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Abstract— This paper introduces U-relations, a succinct and
purely relational representation system for uncertain datbases.
U-relations support attribute-level uncertainty using vertical
partitioning. If we consider positive relational algebra extended
by an operation for computing possible answers, a query on th
logical level can be translated into, and evaluated as, a gite
relational algebra query on the U-relational representaton. The
translation scheme essentially preserves the size of the ey in
terms of number of operations and, in particular, number of
joins. Standard techniques employed in off-the-shelf reldgonal
database management systems are effective for optimizinghd
processing queries on U-relations. In our experiments we siw
that query evaluation on U-relations scales to large amourst of
data with high degrees of uncertainty.

I. INTRODUCTION

Several recent works [10], [9], [8], [2], [15], [4], [6]
aim at developing scalable representation systems andg/ q
processing techniques for large collections of uncertaitad
as they arise in data cleaning, Web data management,
scientific databases. Most of them are based on a possi

relational DBMS. This in particular includes that queriags o
the logical schema level can be translated down to, ideally,
relational algebra queries on the representation relatamd
that this translation is simple and easy to implement. This
goal is motivated by the availability and maturity of exisi
relational database technology.

An important aspect of a representation system is whether
it represents uncertainty at ttetribute-levelor at thetuple-
level Attribute-level representation refers to the succingt-re
resentation of relations in which two or more fields of the sam
tuple can independently take alternative values [6]. Bitie-
level representation, as supported by c-tables [12] and 8YSD
offers finer granularity of independence than tuple-leyel a
proaches like [8], [10], [2]. This is useful in applicatiotise
data cleaning, where the values of several fields of a single

uer

tuple can be independently uncertain. For instance, the US
Ceawsus Bureau maintains relations with dozens of columns

%%650), most of which may require cleaning [4].

worlds semantics, and for all of them such a semantics canBgelations. In this paper, we develop and stuthyrelations

conveniently defined.

a representation system that we introduce with the follgwin

Four desiderata for representation systems for incompleigample.

information appear important.

1. ExpressivenessThe representation should be closed und&xample I.1. Let us assume that an aerial photograph of a

the application of (relational algebra) queries and dagarting

battlefield shows four vehicles at distinct positions 1 td e

algorithms (which remove some possible worlds). That is, tfésolution of the image does not allow for the identificatain
results of applying such operations to the represented dgicle types, but we can draw certain conclusions fromesarl

should be again representable within the formalism.

2. Succinctnesslt should be possible to represent large se

of alternative worlds using fairly little space.

reconnaissance and a calculation of the maximum distance
FsaCh vehicle may have covered since. Say we know that
vehicle 1 is (a) a friendly tank. Vehicles 2 and 3 are (b) a
friendly transport and (c) an enemy tank, but we do not know

3. Efficient query evaluation A trade-off is required be- \yhich one is which. Nothing is known about vehicle 4. Fig. 1a
tween the succinctness of a representation formalism agigbws a schematic drawing of how this scenario can arise.
the complexity of evaluating interesting queries. Thidé&a Only 1 is in the range of (a); 2 and 3 are in the ranges of (b)
off follows from established theoretical results [1], [116]. and (c); and position 4 is near the border of the photograph
However, while the formalisms in the literature tend to @liff pt gutside the ranges of (a), (b), and (c), so this vehiclstmu
in succinctness, several have polynomial-time data coxitple paye newly moved onto the map.

for (decision) problems such as tuple possibility unpesitive e want to model this by an uncertain database of schema
(but not fuII).reIat.ionaI algebra. This includes v-tabld<], R(ld, Coord, Type, Faction), representing the ids (1-4), co-
[11], uncertam_ty-lmeage databases (ULDBs) [8], and @orl 5 ginate positions, types, and factions of the vehicleshen t
set decompositions (WSDs) [6]. map. Let us assume there are only two vehicle types (tank or
4. Ease of usefor developers and researchers in the sensmnsport) and two factions (friend or enemy). Then theee ar
that the representation system can be easily put on top oéight possible worlds. We obtain one by taking three choices
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Fig. 1.
1,2,3,4 was taken (b).

answering the following questions: Has the friendly traosp
(b) now become vehicle 2¢(— 1) or 3 (x — 2)? Is vehicle
4 atank {y — 1) or a transporty — 2)? Is vehicle 4 friendly
(z — 1) or an enemy £{ — 2)? Thus the uncertainty can be
naturally modelled using three variablesy, =z that each can
independently take one of two values.

We model this scenario by the U-relational database showne

in Fig. 1b. We use vertical partitioning (cf. e.g. [7], [16D
achieve attribute-level representatiai.is represented using
four U-relations, one for each column &f The U-relation for

the coordinate positions (which are all certain) is not show
since we do not want to use it subsequently, but of course,

conceptually, coordinate positions are an important featif
the example and have to be part of the schema. In additi

on

there is a relationi’ which defines the possible values the
Ease of use’A main strength of U-relations is their simplicity

We can compute a vertical decomposition of one worl@nd low “cost of ownership™

three variables can take.

given by a valuatio® of the variablest, y, z by (1) removing
all the tuples from the U-relations whode columns contain
assignments that are inconsistent with(For example, if
0 ={z+— 1,y — 1,z — 1} then we remove the third and
fifth tuples of U; and the fifth tuples ot/; andUs.) and then

(2) projecting theD columns away. Of course we can resolve

the vertical partitioning by joining the decomposed relat
on the tuple id columng. O

U-relations have the following properties:
« ExpressivenessU-relations areeompleteor finite sets of

possible worlds, that is, they allow for the representation

of any finite world-set.

