
XML Prefiltering as a String Matching Problem
Christoph Koch, Stefanie Scherzinger, Michael Schmidt

Saarland University Database Group
Saarbrücken, Germany

{koch,scherzinger}@infosys.uni-sb.de, mschmidt@informatik.uni-freiburg.de

Abstract— We propose a new technique for the efficient search
and navigation in XML documents and streams. This technique
takes string matching algorithms designed for efficient keyword
search in flat strings into the second dimension, to navigate in
tree structured data. We consider the important XML data man-
agement task of prefiltering XML documents (also called XML
projection) as an application for our approach. Different from
existing prefiltering schemes, we usually process only fractions of
the input and get by with very economical consumption of both
main memory and processing time. Our experiments reveal that,
already on low-complexity problems such as XPath filtering, in-
memory query engines can experience speed-ups by two orders
of magnitude.

I. I

In XML stream processing, or XML query evaluation using
main memory-based query processors, we often process XML
data ad-hoc, without loading it into a database or building an
in-memory tree representation. Doing this efficiently has been
recognized as an important data management problem [1]–
[7]. In XML data management, we face similar problems as
in string matching, as we often need to detect patterns (such
as a specific tagname) within XML input streams. However,
the state of the art in string matching to date has found little
application in the acceleration of XML processing.

String matching algorithms have been subject to extensive
study for more than thirty years [8]–[13]. In today’s algo-
rithms, the input is not processed one character at-a-time.
Rather, string matching algorithms like Boyer-Moore [11]
and Commentz-Walter [13] rely on the insight that matching
keywords from right to left lets us skip parts of the input. For
instance, the keyword “ICDE” has four characters. Suppose
the fourth character in the input string is the letter “A”. Then
the keyword cannot be matched by the first four characters,
and we can safely skip to the 8th character. If this character
is the letter “C”, then the pattern could be matched. Hence,
we shift to the right for the substring “DE”, and try to match
the keyword from right to left.

This paper makes a case for leveraging ideas from string
matching for XML stream processing. We take the leap from
processing flat strings to structured documents, and present
a new technique for the efficient search and navigation in
XML documents and streams. What makes our approach very
attractive is that it shares the advantages of established string
matching algorithms: Using statically precompiled lookup
tables of fixed size, the runtime algorithm comes at little
expense for CPU and main memory resources. Moreover, it
can be implemented as a streaming algorithm, where we scan

the input with a fixed-size window in a single pass. Within the
window held in main memory, we can locally jump back and
forth, all the while trying to quickly process the input by skip-
ping characters. As we confirm in our experiments, this results
in significant speedups for searching flat strings and XML data
alike. In particular, both the runtime costs and the number of
character comparisons of our technique are comparable with
Boyer-Moore style string matching algorithms.

While the runtime algorithm is simple, lean, and efficient,
the static analysis computing the runtime data structures is
not trivial. In moving from flat strings to structured data, new
challenges arise. When the complete XML input document
has been tokenized into opening- and closing tags, e.g. using
a SAX parser, it is straightforward to track ancestor-descendant
relationships between nodes in the document tree. However,
when we skip data, we disregard parts of the document
structure. For instance, assume we search for an occurrence
of the keyword “〈a〉”, and once we have found it, we locate
keyword “〈b〉” in the input. Ad hoc, the relationship between
these nodes is unclear.

To deal with this problem, we make use of schema infor-
mation. DTDs provide us with the set of possible tagnames,
parent-child and ancestor-descendant information, as well as
order and cardinality constraints. We also take required at-
tributes into account to compute XML-specific offsets, which
let us skip parts of the input in addition to the skips performed
by string matching algorithms. Based on a holistic static
analysis, we decompose the task of navigating inside XML
documents into multiple string matching problems, which
are solved individually using established algorithms. This
decomposition is robust, and computes very basic lookup-
tables, to be used at runtime.

By only inspecting a fraction of the characters in the input,
we are able to build highly scalable applications for XML
stream processing. These applications exhibit high throughput
and an economical use of resources. As a proof-of-concept,
we apply our technique to XML prefiltering, an established
XML data management technique, which has sprung from the
following motivation.

Over the past years, a variety of applications for XML
processing have been developed, such as XQuery, XSLT
and XPath processors, or less expressive filters for publish-
subscribe scenarios [1], [2]. Systems that are designed as main
memory engines often fail to handle large amounts of XML
data [5], [14]–[16]. While some systems push the limits of
the available memory and computational resources to cope

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

<!DOCTYPE site [
<!ELEMENT site (regions)>
<!ELEMENT regions (africa, asia, australia)>
<!ELEMENT africa (item*)>
<!ELEMENT asia (item*)>
<!ELEMENT australia (item*)>
<!ELEMENT item (location,name,payment,

description,shipping,incategory+)>
<!ELEMENT incategory EMPTY>
<!ATTLIST incategory category ID #REQUIRED>
...]>

Fig. 1. Excerpt from the XMark DTD

with the size of the input [1]–[4], [6], [7], main memory
nevertheless remains the limiting resource. XML prefiltering
techniques, also called “XML projection” or “pruning” [5]–
[7], tackle this problem. In prefiltering, only relevant data is
passed on to the XML query engine, while irrelevant data is
discarded. In many practical cases, this considerably reduces
the amount of data stored in main memory [5], [6].

In the example below, we show how string matching algo-
rithms can be leveraged to accelerate XML prefiltering.

Example 1: We discuss XML prefiltering for XQuery
<q>{ //australia//description }</q>

against the document from Figure 2. We consider the sim-
plified XMark DTD [17] from Figure 1, and assume that all
unlisted tags have #PCDATA content.

In XML prefiltering for this query, we are only interested
in tag node australia and all its description descendants.
By default, we preserve the top-level node to guarantee well-
formed XML output. Hence, in prefiltering the document from
Figure 2, we obtain the document below, on which query
evaluation yields the same result.

<site><australia><description>Palm Zire 71
</description></australia></site>

In localizing a tag in the input we must keep in mind that
tags may contain whitespaces or attributes. However, all tags
for element t share the prefix “〈t” or “〈/t”. While “〈 t〉” is
not allowed by the XML standard, “〈t 〉” is valid syntax.
Thus, we search for the keyword “〈t” using string matching
algorithms, and then locally seek the trailing “〉” or “/〉”. In
Figure 2, we use ↑ to mark characters that are checked from
left to right, and ↓ for characters that are checked locally from
right to left. Symbol � represents both ↑ and ↓.

At position 1, we start by scanning for keyword “〈site”
using the Boyer-Moore algorithm. The 5th character (“e”)
is investigated, and the match is verified from right to left.
Character “>” on the right asserts that an opening tag has been
detected. Next we are interested in tag 〈australia〉. According
to the DTD, “〈regions〉〈africa/〉〈asia/〉” with length 25 is the
minimum string preceding this tag. We skip 25 characters,
and search for the keyword “〈australia” with length 10. Thus,
search is resumed 25 + 10 characters to the right, at position
2. Up to position 3, we check every 10th character, and
observe that it is not contained in the keyword. Character “l” at

position 3 is contained, and we shift |〈australia|−|〈austral| = 2
characters to the right. Reading character “t”, we rule out a
match, and the search continues. At position 4, we finally
match and output 〈australia〉.

