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ABSTRACT
Massively multiplayer online games (MMOs) have emerged as an
exciting new class of applications for database technology. MMOs
simulate long-lived, interactive virtual worlds, which proceed by
applying updates in frames or ticks, typically at 30 or 60 Hz. In or-
der to sustain the resulting high update rates of such games, game
state is kept entirely in main memory by the game servers. Nev-
ertheless, durability in MMOs is usually achieved by a standard
DBMS implementing ARIES-style recovery. This architecture lim-
its scalability, forcing MMO developers to either invest in high-end
hardware or to over-partition their virtual worlds.

In this paper, we evaluate the applicability of existing checkpoint
recovery techniques developed for main-memory DBMS to MMO
workloads. Our thorough experimental evaluation uses a detailed
simulation model fed with update traces generated synthetically
and from a prototype game server. Based on our results, we rec-
ommend MMO developers to adopt a copy-on-update scheme with
a double-backup disk organization to checkpoint game state. This
scheme outperforms alternatives in terms of the latency introduced
in the game as well the time necessary to recover after a crash.

1. INTRODUCTION
Massively multiplayer online games (MMOs) are persistent vir-

tual worlds that allow tens of thousands of users to interact in fic-
tional settings [11, 26]. Users typically select a virtual avatar and
collaborate with other users to solve puzzles or complete quests.
These games are extremely popular, and successful MMOs, such
as World of Warcraft, have millions of subscribers and have gen-
erated billions of dollars in revenue [3]. Unlike single player com-
puter games, MMOs must persist across user sessions. Players can
leave the game at any time, and they expect their achievements to
be reflected in the world when they rejoin. Similarly, it is unaccept-
able for the game to lose player data in the event of a crash. These
demands make it essential for MMOs to ensure that their state is
durable.

In order to provide durability, MMO developers have turned to
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database technology. While specific MMO architectures differ sig-
nificantly, many have adopted a three-tiered architecture to build
their virtual worlds. Clients communicate with game servers to up-
date the state of the world, and these servers use a standard DBMS
back-end to provide transactional guarantees. This architecture is
appropriate for state updates that require full ACID guarantees. For
example, many MMOs allow players to trade or sell in-game items,
sometimes for real money [35].

In many MMOs, a much larger class of updates does not require
transactional guarantees. For example, character movement is han-
dled within the event simulation, and conflicts are resolved using
game specific logic such as collision detection. Though these up-
dates do not require transactional guarantees, they occur at a very
high rate. For instance, characters move at close to graphics frame
rate, and this can lead to hundreds-of-thousands or millions of up-
dates per second. Since most state-of-the-art DBMS use ARIES-
style recovery algorithms [21], their update rate is limited by the
logging bandwidth, and they are unable to support the extremely
high rate of game updates.

To provide some degree of durability, developers typically resort
to ad-hoc solutions that rely on expensive specialized hardware, or
partitioning schemes that limit the number of characters that can
interact at once [5, 11, 22]. For instance, developers often create
shards, which are disjoint instances of the same game. Though
these solutions allow games to scale, they limit the user experience
by preventing large numbers of players from interacting.

In this paper we experimentally evaluate a number of traditional
main-memory checkpoint recovery strategies for use with MMOs
[18, 29, 39]. These strategies advocate using logical logging to re-
duce disk activity and periodically creating consistent checkpoints
of the main-memory state. These techniques are particularly at-
tractive for MMOs, where a single logical action (e.g., a user com-
mand) may generate many physical updates. In the event of a crash,
the game state can be reconstructed by reading the most recent
checkpoint and replaying the logical log.

The real-time nature of MMOs introduces some unique consid-
erations when choosing a checkpointing algorithm. First of all,
latency becomes a critical measure. Whereas most traditional re-
covery work has emphasized throughput, MMOs must execute at
frame rate so that users have the experience of a fluid and immer-
sive game. Thus the entire checkpointing process must fit into the
game simulation without causing any visible “hiccups” in the game.
To achieve this, we can exploit the fact that game updates are ap-
plied in a simulation loop. To ensure that all clients see a consistent
world, there can be no outstanding updates at the end of an itera-
tion of the simulation loop. This allows us to avoid many of the
traditional strategies for aborting ongoing transactions.
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Figure 1: Architecture of a typical MMO.

