
Fast and Simple Relational Processing
of Uncertain Data

Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu

Saarland University Database Group
Saarbrücken, Germany

{lublena, jansen, koch, olteanu}@infosys.uni-sb.de

Abstract— This paper introduces U-relations, a succinct and
purely relational representation system for uncertain databases.
U-relations support attribute-level uncertainty using vertical
partitioning. If we consider positive relational algebra extended
by an operation for computing possible answers, a query on the
logical level can be translated into, and evaluated as, a single
relational algebra query on the U-relational representation. The
translation scheme essentially preserves the size of the query in
terms of number of operations and, in particular, number of
joins. Standard techniques employed in off-the-shelf relational
database management systems are effective for optimizing and
processing queries on U-relations. In our experiments we show
that query evaluation on U-relations scales to large amounts of
data with high degrees of uncertainty.

I. I NTRODUCTION

Several recent works [10], [9], [8], [2], [15], [4], [6]
aim at developing scalable representation systems and query
processing techniques for large collections of uncertain data
as they arise in data cleaning, Web data management, and
scientific databases. Most of them are based on a possible
worlds semantics, and for all of them such a semantics can be
conveniently defined.

Four desiderata for representation systems for incomplete
information appear important.

1. Expressiveness. The representation should be closed under
the application of (relational algebra) queries and data cleaning
algorithms (which remove some possible worlds). That is, the
results of applying such operations to the represented data
should be again representable within the formalism.

2. Succinctness. It should be possible to represent large sets
of alternative worlds using fairly little space.

3. Efficient query evaluation. A trade-off is required be-
tween the succinctness of a representation formalism and
the complexity of evaluating interesting queries. This trade-
off follows from established theoretical results [1], [11], [6].
However, while the formalisms in the literature tend to differ
in succinctness, several have polynomial-time data complexity
for (decision) problems such as tuple possibility underpositive
(but not full) relational algebra. This includes v-tables [12],
[11], uncertainty-lineage databases (ULDBs) [8], and world-
set decompositions (WSDs) [6].

4. Ease of usefor developers and researchers in the sense
that the representation system can be easily put on top of a

relational DBMS. This in particular includes that queries on
the logical schema level can be translated down to, ideally,
relational algebra queries on the representation relations and
that this translation is simple and easy to implement. This
goal is motivated by the availability and maturity of existing
relational database technology.

An important aspect of a representation system is whether
it represents uncertainty at theattribute-levelor at thetuple-
level. Attribute-level representation refers to the succinct rep-
resentation of relations in which two or more fields of the same
tuple can independently take alternative values [6]. Attribute-
level representation, as supported by c-tables [12] and WSDs,
offers finer granularity of independence than tuple-level ap-
proaches like [8], [10], [2]. This is useful in applicationslike
data cleaning, where the values of several fields of a single
tuple can be independently uncertain. For instance, the US
Census Bureau maintains relations with dozens of columns
(> 50), most of which may require cleaning [4].

U-relations. In this paper, we develop and studyU-relations,
a representation system that we introduce with the following
example.

Example I.1. Let us assume that an aerial photograph of a
battlefield shows four vehicles at distinct positions 1 to 4.The
resolution of the image does not allow for the identificationof
vehicle types, but we can draw certain conclusions from earlier
reconnaissance and a calculation of the maximum distance
each vehicle may have covered since. Say we know that
vehicle 1 is (a) a friendly tank. Vehicles 2 and 3 are (b) a
friendly transport and (c) an enemy tank, but we do not know
which one is which. Nothing is known about vehicle 4. Fig. 1a
shows a schematic drawing of how this scenario can arise.
Only 1 is in the range of (a); 2 and 3 are in the ranges of (b)
and (c); and position 4 is near the border of the photograph
but outside the ranges of (a), (b), and (c), so this vehicle must
have newly moved onto the map.

We want to model this by an uncertain database of schema
R(Id, Coord, Type, Faction), representing the ids (1–4), co-
ordinate positions, types, and factions of the vehicles on the
map. Let us assume there are only two vehicle types (tank or
transport) and two factions (friend or enemy). Then there are
eight possible worlds. We obtain one by taking three choices–

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


b

c

?

?2

3a

4

1

W Var Rng
x 1
x 2
y 1
y 2
z 1
z 2

U1 D TR Id
a 1

x 7→ 1 b 2
x 7→ 2 b 3
x 7→ 1 c 3
x 7→ 2 c 2

d 4

U2 D TR Type
a Tank
b Transport
c Tank

y 7→ 1 d Tank
y 7→ 2 d Transport

U3 D TR Faction
a Friend
b Friend
c Enemy

z 7→ 1 d Friend
z 7→ 2 d Enemy

(a) (b)
Fig. 1. Map with moving vehicles (a) and U-relational database representation of the possible worlds at the time the aerial photograph detecting vehicles
1,2,3,4 was taken (b).

answering the following questions: Has the friendly transport
(b) now become vehicle 2 (x 7→ 1) or 3 (x 7→ 2)? Is vehicle
4 a tank (y 7→ 1) or a transport (y 7→ 2)? Is vehicle 4 friendly
(z 7→ 1) or an enemy (z 7→ 2)? Thus the uncertainty can be
naturally modelled using three variablesx, y, z that each can
independently take one of two values.

We model this scenario by the U-relational database shown
in Fig. 1b. We use vertical partitioning (cf. e.g. [7], [16])to
achieve attribute-level representation.R is represented using
four U-relations, one for each column ofR. The U-relation for
the coordinate positions (which are all certain) is not shown
since we do not want to use it subsequently, but of course,
conceptually, coordinate positions are an important feature of
the example and have to be part of the schema. In addition
there is a relationW which defines the possible values the
three variables can take.

We can compute a vertical decomposition of one world
given by a valuationθ of the variablesx, y, z by (1) removing
all the tuples from the U-relations whoseD columns contain
assignments that are inconsistent withθ (For example, if
θ = {x 7→ 1, y 7→ 1, z 7→ 1} then we remove the third and
fifth tuples ofU1 and the fifth tuples ofU2 andU3.) and then
(2) projecting theD columns away. Of course we can resolve
the vertical partitioning by joining the decomposed relations
on the tuple id columnsTR. 2

U-relations have the following properties:

• Expressiveness: U-relations arecompletefor finite sets of
possible worlds, that is, they allow for the representation
of any finite world-set.