Next, we search for the keywords “〈description” and
“〈/australia” using the Commentz-Walter algorithm. Scanning
for “〈/australia” is necessary because the DTD does not
assert the existence of tag 〈description〉 as a descendant of
australia. Position 5 shows a suspected match for keyword
“〈description”, which is aborted. At position 6, we match
〈description〉. We record its start position and search for
“〈/description”. We jump the size of |〈/description| characters
to the right, match character “〈”, and verify a match for
〈/description〉 at position 7. The data is copied to the output,
starting from the recorded start position of 〈description〉 up
to (and including) the closing tag. We resume the search for
“〈/australia” and “〈description”, and perform an initial jump
for the string “〈shipping/〉〈incategory category=’’/〉〈/item〉”.
As the minimum distance to the next occurrence of tag
〈description〉 is greater, this jump offset is safe. Finally, we
match and output 〈/australia〉 and 〈/site〉 at positions 8 and 9.

Even in this toy example, only about 22% of all characters
need to be inspected. When processing documents in the
Gigabyte range, we observe similar ratios. �

Related work. There are several efficient tools for searching
XML and SGML documents [2], [18]–[20], evaluating XPath,
regular path expressions, or nested text-region algebra [20].
To our knowledge, they all tokenize the complete input. GNU
grep implements efficient string matching algorithms as done
in this paper, yet its focus is search in flat text files. In [21],
Aho-Corasick string matching is extended to files that mix
single-byte and multi-byte characters. If XML schema is
available, this approach can be applied to XML processing,
by viewing opening- and closing tags as multi-byte characters.
The authors thus build an XML parser, on top of which
they implement path-matching in the style of [1], [22]. Our
work differs in several regards. First of all, our approach is
based on a different family of string matching algorithms,
the Boyer-Moore and Commentz-Walter algorithm, which aim
at skipping as many characters in the input as possible.
Second, we present an integrated approach of parsing and
path matching, which allows us to skip even larger offsets
in the input. Finally, we exploit structure information and
order constraints from the schema, as opposed to merely the
vocabulary of possible tagnames.

Using the XML stream index (SIX) [2], which registers byte
offsets within the input, subtrees can be skipped during XPath
evaluation. In contrast to our approach, the SIX is precomputed
in a prior pass, which is futile in most streaming scenarios.

Contributions. We make the following contributions.

• We show that established string matching techniques,
originally designed for keyword search in flat text files,
can be used for highly efficient search and navigation in
unparsed, tree-structured XML data.

<site><regions><africa><item><location>United States</location><name>T V</name><payment>Creditcard</payment>↓↓↓↓↑↑
1

↑
2

↑ ↑ ↑ ↑ ↑ ↑

<description>15’’LCD-FlatPanel</description><shipping>Within country</shipping><incategory category="3"/></i↑ ↑ ↑
3
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

tem></africa><asia/><australia><item ><location>Egypt</location><name>PDA</name><payment>Check</payment><des↑ ↑ ↓↓�↓↓↓↓↓↓↑↑
4

↑ ↑ ↓�↓↓↑
5

↑ ↑ ↑ �↓↓↓

cription>Palm Zire 71</description><shipping/><incategory category="3"/></item></australia></regions></site>↓↓↓↓↓↓��↑
6

�↓↓↓↓↓↓↓↓↓↓↓�↑
7

↓↓↓↓↓↓↓↓↓�↑↑
8

↑ ↑ ↓↓↓�↓↑↑
9

Fig. 2. XML prefiltering for the XQuery expression 〈q〉{ //australia//description }〈/q〉

• We propose a novel approach to XML prefiltering that
exploits efficient string matching algorithms.

• We perform a holistic static analysis which reduces XML
prefiltering to a set of string matching tasks. At runtime,
an automaton switches between individual tasks based on
the current state in XML prefiltering.

• The high throughput of our system relies on the idea of
skipping parts of the input and a lean core algorithm that
executes XML prefiltering with very little management
overhead. This is made possible by precompiling the
results of static analysis into fixed lookup tables.

• Our extensive experiments demonstrate the persistently
high throughput and scalability of our prototype for a
variety of datasets, document sizes, and queries. With our
technique, in-memory XQuery engines in many practical
cases overcome main memory limitations and scale up
to documents in the Gigabyte range on currently com-
mon hardware. Even throughput rates of traditional SAX
parsers are up to the order of one magnitude lower than
the rates that we achieve for prefiltering. We conclude
that prefiltering systems, that rely on a tokenization of
their input, cannot compete with the throughput achieved
by our technique.

Structure. In Section II we introduce the highly efficient
runtime algorithm, which makes heavy use of precompiled
lookup tables to realize efficient document prefiltering. We
introduce a projection semantics in Section III, and discuss
the static precompilation of lookup tables in Section IV. Our
extensive experiments are presented in Section V, and we
finish with a short conclusion in Section VI.

II. R

We next introduce the runtime algorithm that schedules the
execution of the single string matching problems to perform
XML prefiltering. We assume that a nonrecursive schema is
available, but emphasize that all techniques can be extended
to handle recursiveness. The algorithm assumes that the input
document is valid w.r.t. the DTD.

Example 2: We exemplarily discuss prefiltering for XPath
expression /a/b against a document valid w.r.t. DTD

<!DOCTYPE a [<!ELEMENT a (b|c)*>
<!ELEMENT b #PCDATA> <!ELEMENT c (b,b?)>]>.

While we formally define a semantics for XML prefiltering
in the next section, here it is evident that only the top-level
nodes with label a, and their b-labeled children (with their
subtrees) need to be preserved in prefiltering.

We decompose the prefiltering task into multiple string
matching problems. The frontier vocabulary is the set of
keywords defining the current string matching problem. We
start XML prefiltering with tag 〈a〉 in the frontier vocabulary.
We use the Boyer-Moore algorithm for single keyword search
to match tag 〈a〉 in the input. Once we have located this
keyword, we consider the frontier vocabulary with the tokens
〈b〉, 〈c〉, and 〈/a〉. As this defines a multi-keyword search,
we use the Commentz-Walter algorithm to detect the closest
match for any of these keywords. (1) If the closest match
is token 〈b〉, then we have found a relevant node. (2) If we
instead find token 〈c〉, we can ignore the subtree underneath.
(3) If we match 〈/a〉, we have reached the end of the parent
node. This way, we recognize just enough of the structure of
the input yet without parsing the complete input into tokens.