Succinctness U-relations represent uncertainty on the

Map with moving vehicles (a) and U-relational dasdbaepresentation of the possible worlds at the time thelaghiotograph detecting vehicles

Q-possibility problem for positive relational algebrais i
polynomial time (previously open [6]) but puts a rich
body of research results and technology at our disposal
for building uncertain database systems.

This makes U-relations the most efficient and scalable
approach to managing uncertain databases to date.
Parsimonious translation The translation from rela-
tional algebra expressions on the logical schema level
to query plans on the physical representations replaces
a selection by a selection, a projection by a projection,
a join by a join (however, with a more intricate join
condition), and a “possible” operation by a projection.
We have observed that state-of-the-art RDBMS do well
at finding efficient query plans for such physical-level
queries.

The representation system is purely relational and in
close analogy with relational representation schemes for
vertically decomposed data. Apart from the column store
relations that represent the actual data, there is only-a sin
gle auxiliary relationi¥ (which we need for computing
certain answers, but not for possible answers).

Query evaluation can be fully expressed in relational
algebra. The translation is quite simple and can even be
done by hand, at least for moderately-sized queries.
The query plans obtained by our translation scheme are
usually handled well by the query optimizers of off-the-
shelf relational DBMS, so the implementation of special
operators and optimizer extensions is not strictly needed
for acceptable performance.

attribute level. Even though they allow for more ef- Thus U-relations are not only suited as a representation
ficient query evaluation, U-relations are, as we showystem for dedicated uncertain database implementatiais s
exponentially more succinct than ULDBs and WSDsas MayBMS [4], but are also relevant to “casual users” of
That is, there are (relevant) world-sets that necessarilgpresentation systems for uncertain data, such as résgarc
take exponentially more space to represent by ULDBs or data cleaning and data integration who want to store and
guery uncertain data without great effort.

Apart from those implicitly mentioned above, we make the
a large class of queries (positive relational algebra efellowing further contributions in this paper.

WSDs than by U-relations.
Leveraging RDBMS technology U-relations allow for

tended by the operation “possible”) to be processsidg
relational algebra only and thus efficiently in the size

of the data. Our approach is the first so far to achieve
this for the above-named query language. Indeed, this
not only settles that there is a succinct and complete.
attribute-levelrepresentation for which the so-called tuple

We study algebraic query optimization and present equiv-
alences that hold on vertically decomposed representa-
tions. We address query optimization using those in the
context of managing uncertainty with U-relations.

We present an algorithm for normalizing a U-relational
representation obtained from a query. Normalized U-



relational databases yield a conceptually simple algb-,...,ck — lg,ck+1 — lgt1,...,¢n — 1), Where each
rithm for computing the certain answers of queries. Ip; — [; is ac; — I; for any j and all with 1 < j <
particular, certain answer tuples on normalized tuplé: < i < n.

level representations can be computed using relationalAlthough we speak of vertical partitioning, we do not
algebra only, which is not true in general for previousequire the value columns d¥; ; to disjointly partition the

representation systems. columns of R;. Indeed, overlap may be useful to speed up
« We provide experimental evidence for the efficiency anguery evaluation, see e.g. [16].
relevance of our approach. We next define the semantics of a U-relational database. To

The structure of the paper is as follows. Section Il estagbtain a possible world we first choose a total valuatjbn
lishes U-relations formally. Section IIl presents our retion over W. We then process the U-relations tuple by tuple. |
from queries on the logical level to relational algebra oa trthe functionf extend$ the ws-descriptorl of a tuple of the
level of U-relations and addresses algebraic query evaluat form (d,7,@) from a U-relation of schem@D, T', A), we insert
Section IV presents the normalization algorithm. Section i that world the values into the A-fields of the tuple with
discusses the relationship between U-relations, WSDs afigntifierz. In general this may leave some tuples partial in the
ULDBs and argues that U-relations combine the advantagdf¥d (i.e., the values for some fields have not been provided).
of the other two formalisms without sharing their drawbackd hese tuples are removed from the world.

Section VI describes how probabilistic information can be We require, for a U-relational databagé;, ..., U,, W) to
modelled using a natural extension of U-relations. In Sebe considered valid, that the representation does not geovi

tion VII, we report on our experiments with U-relations. Weseveral contradictory values for a tuple field in the sameavor
conclude with Section VIII. Formally, we require, for alll < 7, < n, and tuplest; €

U:[D;,T;, A;] andt, € U;[D;,T;, A;] such thatU; and U;
are vert|cal partitions of the same relation, that if theseai
Il. U-RELATIONAL DATABASES world that extends both,.D; and t,.D;, then for all A ¢
We defineworld-setsin close analogy to the case of c-(4; mZ») 1.A = t3.A must hold.
tables [12]. Consider a finite set of variables over finit
domains. Apossible worldis represented by a total valuation
(or assignment)f :Var — Rng of variables to constants
in their domains, and the world-set is represented by tlz
finite set of all total valuatiorls We represent relationally the
variable set and the associated domains byodd-table over
schemalV (Var,Rng) such that?” consists of all pairgz,v)
of variablesz and valuew in the domain ofz.

E xample [1.3. Suppose there are two U-relations with
schemataUl[Dl,TR,A B] andU,[Dy; Tr; B, O] that jointly
%present columnd, B, andC of a relationR. Assume tuples
c1,1,t1,a, b E U, and (62,2,t1,b/ ) € Uy, b 7é V. Then
U, and U, cannot form part of a valid U-relational database
because there would be a world with— 1, ¢5 — 2 in which
the tuple fromU; requires fieldt;. B to take valueb while the
tuple from U requires the same field to take valbie O
Example 1l.1. The world-tableWW in Fig. 1 defines three
variablest, y, z, whose common domain {4, 2}. The number
of worlds defined byi/ is2-2-2 =38.

