be de�ned within it. Hene thesatis�ability of XPath is redued to the satis�ability problem fo Deterministi PDL43



with Converse sentenes over binary trees. In [Vardi and Wolper 1986℄ it is shownthat deterministi PDL with onverse is deidable over all strutures is in ExpTime.The proof relies on translating PDL programs into alternating automata on trees.[Marx 2004b℄ shows that the proof in [Vardi and Wolper 1986℄ an be modi�ed togive the same bound over the lass of odings of �nite ordered trees. In [Afanasievet al. 2005℄, a variant of PDL de�ned diretly on ordered trees is given, whih yieldsan alternate route (also going through [Vardi and Wolper 1986℄) to the ExpTimebound.[Neven and Shwentik 2003℄ shows that ontainment of NavXPath expressions isExpTime-hard. An inspetion of the proof shows that only CoreXPath expressionsare needed for the hardness proof. Sine ontainment of two (unnested) NavXPathexpressions an be redued to satis�ability of a single (unnested) expression, itfollows that unnested NavXPath satis�ability is ExpTime-hard. Hene we see thatthe ExpTime bound is tight:Corollary 5.9 ombining [Neven and Shwentik 2003℄ and [Marx 2004b℄.The satis�ability problems for CoreXPath, NavXPath, and unnested NavXPath areall ExpTime-omplete.5.2 Satis�ability for other XPath fragmentsNow that we know that NavXPath and CoreXPath have ExpTime satis�ability, wean look at what happens as features are added or subtrated.Better bounds an be obtained for sublanguages of NavXPath: Satis�ability ofNavXPath with only hild and parent is shown to be PSpae-omplete in [Benediktet al. 2005℄. Satis�ability for PNavXPath is easily seen to be in NP (see [Hidders2003℄), and this is extended to PFOXPath in [Benedikt et al. 2005℄. It is also shownin [Benedikt et al. 2005℄ that very simple fragments of PNavXPath have an NP-omplete satis�ability problem { in the presene of both downward and upwardaxes, the problem is NP-omplete, as well as in the presene of both left and rightsibling axes. For PNavXPath with only downward axes, all expressions are learlysatis�able; however, the satis�ability problem with respet to a given DTD an beNP-hard [Benedikt et al. 2005℄.We now onsider satis�ability as we move up in expressiveness from NavXPath.It is shown in [Benedikt et al. 2005℄ that the satis�ability of a FOXPath expressionwith respet to a DTD is undeidable. By using sibling axes instead of a DTD, onean see the following:Theorem 5.10 [Geerts and Fan 2005℄. The satis�ability problem for FOXPathis undeidable.The proof uses a redution from the halting problem for two-register mahineswhih is known to be undeidable (see, e.g., [B�orger et al. 1997℄). Although fullFOXPath is undeidable, the exat borderline of deidability is not well understood.Question 5.11. Is FOXPath without the sibling axes deidable?In fat, deidability is open even in the ase of FOXPath with only hild andparent.One an also look at deidability on restrited lasses of douments:Question 5.12. Is FOXPath deidable on douments with no branhing (i.e.those where every element has at most one hild)?5.3 ContainmentThe ontainment problem takes as input XPath expressions E and E0, askingwhether the output of E is ontained in the output of E0 on any soure doumentat any node. Variations of the problem are ontainment with respet to a DTD,44



whih takes a DTD as an additional argument, asking whether the above holds forE and E0 over any soure doument satisfying the DTD. A speial ase of this isthe ontainment problem for a �nite alphabet, whih takes a label alphabet � asadditional parameter, asking whether ontainment holds for all soure doumentswith labels in �.The ontainment problem has been investigated extensively in the relational asefor onjuntive queries, where it has lose onnetions both to issues in data integra-tion and query optimization, as well as to onstraint satisfation [Kolaitis and Vardi2000; Gottlob et al. 2001℄. The general onjuntive query ontainment problem isknown to be NP-omplete; however, many speial ases are known to be in PTime,inluding those in whih the dependeny graphs of the queries have bounded tree-width [Chekuri and Rajaraman 1997℄ or the queries have bounded hypertree-width[Gottlob et al. 1999℄. In the ase of onjuntive queries, ontainment of Q1 in Q2redues to determining whether Q1 is satis�able on an instane formed from Q2,hene the omplexity of ontainment is bounded by the ombined omplexity ofevaluation. In the XPath setting there is no obvious orrespondene between aquery and a \anonial instane", and indeed the omplexity of ontainment andevaluation turn out to be quite di�erent.Starting with the relational ase as motivation, [Amer-Yahia et al. 2001; Miklauand Suiu 2002; Wood 2001℄ initiated the study of ontainment for XPath, beginningwith sublasses of NavXPath without either the union operator or disjuntion within�lters (onjuntive NavXPath). The survey artile of Shwentik [Shwentik 2004℄gives a overview of the tehniques used in getting bounds on ontainment; herewe summarize only some of the results and the open questions. A modi�ation ofthe minimal model tehnique for onjuntive queries shows that the ontainmentproblem for onjuntive Navigational XPath is in o-NP { given queries P and Qone an generate a �nite set of instanes Ii : i < n of size polynomial in P suhthat P � Q i� eah Ii satis�es Q [Miklau and Suiu 2002℄. Sine satisfation anbe heked in linear time, a o-NP algorithm is simply to guess an Ii that fails tosatisfy Q. In [Amer-Yahia et al. 2001℄, it is shown that for onjuntive NavXPathwith only desendant axes the ontainment problem is in PTime, while in [Wood2001℄ it is noted that the same holds for onjuntive NavXPath with only hild axes(indeed this last observation follows diretly from the PTime bounds for aylionjuntive queries in [Chekuri and Rajaraman 1997℄). When both desendant axesand hild axes are present the problem was shown to be o-NP-omplete [Miklauand Suiu 2002℄. [Neven and Shwentik 2003℄ shows that the ontainment problemfor onjuntive NavXPath with a �nite alphabet is PSpae-omplete, while theontainment problem with respet to a DTD is ExpTime-omplete. A �ner analysisof the omplexity of ontainment for onjuntive NavXPath with respet to a DTDand with respet to integrity onstraints is given in [Wood 2003℄.The omplexity of ontainment for fragments of XPath larger than onjuntiveNavXPath was studied by Neven and Shwentik. For PNavXPath, the general on-tainment problem remains in o-NP, while if the alphabet is �xed the problem isagain PSPACE-omplete [Neven and Shwentik 2003℄. For full NavXPath, the on-tainment problem, even with respet to a DTD, is in ExpTime, sine it is reduibleto the satisfation problem: this is noted in [Marx 2004b℄. On the other hand, sine[Neven and Shwentik 2003℄ shows that ontainment of NavXPath expressions isExpTime-hard, we have:Theorem 5.13 Combining [Neven and Shwentik 2003℄ and [Marx 2004b℄.The ontainment problem for NavXPath is ExpTime-omplete, as is the ontain-ment problem for �nite alphabet and the ontainment problem with respet to aDTD.When we turn to the XPath fragments with data values, the omplexity of on-45