Part (2) is crucial, because if we only scan for
tags 〈b〉 and 〈/a〉, we cannot distinguish “〈a〉〈b〉 . . . ” and
“〈a〉〈c〉〈b〉 . . . ”, and could mistake a b-labeled child of node c
for a child of a. At the same time, if 〈c〉 has been matched,
we can immediately search for 〈/c〉 without parsing the tokens
in the subtree of the c-labeled node. �

Runtime data structures. The change between frontier vo-
cabularies is captured by the runtime-automaton. Given the
current automaton state and reading position in the input,
string matching algorithms scan for the closest token for which
a transition is defined. Four statically compiled tables (or
associative arrays) provide all information required at runtime.
Table A in Figure 3 (visualized as a graph) holds the transition
function, mapping the current state and an input token from
the frontier vocabulary to the next state. q0 denotes the initial
state. Table V provides fast access to the frontier vocabulary
in each state. Tags can contain attributes or whitespace, so the
string search does not consider the trailing bracket of the tag.
Table J stores initial jump offsets, i.e. the number of positions
that can initially be skipped when entering a new state. This
is motivated in Example 3. The actions for each state are
stored in table T . We can perform no operation (“nop”) or

q0

q2 q̂2 q1 q̂3 q3

q̂1

〈a〉

〈/a〉

〈b〉

〈/b〉 〈/c〉

〈c〉

〈/a〉 〈/a〉

〈b〉 〈c〉

〈c〉 〈b〉

Runtime-automaton A.

q V[q]

q0 { “〈a” }
q1 { “〈/a”, “〈b”, “〈c” }
q̂1 { }
q2 { “〈/b” }
q̂2 { “〈/a”, “〈b”, “〈c” }
q3 { “〈/c” }
q̂3 { “〈/a”, “〈b”, “〈c” }

q J[q]

q0 0
q1 0
q̂1 0
q2 0
q̂2 0
q3 4
q̂3 0

q T [q]

q0 nop
q1 copy tag
q̂1 copy tag
q2 copy on
q̂2 copy off
q3 nop
q̂3 nop

Fig. 3. Lookup tables V , J, and T

copy the current tag without or with its attributes (“copy tag
[+ atts]”). To output a node with its subtree, we copy the
input from the start position of the opening tag up to the last
position of its closing tag (“copy on/off”).

Example 3: Consider Figure 3. Assume we are in state q3

and at some reading position in the input document. Then the
frontier vocabulary is V[q3] = {“〈/c”}, so we search for “〈/c”.
We know from the DTD that node c has at least one child.
The shortest string encoding of this child is as “〈b/〉”, using
four characters. Thus, when starting to search for “〈c/”, we
skip J[q3] = 4 characters. �

Runtime algorithm. Figure 4 shows the runtime algorithm,
which switches between string matching problems. The current
state is denoted by q, and the current reading position in
the input, the “cursor”, by c. We iterate the following steps.
In an initial jump, we shift the cursor J[q] positions to the
right. Then we search for the closest token from the frontier
vocabulary V[q]. For unary frontier vocabularies, we utilize
the Boyer-Moore algorithm (BM), otherwise the Commentz-
Walter algorithm (CW). We then scan to the right for the end
of the tag. If we have found an opening or a closing tag, we
enter the next state and perform the associated action. In case
we have found a bachelor tag 〈a/〉, we evaluate the steps for
the opening tag 〈a〉 and the closing tag 〈/a〉 one after the other.
The cursor now points to the last position with character “〉”
of the matched token, and the iteration proceeds.

There is a special case that we omitted for simplicity. DTDs
may specify tagnames that are prefixes of each other, such as
Abstract and AbstractText in the Medline DTD [23]. Thus,
if we scan for tag 〈Abstract〉 and locate “〈Abstract”, we must
assert that we have not matched 〈AbstractText〉 instead. This
can be done during the scan for the end of the tag (marked
by (�) in the algorithm).

q := q0; // current state
c := 0; // cursor position
while j ≤ end-of-file and q is not final do
begin

c := c + J[q]; // initial jump offset
if |V[q]| = 1
then perform single-keyword search for token in V[q]; // (BM)
else perform multi-keyword search for tokens in V[q]; // (CW)
t := the matched token from V[q];
a := tagname in token t;
shift cursor c to the right until reading “〉” or “/〉” // (�)

to determine matched tag;
if tag is an opening tag then

assign q := A[q, 〈a〉] and perform action T [q];
else if tag is a closing tag then

assign q := A[q, 〈/a〉] and perform action T [q];
else if tag is a bachelor tag then begin

assign q := A[q, 〈a〉] and perform action T [q];
assign q := A[q, 〈/a〉] and perform action T [q];

end
end

Fig. 4. The runtime algorithm

III. P

We capture the relevant data in XML prefiltering by pro-
jection paths, as defined in [5]. A simple path is a sequence
of XPath downward navigation steps without predicates, com-
posed by “/”. A projection path is an expression /simplePath
or /simplePath#. The flag “#” indicates that the descendants
of selected nodes are also required for query evaluation. We
use the path extraction algorithm from [5], which covers full
XQuery with downward XPath axes. Additionally, we extract
the path /* by default. This path matches the top-level node
and ensure well-formed output in prefiltering.

Example 4: The static analysis for the XQuery

<q>{//australia/description}</q>

extracts the paths //australia//description# and /*. For
query Q13 from the XMark benchmark [17], i.e.

for $i in /site/regions/australia/item
return <item name="{$i/name/text()}">

{$i/description} </item>,

we extract /site/regions/australia/item/name#,
/site/regions/australia/item/description#, and /*. �

Projection safety. For XML prefiltering to be correct, it
needs to preserve all data relevant for the query. Only then
will query evaluation on the projected document return the
same result as on the original input. We formulate this as
projection-safety. The definition is based on projection paths,
so as not to restrict prefiltering to a specific query language.
It assumes the standard XPath semantics in evaluating path
expressions against documents, and interprets the #-flag as
step expression descendant-or-self::node(). In evaluating
an XPath expression on an XML document, we compute a
list of well-formed XML documents and strings. To compare
the evaluation of XPath expressions over XML documents
and their projections, we define an equality relation over such

lists. This relation captures the idea that from the viewpoint
of XPath evaluation, the original and the projected document
cannot be distinguished.

Definition 1: Let L1 and L2 be two lists of XML documents
and strings. We say L1 and L2 are top-level equal iff they have
the same length, and the ith elements of L1 and L2 are either
two equal strings or two XML documents trees where the root
nodes have the same label.

Example 5: Let s be a fixed string. Then the lists
[〈a〉b〈/a〉, s], [〈a〉c〈/a〉, s], and [〈a〉〈/a〉, s] are pairwise top-
level equal. �

Definition 2: Let f be a function mapping XML documents
to XML documents. Let P be a set of projection paths. Then
function f is projection-safe w.r.t. P if for all projection paths
p in P and all XML documents X, the results of p evaluated
on X and f (X) are top-level equal.