A salient property of U-relational databases is that thegnfo
a complete representation systdar finite world-sets.

Theorem 11.4. Any finite set of worlds can be represented as

Given a world-tabldV, a world-set descriptoiover W, or )
a U-relational database.

ws-descriptor for short, is a valuatiah such that its graph
is a subset ofV. If d is atotal valuation, then it represents
one world. In our examples, to represent the entire wortd-se
we use aremptyws-descriptor, as a shortcut for a singleton
ws-descriptor with a new variable with a singleton domain. The semantics of a quer@ on a world-set is to evaluate

We are now ready to define databases of U-relations. @ in each world. For complete representation systems like
U-relational databases, there is an equivalent, more exffici

Definition I1.2. A U-relational databasdor a world-set over approach [12]: Translate) into a queryQ such that the
schemas = (Ri[A1],..., Ri[A]) is a tuple evaluation ofQ on a U-relational encoding of the world-set
(Ur1, Uty U 1, U s W), produces the U-relational encoding of the answe@to

1. QUERY PROCESSING

Queries on vertical decompositionsU-relations rely essen-
tially on vertical decomposition for succinct (attribuaarel)
representation of uncertainty. To evaluate a query, we first
need to reconstruct relations from vertical decompos#iby

A ws-descriptor{c; — l1,...,¢; — I} is relationally (1) joining two partitions on the common tuple id attributes
encoded inm5, (U;;) of arity n > k as a tuple(c; — and (2) discarding the combinations that yield inconsistes}
K descriptors. We call this operatianergeand give its precise

where is a world-table and each relatidri; ; has schema
Ui j[Dij; Tri; Bij] such thatD; ; defines ws-descriptors
overW, T'r, defines tuple ids, and; ; U---U B; ,,, = A;.

1This is a generalization of world-set decompositions of @here com- B B
ponent ids are variables and local world ids are domain galue 2That is, for allz on whichd is defined,d(z) = f(x).



definition in Fig. 4, where the two above conditions are defing

by o andv, respectively. merge(n<(R), m5_%(R)) = R, where A = sch(R) (1)

) ) ) merge(R, S) = merge(S, R) (2)
E;:ample lll.1. Consider the U-relational dlgtabar.?e of Fig. 1. merge(merge(R,S), T) = merge(R, merge(S,T)) 3)
The quUeryoraction=Enemy’ nType=Tani (1) liSts the enemy | /..., .c(p §)) = merge(o,  (R), S) @)

tanks on the map. To answer this query, we needntrge _
the necessary partitions a8 and obtain a new query with where.X' C sch(R)
merge(Traction (R), TType (R)) in the place ofR. O merge(R, S) Xy x ) T = merge(R<, x v 1), S) ®)

Our query evaluation approach can take full advantage where X UY € sch(R) U sch(T)
of query evaluation and optimization techniques on veltica mx(merge(R, 5)) = merge(rgz(R), mxn5(5)) (6)
partitions. First, it does not require to reconstruct théiren wheresch(R) = A,sch(S) = B
relations involved in the query, but rather only the necsss
vertical partitions. Second, necessary partitions canebéblly Fig. 2.  Algebraic equivalences for relational algebra @gsemith merge
merged in during query evaluation. Thus early and late tuphgerator.
materialization [16] carry over naturally to our framework TDATE
For this, ourmergeoperator allows to merge two partitions

not only if they are given in their original form, but also if N
they have been modified by queries. ONAME=AI  ODATE>2003
The first advantage only holds for so-callegduced U-
relational databases, which do not have tuples that caraot b Cust merge
completed in any world. That is, each tuple of a reduced U- roare(Ord)  meust(Ord)
relation can always be completed to an actual tuple in a world TDATE an 1 merge
The advantage becomes evident even for a simple projection BICUSTKEY Query pla ' . oM E= 2003
qguery. Consider a reduced database containing a U-relation
U defining the A attribute of R. To evaluater(R) we do onavE=al merge >cusTkey  mpate (Ord)
not need to merge in all U-relations defining the attributes | N
of R and later project omA. Instead, the answer is simply CUSt "DATE|>2°°3 meust(Ord) "NATEZA' meust(Ord)
U. In the following, we assume that the input database is Toare (Ord) Cust
always reduced. As we will discuss next, our query evalmatio
technique always produces reduced U-relations for reduced Query plan P2. Query plan P3.
input U-relational databases. Fig. 3. Three equivalent query plans.

Example Ill.2. Consider the following non-reduced database
of two U-relations: usually push down projections and selections and merge in
U-relations as late as possible. An interesting new case is

Uy | z i T | tT | :‘ U | c i T | tT | bB the decision on join ordering among an explicit join from
1 1 1 1 1 1 . .. . .
el ‘ ts | as — ‘ t | by the input query and a join due to merging: If the merge is

executed before the explicit join, it may reduce the size of
In each U-relation the second tuple cannot find a partner & input relation to join. We have seen in our experiments
the other U-relation with which a complete tuple (with bothhat the standard selectivity-based cost measures empluye
attributes A and B) can be formed. If these second tuples gegational database management systems do a good job, as
removed, the database is reduced. O long as the queries remain reasonably small.