• Succinctness: U-relations represent uncertainty on the
attribute level. Even though they allow for more ef-
ficient query evaluation, U-relations are, as we show,
exponentially more succinct than ULDBs and WSDs.
That is, there are (relevant) world-sets that necessarily
take exponentially more space to represent by ULDBs or
WSDs than by U-relations.

• Leveraging RDBMS technology: U-relations allow for
a large class of queries (positive relational algebra ex-
tended by the operation “possible”) to be processedusing
relational algebra only, and thus efficiently in the size
of the data. Our approach is the first so far to achieve
this for the above-named query language. Indeed, this
not only settles that there is a succinct and complete
attribute-levelrepresentation for which the so-called tuple

Q-possibility problem for positive relational algebra is in
polynomial time (previously open [6]) but puts a rich
body of research results and technology at our disposal
for building uncertain database systems.
This makes U-relations the most efficient and scalable
approach to managing uncertain databases to date.

• Parsimonious translation: The translation from rela-
tional algebra expressions on the logical schema level
to query plans on the physical representations replaces
a selection by a selection, a projection by a projection,
a join by a join (however, with a more intricate join
condition), and a “possible” operation by a projection.
We have observed that state-of-the-art RDBMS do well
at finding efficient query plans for such physical-level
queries.

Ease of use:A main strength of U-relations is their simplicity
and low “cost of ownership”:

• The representation system is purely relational and in
close analogy with relational representation schemes for
vertically decomposed data. Apart from the column store
relations that represent the actual data, there is only a sin-
gle auxiliary relationW (which we need for computing
certain answers, but not for possible answers).

• Query evaluation can be fully expressed in relational
algebra. The translation is quite simple and can even be
done by hand, at least for moderately-sized queries.

• The query plans obtained by our translation scheme are
usually handled well by the query optimizers of off-the-
shelf relational DBMS, so the implementation of special
operators and optimizer extensions is not strictly needed
for acceptable performance.

Thus U-relations are not only suited as a representation
system for dedicated uncertain database implementations such
as MayBMS [4], but are also relevant to “casual users” of
representation systems for uncertain data, such as researchers
in data cleaning and data integration who want to store and
query uncertain data without great effort.

Apart from those implicitly mentioned above, we make the
following further contributions in this paper.

• We study algebraic query optimization and present equiv-
alences that hold on vertically decomposed representa-
tions. We address query optimization using those in the
context of managing uncertainty with U-relations.

• We present an algorithm for normalizing a U-relational
representation obtained from a query. Normalized U-



relational databases yield a conceptually simple algo-
rithm for computing the certain answers of queries. In
particular, certain answer tuples on normalized tuple-
level representations can be computed using relational
algebra only, which is not true in general for previous
representation systems.

• We provide experimental evidence for the efficiency and
relevance of our approach.

The structure of the paper is as follows. Section II estab-
lishes U-relations formally. Section III presents our reduction
from queries on the logical level to relational algebra on the
level of U-relations and addresses algebraic query evaluation.
Section IV presents the normalization algorithm. Section V
discusses the relationship between U-relations, WSDs and
ULDBs and argues that U-relations combine the advantages
of the other two formalisms without sharing their drawbacks.
Section VI describes how probabilistic information can be
modelled using a natural extension of U-relations. In Sec-
tion VII, we report on our experiments with U-relations. We
conclude with Section VIII.

II. U- RELATIONAL DATABASES

We defineworld-sets in close analogy to the case of c-
tables [12]. Consider a finite set of variables over finite
domains. Apossible worldis represented by a total valuation
(or assignment)f :Var 7→ Rng of variables to constants
in their domains, and the world-set is represented by the
finite set of all total valuations1. We represent relationally the
variable set and the associated domains by aworld-tableover
schemaW (Var,Rng) such thatW consists of all pairs(x, v)
of variablesx and valuesv in the domain ofx.

Example II.1. The world-tableW in Fig. 1 defines three
variablesx, y, z, whose common domain is{1, 2}. The number
of worlds defined byW is 2 · 2 · 2 = 8. 2

Given a world-tableW , a world-set descriptoroverW , or
ws-descriptor for short, is a valuationd such that its graph
is a subset ofW . If d is a total valuation, then it represents
one world. In our examples, to represent the entire world-set
we use anemptyws-descriptor, as a shortcut for a singleton
ws-descriptor with a new variable with a singleton domain.

We are now ready to define databases of U-relations.

Definition II.2. A U-relational databasefor a world-set over
schemaΣ = (R1[A1], . . . , Rk[Ak]) is a tuple

(U1,1, . . . , U1,m1
, . . . , Uk,1, . . . , Uk,mk

,W ),

whereW is a world-table and each relationUi,j has schema
Ui,j [Di,j ; TRi

;Bi,j ] such thatDi,j defines ws-descriptors
overW , TRi

defines tuple ids, andBi,1 ∪ · · · ∪Bi,mi
= Ai.

A ws-descriptor{c1 7→ l1, . . . , ck 7→ lk} is relationally
encoded inπDi,j

(Ui,j) of arity n ≥ k as a tuple(c1 7→

1This is a generalization of world-set decompositions of [4], where com-
ponent ids are variables and local world ids are domain values.

l1, . . . , ck 7→ lk, ck+1 7→ lk+1, . . . , cn 7→ ln), where each
ci 7→ li is a cj 7→ lj for any j and all i with 1 ≤ j ≤
k < i ≤ n.

Although we speak of vertical partitioning, we do not
require the value columns ofUi,j to disjointly partition the
columns ofRi. Indeed, overlap may be useful to speed up
query evaluation, see e.g. [16].

We next define the semantics of a U-relational database. To
obtain a possible world we first choose a total valuationf
over W . We then process the U-relations tuple by tuple. If
the functionf extends2 the ws-descriptord of a tuple of the
form (d, t, a) from a U-relation of schema(D,T ,A), we insert
in that world the valuesa into theA-fields of the tuple with
identifiert. In general this may leave some tuples partial in the
end (i.e., the values for some fields have not been provided).
These tuples are removed from the world.

We require, for a U-relational database(U1, . . . , Un,W ) to
be considered valid, that the representation does not provide
several contradictory values for a tuple field in the same world.
Formally, we require, for all1 ≤ i, j ≤ n, and tuplest1 ∈
Ui[Di, T i, Ai] and t2 ∈ Uj[Dj , T j , Aj ] such thatUi andUj
are vertical partitions of the same relation, that if there is a
world that extends botht1.Di and t2.Dj , then for allA ∈
(Ai ∩Aj), t1.A = t2.A must hold.