A safe projection semantics. Our projection semantics has
been successfully implemented in [7]. We consider XML
documents D = t1 . . . tn, where each token ti is either an
opening, closing, or bachelor tag, or character data. We
define function branch(ti), which returns the document branch
of ancestor nodes from the root up to ti. For instance, in
Figure 2, we have branch(〈name〉) = branch(〈/name〉) =
〈site〉〈regions〉〈item〉〈name/〉〈/item〉〈/regions〉〈/site〉 for the
name-tags in line 1. Finally, we introduce set P+, which
extends the projection paths P by all prefix paths in P,
e.g. for path /a/b in P we add paths / and /a.

Definition 3: Let P be a set of projection paths, P+
its extension by all prefix paths in P, and let tin be
a token in document D. If tin is a tag node, let
branch(tin) be 〈ti1 〉 . . . 〈tin−1 〉〈tin/〉〈/tin−1 〉 . . . 〈/ti1〉, and otherwise
〈ti1〉 . . . 〈tin−1 〉“tin ”〈/tin−1 〉 . . . 〈/ti1 〉. Token tin is relevant accord-
ing to P if one of the following conditions holds.

C1: the leaf node in branch(tin) is matched by a path in P+,
C2: any node in branch(tin) is matched by a path in P+ marked

with #,
C3: there is a tag t s.t. P+ contains paths of the form
/p1/. . . /pi/t and /p′1/. . . /p′j//t, which both match the
leaf node in 〈ti1 〉 . . . 〈tin−1〉〈t/〉〈/tin−1〉 . . . 〈/ti1〉.

Condition C1 covers all document nodes directly matched
by a projection path or its prefix, while C2 captures all
descendants of nodes matched by #-marked paths. Finally, C3

maintains vital ancestor-descendant relationships, as motivated
by the following example.

Example 6: For the query <x>{/a/b,//b}</x> we com-
pute P={/∗, /a/b#, //b#} and P+={/, /a, /∗, /a/b#, //b#}. All
tokens in the document D = 〈a〉〈c〉〈b〉T 〈/b〉〈/c〉〈/a〉, are
relevant according to P. Both the a and b-labeled tags are
relevant according to condition C1, because the leaf nodes of

their document branches branch(〈a〉)=branch(〈/a〉)=〈a/〉 and
branch(〈b〉)=branch(〈/b〉)=〈a〉〈c〉〈b/〉〈/c〉〈/a〉 are matched by
projection paths /a, and //b#, respectively. The branch of text
node “T” is the document D itself. Clearly, the b-labeled nodes
in the document are matched by the #-flagged path //b#, hence
the text node is relevant due to C2. Finally, consider the c-tags
with branch(〈c〉) = branch(〈/c〉) = 〈a〉〈c/〉〈/a〉. We choose
t = b in condition C3, and P+ contains the paths /a/b and
//b#, which both match 〈a〉〈b/〉〈/a〉. Thus, the c-tags are also
relevant. Note that the c-tags are indeed required for query
evaluation, as the evaluation results on the original document
and on document 〈a〉〈b〉T 〈/b〉〈/a〉 differ. �

Based on the definition of relevant nodes, we implement
XML prefiltering by preserving exactly the relevant nodes.
The lemma below states the correctness of this approach.

Lemma 1: Let P be a set of projection paths. A function
over XML documents which preserves all nodes relevant
according to P with their ancestor-descendant and following-
relationships is projection-safe w.r.t. P.

As shown in [7], this approach to XML prefiltering can be
evaluated on-the-fly, in a single pass over the input.

IV. S

We statically compute the runtime lookup tables from
projection paths and a nonrecursive DTD.

Computing the runtime-automaton. We compile the DTD
into an automaton. DTD-automata are finite-state automata
(FSAs) that recognize all XML documents valid w.r.t. a DTD.
Ultimately, we want to associate actions with FSA states, as
in Figure 3. To this end, we use Glushkov automata [24],
a class of FSAs where all transitions into a state carry the
same label. This property is called homogeneity [25]. A state
in a homogeneous FSA is called t-labeled if its incoming
transitions carry label t. State q0 is the initial state, and dual
states q and q̂ distinguish reading opening- and closing tags.

Example 7: The DTD-automaton in Figure 5 has been
constructed for the DTD from Example 2. �

We compute the runtime-automaton from a subgraph of the
transitive closure of the graph defined by the DTD-automaton.
Our goal is to select a small subgraph, as we do not want to
recognize all tokens in the input, but rather skip parts of the
input unparsed. Thereby, we need to ensure that we visit all
tags that are part of relevant data, as this data needs to be
preserved in XML prefiltering. As shown in Example 2, we
may also have to stop over at additional nodes to maintain a
minimum amount of orientation.

Definition 4: Given a homogeneous FSA D and the set
of states S , the subgraph-automaton D|S is defined over the
states S ∪ {q0} as follows.

• The initial state of D is also the initial state of D|S .

q0 q4

q2 q̂2 q1 q̂3 q3 q̂4

q̂1 q5

q̂5

〈a〉

〈/a〉

〈b〉

〈/b〉 〈/c〉

〈c〉

〈/a〉 〈/a〉

〈b〉 〈c〉

〈c〉 〈b〉

〈b〉 〈/b〉

〈/c〉 〈b〉

〈/b〉
〈/c〉

Fig. 5. DTD-automaton

• For each sequence q
ti1→ qi1

ti2→ · · · tin→ qin
t→ p of

transitions of D, where n ≥ 0 and only states q and p
are in S , D|S has a transition q

t→ p.
• A state q of D|S is final if (1) q is a final state in D,

or (2) there is a sequence q → qi1 → · · · → qin → p
for n ≥ 0 in the transitions of D where only state q is
in S and p is a final state of D.

By construction, D|S is also homogeneous.
The layout of the DTD-automaton reflects the parent-child

relationships between nodes in the accepted XML documents.
A state p is a parent state of a state q if there is a well-formed
XML document where the nodes matched by p are parents of
the nodes matched by q.

Example 8: In Figure 5, state q0 has no parent states, but
it is the parent state of q1 and q̂1. In return, q1 and q̂1 are the
parent states of q2, q̂2 and q3, q̂3. �

For each state qin in the DTD-automaton, there is a unique
sequence (q0, qi1), (qi1 ,qi2), . . . , (qin−1 ,qin) of parent-child states
from initial state q0 up to state qin . Let tik be the label of state
qik , for 1 ≤ k ≤ n. We define the document branch of state qin
as 〈ti1 〉〈ti2〉 . . . 〈tin/〉 . . . 〈/ti2〉〈/ti1〉.

Example 9: In Figure 5, state q0 has the empty document
branch, states q1 and q̂1 have document branch 〈a/〉, and states
q2 and q̂2 have document branch 〈a〉〈b/〉〈/a〉. �

We next define the semantics of projection paths evaluated
on DTD automata instead of the XML documents.