We can always reduce a U-relational database as follovEtample 11l.4. Consider a U-relational databa&gethat rep-
We filter each U-relation using semijoins with each of theesents a set of possible worlds over two TPC-H relations Ord
other U-relations representing data of the same relaflpn and Cust (short for Order and Customer, respectively) [&7].
The semijoin conditions are the and-conditions. has one U-relation for each attribute of the two relatiorfs, o
which we only list DATE and CUSTKEY for Ord, and NAME
and CUSTKEY for Cust. The following query finds all dates
of orders placed by Al after 2003:

Algebraic equivalencesFig. 2 gives algebraic equivalences of
relational algebra expressions with merge operator onoatrt
decompositions: Merging is the reverse of vertical pamitng, Fig. 3 shows three possible plans P1, P2, and P3 using
it is commutative and associative, it commutes with seb@sti operators on vertical decompositions. The naive plan R1L fir
joins, and projections. reconstructs Ord from its two partitions then applies the

Standard heuristics known from classical query optimaati selection and the join with Cust. In P2 and P3 the merge

for relational algebra apply here as well. Intuitively, weoperator is pushed up in the plans, first immediately aboge th

Proposition 111.3. Given a schema:, there is a relational
algebra query that reduces a U-relational database o}er

ToATE (ONAME='A1 (Cust) McusTKEY 0DATE>2003(Ord))



Let Uy := [Q1] with schemaD1, T, A1], Theorem 111.5. Positive relational algebra queries extended

Us := [Q2] with schema|Dz, T2, Az], with the possible operator can be evaluated on U-relational
o= /\ (UL.T = Us.T) databases using relational algebra only.
TeT1NT2 Example 111.6. Recall the U-relational database of Fig. 1
¢:= /\(D'Var=D" Var= D'Rng= D".Rng). storing information about moving vehicles. Consider a guer
D'eU,.D,,D""€Uy. Dy asking for ids of enemy tanks:

[possible(Q1)] := T, (Th)

[[ (Q )]] (U ) h Y Z S = T1d (UType:’Tank’/\Faction:’Enemy’(R))
™ 1) = 71'51’71’? 1), Where C A

After merging the necessary partitions of relatiéh and

[o0 (@] = o4 (U1), where on A translating it into positive relational algebra, we obtain
[Q1 >4 Q2] := 75, 5, 7, 7, 2 E(U1 Xony U2),
whereT; N T = () T1d (UType:’Tank’/\Faction:’Enemy’(Ul >y Athy Us Doy Aha U3))5
[merge(Q1,Q2)] := 75, 5, 7,u7,. 48Ut Many Uz) where the conditiong, ¥, a1, andas follow the translation

given in Fig. 4. The three vertical partitions are joined on

Fig. 4. Translation of queries with merge into queries onelations. the tuple id attributesa(; andas) and the combinations with
conflicting mappings in the ws-descriptors are discardged (

selection (P2), and then above the join operator (P3). Amoafd ). Before and after translation, the query is subject to

the three plans, P1 is clearly the least efficient. Howevéptimizations as discussed earlier. (In this case, a goedyqu

without statistics about the data, one cannot tell which »f Plan would first apply the selections on the partitions, then

and P3 should be preferred. If DAER003 is very selective, pProject away the irrelevant value attributes Type and Bacti

then merging immediately thereafter as in P2 will lead to th&nd then merge the partitions).

filfcering of tuples fron‘WCUST[‘I'(EY(Ord') and thus fewer tuples_ s Di D, |Ts|ld

will be processed by the join. Is this not the case, then first

r—1 c 3
merging only increases the number and size of the tuples that T2 c | 2
have to be processed by the join. Also, in P3 all value atteiu y—1lz—2| d | 4

except for DATE are projected away after the join as they a8e above U-relatio/, encodes the query answer. 0
not needed for the final result.
_ . . . . Example IIl.7. We continue Example 1I1.6 and ask whether
Queries on U-relations. Fig. 4 gives the functior|-] that it is possible that the enemy has two tanks on the map, and if
translates positive relational algebra queries witissibleand s0, which vehicles are those. For this, we compute the péirs o
mergeoperators into relational algebra queries on U-relationghemy tanks as a self-join of: (S $1) D, 1ty 1d (S 52).
databases. This query is in turn equivalent to a self-join 6f;.
The possible operator applied on a U-relatibn closes

the possible worlds semantics by computing the set of tuples U| Di_ Do Ds | ToyTsp | 1di 10y

. . . L 1 1 2 d 3 4
possible inU. It thus translates to a simple projection on i: 9 z :1 ;: 9 E dl 2 a
the value attributes of/. The result of a projection is a U- y—~1lz—2z—1| d ¢ 4 3
relation whose value attributes are those from the prajecti y—lz—2z—2] d c 4 2

list (thus the input ws-descriptors and tuple ids are presb: The answer is encoded by the above U-relatign Note that

