
Database Research in Computer Games

Alan Demers
Cornell University

ademers@cs.cornell.edu

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Christoph Koch
Cornell University

koch@cs.cornell.edu
Ben Sowell

Cornell University
sowell@cs.cornell.edu

Walker White
Cornell University

wmwhite@cs.cornell.edu

ABSTRACT
This tutorial presents an overview of the data management
issues faced by computer games today. While many games
do not use databases directly, they still have to process large
amounts of data, and could benefit from the application of
database technology. Other games, such as massively multi-
player online games (MMOs), must communicate with com-
mercial databases and have their own unique challenges. In
this tutorial we will present the state-of-the-art of data man-
agement in games that we learned from our interaction with
various game studios. We will show how the issues involved
motivate current research, and illustrate several possibilities
for future work.

Our tutorial will start with a description of data-driven
design, which is the source of many of the data manage-
ment issues that games face. We will show some of the tools
that game developers use to create and manage content. We
will discuss how this type of design can affect performance,
and the data structures and techniques that developers use
to ensure that the game is responsive. We will discuss the
problem of consistency in games, and how games ensure that
players all share the same view of the world. Finally, we
will examine some of the engineering issues that game de-
velopers have to deal with when interacting with traditional
databases.

This tutorial is intended to be self-contained, and provides
the background necessary for understanding how databases
and database technology are relevant to computer games.
This tutorial is accessible to students and researchers who,
while perhaps not hardcore gamers themselves, are inter-
ested in ways in which they can use their expertise to solve
problems in computer games.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

General Terms
Languages, Performance

Keywords
Games, Scripting, Aggregates, Indexing

Copyright is held by the author/owner(s).
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

1. DESCRIPTION
Data-Driven Game Design
Many modern computer games are authored using data-
driven development techniques [3]. In data-driven devel-
opment, the game content is separated as much as possible
from the game software, and placed in auxiliary data files.
For a lot of game content — such as music and art — this is
unsurprising. The game industry has standardized file for-
mats and tools for managing this kind of data. However,
game content can also include many things that we think
of as software, such as character behavior and triggers for
in-game events. As a result, game companies spend a lot of
effort building custom content creation tools and scripting
languages to support this development model.

Game studios embrace data-driven design for multiple rea-
sons. First of all, it allows them to easily partition the work
between the software engineers and the designers. Software
engineers program the abstract game engine, while game de-
signers create content and character AI for a specific game.
Designers often have very little programming experience, so
they need tools that are tailored specifically to their nat-
ural workflows. In addition to accommodating designers,
data-driven approaches allow game companies to amortize
their development costs over multiple titles. Game expan-
sion packs typically contain new content, but they include
very few modifications to the underlying software.

Data-driven design is also good for players, as it can sig-
nificantly increase interest in a game title and improve user
experience. For example, World of Warcraft contains an
XML specification language that allows players to define
the look of their user interface, from window positions to
button functionality [14]. This allows players to customize
their game to improve their “productivity”. Some games like
Second Life go further and provide users with a complete
scripting language that they can use to create new content
[7]. This type of user-generated content can greatly extend
the playable lifespan of a popular game.

Data-driven design creates large amounts of data that
game engines must manage efficiently. To understand the
challenges that this data presents, we first have to under-
stand how this data is created and modified. Hence this
tutorial begins with an overview of the state-of-the-art in
content creation tools for games. Our presentation will fo-
cus primarily on scripting languages for both single player
and massively multiplayer games. We will show the ways in
which designers manage XML files, define character behav-
ior, specify event triggers, and create game-specific server
functionality.

1011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Performance Challenges
While programming game behavior outside of the applica-
tion software has many development advantages, it often
comes at a performance cost. If designers are not careful,
they can easily write scripts where every object in the game
interacts with every other object, resulting in computations
that are Ω(n2) in the number of game objects. This a real
concern in game development, and some studios have taken
drastic measures — such as removing support for iteration
and recursion from their scripting languages — to keep their
designers from producing computationally expensive behav-
ior [10]. As scripts are sometimes processed every anima-
tion frame, seemingly innocuous code can cripple the per-
formance of a game.