Example II.3. Suppose there are two U-relations with
schemataU1[D1;TR;A,B] andU2[D2;TR;B,C] that jointly
represent columnsA, B, andC of a relationR. Assume tuples
(c1, 1, t1, a, b) ∈ U1 and (c2, 2, t1, b

′, c) ∈ U2, b 6= b′. Then
U1 andU2 cannot form part of a valid U-relational database
because there would be a world withc1 7→ 1, c2 7→ 2 in which
the tuple fromU1 requires fieldt1.B to take valueb while the
tuple fromU2 requires the same field to take valueb’. 2

A salient property of U-relational databases is that they form
a complete representation systemfor finite world-sets.

Theorem II.4. Any finite set of worlds can be represented as
a U-relational database.

III. QUERY PROCESSING

The semantics of a queryQ on a world-set is to evaluate
Q in each world. For complete representation systems like
U-relational databases, there is an equivalent, more efficient
approach [12]: TranslateQ into a query Q̂ such that the
evaluation ofQ̂ on a U-relational encoding of the world-set
produces the U-relational encoding of the answer toQ.

Queries on vertical decompositions.U-relations rely essen-
tially on vertical decomposition for succinct (attribute-level)
representation of uncertainty. To evaluate a query, we first
need to reconstruct relations from vertical decompositions by
(1) joining two partitions on the common tuple id attributes
and (2) discarding the combinations that yield inconsistent ws-
descriptors. We call this operationmergeand give its precise

2That is, for allx on whichd is defined,d(x) = f(x).



definition in Fig. 4, where the two above conditions are defined
by α andψ, respectively.

Example III.1. Consider the U-relational database of Fig. 1.
The queryσFaction=′Enemy′∧Type=′Tank′(R) lists the enemy
tanks on the map. To answer this query, we need tomerge
the necessary partitions ofR and obtain a new query with
merge(πFaction(R), πType(R)) in the place ofR. 2

Our query evaluation approach can take full advantage
of query evaluation and optimization techniques on vertical
partitions. First, it does not require to reconstruct the entire
relations involved in the query, but rather only the necessary
vertical partitions. Second, necessary partitions can be flexibly
merged in during query evaluation. Thus early and late tuple
materialization [16] carry over naturally to our framework.
For this, ourmergeoperator allows to merge two partitions
not only if they are given in their original form, but also if
they have been modified by queries.

The first advantage only holds for so-calledreducedU-
relational databases, which do not have tuples that cannot be
completed in any world. That is, each tuple of a reduced U-
relation can always be completed to an actual tuple in a world.
The advantage becomes evident even for a simple projection
query. Consider a reduced database containing a U-relation
U defining theA attribute ofR. To evaluateπA(R) we do
not need to merge in all U-relations defining the attributes
of R and later project onA. Instead, the answer is simply
U . In the following, we assume that the input database is
always reduced. As we will discuss next, our query evaluation
technique always produces reduced U-relations for reduced
input U-relational databases.

Example III.2. Consider the following non-reduced database
of two U-relations:

U1 D T A
c1 7→ 1 t1 a1

c2 7→ 1 t2 a2

U2 D T B
c1 7→ 1 t1 b1
c1 7→ 2 t1 b2

In each U-relation the second tuple cannot find a partner in
the other U-relation with which a complete tuple (with both
attributes A and B) can be formed. If these second tuples are
removed, the database is reduced. 2

We can always reduce a U-relational database as follows:
We filter each U-relation using semijoins with each of the
other U-relations representing data of the same relationRi.
The semijoin conditions are theα andψ-conditions.

Proposition III.3. Given a schemaΣ, there is a relational
algebra query that reduces a U-relational database overΣ.

Algebraic equivalences.Fig. 2 gives algebraic equivalences of
relational algebra expressions with merge operator on vertical
decompositions: Merging is the reverse of vertical partitioning,
it is commutative and associative, it commutes with selections,
joins, and projections.

Standard heuristics known from classical query optimization
for relational algebra apply here as well. Intuitively, we

merge(πX(R), πA−X(R)) = R, whereA = sch(R) (1)

merge(R,S) = merge(S,R) (2)

merge(merge(R,S), T ) = merge(R,merge(S,T )) (3)

σφ(X)(merge(R,S)) = merge(σφ(X)(R), S) (4)

whereX ⊆ sch(R)

merge(R,S) ⊲⊳φ(X,Y ) T = merge(R ⊲⊳φ(X,Y ) T, S) (5)

whereX ∪ Y ⊆ sch(R) ∪ sch(T )

πX(merge(R,S)) = merge(πX∩A(R), πX∩B(S)) (6)

wheresch(R) = A, sch(S) = B

Fig. 2. Algebraic equivalences for relational algebra queries with merge
operator.

πDATE

⊲⊳CUSTKEY

σNAME=Al

Cust

σDATE>2003

merge

πDATE(Ord) πCUST(Ord)

Query plan P1.
πDATE

⊲⊳CUSTKEY

σNAME=Al

Cust

merge

σDATE>2003

πDATE(Ord)

πCUST(Ord)

merge

π∅

⊲⊳CUSTKEY

σNAME=Al

Cust

πCUST(Ord)

σDATE>2003

πDATE(Ord)

Query plan P2. Query plan P3.

Fig. 3. Three equivalent query plans.

usually push down projections and selections and merge in
U-relations as late as possible. An interesting new case is
the decision on join ordering among an explicit join from
the input query and a join due to merging: If the merge is
executed before the explicit join, it may reduce the size of
an input relation to join. We have seen in our experiments
that the standard selectivity-based cost measures employed by
relational database management systems do a good job, as
long as the queries remain reasonably small.

Example III.4. Consider a U-relational databaseU that rep-
resents a set of possible worlds over two TPC-H relations Ord
and Cust (short for Order and Customer, respectively) [17].U
has one U-relation for each attribute of the two relations, of
which we only list DATE and CUSTKEY for Ord, and NAME
and CUSTKEY for Cust. The following query finds all dates
of orders placed by Al after 2003:

πDATE(σNAME=′Al′(Cust) ⊲⊳CUSTKEY σDATE>2003(Ord))

Fig. 3 shows three possible plans P1, P2, and P3 using
operators on vertical decompositions. The naı̈ve plan P1 first
reconstructs Ord from its two partitions then applies the
selection and the join with Cust. In P2 and P3 the merge
operator is pushed up in the plans, first immediately above the



Let U1 := [[Q1]] with schema[D1, T 1, A1],

U2 := [[Q2]] with schema[D2, T 2, A2],

α :=
^

T∈T 1∩T2

(U1.T = U2.T ),

ψ :=
^

(D′
.Var = D

′′

D′∈U1.D1,D
′′∈U2.D2

.Var ⇒ D
′
.Rng= D

′′
.Rng).