Selections apply conditions on the value attnputes. . the combinations of the first two tuples 6f, are not inUs,
~ The merge operator that reconstructs a relation from its V§focq;se they have inconsistent ws-descriptors and anedilte
tical partitions was already explained. Similarly to thergee ¢ using they-condition (vehiclec cannot be at the same

the join uses the)-condition to discard tuple combinations;me ot two different positions). To obtain the possiblerpai
with inconsistent Ws-descrlp_tors. Flg 4 gives the tranmfaln. of vehicle ids, we apply the possible operator@n This is
caselU; andUs do nqt gontaln partl'tlons_of the same relat'onexpressed as the projection on the value attribute:of O
For the case of self-joins we require aliases for the copfes o
the relation involved in it such that they do not have common Our translation yields relational algebra queries, whose
tuple id attributes. Example 111.7 will illustrate this. evaluation always produces tuple-level U-relations,, ilg-
The union oft/; andU, like the ones from Fig. 4 is sketched'€lations without vertical decompositions, by joining and
next. We assume that, = A, T, NT» = 0, and the tuples of merging vertical partitions pf relfanons. Folloyvmg thefidée
different relations have different ids. To brifig andUs to the 0N Of the merge operator, if the input U-relations are reetl
same schema, we first ensure ws-descriptors of the same {0 the result of merging vertical partitions is also regtiic
by padding the smaller ws-descriptors with already comin V& thus have that
variable assignments, and add new (empty) coluifingo Uy Proposition 111.8. Given a positive relational algebra que€y
andT to Uz. We then perform the standard union. and a reduced U-relational databagg [Q](U) is a reduced
From our translatiorf-] it immediately follows that U-relational database.



Algorithm 1: Normalization of ws-descriptors. Ul . D, |T|A W _| Var Rng

Input: Reduced U-relational database= (Ux,...,Un, W) ar—lcaw1l|t|a C %
Output: Normalized reduced U-relational database. ci—1cao—2 |12 | a2 cl 1
begin ci—2c1—2 |t | a3 62 >
R := the relation consisting of all pairs of variablés, c;) cs—1c3—1 |tz |aa 02 1
that occur together in some ws-descriptoriaf cs—2c3—2 |t3 |as C3 2
G .= the graph whose node set is the set of variables and 3
whose edge relation is the refl. and trans. closurdzpf (a) U-relational database
Compute the connected componentsGof ,
foreach U-relation U;(D;, ..., D,, T, A) of U do u|Dp Tr|A W’ | Var Rng
Uj := empty U-relation ovelU}(Var,Rng 7', A); ciz (L,1) 41 |ax i)
foreacht € U do ciz — (1,2) |t | ax a (1,2)
G, = connected component ¢ with id i such cz = (1,2) |tz | a2 C1a (2’ 1)
that the nodes.Var,, ..., t.Var, are inG;; cz > (2,1) |22 | as 1o (2.2)
{Cila"'vc’ik} =G; — {t.Varl,...,t,Varn}; C12 — (272) t2 | as cs 1 ’
foreach cz i1 l3 | as s 2
Liy : (ciy,liy) € W, Ly, < (i, L) € W do c3 > 2 ts | as
/* Compute a new domain valugfc, | is (b) Database from (a) normalized
either the identity or better, for atomits, an ) o
injective function intGil — int) */; Fig. 5. Normalization example.
l:= f\G,;\ (t.Rng, lil Yot ll)‘
Uj = Uj U{(Gi, [, t.T,t.A)}; is known that the tuple certainty problem is coNP-hard for a
- number of representation systems, ranging from attritbexte}
W= Ud(gi, (las -5 1)) | ? = {es, .. ; Cm} ";‘/[’;d. ones like WSDs to tuple-level ones like ULDBs [6]. In case of
output (U1, U W/).(cl’ 1) (emyIm) € W, tuple-level normalized U-relations, however, we can effitiy
end oo compute the certain tuples using relational algebra.

Lemma IV.3. Tuplea is certain in a tuple-level normalized
U-relation U iff there exists a variable: such that(z —
IV. NORMALIZATION OF U-RELATIONS I,t,a) € U for each domain valué of x and some tuple id.

. . ) . The condition of the lemma can be encoded as the following
U-relations do not forbid large ws-descriptors. The apild  §,main calculus expression:

extend the size of ws-descriptors is what yields efficiergrgu
evaluation on U-relations. However, large ws-descriptansse cert(U) := {a | 3aVl (z,1) € W = Ft(x,1,%,a) € U}

an inherent processing overhead. Also, after query evaluat

or dependency chasing on a U-relational database, it mblge equivalent relational algebra query on a tuple-levet no
happen that tuple fields, which used to be dependent on eawhlized U-relational databagé’[Var, Rng T, A], W) is

other, become independent. In such a case, it is desirable to

optimize the world-set representation [6]. We next disarss  Ta(7TVar (W) X 77(U) = Ty, 2(W X 75(U) = Typ png 2U))-
approach to normalize U-relational databases by reduaimg|

ws-descriptors to ws-descriptors of size one. Normalirati

is an expensive operation per se, but it is not unrealistic to V. SUCCINCTNESS ANDEFFICIENCY

assume that uncertain data is initially in normal form [4] [

> T ) - This section compares U-relational databases with WSDs
and can subsequently be maintained in this form.

[4], [6] and ULDBs [8] using two yardsticks: succinctness,
Definition IV.1. A U-relational database is normalized if alli-€., how compactly they can represent world-sets, and effi-
ws-descriptors of its U-relations have size one. ciency of query evaluation. Due to lack of space, we defer a

_ . o ~ more complete comparison (with proofs and examples) to an
Algorithm 1 gives a normalization procedure for U-relasonextended version of this paper [3].

that determines classes of variables that co-occur in so D U-RelationsWSD tiall lized U
ws-descriptors and replaces each such class by one varia S VS. L-Relations: S aré essentially normaiized -
elational databases where each variableof a U-relation

whose domain becomes the product of the domains of f ds to a WSEo telationC: and hd .
variables from that class. Fig. 5 shows a U-relational dadab correspondsto a mponentelationt; and €ach domain

and its normalization. valuel; of ¢; corresponds Fo a tuple aﬂ’l The normalizat.ion

may lead to an exponential blow-up in the database size and
Theorem IV.2. Given a reduced U-relational database, Algoaccounts for U-relations with arbitrarily large ws-degtoirs
rithm 1 computes a normalized reduced U-relational databadeing more compact than U-relations with singleton ws-
that represents the same world-set. descriptors and thus than WSDs.