tainment is not ompletely understood. The results of Deutsh and Tannen [Deutshand Tannen 2001℄ imply that ontainment for PFOXPath is o-NP-omplete, pro-vided that the transitive sibling axes are not permitted and "wildard steps" (hildsteps with no restrition on the label) are disallowed. Their tehnique also yieldsa �P2 bound for full PFOXPath, although neither their terminology nor their frag-ments math PFOXPath exatly. They also establish �P2 bounds in the presene ofintegrity onstraints alled SXICs: these are inomparable to both �nite alphabetsand DTDs. [Deutsh and Tannen 2001℄ also provides lower bounds for ontain-ment in the presene of integrity onstraints. Neven and Shwentik [Neven andShwentik 2003℄ show that PFOXPath without sibling axes and without wildard isin �P2 , and that the ontainment problem for PFOXPath extended with inequalityis undeidable.To our knowledge, the deidability of ontainment for general onjuntive FOXPathqueries with respet to a DTD or a �nite alphabet is open. Indeed we do not knowwhether one an deide ontainment of onjuntive queries over signature �0dom 6in the presene of DTDs. The undeidability tehniques of [Neven and Shwentik2003℄ rely on disjuntion, while [Deutsh and Tannen 2001℄ provides undeidabilityresults with respet to integrity onstraints. The upper bounds of both [Neven andShwentik 2003; Deutsh and Tannen 2001℄ rely on the use of an in�nite alphabet.5.4 Further Bibliographi RemarksWhile above we have dealt with the satis�ability and ontainment problems, abroader goal would be an algebrai simpli�ation framework for XPath. [Benediktet al. 2003℄ presents algebrai equations for simpli�ation of XPath expressions. Asystem of equations is presented that is omplete for equivalene of XPath expres-sions for a very small fragment (without �lters and with only hild axes). [Olteanuet al. 2002℄ gives a rewriting system geared not toward general equivalene, but forremoving bakward axes. [Amer-Yahia et al. 2001℄ deals not with equivalene butwith optimization; it presents an algorithm for minimization of tree patterns in thepresene of integrity onstraints.A natural question not addressed above is the implementation of satis�abilityand ontainment tests for XPath. [Benedikt et al. 2005℄ implements a satis�abilitytest for a fragment of PNavXPath,in the presene of DTDs, based on a onversionto tree automata. [Lakshmanan et al. 2004℄ implements a satis�ability test fora tree pattern language that inludes data value manipulation (inomparable inexpressiveness with the XPath languages we onsider here).An additional stati analysis problem is reognizing whether a query is in a givenXPath fragment. In the ontext of navigational XPath, the problem of reognizingwhether a �rst-order logi query is in NavXPath is open. This is losely-related tothe (likewise open) problem of determining whether a tree automaton is equivalentto an FO2 sentene . The problem of determining whether a �rst-order queryover �0dom is in FOXPath is undeidable { this follows from the results of [Benediktet al. 2005℄. The problem of determining whether a onjuntive query over �0dom isexpressible in onjuntive FOXPath has not been investigated (to our knowledge).Likewise, nothing is known onerning the problem of determining whether a �rst-order query (or a NavXPath query) is equivalent to a query in PNavXPath.Aknowledgements: We thank Maarten Marx and Frank Neven for ommentson this draft.REFERENCESAbiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.6Reall that this is the relational signature with binary prediates for the graph of eah attributefuntion, unary prediates for the labels, and binary prediates for the major axes.46
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