As with databases, game developers often rely on indices
to speed up computations that involve relationships between
pairs of objects. Many games use traditional spatial indices
such as BSP trees or Octrees. However, games also have
many unusual spatial data structures that may not be fa-
miliar to a database audience. For example, navigational
meshes are used to represent the ways in which a character
is allowed to move about the geography [12]. Furthermore,
like many data structures in games, these meshes are often
annotated by a designer or technical artist to include extra
semantic information — such as whether a position is a good
hiding place or is easily defensible.

We will also look at how game developers have been us-
ing parallel programming to improve performance; this is
an area in which game developers potentially have a lot to
learn from the database community. Indeed, many of the
techniques that game programmers have been using to op-
timize physics calculations and other types of computations
on GPUs look very similar to the techniques that database
engines use for join processing [1]. Furthermore, there is a
growing body of research into game engine APIs and script-
ing languages to simplify this type of development [11, 9,
13].

Consistency Challenges
In the case of MMOs, consistency is often just as important
as performance. Just as with a database, games require that
their data — which is often the state of the entire world —
be in a consistent state. Ensuring this consistency is dif-
ficult, however, because players are performing conflicting
actions at a very high rate. This means that traditional
approaches such as locking transactions are often too slow
for games. Furthermore, scripting languages almost never
have support for concurrency, and game designers and play-
ers may not have the background to take advantage of these
features effectively. Indeed, concurrency violations in script-
ing languages are one of the largest sources of bugs and ex-
ploits in MMOs [6]. In this tutorial, we will present several
ways in which games are dealing with this challenge, and
how we can use this to inform future research.

One of the more successful solutions has been the use of
“causality bubbles”. This term refers to a variety of tech-
niques where games predict which players may issue conflict-
ing interactions with one another and dynamically partition
their databases to reduce server load. Several commercial
games use a variant of this method developed for very spe-
cific environments [2, 4]. For example, EVE online runs a
continuous differential equation that takes into account the

acceleration of every space ship in a solar system. This dif-
ferential equation allows them to determine, for any given
time interval, which ships can move within range of each
other; this way they can dynamically partition the map into
feasible units. More recent research has attempted to gen-
eralize this idea to arbitrary transactions [5].

Another way in which games deal with concurrency is
by having weaker consistency guarantees. Sometimes this
means ensuring that world is consistent at only a very coarse
level; animation or other uncontested activity in the game
may be out of sync between computers but the persistent
game state is the same. Other games go even further and
allow players to have inconsistent, but very similar game
states. For example, “aggro management” is the technique
that World of Warcraft uses to target opponents and pro-
cess combat. It assigns abstract roles to the participants,
which allows the game to handle combat without exact spa-
tial fidelity.

Engineering Challenges
Many online games already use databases, and they run into
the traditional problems of database application develop-
ment. For example, they need to ensure that the bridge be-
tween the client software and the SQL code is robust enough
to handle changes in each. However, there are several inter-
esting challenges that are unique to games, and which moti-
vate future research. In this tutorial, we will examine some
of these issues as time permits.

One engineering issue is the problem of intelligent check-
pointing. MMOs use commercial databases for persistence
and to recover from server crashes. However, players inter-
act with the game so fast that it is too expensive to process
every single action with the database. Most games have
an in-memory database layer that processes all actions, and
only writes to the database periodically. In some games,
these checkpoints can be as far as 10 minutes apart [8]. Re-
coveries may force a player to repeat a difficult fight or lose a
particularly desirable reward. As a result, games need ways
to checkpoint intelligently, writing to the database when im-
portant events are completed, and not just at regular inter-
vals.

Legacy schemas are another major engineering issue in
games. Some MMOs, like the venerable Everquest, have
game worlds that have been active for almost a decade. To
remain vibrant and competitive, these worlds continually
add new features and abilities. These new features often
require schema changes in the world database. Schema mi-
grations on a live system can be very painful for game devel-
opers. They often choose to write data as an unstructured
“blobs”into a single attribute, so that they can preserve their
old schemas [8]. Until game developers have better migra-
tion tools, they constantly have to balance database support
with sustainability.