Computing certain answers.Given a set of possible worlds, Theorem V.1. U-relational databases are exponentially more
we call a tuple certain iff it occurs in each of the worlds. Isuccinct than WSDs.



Positive relational queries have polynomial data compyexi W Var Rng Pr
for U-relations (Section Ill) and exponential data complex x 101 1 id cont
ity for WSDs [6]. This can be explained in close anal- X i g'g 3 P{z—1}) =0.1
ogy to the difference in succinctness and by the fact that z > 07 2 P({z—2}) =09
guery evaluation creates new dependencies [10]: U-relstio ~ Tz 1 06 4 P(ly—1,2+—2}) =012
can efficiently store the new dependencies by enlarging ws- z 2 04

descriptors, whereas WSDs correspond to U-relations with

normalized ws-descriptors, hence the exponential blowup. (2) Probabilistic world-table.  (b) Computing tuple confide.

. . Fig. 6. Probabilistic U-relati
ULDBs vs. U-Relations.ULDBs are databases with uncer- 9 robabiistic Lrrelations

tainty and lineage [8]. Due to lack of space, we only state ti@ the product of probabilities of its variable assignments
salient results concerning our comparison to ULDBs. n
PHz1— v, zp = vy }) = HP({% — v }) (%)

Lemma V.2. ULDBs [8] can be translated linearly into U- i

relational databases. The probabilistic extension is orthogonal to the techngque

The translation uses a direct encoding of ULDB's lineag®r evaluating positive relational algebra queries déxeatiin
into ws-descriptors, where ULDB’s tuple and alternative idSection Ill. Since processing relational algebra queriely o
become variables and domain values, respectively. extends each world with the result of the query in it without
There are U-relations, however, whose ULDB encoding$1anging the world’s probabilities, the algorithms carmeo
are necessarily exponential in the arity of the logicaltieta With no change to the probabilistic case as well. A different
This is the case of, e.g., or-set relations [13], attridete! class of queries are those that ask for confidence of tuples

representations that can be linearly encoded as U-retatiah in the result of a query. Let/ be a U-relation representing
exponentially as ULDBs. the answer to a query on a U-relational database. Then,

) . the confidenceof a tuplea in the answer tog is the sum
Theorem V.3. U-relational databases are exponentially morgf the probabilities of the worlds defined 1y that contairt.
succinct than ULDBs. Computing the confidence by enumerating all possible worlds

Both ULDBs and U-relations have polynomial data conS the above definition suggested, is, however, not feagible
plexity for positive relational queries. Differently from PEtter approach is to compute the probability of the wosd-s

ULDBs, evaluating queries on U-relations is possible us'rr&presented by the union of ws-descriptors associated avith

relational algebra only. The main difference between thelf U - -
evaluation algorithms concerns dealing with erroneoutes)p P({d|35(d,5,a) € U})

i.e., tuples that do not appear in any world. In contrast 49 case only one tuple with ws-descriptdrin U matches
U-relations, erroneous tuples may appear in the answerstti@ given tuplea, then the confidence af can be trivially
queries on ULDBs (see [8] for an example). The removal @omputed asP(d) using formula (*) above. In the general
such tuples is called data minimization, an expensive djpera case, however, the computation is #P-complete. This fallow
that involves the computation of the transitive closure gfom the mutual reducibility of the problem of computing
lineage [8]. Such tuples occur with ULDBs because the lieeaghe probability of the union of the (possibly overlapping)
of an alternative in the answer only points to the lineage Qforld-sets represented by a set of ws-descriptors and of the
alternatives from the input relations, even though thegeitin #p-complete problem of counting the number of satisfying
alternatives may not occur in the same world. This canng&signments of Boolean formulas in disjunctive normal form
happen with U-relations because each query operation@sisypdeed, we can encode a set bfws-descriptors{z}

that only valid tuples are in the query answer by (1) using ... 2! s v/ } (1 <i<k)asaformula \/ (z} =
the ¢-condition in the join and merge operations and by (2). 1<i<k

carrying all dependencies in the ws-descriptors — and nlyt o1 A - - - A Tm = ’Um )- o _ _

to tuples of the input relation. Recent work considered efficient solutions for restricted

classes of queries and probabilistic databases [10] or by
applying approximation techniques [14]. Scalable configen
VI. PROBABILISTIC U-RELATIONS computation is out of the scope of this paper. Our current
aBProach for exact confidence computation exploits the-inde
mo
I:,pendence and variable sharing among ws-descriptors and is
by far more efficient than approaches based on enumeration
of all worlds or on the inclusion-exclusion formula.