[[possible(Q1)]] := πA1
(U1)

[[πX(Q1)]] := πD1,T1,X
(U1), whereX ⊆ A1

[[σφ(Q1)]] := σφ(U1), whereφ on A1

[[Q1 ⊲⊳φ Q2]] := πD1,D2,T 1,T2,A,B
(U1 ⊲⊳φ∧ψ U2),

whereT 1 ∩ T 2 = ∅

[[merge(Q1, Q2)]] := πD1,D2,T 1∪T2,A,B
(U1 ⊲⊳α∧ψ U2)

Fig. 4. Translation of queries with merge into queries on U-relations.

selection (P2), and then above the join operator (P3). Among
the three plans, P1 is clearly the least efficient. However,
without statistics about the data, one cannot tell which of P2
and P3 should be preferred. If DATE>2003 is very selective,
then merging immediately thereafter as in P2 will lead to the
filtering of tuples fromπCUSTKEY(Ord) and thus fewer tuples
will be processed by the join. Is this not the case, then first
merging only increases the number and size of the tuples that
have to be processed by the join. Also, in P3 all value attributes
except for DATE are projected away after the join as they are
not needed for the final result. 2

Queries on U-relations. Fig. 4 gives the function[[·]] that
translates positive relational algebra queries withpossibleand
mergeoperators into relational algebra queries on U-relational
databases.

The possible operator applied on a U-relationU closes
the possible worlds semantics by computing the set of tuples
possible inU . It thus translates to a simple projection on
the value attributes ofU . The result of a projection is a U-
relation whose value attributes are those from the projection
list (thus the input ws-descriptors and tuple ids are preserved).
Selections apply conditions on the value attributes.

The merge operator that reconstructs a relation from its ver-
tical partitions was already explained. Similarly to the merge,
the join uses theψ-condition to discard tuple combinations
with inconsistent ws-descriptors. Fig. 4 gives the translation in
caseU1 andU2 do not contain partitions of the same relation.
For the case of self-joins we require aliases for the copies of
the relation involved in it such that they do not have common
tuple id attributes. Example III.7 will illustrate this.

The union ofU1 andU2 like the ones from Fig. 4 is sketched
next. We assume thatA1 = A2, T 1∩T 2 = ∅, and the tuples of
different relations have different ids. To bringU1 andU2 to the
same schema, we first ensure ws-descriptors of the same size
by padding the smaller ws-descriptors with already contained
variable assignments, and add new (empty) columnsT 2 to U1

andT 1 to U2. We then perform the standard union.

From our translation[[·]] it immediately follows that

Theorem III.5. Positive relational algebra queries extended
with the possible operator can be evaluated on U-relational
databases using relational algebra only.

Example III.6. Recall the U-relational database of Fig. 1
storing information about moving vehicles. Consider a query
asking for ids of enemy tanks:

S = πId(σType=′Tank′∧Faction=′Enemy′(R))

After merging the necessary partitions of relationR and
translating it into positive relational algebra, we obtain

πId(σType=′Tank′∧Faction=′Enemy′(U1 ⊲⊳α1∧ψ1
U2 ⊲⊳α2∧ψ2

U3)),

where the conditionsψ1, ψ2, α1, andα2 follow the translation
given in Fig. 4. The three vertical partitions are joined on
the tuple id attributes (α1 andα2) and the combinations with
conflicting mappings in the ws-descriptors are discarded (ψ1

andψ2). Before and after translation, the query is subject to
optimizations as discussed earlier. (In this case, a good query
plan would first apply the selections on the partitions, then
project away the irrelevant value attributes Type and Faction,
and then merge the partitions).

U4 D1 D2 TS Id
x 7→ 1 c 3
x 7→ 2 c 2
y 7→ 1 z 7→ 2 d 4

The above U-relationU4 encodes the query answer. 2

Example III.7. We continue Example III.6 and ask whether
it is possible that the enemy has two tanks on the map, and if
so, which vehicles are those. For this, we compute the pairs of
enemy tanks as a self-join ofS: (S s1) ⊲⊳s1.Id6=s2.Id (S s2).
This query is in turn equivalent to a self-join ofU4.

U5 D1 D2 D3 Ts1 Ts2 Id1 Id2

x 7→ 1 y 7→ 1 z 7→ 2 c d 3 4
x 7→ 2 y 7→ 1 z 7→ 2 c d 2 4
y 7→ 1 z 7→ 2 x 7→ 1 d c 4 3
y 7→ 1 z 7→ 2 x 7→ 2 d c 4 2

The answer is encoded by the above U-relationU5. Note that
the combinations of the first two tuples ofU4 are not inU5,
because they have inconsistent ws-descriptors and are filtered
out using theψ-condition (vehiclec cannot be at the same
time at two different positions). To obtain the possible pairs
of vehicle ids, we apply the possible operator onU5. This is
expressed as the projection on the value attributes ofU5. 2

Our translation yields relational algebra queries, whose
evaluation always produces tuple-level U-relations, i.e., U-
relations without vertical decompositions, by joining and
merging vertical partitions of relations. Following the defini-
tion of the merge operator, if the input U-relations are reduced,
then the result of merging vertical partitions is also reduced.
We thus have that

Proposition III.8. Given a positive relational algebra queryQ
and a reduced U-relational databaseU , [[Q]](U) is a reduced
U-relational database.