Definition 5: A state q in the DTD-automaton is relevant
according to P if the leaf node of its document branch is
relevant according to P by Definition 3.

Example 10: Consider the DTD-automaton from Figure 5,
and the projection paths P1 = {/*, /a/b#, //b#}. All states in
the DTD-automaton are relevant according to P1. The (empty)
document branch of q0 is matched by the empty path step /.
States q2 and q̂2 with document branch 〈a〉〈b/〉〈/a〉 are also
relevant, because the leaf node 〈b/〉 is matched by path /a/b#.
For states q3 and q̂3 with document branch 〈a〉〈c/〉〈/a〉, the
token 〈c/〉 is relevant according to condition C3 in Definition 3.

Given DTD-automaton D and a set of projection paths P,
(1) choose a subset S of states as follows:

(a) for each state q in the DTD-automaton do
if q is relevant according to P, then add q to S ;

(b) for each pair of dual states q and q̂ in S do
begin

let R contain all states p of D s.t.
there is a path from q to q̂ via p in D;

if R ⊆ S then remove states in R from S ;
end

(c) while there are changes to S do
if D has transitions q→ q1 → · · · → qn → p

and q → p1 → · · · → pm → p′ for n,m ≥ 0,
where only q and p are in S
and p and p′ have the same label

then add the parent states of p′ to S;

(2) compute the subgraph automaton D|S ;

(3) determinize D|S to obtain the runtime-automaton;

Fig. 6. Compilation of the runtime-automaton

In contrast, only q0, q1, q̂1, and q2, q̂2 are relevant according to
P2 = {/*, /a/b#}. �

Figure 6 shows the static compilation of the runtime-
automaton, which we illustrate in the following examples.

Example 11: We consider the DTD-automaton from Fig-
ure 5 and P = {/*, /a/b#}. In step (1), we select states for
computing a subgraph-automaton. Step (a) initializes set S
with q0, q1, q̂1, q2, and q̂2. This ensures that the runtime
algorithm visits all nodes that must be preserved for query
evaluation. Step (b) does not apply here. In step (c), we again

extend S . For instance, we observe the transitions q1
〈b〉→ q2

and q1
〈c〉→ q3

〈b〉→ q4 where q2 and q4 are b-labeled, but only q1

and q2 are contained in S . Hence, S is extended by q3 and q̂3.
This ensures that the runtime-algorithm is not thrown off-track
when it skips input passages. Step 2 computes the subgraph-
automaton, that is shown in Figure 3 (since the FSA is already
deterministic, it is identical to the runtime-automaton). �

Example 12: We next consider P = {/*, //c#} and the
DTD-automaton from before. In step 1(a), we compute S =
{q0, q1, q̂1, q3, q̂3, q4, q̂4, q5, q̂5}. Yet at runtime, once we have
located a token 〈c〉 in the input, the complete subtree of the
matched node is relevant, and copied to the output anyway.
Hence, we can scan for the closing tag 〈/c〉 without locating
the tags for any of its descendants. We thus prune S to
S = {q0, q1, q̂1, q3, q̂3} in step 1(b). �

Remaining lookup tables. The compilation of the remaining
runtime-tables is quite straightforward. Table V is constructed
from the transitions of the runtime automaton. The initial jump
offsets are computed based on the runtime-automaton and the
DTD-definition. When computing offsets, required attributes
may be factored in.

In defining the action table, we unambiguously map an
action to each state, exploiting the fact that the runtime-
automaton is homogeneous (homogeneity is preserved by de-
terminization via subset construction [25]). Table T is derived
as follows. States that do not describe relevant nodes are
assigned action “nop”. For the remaining states, we consider
the pairs of states q and q̂ for reading the opening- and
closing-tag of a node. If the leaf node in the document branch
associated with q and q̂ satisfies condition C2 in Definition 3,
then we are interested in the descendants of this node and
assign T [q] =“copy on” and T [q̂]= “copy off”. Otherwise, we
assign action “copy tag” for both states, possibly also copying
the attributes for the opening tag, depending on the matched
projection paths.

Correctness. Let R(D,P, X) be the runtime algorithm from
Figure 4 computed for DTD D and the set of projection
paths P in document X. As the following theorem states, the
runtime-algorithm preserves all relevant nodes.

Theorem 1: Let X be a document valid w.r.t. a DTD D,
and P be a set of projection paths. Algorithm R(D,P, X) pre-
serves all nodes relevant according to P with their ancestor-
descendant and following-relationships as in X.

It follows from Lemma 1 that R(D,P, X) implements a
projection-safe function, and thus can be used for XML
prefiltering on documents conforming to the DTD.

V. E

We have implemented a prototype in C++, called SMP. Our
prototype takes the projection paths and a nonrecursive DTD
as input and performs static analysis (c.f. Section IV). The
data structures for string search are computed lazily, when
an automaton-state is first entered. SMP uses a pre-allocated
buffer to read the document in fixed-size chunks, which we
set to eight times the system page size.

Experimental Setup. All tests were carried out on a Core2
Duo IBM ThinkPad Z61p with a T2500 2.00GHz CPU, 1GB
RAM available, running Ubuntu Linux 6.06 LTS. We run Java
query engines with J2RE 1.5.0 09. Usr is the total number of
seconds the process used directly, and Sys the CPU seconds
used by the system on behalf of the process. CPU workload is
computed as Usr+Sys divided by total running time. To avoid
warm caches, we alternately ran experiments and loaded large
dummy files into main memory.

Outline. The experiments are organized as follows. We first
examine the performance characteristics of SMP on different
datasets and query workloads. Next, we study how SMP
performs when evaluated in sequence or in pipelining with
in-memory XPath and XQuery engines. Finally, we contrast
the throughput of SMP with that of an industrial-strength
SAX parser, to demonstrate the overhead caused by input
tokenization alone. We conclude with a comparison of SMP
with an existing prefiltering tool that also exploits schema
information, but relies on input tokenization.

A. Performance characteristics of SMP

We study the behavior of SMP for different queries,
documents, and documents sizes. We ran experiments with
XMark [17], MEDLINE [23], and Protein Sequence [26]
datasets and the corresponding DTDs. Due to space limita-
tions, we refer to [27] for the Protein Sequence results.

XMark data. We tested SMP with data from the XMark
benchmark [17]. Note that the XMark DTD allows recursive
lists within item descriptions. We modified the DTD accord-
ingly and restricted our experiments to queries XM1-14 and
XM17-20, which do not address the recursive lists. Table I
shows our results for a 5GB XMark document. To provide an
idea of how SMP performs on smaller documents, we list the
maximum deviation “±” (in positive or negative direction) on
the 10MB, 100MB, and 1GB documents for selected values.
We state the size of the projected document, and the maximum
memory consumption (Mem). The total runtime (Time), the
sum of Usr and Sys time, and the average CPU load are also
listed. The static analysis, which comprises parsing of the DTD
and of the files containing the projection paths, as well as the
construction of the lookup tables A, V , J, and T , is included
in the time measurements, and varied between 0.03s and 0.2s.