U-relational databases can be elegantly extended to
probabilistic information by adding a probability columm
to the world tableW. Thus W contains tuplegx,v,p) for
all domain values of a variablex, andp is the probability
of z +— v. For each variable: defined bylV, the sum of the Example VI.1. Consider a probabilistic version of the U-
valuesp, (ovar—s) (W) must equal one. Fig. 6(a) shows aelational database of Fig. 1(b) with world-table defined in
probabilistic version of the world-table of Fig. 1(b). Fig. 6(a). Consider again relatio§ from Example III.6

We use a functiorP to define the probability of a valuation containing the ids of enemy tanks on the map. There are three



Q1: possible (select o.orderkey, o.orderdate, o.shipprioritfrom
customer c, orders o, lineitemwhere c.mktsegment= 'BUILDING’
and c.custkey= o.custkey and o.orderkey: l.orderkey

and o.orderdate> '1995-03-15’ and |.shipdate< '1995-03-17")

Q2: possible(selectextendedpricdrom lineitem where
shipdatebetween’1994-01-01’ and '1996-01-01’
and discountbetween’0.05’ and '0.08 and quantity < 24)

Q3: possible(selectnl.name, n2.namigom supplier s, lineitem |,
orders o, customer ¢, nation nl, nation wBere n2.nation="IRAQ’
and nl.nation="GERMANY’ and c.nationkey= n2.nationkey

and s.suppkey= l.suppkeyand o.orderkey= l.orderkey

and c.custkey= o.custkeyand s.nationkey= nl.nationkey)

Fig. 7. Queries used in the experiments.

percent of the combinations satisfy the constraints and are
preserved.

The uncertain fields are assigned randomly to variables Thi
can lead to correlations between fields belonging to differe
tuples or even to different relations. This fits to scenarios
where constraints are enforced across tuples or relatides.
do not assume any kind of independence of our initial data as
done in several other approaches [10], [8].

For the experiments, we fixed to 0.25, m to 8, and
varied the remaining parameters as followssranges over
(0.01,0.05,0.1,0.5,1), z ranges over0.1,0.25,0.5), and z
ranges over0.001,0.01,0.1).

An important property of our generator is that any world in

. . . , U-relational database shares the properties of the omielwo
different possible enemy tank ids, whose confidence can ggtabase enerated by the original dbgen: The sizes of rela-
computed aP({z — 1}), P({z — 2}) and P({y — 1,z — 9 y g gen:

) L - tions are the same and the join selectivities are approxiyat
e e 2o s oy on UL e checkad 0 by andomy choosng cne vt o
map is computed a@({{z s 1}, {z 1> 2}, {y 1o 1,2 o> | e U-relational database and comparing the ;electlvufes

: ’ ' L ins on the keys of the TPC-H relations for different scale
2}}). The three ws-descriptors represent the entire World'séuors and uncertaint :
thus the confidence is 1. . y ratios. .

Queries. We used the three queries from Fig. 7. Qué&dy

is a join of three relations of large sizes. QueR is a
select-project query on the relation lineitem (the largesiur
Prototype Implementation. We implemented the query settings). Quen@s is a fairly complex query that involves
translator of Fig. 4. We also extended the C implementfins between six relations. All queries use the operator
tion of the TPC-H population generator version 2.6 builtpossible’ to retrieve the set of matches across all wonlkiste
1 [17] to generate attribute and tuple-level U-relationsl arthat these queries are modified versions(®f, Qg¢, and Q-
ULDBs. The code is available on the MayBMS project pagef TPC-H where all aggregations are dropped (dealing with
(http://www.cs.cornell.edu/database/maybms). aggregation is subject to future work).
Setup. The experiments were performed on a 3GHZ/1GB Fig. 9 shows that our queries are moderately selective and
Pentium running Linux 2.6.13 and PostgreSQL 8.2.3. their answer sizes increase with uncertaimtgnd marginally
Generation of uncertain data. The following parameters with correlationz. For scale 1, the answer sizes range from
were used to tune the generati@eale(s), uncertainty ratio tens of thousands to tens of millions of tuples. There is only
(z), correlation ratio (z), andmaximum alternatives per field one setting £ = 0.25 andz = 0.1) where one of our queries,
(m). The (dbgen standard) parameteis used to control the @3, has an empty answer. Before the execution, the queries
size of each world;z controls the percentage of (uncertainjvere optimized using our U-relation-aware optimizatidfig.
fields with several possible values, amdcontrols how many 8 shows@; after optimizations.
possible values can be assigned to a field. The parame@éraracteristics of U-relations. Following Fig. 8, the U-
z defines a Zipf distribution for the variables with differentelational databases are exponentially more succinct than
dependent field counts (DFC). The DFC of a variable is tliatabases representing all worlds individually: while riugn-
number of tuple fields dependent on that variable. We uber of worlds increases exponentially (when varying the un-
the parameter to control the attribute correlations: For certainty ratiar), the database size increases only linearly. The
uncertain fields, there ar€C  2*] variables with DFCi, case ofr = 0 corresponds to one world genﬁerated using the
where C = n(z — 1)/(zF1 — 1), ie, n = go(c % 2. original dbgen. Interestingly, to represert®'°” worlds, the

. i= . . U-relational database needs about 6.7 times the size of one
Thus greaterz values correspond to higher correlations i orld

the data. The number of domain values of a V%nable with An increase of the scaling factor leads to an exponential

DFC k > 1 is chosen using the formulg~! « AL(mi), increase in the number of worlds and only to a linear increase
wherem; is the number of different values for theth field in the size of the U-relational database. Although we only
dependent on that variable andis the probability that a report here on experiments with scale factors up to 1, furthe
combination of possible values for thefields is valid. This experiments confirmed that similar characteristics araiobtl
assumption fits naturally to data cleaning scenarios. Buavi for larger scales, too. An increase of the correlation patam
work [4] shows that chasing dependencies on WSDs enfordeads to a moderate relative increase in the database shen W
correlations between field values and removes combinaticcampared to one-world databases, the sizes of U-relational
that violate the dependencies. We considered here that aftatabases have increase factors that vary from 6.2 (fe10.1)
correlating two variables with arbitrary DFCs, onlyx 100 to 8.2 (forz = 0.5).