Algorithm 1 : Normalization of ws-descriptors.
Input : Reduced U-relational databaseU = (U1, . . . , Um,W )
Output : Normalized reduced U-relational database.
begin

R := the relation consisting of all pairs of variables(ci, cj)
that occur together in some ws-descriptor ofU ;
G := the graph whose node set is the set of variables and
whose edge relation is the refl. and trans. closure ofR;
Compute the connected components ofG;
foreach U-relation Uj(D1, . . . , Dn, T ,A) of U do

U ′
j := empty U-relation overU ′

j(Var,Rng, T ,A);
foreach t ∈ U do

Gi := connected component ofG with id i such
that the nodest.Var1, . . . , t.Varn are inGi;
{ci1 , . . . , cik} = Gi − {t.Var1, . . . , t.Varn};
foreach
li1 : (ci1 , li1) ∈ W, . . . , lik : (cik , lik ) ∈W do

/* Compute a new domain value (f|Gi| is
either the identity or better, for atomicl’s, an
injective function int|Gi| → int) */;
l := f|Gi|(t.Rng, li1 , . . . , lik);
U ′
j := U ′

j ∪ {(Gi, l, t.T , t.A)};

W ′ :=
S

i
{(gi, (l1, . . . , lm)) | Gi = {c1, . . . , cm} and

(c1, l1), . . . , (cm, lm) ∈W};
Output (U ′

1, . . . , U
′
m,W

′);
end

IV. N ORMALIZATION OF U-RELATIONS

U-relations do not forbid large ws-descriptors. The ability to
extend the size of ws-descriptors is what yields efficient query
evaluation on U-relations. However, large ws-descriptorscause
an inherent processing overhead. Also, after query evaluation
or dependency chasing on a U-relational database, it may
happen that tuple fields, which used to be dependent on each
other, become independent. In such a case, it is desirable to
optimize the world-set representation [6]. We next discussone
approach to normalize U-relational databases by reducing large
ws-descriptors to ws-descriptors of size one. Normalization
is an expensive operation per se, but it is not unrealistic to
assume that uncertain data is initially in normal form [4], [6]
and can subsequently be maintained in this form.

Definition IV.1. A U-relational database is normalized if all
ws-descriptors of its U-relations have size one.

Algorithm 1 gives a normalization procedure for U-relations
that determines classes of variables that co-occur in some
ws-descriptors and replaces each such class by one variable,
whose domain becomes the product of the domains of the
variables from that class. Fig. 5 shows a U-relational database
and its normalization.

Theorem IV.2. Given a reduced U-relational database, Algo-
rithm 1 computes a normalized reduced U-relational database
that represents the same world-set.

Computing certain answers.Given a set of possible worlds,
we call a tuple certain iff it occurs in each of the worlds. It

U D1 D2 T A
c1 7→ 1 c1 7→ 1 t1 a1

c1 7→ 1 c2 7→ 2 t2 a2

c1 7→ 2 c1 7→ 2 t2 a3

c3 7→ 1 c3 7→ 1 t3 a4

c3 7→ 2 c3 7→ 2 t3 a5

W Var Rng
c1 1
c1 2
c2 1
c2 2
c3 1
c3 2

(a) U-relational database

U ′ D T A
c12 7→ (1, 1) t1 a1

c12 7→ (1, 2) t1 a1

c12 7→ (1, 2) t2 a2

c12 7→ (2, 1) t2 a3

c12 7→ (2, 2) t2 a3

c3 7→ 1 t3 a4

c3 7→ 2 t3 a5

W ′ Var Rng
c12 (1, 1)
c12 (1, 2)
c12 (2, 1)
c12 (2, 2)
c3 1
c3 2

(b) Database from (a) normalized

Fig. 5. Normalization example.

is known that the tuple certainty problem is coNP-hard for a
number of representation systems, ranging from attribute-level
ones like WSDs to tuple-level ones like ULDBs [6]. In case of
tuple-level normalized U-relations, however, we can efficiently
compute the certain tuples using relational algebra.

Lemma IV.3. Tuple a is certain in a tuple-level normalized
U-relation U iff there exists a variablex such that(x 7→
l, t, a) ∈ U for each domain valuel of x and some tuple idt.

The condition of the lemma can be encoded as the following
domain calculus expression:

cert(U) := {a | ∃x∀l (x, l) ∈ W ⇒ ∃t(x, l, t, a) ∈ U}

The equivalent relational algebra query on a tuple-level nor-
malized U-relational database(U [Var,Rng, TR, A],W ) is

πA(πVar (W ) × πA(U) − πVar ,A(W × πA(U) − πVar ,Rng,AU)).

V. SUCCINCTNESS ANDEFFICIENCY

This section compares U-relational databases with WSDs
[4], [6] and ULDBs [8] using two yardsticks: succinctness,
i.e., how compactly they can represent world-sets, and effi-
ciency of query evaluation. Due to lack of space, we defer a
more complete comparison (with proofs and examples) to an
extended version of this paper [3].

WSDs vs. U-Relations.WSDs are essentially normalized U-
relational databases where each variableci of a U-relation
corresponds to a WSDcomponentrelationCi and each domain
valueli of ci corresponds to a tuple ofCi. The normalization
may lead to an exponential blow-up in the database size and
accounts for U-relations with arbitrarily large ws-descriptors
being more compact than U-relations with singleton ws-
descriptors and thus than WSDs.

Theorem V.1. U-relational databases are exponentially more
succinct than WSDs.



Positive relational queries have polynomial data complexity
for U-relations (Section III) and exponential data complex-
ity for WSDs [6]. This can be explained in close anal-
ogy to the difference in succinctness and by the fact that
query evaluation creates new dependencies [10]: U-relations
can efficiently store the new dependencies by enlarging ws-
descriptors, whereas WSDs correspond to U-relations with
normalized ws-descriptors, hence the exponential blowup.

ULDBs vs. U-Relations.ULDBs are databases with uncer-
tainty and lineage [8]. Due to lack of space, we only state the
salient results concerning our comparison to ULDBs.

Lemma V.2. ULDBs [8] can be translated linearly into U-
relational databases.

The translation uses a direct encoding of ULDB’s lineage
into ws-descriptors, where ULDB’s tuple and alternative ids
become variables and domain values, respectively.

There are U-relations, however, whose ULDB encodings
are necessarily exponential in the arity of the logical relation.
This is the case of, e.g., or-set relations [13], attribute-level
representations that can be linearly encoded as U-relations but
exponentially as ULDBs.

Theorem V.3. U-relational databases are exponentially more
succinct than ULDBs.

Both ULDBs and U-relations have polynomial data com-
plexity for positive relational queries. Differently from
ULDBs, evaluating queries on U-relations is possible using
relational algebra only. The main difference between their
evaluation algorithms concerns dealing with erroneous tuples,
i.e., tuples that do not appear in any world. In contrast to
U-relations, erroneous tuples may appear in the answers to
queries on ULDBs (see [8] for an example). The removal of
such tuples is called data minimization, an expensive operation
that involves the computation of the transitive closure of
lineage [8]. Such tuples occur with ULDBs because the lineage
of an alternative in the answer only points to the lineage of
alternatives from the input relations, even though these input
alternatives may not occur in the same world. This cannot
happen with U-relations because each query operation ensures
that only valid tuples are in the query answer by (1) using
the ψ-condition in the join and merge operations and by (2)
carrying all dependencies in the ws-descriptors – and not only
to tuples of the input relation.