To our knowledge, this is the first paper to evaluate the applica-
bility of existing checkpoint recovery techniques for main-memory
DBMS to MMO workloads. We make two primary contributions.
First, we show how to adapt consistent checkpointing techniques
developed for main-memory databases to MMOs. In particular, we
discuss the interplay of these techniques with the stringent latency
requirements of MMOs. Second, we provide a thorough simula-
tion model and evaluation of six recovery strategies. We charac-
terize their performance in terms of latency, checkpoint time, and
recovery time. In addition to synthetic data, we test our techniques
on a prototype MMO that simulates medieval combat of the type
found in many popular games. We also validate the results pro-
duced by our simulation model against a real implementation of a
relevant subset of the recovery strategies. The Java source code for
our simulation is available for download [8].

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the MMO architecture considered in this paper.
In Section 3, we review the set of techniques from main-memory
database checkpoint recovery evaluated in this paper. We then de-
scribe in detail our implementation, simulation model, and exper-
imental setup in Section 4. Section 5 presents the results of our
evaluation of checkpoint recovery techniques. In Section 6, we
validate our simulation model against a real implementation of a
subset of the recovery techniques. We review related work in Sec-
tion 7 and conclude with recommendations for MMO developers
based on our results in Section 8.

2. ARCHITECTURE OF AN MMO
In this section, we describe the architecture of an MMO [11, 26,

36, 38]. Most MMOs use a client-server architecture, as shown
in Figure 1. Clients join the virtual world through a connection
server that connects them to a single shard. Shards are independent
versions of the virtual world aimed at improving scalability. Shards
are not synchronized, and players on one shard cannot interact with
players on another. More recent MMOs such as Eve Online [11]
and Taikodom [12] are pioneering shardless architectures in which
all players interact in the same virtual world.

In this paper we focus on recovery for a single shard, though our
techniques could be extended to shardless architectures. We also
make the simplifying assumption that a shard consists of a single
logical machine. This machine is the game server in Figure 1. This
may be a large mainframe as used in Taikodom [12] or a cluster
with tightly synchronized clocks. This work is a first step towards
a more general solution for sophisticated network topologies.

2.1 The Game Logic
The core of an MMO is a discrete-event simulation loop that ex-

ecutes at close to the graphics frame rate, typically 30 or 60 Hz.
This provides the illusion of an interactive and continuously evolv-
ing virtual world. Conceptually, the state of the MMO is a table

containing game objects, including characters and the items they
interact with. In order to meet the stringent real-time demands
placed on the game, the active state of the game is typically kept
in the main memory of the simulation server. Disks are used only
to provide persistence or to store information about inactive (e.g.,
logged off) characters.

During each iteration or tick of the simulation loop, portions of
the state are updated according to game-specific logic. These up-
dates may be triggered by user actions, elapsed time, or some other
event. Note that a single user action may cause several physical
updates to the state. For instance, a user-level movement command
may translate into a number of smaller movement updates that oc-
cur over several ticks.

We make no assumptions about the structure of updates during a
tick. Developers may use multithreading to process updates in par-
allel or leverage a special purpose language like SGL to convert the
computation into a relational query plan [37]. The only guarantee
is that all updates finish by the end of the tick. The state must be
consistent at the end of every tick, and any actions that last longer
than a tick must be represented in the persistent state.

2.2 Transactions and Durability in MMOs
Current MMOs focus on providing transactional guarantees for

a small subset of updates that need to be globally consistent across
servers or communicate with external services. For example, EVE
Online processes nine million item insertions per day that require
transactional behavior [11]. Other MMOs may include financial
transactions that require ACID properties. These transactions fre-
quently involve user interaction or communication with an external
system, and thus the update rate is fairly low. Recovery can there-
fore be handled by a standard DBMS with an ARIES-style recovery
manager. This system is the persistence server in Figure 1.

In addition to proper transactions, however, MMOs also include
a large number of local updates that change the game state but do
not require complete transactional behavior. For instance, character
movement is the single largest source of updates in most MMOs [6,
26], but game-specific logic ensures that these updates never con-
flict. Nevertheless, we would like to ensure that local updates are
durable so that players do not lose their progress in the game in the
event of a server failure.