VIl. EXPERIMENTS



possible

I
merge

TPC-H ~

s z dbsize | #worlds  Rng dbsize| #worlds  Rng dbsize| #worlds Rng dbsizel Mshippriority(©) W°'°'de'ke|y'°'°rde'da‘e

001 01 17 [ 10357076 21 82 [1079%°30 57 85 [1079%%%1 57 114 Morderkey

0.01| 05 17 [10523-031 71 82 |104724:56 901 88| 10466756 g2 139 merde Serge
005] 0.1 85 [ 10725725 22 389 [ 10599135 33 403 | 10590137 65 547 P 9\ AN
0.05| 05 85 10254914 178 390 |1023515-5 449 41610232650 1155 672 Torderkey(0) To.orderdate Torderkey(!) 7o
0.10 | 0.1 170 | 10%006-77 27 773 | 10795899 49 802 | 10793011 53 1090 | |
0.10 | 0.5 170 | 10504465 181 776 |1046901.8 773 826 |10466038 924 1339 custkey, 9l shipdate
0.50 | 0.1 853 | 10733680 49 3843 | 10700185 71 3987 | 103-97¢F06 85 5427 merde merge Tshipdatd!)
0.50 | 0.5 853 | 1025528-9 214 3856 | 10234840 1832 401210233106 2586 6682 - ;ﬁ? ) U\ - Qc)\ﬁ

T.00 | 01| 1706 [10572930 57 7683 | 10500997  §9 7971|107 9205 113 11264|  coowel?) “oorerdate Teuskeo 70

1.00 | 0.5 1706 | 10512909 993 7712 (10470401 1675 8228 10%66e+06 3392 13312 Torderdatd0) ¢ mktsegment
| [ [[x=00] x=0.001 | x = 0.01 [ x=0.1 | :

ﬂ'mktsegmen{C)

Fig. 8. (left): Total number of worlds, max. number of domawues for a variable (Rng), and size in MB of the U-relatiodatabase for each of our
settings. (right): Query plan fo®; using merge.
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Fig. 10. Performance of query evaluation for various scafeertainty, and correlation.

Query Evaluation on U-relations. We run four times our set size 13 GB and represents)81°" worlds with 1.4 GBs
of three queries on the 45 different datasets reported in&ig each world, query@s involving five joins is evaluated in
For each query and correlation ratio, Fig. 10 has a log-ladesc less than two and a half minutes. One explanation for the
diagram showing the median evaluation (including storaggdod performance is the use of attribute-level represiemtat
time in seconds as a function of the scale and uncertairftftis allows to first compute the joins locally using only the
parameters ([3] also shows diagrams for= 0.25). The join attributes and later merge in the remaining attributés
different lines in each of the diagrams correspond to différ interest. Another important reason for the efficiency ig thae
uncertainty ratios. to the simplicity of our rewritings, PostgreSQL optimizéet
Fig. 10 shows that the evaluation of our queries is efficiequeries in a fairly good way. ([3] shows an optimized query
and scalable. In our largest scenario, where the database ha



plan produced by the PostgreSQL ‘explain’ statement for tlexample, for scale 0.01 and uncertainty 10%, relation témei

rewriting of Q).) contains more than 15M tuples compared to 80K in each of
The evaluation time varies linearly with all of our parameits vertical partitions.

ters. For@; (Q2 and Qs resp_ectivgly) we Witnes_sed_a factor VIIl. CONCLUSION AND EUTURE WORK

of up to 6 (4 and 10 respectively) in the evaluation time when

varying the uncertainty ratio from 0.001 to 0.1. When the IS Paper introduces U-relational databases, a simple rep
correlation ratio is varied from 0.1 to 0.5. the evaluationd resentation system for uncertain data that combines the ad-

increases by a factor of up to 3; this is also explained by thi ntgges Of_ existing systems, Iike_ ULDBs and WSD_S' without
increase in the input and answer sizes, cf. Fig.s 8 and 9. Whlf'Ing their drawbacks. U-relations are exponentiallyeno

the scale parameter is varied from 0.01 to 1, the evaluatigHccnct thgn both WSDs and ULDBSs. E03|t|ve rela'gonal al-
time increases by a factor of up to 400 in case(df and gebra queries are evaluated purely relationally on U-ietat

z = 0.5, we also noticed some outliers where the increageProperty not shared by any other previous succinct repre-
factor is around 1000 sentation system. Also, U-relations are a simple formalism

Effect of attribute-level representation. We also performed which poses a s_mall burden on implementors. Following our
query evaluation on tuple-level U-relations, which représ recent investigation on uncertainty-aware language cocist

the same world-set as the attribute-level U-relations gf Bi beyond relational algebra [5], we identified common phyisica

and on Trio’s ULDBs [8] obtained by a (rather direct) mappin pergtors necessary to implement many primitives for the
from the tuple-level U-relations. To date, Trio has no mativ reation and grouping of worlds. It turns out that several

support for the possible operator or the removal of erron&zeoﬁther operators described in this work, including choite-o

tuples in the query answer, though this effect can be olxﬂain%nd repair-key, can also be evaluated on U-relational dateh

as part of the confidence computafioiFor that reason, we using relational algebra only. For others, including coerfice

decided to compare the evaluation times of queries withogfimputation, it appears that normalizing sets of ws-dpgars

the possible operator and without the (expensive) remova the sentfe of kS_ectlon v pla(ljys ant |mporta}nt _rtohle. V;/e
of erroneous tuples or confidence computation (which is e currently working on secondary-storage aigorithms for

exponential-time problem). Since our data exhibits a hid?.'ormallzanon.
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