VI. PROBABILISTIC U-RELATIONS

U-relational databases can be elegantly extended to model
probabilistic information by adding a probability column Pr
to the world tableW . ThusW contains tuples(x, v, p) for
all domain valuesv of a variablex, andp is the probability
of x 7→ v. For each variablex defined byW , the sum of the
valuesπPr(σVar=x)(W ) must equal one. Fig. 6(a) shows a
probabilistic version of the world-table of Fig. 1(b).

We use a functionP to define the probability of a valuation

W Var Rng Pr
x 1 0.1
x 2 0.9
y 1 0.3
y 2 0.7
z 1 0.6
z 2 0.4

U6 Id conf
3 P ({x 7→ 1}) = 0.1
2 P ({x 7→ 2}) = 0.9
4 P ({y 7→ 1, z 7→ 2}) = 0.12

(a) Probabilistic world-table. (b) Computing tuple confidence.
Fig. 6. Probabilistic U-relations

as the product of probabilities of its variable assignments:

P ({x1 7→ v1, . . . , xn 7→ vn}) =

n∏

i=1

P ({xi 7→ vi}) (∗)

The probabilistic extension is orthogonal to the techniques
for evaluating positive relational algebra queries described in
Section III. Since processing relational algebra queries only
extends each world with the result of the query in it without
changing the world’s probabilities, the algorithms carry over
with no change to the probabilistic case as well. A different
class of queries are those that ask for confidence of tuples
in the result of a query. LetU be a U-relation representing
the answer to a queryq on a U-relational database. Then,
the confidenceof a tuple a in the answer toq is the sum
of the probabilities of the worlds defined byU that containa.
Computing the confidence by enumerating all possible worlds,
as the above definition suggested, is, however, not feasible. A
better approach is to compute the probability of the world-set
represented by the union of ws-descriptors associated witha
in U :

P ({d | ∃s(d, s, a) ∈ U})

In case only one tuple with ws-descriptord in U matches
the given tuplea, then the confidence ofa can be trivially
computed asP (d) using formula (*) above. In the general
case, however, the computation is #P-complete. This follows
from the mutual reducibility of the problem of computing
the probability of the union of the (possibly overlapping)
world-sets represented by a set of ws-descriptors and of the
#P-complete problem of counting the number of satisfying
assignments of Boolean formulas in disjunctive normal form.
Indeed, we can encode a set ofk ws-descriptors{xi1 7→
vi1, . . . , x

i
mi

7→ vimi
} (1 ≤ i ≤ k) as a formula

∨
1≤i≤k

(xi1 =

vi1 ∧ . . . ∧ x
i
mi

= vimi
).

Recent work considered efficient solutions for restricted
classes of queries and probabilistic databases [10] or by
applying approximation techniques [14]. Scalable confidence
computation is out of the scope of this paper. Our current
approach for exact confidence computation exploits the inde-
pendence and variable sharing among ws-descriptors and is
by far more efficient than approaches based on enumeration
of all worlds or on the inclusion-exclusion formula.

Example VI.1. Consider a probabilistic version of the U-
relational database of Fig. 1(b) with world-table defined in
Fig. 6(a). Consider again relationS from Example III.6
containing the ids of enemy tanks on the map. There are three



Q1: possible (select o.orderkey, o.orderdate, o.shippriorityfrom
customer c, orders o, lineitem lwhere c.mktsegment= ’BUILDING’
and c.custkey= o.custkey and o.orderkey= l.orderkey
and o.orderdate> ’1995-03-15’ and l.shipdate< ’1995-03-17’)

Q2: possible(selectextendedpricefrom lineitem where
shipdatebetween ’1994-01-01’ and ’1996-01-01’
and discountbetween ’0.05’ and ’0.08’ and quantity< 24)

Q3: possible(selectn1.name, n2.namefrom supplier s, lineitem l,
orders o, customer c, nation n1, nation n2where n2.nation=’IRAQ’
and n1.nation=’GERMANY’ and c.nationkey= n2.nationkey
and s.suppkey= l.suppkeyand o.orderkey= l.orderkey
and c.custkey= o.custkeyand s.nationkey= n1.nationkey)

Fig. 7. Queries used in the experiments.

different possible enemy tank ids, whose confidence can be
computed asP ({x 7→ 1}), P ({x 7→ 2}) andP ({y 7→ 1, z 7→
2}), respectively. The result is given in Fig. 6(b).

The confidence of having at least one enemy tank on the
map is computed asP ({{x 7→ 1}, {x 7→ 2}, {y 7→ 1, z 7→
2}}). The three ws-descriptors represent the entire world-set,
thus the confidence is 1. 2

VII. EXPERIMENTS

Prototype Implementation. We implemented the query
translator of Fig. 4. We also extended the C implementa-
tion of the TPC-H population generator version 2.6 build
1 [17] to generate attribute and tuple-level U-relations and
ULDBs. The code is available on the MayBMS project page
(http://www.cs.cornell.edu/database/maybms).
Setup. The experiments were performed on a 3GHZ/1GB
Pentium running Linux 2.6.13 and PostgreSQL 8.2.3.
Generation of uncertain data. The following parameters
were used to tune the generation:scale(s), uncertainty ratio
(x), correlation ratio (z), andmaximum alternatives per field
(m). The (dbgen standard) parameters is used to control the
size of each world;x controls the percentage of (uncertain)
fields with several possible values, andm controls how many
possible values can be assigned to a field. The parameter
z defines a Zipf distribution for the variables with different
dependent field counts (DFC). The DFC of a variable is the
number of tuple fields dependent on that variable. We use
the parameterz to control the attribute correlations: Forn
uncertain fields, there are⌈C ∗ zi⌉ variables with DFCi,

where C = n(z − 1)/(zk+1 − 1), i.e., n =
k

Σ
i=0

(C ∗ zi).

Thus greaterz values correspond to higher correlations in
the data. The number of domain values of a variable with

DFC k > 1 is chosen using the formulapk−1 ∗
k

Π
i=1

(mi),

wheremi is the number of different values for thei-th field
dependent on that variable andp is the probability that a
combination of possible values for thek fields is valid. This
assumption fits naturally to data cleaning scenarios. Previous
work [4] shows that chasing dependencies on WSDs enforces
correlations between field values and removes combinations
that violate the dependencies. We considered here that after
correlating two variables with arbitrary DFCs, onlyp ∗ 100

percent of the combinations satisfy the constraints and are
preserved.