States is the number of states in the runtime-DFA. The
value of CW + BM denotes the number of states for which
Commentz-Walter (CW) or Boyer-Moore (BM) lookup tables
are constructed. For instance, for query XM1, the runtime-
DFA has 9 states, two of which require CW lookup tables,
and six of which need BM lookup tables.

When we scan the input there are forward shifts performed
in string pattern matching and initial jump offsets computed
by static analysis. ∅Shift Size denotes the average size of
forward shifts, which depends on the lengths of keywords in
the frontier vocabularies, but also on the structure of the input
document. When we verify a potential match for a keyword,
forward shifts are followed by a scan from right to left. Hence,
∅Shift Size cannot be used to compute Char Comp, the per-
centage of character comparisons relative to the document size.
Initial Jumps denotes the percentage of characters skipped
by initial jump offsets alone. The small deviations (±) for
different input sizes suggest that the XMark data generator
creates documents that are very similar in their structure.

We observe that larger outputs go hand in hand with higher
total processing times. For instance, prefiltering for query
XM14 produces the largest output, and requires the longest
running time. The Usr+Sys time is mainly driven by the
number of character comparisons, while the CPU load depends
on the output size and the number of characters comparisons,
and ranges between 11% and 21%. Thus, the system spends
most of the time holding out for new data from the disk. The
average size of forward shifts depends on the input and the size
of the tags used in the projection paths. In evaluating query
XM5, we observe comparatively large average forward shifts.
Consequently, the Usr+Sys time is low, and SMP inspects only
about 10% of the input (Char Comp). Overall, SMP inspects
at most 23% of the input. Comparatively little can be gained

TABLE I

SMP 5GB XM

XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM8 XM9

Proj. Size 67.64MB 123.26MB 123.26MB 151.14MB 22.10MB 12.03MB 105.74MB 93.78MB 121.01MB
Mem 1.64MB 1.72MB 1.72MB 1.75MB 1.68MB 1.64MB 1.77MB 1.72MB 1.78MB

Time 252.48s 283.33s 281.8s 290.42s 252.35s 241.70s 256.94s 252.95s 258.93s
Usr+Sys 31.00s 41.65s 41.59s 42.40s 19.91s 29.36s 50.47s 35.91s 30.41s
CPU [%] 12.52±2.51 14.99±0.75 15.04±2.53 14.90±4.90 8.05±1.52 12.39±4.89 20.02±7.52 14.48±5.73 11.98±4.68

States (CW+BM) 9 (2 + 6) 11 (4 + 6) 11 (4 + 6) 13 (5 + 7) 9 (2 + 6) 7 (2 + 4) 11 (4 + 6) 15 (4 + 10) 25 (6 + 18)
∅ Shift Size [char] 5.72±0.02 7.62±0.01 7.62±0.01 7.65±0.01 10.83±0.04 5.17±0.00 6.55±0.04 7.42±0.00 7.50±0.05
Initial Jumps [%] 0.32±0.00 1.42±0.01 1.42±0.01 1.37±0.00 0.43±0.00 1.98±0.01 2.61±0.01 0.75±0.01 1.18±0.01
Char Comp. [%] 18.86±0.05 15.8±0.04 15.8±0.04 16.37±0.12 9.87±0.02 19.91±0.03 18.40±0.16 15.10±0.04 15.29±0.15

XM10 XM11 XM12 XM13 XM14 XM17 XM18 XM19 XM20

Proj. Size 307.63MB 95.37MB 65.73MB 137.63MB 1357.28MB 75.44MB 21.08MB 71.22MB 38.52MB
Mem 1.96MB 1.74MB 1.74MB 1.66MB 1.64MB 1.67MB 1.69MB 1.66MB 1.67MB

Time 295.92s 256.54s 256.85s 250.35s 321.03s 255.94s 249.29s 243.67s 249.88s
Usr+Sys 54.94s 34.85s 32.40s 26.39s 53.71s 34.95s 23.54s 32.16s 31.67s
CPU [%] 18.93±2.73 13.85±4.47 12.86±2.14 10.75±3.25 17.07±2.93 13.92±1.89 9.63±0.83 13.45±1.78 12.92±4.59

States (CW+BM) 33 (10 + 22) 17 (5 + 11) 15 (5 + 9) 13 (2 + 10) 9 (2 + 6) 11 (3 + 7) 9 (3 + 5) 11 (2 + 8) 9 (3 + 5)
∅ Shift Size [char] 5.68±0.01 6.58±0.01 6.60±0.02 6.06±0.00 5.16±0.01 5.72±0.01 8.29±0.04 5.17±0.00 5.75±0.00
Initial Jumps [%] 0.16±0.01 1.85±0.01 2.00±0.00 0.13±0.00 1.35±0.01 0.32±0.00 0.80±0.01 1.64±0.01 0.59±0.01
Char Comp. [%] 22.38±0.01 17.15±0.11 16.81±0.11 17.17±0.03 21.24±0.08 18.99±0.03 12.95±0.03 20.57±0.03 18.67±0.03

TABLE II

SMP 656MB MEDLINE

M1 /MedlineCitationSet//CollectionTitle
M2 /MedlineCitationSet//DataBank[DataBankName/text()=“PDB”]/AccessionNumberList
M3 /MedlineCitationSet//PersonalNameSubjectList/PersonalNameSubject[

LastName/text()=“Hippocrates” or DatesAssociatedWithName=“Oct2006”]
/TitleAssociatedWithName

M4 /MedlineCitationSet//CopyrightInformation[contains(text(),“NASA”)]
M5 /MedlineCitationSet/MedlineCitation[

contains(MedlineJournalInfo//text(),“Sterilization”)]/DateCompleted

M1 M2 M3 M4 M5

Proj. Size 0MB 0.42MB 0.34MB 0.19MB 47.4MB
Mem 1.94MB 2.01MB 2.11MB 1.99MB 2.00MB

Time 33.72s 33.62s 33.69s 33.47s 35.51s
Usr+Sys 2.96s 4.46s 3.02s 3.24s 4.35s
CPU [%] 9.02 13.76 9.26 9.99 12.43

States (CW+BM) 5 (1 + 1) 9 (3 + 5) 13 (4 + 4) 5 (2 + 2) 9 (3 + 5)
∅ Shift Size [char] 12.24 6.86 12.49 12.69 13.43
Initial Jumps [%] 0.00 0.00 0.00 0.01 7.61
Char Comp. [%] 8.37 14.63 8.4 8.52 9.81

by initial jump offsets in this set of experiments.
Note that queries XM2 and XM3 have identical projection

paths, which is reflected in similar results.

MEDLINE. We consider the XPath expressions M1-M5 from
Table II and a 656MB MEDLINE [23] document. In contrast
to XMark, MEDLINE data is not synthetic. The queries only
use paths satisfiable by the DTD.