2. PRESENTER BIOGRAPHIES
The tutorial is based on material from all of the authors,

but it will be presented by Johannes Gehrke, Ben Sowell,
and Walker White.

Johannes Gehrke is an Associate Professor in the Depart-
ment of Computer Science at Cornell University. Johannes’
research interests are in the areas of data mining, data pri-
vacy, complex event processing, and computer games and

1012



virtual worlds. Johannes has received a National Science
Foundation Career Award, an Arthur P. Sloan Fellowship,
an IBM Faculty Award, the Cornell College of Engineering
James and Mary Tien Excellence in Teaching Award, and
the Cornell University Provost’s Award for Distinguished
Scholarship. With Raghu Ramakrishnan, he co-authored
the undergraduate textbook Database Management Systems
(McGrawHill (2002), currently in its third edition), used at
universities all over the world.

Ben Sowell is a graduate student in the Department of
Computer Science at Cornell University. His research is in
scaling data-driven games and simulations. His graduate
studies are supported by an NDSEG fellowship.

Walker White is the Director of the Game Design Initia-
tive at Cornell, an interdisciplinary undergraduate program
training students in the design and development of computer
games. Walker has ties to the games industry, having con-
sulted for several game studios and led a roundtable at the
Austin Games Developer Conference. He is also a researcher
in the Cornell BigRedData Group and has authored several
papers on data stream processing and data management in
computer games. His current research interests are in data
management and data-driven design for computer games.

3. ACKNOWLEDGEMENTS
This research is supported by the National Science Foun-

dation under Grant IIS-0725260, the Air Force under Grant
FA9550-07-1-0437, a grant from Microsoft Corporation, and
by New York State Science Technology and Academic Re-
search under Agreement Number C050061. Any opinions,
findings, conclusions or recommendations expressed herein
are those of the authors and do not necessarily reflect the
views of the sponsors.

4. REFERENCES
[1] E. Coumans. Physics tutorial: Parallel game physics

for spu. In Proc. GDC, San Francisco, CA, 2008.

[2] B. Dalton. Online gaming architecture: Dealing with
the real-time data crunch in MMOs. In Proc. Austin
GDC, Austin, TX, September 2007.

[3] M. DeLoura, editor. Game Programming Gems,
volume 1. Charles River Media, 2000.

[4] Halldor Fannar Guðjónsson. The server technology of
EVE Online: How to cope with 300,000 players on one
server. In Proc. Austin GDC, 2008.

[5] N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner,
and W. White. Scalability for virtual worlds. In Proc.
ICDE, 2009.

[6] T. Keating. Dupes, speed hacks and black holes: How
players cheat in MMOs. In Proc. Austin GDC, Austin,
TX, September 2007.

[7] Linden Labs. Linden Scripting Language.
http://wiki.secondlife.com/wiki/LSL Portal.

[8] J. Lee, R. Cedeno, and D. Mellencamp. The latest
learning - database solutions. In Proc. Austin GDC,
Austin, TX, September 2007.

[9] Sun Microsystems. Project darkstar.
http://www.projectdarkstar.com/.

[10] S. Posniewski. Massively modernized online: MMO
technologies for next-gen and beyond. In Proc. Austin
GDC, Austin, TX, September 2007.

[11] B. Sowell, A. Demers, J. Gehrke, N. Gupta, H. Li, and
W. White. From declarative languages to declarative
processing in computer games. In CIDR, 2009.

[12] P. Tozour. Building a near-optimal navigation mesh.
In AI Game Programming Wisdom, volume 1, pages
298–304. Charles River Media, 2002.

[13] W. White, A. Demers, C. Koch, J. Gehrke, and
R. Rajagopalan. Scaling games to epic proportions. In
Proc. SIGMOD, pages 31–42, 2007.

[14] WoWWiki. XML user interface.
http://www.wowwiki.com/XML user interface.

1013