The uncertain fields are assigned randomly to variables. This
can lead to correlations between fields belonging to different
tuples or even to different relations. This fits to scenarios
where constraints are enforced across tuples or relations.We
do not assume any kind of independence of our initial data as
done in several other approaches [10], [8].

For the experiments, we fixedp to 0.25, m to 8, and
varied the remaining parameters as follows:s ranges over
(0.01, 0.05, 0.1, 0.5, 1), z ranges over(0.1, 0.25, 0.5), and x
ranges over(0.001, 0.01, 0.1).

An important property of our generator is that any world in
a U-relational database shares the properties of the one-world
database generated by the original dbgen: The sizes of rela-
tions are the same and the join selectivities are approximately
equal. We checked this by randomly choosing one world of
the U-relational database and comparing the selectivitiesof
joins on the keys of the TPC-H relations for different scale
factors and uncertainty ratios.
Queries. We used the three queries from Fig. 7. QueryQ1

is a join of three relations of large sizes. QueryQ2 is a
select-project query on the relation lineitem (the largestin our
settings). QueryQ3 is a fairly complex query that involves
joins between six relations. All queries use the operator
‘possible’ to retrieve the set of matches across all worlds.Note
that these queries are modified versions ofQ3, Q6, andQ7

of TPC-H where all aggregations are dropped (dealing with
aggregation is subject to future work).

Fig. 9 shows that our queries are moderately selective and
their answer sizes increase with uncertaintyx and marginally
with correlationz. For scale 1, the answer sizes range from
tens of thousands to tens of millions of tuples. There is only
one setting (z = 0.25 andx = 0.1) where one of our queries,
Q3, has an empty answer. Before the execution, the queries
were optimized using our U-relation-aware optimizations.Fig.
8 showsQ1 after optimizations.
Characteristics of U-relations. Following Fig. 8, the U-
relational databases are exponentially more succinct than
databases representing all worlds individually: while thenum-
ber of worlds increases exponentially (when varying the un-
certainty ratiox), the database size increases only linearly. The
case ofx = 0 corresponds to one world generated using the
original dbgen. Interestingly, to represent108·106

worlds, the
U-relational database needs about 6.7 times the size of one
world.

An increase of the scaling factor leads to an exponential
increase in the number of worlds and only to a linear increase
in the size of the U-relational database. Although we only
report here on experiments with scale factors up to 1, further
experiments confirmed that similar characteristics are obtained
for larger scales, too. An increase of the correlation parameter
leads to a moderate relative increase in the database size. When
compared to one-world databases, the sizes of U-relational
databases have increase factors that vary from 6.2 (forz = 0.1)
to 8.2 (for z = 0.5).



TPC-H
s z dbsize #worlds Rng dbsize #worlds Rng dbsize #worlds Rng dbsize

0.01 0.1 17 10857.076 21 82 107955.30 57 85 1079354.1 57 114
0.01 0.5 17 10523.031 71 82 104724.56 901 88 1046675.6 662 139
0.05 0.1 85 104287.23 22 389 1039913.8 33 403 10396137 65 547
0.05 0.5 85 102549.14 178 390 1023515.5 449 416 10232650 1155 672
0.10 0.1 170 108606.77 27 773 1079889.9 49 802 10793611 53 1090
0.10 0.5 170 105044.65 181 776 1046901.8 773 826 10466038 924 1339
0.50 0.1 853 1043368.0 49 3843 10400185 71 3987 103.97e+06 85 5427
0.50 0.5 853 1025528.9 214 3856 10234840 1832 4012 102.33e+06 2586 6682
1.00 0.1 1706 1087203.0 57 7683 10800997 99 7971 107.94e+06 113 11264
1.00 0.5 1706 1051290.9 993 7712 10470401 1675 8228 104.66e+06 3392 13312

x = 0.0 x = 0.001 x = 0.01 x = 0.1

possible

merge

πshippriority(o) πo.orderkey,o.orderdate

1orderkey

merge

πorderkey(o) πo.orderdate

1custkey

merge

πcustkey(o) σo.orderdate

πorderdate(o)

merge

πcustkey(c) π∅

σc.mktsegment

πmktsegment(c)

merge

πorderkey(l) π∅

σl.shipdate

πshipdate(l)

Fig. 8. (left): Total number of worlds, max. number of domainvalues for a variable (Rng), and size in MB of the U-relational database for each of our
settings. (right): Query plan forQ1 using merge.

 0.01

 0.1

 1

 10

 100

 0.1 0.01 0.001#t
up

le
s 

x 
10

5  (
ln

 s
ca

le
)

uncertainty ratio (ln scale)

Query 1 scale 1

z: 0.50
z: 0.25
z: 0.10

 1

 10

 0.1 0.01 0.001#t
up

le
s 

x 
10

5  (
ln

 s
ca

le
)

uncertainty ratio (ln scale)

Query 2 scale 1

z: 0.50
z: 0.25
z: 0.10

 0.01

 0.1

 1

 10

 0.1 0.01 0.001#t
up

le
s 

x 
10

5  (
ln

 s
ca

le
)

uncertainty ratio (ln scale)

Query 3 scale 1

z: 0.50
z: 0.25
z: 0.10

Fig. 9. Sizes of query answers for settings with scale 1.

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01

tim
e 

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 1 z 0.1

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01

tim
e 

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 2 z 0.1

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01
tim

e 
in

 s
ec

 (
ln

 s
ca

le
)

TPC-H scale factor (ln scale)

Query 3 z 0.1

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.05 0.05 0.01

tim
e 

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 1 z 0.5

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01

tim
e 

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 2 z 0.5

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01

tim
e 

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 3 z 0.5

x: 0.1
x: 0.01

x: 0.001

Fig. 10. Performance of query evaluation for various scale,uncertainty, and correlation.

Query Evaluation on U-relations.We run four times our set
of three queries on the 45 different datasets reported in Fig. 8.
For each query and correlation ratio, Fig. 10 has a log-log scale
diagram showing the median evaluation (including storage)
time in seconds as a function of the scale and uncertainty
parameters ([3] also shows diagrams forz = 0.25). The
different lines in each of the diagrams correspond to different
uncertainty ratios.