Table II summarizes the results. Query M1 searches for
nodes which are defined by the DTD, but do not occur in
the input. Scanning with an average forward shift of about
12 characters, only 8.37% of the input is inspected.

In comparison to the XMark results in Table I, XML
prefiltering on the MEDLINE dataset features larger average
forward shifts (∅Shift Size) due to longer tagnames in the
queries. For queries M1-M4, no initial jumps were possible.

Upon closer inspection, it turns out that the MEDLINE DTD
specifies many nodes as optional, but only required nodes are
beneficial for the computation of initial jump offsets. For query
M5, we observe comparatively large initial jumps. In total,
about 50MB of the 656MB input document are skipped by
initial jumps alone.

B. Filtering for XQuery/XPath evaluation

We next examine how main-memory XML query engines
perform when they are run in combination with SMP, and
show that the low CPU workload of SMP facilitates efficient
pipelining of prefiltering and query evaluation.

XQuery evaluation. We evaluated the XMark queries from
before with the main memory-based XQuery processors
QizX [14] and Saxon [15]. For the input tested, QizX was
superior to Saxon regarding both execution time and main
memory consumption, so we only report on the results for
the QizX engine. Runtime and main memory were limited
to 1h and 1GB, respectively. We study a sequential setup,
where SMP writes the prefiltered input back to disk, and QizX
reloads the (prefiltered) document from disk to evaluate the
query. All time measurements include the additional write and
read operations.

Figure 7(a) shows the results. The graphs use log scale
for the x-axis (document size) and the y-axis (time). Without
projection, QizX can successfully load the input and evaluate
all queries within the memory and runtime limitations on
documents up to 200MB, but fails for all queries on the 1GB
and 5GB documents. We show the runtimes for stand-alone
query evaluation on the left. To the right, we plot the runtimes
for sequential evaluation of SMP and QizX. On documents
up to 200MB, the runtimes differ only marginally, due to
the overhead of one extra write and read. When coupled
with prefiltering, QizX can evaluate all queries for the 1GB
document, and still 15 queries on the 5GB document. We can

sec.
 1000

 100

 10

 1

200 5010

QIZX

 5000 1000 200 50 10

XMark document size in MB

SMP+QIZX/real
SMP/avg. real

SMP/avg. user+sys

(a) QizX+SMP: XMark benchmarks

 400

 300

 200

 100

 35

 0
M5M4M3M2M1

R
un

tim
e

in
 s

ec
.

SPEX/real
ppl. SPEX/real

ppl. SPEX/usr+sys

 0

 50

 100

 150

 200

M5M4M3M2M1

T
hr

ou
gh

pu
t i

n
M

B
/s

ec
.

SPEX
ppl. SPEX

(b) SMP+SPEX: Runtime and throughput (656MB MEDLINE data)

 200

 150

 100

 50

 0
XMARK

T
hr

ou
gh

pu
t i

n
M

B
/s

ec
.

Xerces SAX1
Xerces SAX2

avg. SMP
 200

 150

 100

 50

 0
MEDLINE

T
hr

ou
gh

pu
t i

n
M

B
/s

ec
.

Xerces SAX1
Xerces SAX2

avg. SMP

(c) Xerces vs. SMP: Throughput in MB/sec

Fig. 7. SMP benchmark results

discern two outliers (XM11 and XM15) which close in on the
timeout for 1GB, and fail for the 5GB document.

On the right, we further depict the average real time of
SMP prefiltering, and the minimum and maximum values for
all queries. The average user and system time is well below
the real time, indicating that SMP predominantly waits for new
input from the disk.

In summary, the results show that in-memory XQuery
engines such as QizX can be made to scale to inputs in the
Gigabyte range when coupled with SMP.

XPath in pipelining with SMP. The SPEX [3] XPath evalu-
ator is a representative of a class of engines such as XFilter,
YFilter [1], and the XPush Machine [2], which were devel-
oped for XML stream processing. While the latter systems
evaluate high workloads of queries, SPEX and SMP focus on
single queries. We expect similar results as for SPEX when
combining XFilter, YFilter, and the XPush machine with our
prefiltering tool.

In Figure 7(b) on the left, we show runtimes for the XPath
queries from Table II on MEDLINE data. We compare two
scenarios, where we ran SPEX on the unprojected document,
and next projected the document using SMP and piped the
output directly into SPEX (denoted “ppl. SPEX”). It is remark-
able that, in the pipelined scenario, evaluation real time differs
only marginally from the real time for prefiltering alone (see
Table II). In the plot, this is indicated by the 35 seconds line.
In particular, we observe that the computational effort needed
for query evaluation mostly manifests in the SPEX Usr+Sys
time (see “ppl. SPEX/usr+sys”) rather than the real time. For
instance, the projected output for M5 is still of considerable
size (47.4MB), which causes a comparatively high Usr+Sys
time. For the other queries, SMP filters out large parts of the
input, so SPEX Usr+Sys time is lower. We conclude that the
low CPU load of SMP enables an effective interleaving of
prefiltering and query evaluation.

To the right in Figure 7(b), we compare the throughput
achieved by SPEX as a stand-alone tool with pipelining of
SMP and SPEX. The difference is significant, and we reach
up to 190 MB/sec for query M1. The throughput for M5 is

smaller, because the projected document is still large, yet the
pipelined system remains superior.

C. Parsing and projection

We next show that on the queries and datasets previously
discussed, SMP achieves a significantly higher throughput than
an industrial-strength SAX parser. SAX parsers are used by
virtually all competing approaches to tokenize the input, which
suggests that these systems are inevitably inferior in terms
of scalability. To affirm this claim, we compare SMP against
a prefiltering tool that also exploits schema knowledge, but
which relies on a tokenization of the input.

Xerces. All existing approaches to XML prefiltering process
XML documents that are tokenized, e.g. by a SAX parser. We
next compare the throughput of SMP and the Xerces C++ [28]
SAX parser. We have built a minimal application on top of the
Xerces API that just parses the input into tokens. Note that
the Xerces SAX parser checks well-formedness by default.

The results for XMARK (5GB) and MEDLINE datasets
are visualized in Figure 7(c). The program throughput of
tokenizing the input with Xerces, either using the SAX1 or
the SAX2 XML reader, is well below the average program
throughput that SMP achieves in prefiltering the same data for
both the queries of Table I (XMark) and Table II (MEDLINE),
respectively. Even pipelining SMP prefiltering and XPath eval-
uation with SPEX has a higher throughput on MEDLINE data
than just tokenizing the input with Xerces (c.f. Figure 7(b)).

Overall, SMP is by a factor of 3–9 faster than Xerces while
at the same time performing a more complex data management
task. The results confirm that the throughput achieved by our
approach substantially surpasses that of projection systems that
rely on a tokenization of their input.