Fig. 10 shows that the evaluation of our queries is efficient
and scalable. In our largest scenario, where the database has

size 13 GB and represents108·106

worlds with 1.4 GBs
each world, queryQ3 involving five joins is evaluated in
less than two and a half minutes. One explanation for the
good performance is the use of attribute-level representation.
This allows to first compute the joins locally using only the
join attributes and later merge in the remaining attributesof
interest. Another important reason for the efficiency is that due
to the simplicity of our rewritings, PostgreSQL optimizes the
queries in a fairly good way. ([3] shows an optimized query



plan produced by the PostgreSQL ‘explain’ statement for the
rewriting of Q2.)

The evaluation time varies linearly with all of our parame-
ters. ForQ1 (Q2 andQ3 respectively) we witnessed a factor
of up to 6 (4 and 10 respectively) in the evaluation time when
varying the uncertainty ratio from 0.001 to 0.1. When the
correlation ratio is varied from 0.1 to 0.5, the evaluation time
increases by a factor of up to 3; this is also explained by the
increase in the input and answer sizes, cf. Fig.s 8 and 9. When
the scale parameter is varied from 0.01 to 1, the evaluation
time increases by a factor of up to 400; in case ofQ3 and
z = 0.5, we also noticed some outliers where the increase
factor is around 1000.
Effect of attribute-level representation. We also performed
query evaluation on tuple-level U-relations, which represent
the same world-set as the attribute-level U-relations of Fig. 8,
and on Trio’s ULDBs [8] obtained by a (rather direct) mapping
from the tuple-level U-relations. To date, Trio has no native
support for the possible operator or the removal of erroneous
tuples in the query answer, though this effect can be obtained
as part of the confidence computation3. For that reason, we
decided to compare the evaluation times of queries without
the possible operator and without the (expensive) removal
of erroneous tuples or confidence computation (which is an
exponential-time problem). Since our data exhibits a high
degree of (randomly generated) dependency, its ULDB rep-
resentation has lineage and thus join queries can introduce
erroneous tuples in the answer. The Trio prototype was set
to use the (faster) SPI interface of PostgreSQL (and not its
default python implementation).

Query 3 z 0.1

0

5

10

15

20

25

30

35

40

45

50

s0.01,x0.001 s0.05,x0.001 s0.1,x0.001 s0.01,x0.01 s0.05,x0.01 s0.1,x0.01

ti
m
e
 i
n
 s
e
c

MayBMS (attr. level)

MayBMS (tuple level)

Trio (use_SPI)

Fig. 11. Querying attribute-level and tuple-level U-relations in MayBMS
and ULDBs in Trio.

Fig. 11 compares the evaluation time on attribute- and tuple-
level U-relations in MayBMS, and ULDBs for small scenarios
of 1% uncertainty, our lowest correlation factor 0.1, and scale
up to 0.1. On attribute-level U-relations, the queries perform
several times better than on tuple-level U-relations and by
an order of magnitude better than ULDBs. This is because
attribute-level data allows for late materialization: selections
and joins can be performed locally and tuple reconstruction
is done only for successful tuples. We witnessed that an
increase in any of our parameters would create prohibitively
large (exponential in the arity) tuple-level representations. For

3Personal communication with the TRIO team as of June 2007.

example, for scale 0.01 and uncertainty 10%, relation lineitem
contains more than 15M tuples compared to 80K in each of
its vertical partitions.

VIII. C ONCLUSION AND FUTURE WORK

This paper introduces U-relational databases, a simple rep-
resentation system for uncertain data that combines the ad-
vantages of existing systems, like ULDBs and WSDs, without
sharing their drawbacks. U-relations are exponentially more
succinct than both WSDs and ULDBs. Positive relational al-
gebra queries are evaluated purely relationally on U-relations,
a property not shared by any other previous succinct repre-
sentation system. Also, U-relations are a simple formalism
which poses a small burden on implementors. Following our
recent investigation on uncertainty-aware language constructs
beyond relational algebra [5], we identified common physical
operators necessary to implement many primitives for the
creation and grouping of worlds. It turns out that several
other operators described in this work, including choice-of
and repair-key, can also be evaluated on U-relational databases
using relational algebra only. For others, including confidence
computation, it appears that normalizing sets of ws-descriptors
in the sense of Section IV plays an important role. We
are currently working on secondary-storage algorithms for
normalization.

REFERENCES

[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and
querying of sets of possible worlds.Theor. Comput. Sci., 78(1), 1991.

[2] P. Andritsos, A. Fuxman, and R. J. Miller. Clean Answers over Dirty
Databases: A Probabilistic Approach. InProc. ICDE, 2006.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple Rela-
tional Processing of Uncertain Data. Technical Report cs.DB/0707.1644,
ACM CORR, 2007.

[4] L. Antova, C. Koch, and D. Olteanu.10106

Worlds and Beyond:
Efficient Representation and Processing of Incomplete Information. In
Proc. ICDE, 2007.

[5] L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete
Information and Back. InProc. SIGMOD, 2007.

[6] L. Antova, C. Koch, and D. Olteanu. World-set decompositions:
Expressiveness and efficient algorithms. InProc. ICDT, 2007.

[7] D. S. Batory. On Searching Transposed Files.ACM Trans. Datab. Syst.,
4(4):531–544, 1979.

[8] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with Uncertainty and Lineage. InProc. VLDB, 2006.

[9] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: a database system for
managing constantly-evolving data. InProc. VLDB, 2005.

[10] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. InProc. VLDB, 2004.

[11] G. Grahne. Dependency Satisfaction in Databases with Incomplete
Information. InProc. VLDB, 1984.

[12] T. Imielinski and W. Lipski. Incomplete information inrelational
databases.Journal of ACM, 31(4), 1984.

[13] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects — a data
model for design and planning applications. InProc. SIGMOD, 1991.

[14] C. Re, N. Dalvi, and D. Suciu. Efficient Top-k Query Evaluation on
Probabilistic Data. InProc. ICDE, 2007.

[15] P. Sen and A. Deshpande. Representing and Querying Correlated Tuples
in Probabilistic Databases. InProc. ICDE, 2007.

[16] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A Column-oriented
DBMS. In Proc. VLDB, 2005.

[17] Transaction Processing Performance Council. TPC Bench-
mark H (Decision Support), revision 2.6.0 edition, 2006.
http://www.tpc.org/tpch/spec/tpch2.6.0.pdf.