Type-based projection. Type-based projection (TBP) [6] is a
natural choice for comparison with SMP, as it also exploits
schema knowledge, but tokenizes its complete input. To the
best of our knowledge, TBP is the only operational publicly
available projection tool.1. TBP performs a powerful static

1We were not able to obtain a version of Galax with the projection feature
mentioned in [5].

TABLE III

P 1GB XM

Type-based Projection (OCaml) SMP (C++)
Usr+Sys Mem Proj. Size Usr+Sys Mem Proj. Size

XM3 756.77s 3.36MB 26.52MB 8.11s 1.72MB 24.62MB
XM6 812.56s 3.36MB 2.59MB 5.37s 1.64MB 2.40MB
XM7 1170.03s 3.36MB 34.50MB 9.83s 1.76MB 21.14MB

XM19 1027.13s 3.36MB 17.92MB 6.06s 1.65MB 14.23MB

analysis to prefilter for additional XPath axes and even for
predicates. Yet for the query workload considered here, the
sizes of the projected outputs are comparable with SMP. The
differences are mainly due to whitespace formatting by TBP,
and the fact that SMP is able to discard irrelevant ancestor
nodes.

As TBP is written in OCaml, it is difficult to compare run-
time results. We tested both the byte code and the native code
compilation of TBP. We provide the results for the native code
compilation, which turned out to be significantly faster in all
cases. We consider the subset of XMark queries benchmarked
both by SMP in this paper and by and TBP in [6], namely
XM3, XM6, XM7 and XM19. Table III contains the results.
Both XML filtering systems get by with an economical main
memory consumption, yet the Usr+Sys times differ. To put our
results into perspective, we point out that in computer language
shootouts, OCaml programs rarely perform more than a factor
of 20 worse than C++ programs compiled with g++ (e.g.
see [29]). Typically, we may expect a gap of factor 5 to 10. On
the 1GB XMark document, SMP requires less than 10 seconds
Usr+Sys time (and 2MB main memory) for all queries. This
is at least a factor of 90 better in comparison to the Usr+Sys
time consumed by TBP. The throughput of SMP is in the order
of two magnitudes higher than that of TBP. This exceeds the
difference one might expect by the choice of programming
language. For the 10MB and 100MB documents we observe
similar results, where our implementation is faster by at least
a factor of 84. On the 5GB document, TBP exceeded the time
limit of one hour.

In summary, SMP is able to project the 5GB document
faster than type-based projection can process 1GB. Also, SMP
requires fewer CPU seconds (Usr+Sys) on the 5GB document
than TBP needs for projecting 1GB.

VI. C

We have shown that established string matching techniques,
originally designed for searching flat text files, can be lever-
aged for the efficient search and navigation in XML documents
and streams. We present a highly efficient approach to XML
prefiltering based on these ideas. Our prototype implemen-
tation confirms that, just like in traditional keyword search,
the search and navigation in tree-structured XML documents
with advanced string matching techniques clearly outperforms
systems that rely on a character-by-character processing of the
input.

VII. A

We thank Johannes Gehrke, Christian Lindig, Dan Olteanu,
Maya Ramanath, and the anonymous reviewers for many
helpful comments on earlier versions of this paper.

R

[1] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, “Path
Sharing and Predicate evaluation for High-Performance XML Filtering,”
TODS, vol. 28, no. 4, pp. 467–516, 2003.

[2] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu, “Processing
XML streams with deterministic automata and stream indexes,” TODS,
vol. 29, no. 4, pp. 752–788, 2004.

[3] D. Olteanu, “SPEX: Streamed and Progressive Evaluation of XPath,”
TKDE, vol. 19, no. 7, 2007.

[4] X. Li and G. Agrawal, “Efficient Evaluation of XQuery over Streaming
Data,” in Proc. VLDB, 2005.

[5] A. Marian and J. Siméon, “Projecting XML Documents,” in Proc. VLDB,
2003.

[6] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen, “Type-Based
XML Projection,” in Proc. VLDB, 2006.

[7] M. Schmidt, S. Scherzinger, and C. Koch, “Combined Static and Dy-
namic Analysis for Effective Buffer Minimization in Streaming XQuery
Evaluation,” in Proc. ICDE, 2007.

[8] A. V. Aho, “Algorithms for finding patterns in strings.” in Handbook of
Theoretical Computer Science, Volume A, 1990, pp. 255–300.

[9] B. W. Watson and G. Zwaan, “A taxonomy of sublinear multiple
keyword pattern matching algorithms,” Sci. Comput. Program., vol. 27,
no. 2, pp. 85–118, 1996.

[10] D. E. Knuth, J. H. Morris (Jr.), and V. R. Pratt, “Fast Pattern Matching
in Strings,” SIAM J. Computing, vol. 6, no. 2, 1977.

[11] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, 1977.

[12] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” CACM, vol. 18, no. 6, pp. 333–340, 1975.

[13] B. Commentz-Walter, “A String Matching Algorithm Fast on the Aver-
age,” in Proc. ICALP, 1979.

[14] “Qizx/open,” http://www.axyana.com/qizxopen/.
[15] “Saxon,” http://saxon.sourceforge.net/.
[16] Apache XML Project, “Xalan-Java Version 2.0,” 2000,

http://xml.apache.org/xalan-j.
[17] “XMark,” http://monetdb.cwi.nl/xml/.
[18] A. Berlea and H. Seidl, “Binary Queries for Document Trees,” Nordic

J. of Computing, vol. 11, no. 1, pp. 41–71, 2004.
[19] “xgrep,” http://www.wohlberg.net/public/software/xml/xgrep/.
[20] J. Jaakkola and P. Kilpeläinen, “Nested text-region algebra,” TR C-1999-

2, Dept. of Comp. Sci. Univ. of Helsinki, 1999.
[21] M. Takeda et al., “Processing Text Files as Is: Pattern Matching over

Compressed Texts, Multi-byte Character Texts, and Semi-structured
Texts,” in Proc. SPIRE, 2002.

[22] M. Altinel and M. Franklin, “Efficient Filtering of XML Documents for
Selective Dissemination of Information,” in Proc. ICDE, 2000.

[23] United States National Library of Medicine, 2006,
http://www.nlm.nih.gov/bsd/sample records avail.html.

[24] A. Brüggemann-Klein and D. Wood, “One-Unambiguous Regular Lan-
guages,” Information and Computation, vol. 142, no. 2, pp. 182–206,
1998.

[25] J.-M. Champarnaud, “Subset Construction Complexity for Homoge-
neous Automata, Position Automata and ZPC-Structures,” Theor. Com-
put. Sci., vol. 267, no. 1-2, pp. 17–34, 2001.

[26] “http://www.cs.washington.edu/research/xmldatasets/,” 2002.
[27] “Additional SMP Benchmark Results,” http://www.informatik.uni-

freiburg.de/∼mschmidt/smp/.
[28] The Apache XML Project, “Xerces C++ XML Parser,”

http://xml.apache.org/xerces-c/.
[29] http://shootout.alioth.debian.org/.