A modern MMO may see hundreds of thousands of local updates
per tick, and processing these efficiently is a major challenge [34].
Traditional DBMS cannot sustain this update rate, and existing
MMOs have either created ad-hoc checkpointing strategies or re-
sorted to costly special purpose hardware [23]. For instance, EVE
Online uses RAM-based SSD drives for their database servers to
handle logging and transaction processing [11].1 While well estab-
lished MMOs are able to afford such hardware investments, these
investments are usually delayed until the MMO builds up a sub-
stantial user base. In addition, the cost of any specialized hardware
must be multiplied by the number of game server shards. Some
MMOs have several hundred shards and this increases their hard-
ware costs accordingly.

2.3 Recovery Requirements for MMOs
We consider a principled approach to durability using a

checkpoint recovery approach first proposed for main-memory
databases [18, 39, 29] and scientific simulations [30]. The applica-
bility of these approaches to MMOs has never been fully explored,
and our investigation focuses on the unique workload requirements
found in online games.
1These drives, which start at $90,000, have a sustained random I/O
rate of up to 3GB/s [25, 20]



For example, since MMOs are interactive, it is important for sim-
ulation ticks to occur at a uniform a rate: an inconsistent tick rate
can distort time in the virtual world, and be frustrating to play-
ers [4]. In a choice between uniformity and performance, online
game designers typically chose uniformity, especially if perfor-
mance can be masked by client-side interpolation (e.g. the client in-
terpolates finer-grained values from coarse server states to produce
smoother animation). Scientific simulations, on the other hand,
tend to be non-interactive [27]. For these applications, individual
tick time is unimportant, and total running time is the most impor-
tant performance measurement. Hence, a high-throughput recovery
algorithm designed for scientific simulations may not be ideal for
MMOs if it suffers from occasional bouts of poor latency.

Another interesting feature of MMOs is that players are often
willing to accept longer recovery times so long as their progress in
the game is not lost. These games are designed so that the players
can easily take breaks and leave the game without it affecting the
experience significantly. The primary problem with server down-
time is that it dictates when the player must take a break; as such, it
can be an annoyance, but it is accepted as long as it does not occur
too frequently and does not last more than several minutes. On the
other hand, losing game state is particularly undesirable; if a player
has spent a lot of effort trying to beat a difficult challenge, then
she might quit in frustration if a server crash forces her to repeat
the challenge again. If the challenge is well-defined, like killing a
powerful monster, then the player’s progress can be preserved by
ARIES-style recovery algorithms. However, this can only encom-
pass those challenges that the game designer was able to identify
ahead of time. Some challenges, such as jumping up onto a specific
hard-to-reach platform, may be overlooked in the original design,
and thus do not have transactional guarantees.

Our investigation considers these requirements in analyzing
checkpointing algorithms for MMOs, enabling us to better under-
stand the engineering trade-offs involved in implementing recovery
algorithms for online games.

3. MAIN-MEMORY DBMS RECOVERY
In this section, we review the main-memory recovery techniques

that we evaluate in this paper.

3.1 Checkpointing for MMOs
Before enumerating the algorithms we evaluate, we consider the

implications of the architecture described in Section 2 on the design
of a recovery solution for MMOs. First, MMOs are amenable to
disk-based recovery solutions. Though high-availability techniques
that rely on hot standbys may provide faster recovery times, they
require hardware over-provisioning and thus are expensive [30].
Furthermore, MMOs can tolerate some downtime. Developers ar-
gue that 99.99% uptime is sufficient for their systems, equivalent to
about one hour of unplanned downtime per year [36]. At the failure
rates observed for current server hardware, there is more than ade-
quate room for a checkpoint recovery solution to deal with fail-stop
failures [30].

A checkpoint recovery solution for MMOs must resort to logical
logging in order to record state updates. As discussed previously,
the rate of local updates may be extremely large, and physically
logging this stream could easily exhaust the available disk band-
width. Instead, we log all user actions at each tick and replay the
ticks to recover. This allows us to recover to the precise tick at
which a failure occurred. Though logical logging considerably re-
duces the number of updates written to disk, it adds the overhead
of replaying the simulation to the recovery time. To minimize this
cost and fully utilize the disk bandwidth, we would like to take

checkpoints as frequently as possible.
In order to use logical logging, we must restrict our attention to

consistent checkpointing techniques. As it turns out, the structure
of the discrete-event simulation loop provides a natural point to do
checkpointing. Since all updates complete before the end of the
tick, we do not have to worry about aborting ongoing updates if we
take checkpoints at tick boundaries.

3.2 Consistent Checkpointing Techniques
We consider several consistent checkpointing algorithms that

have been developed in the context of main-memory DBMS. All
of these strategies write to stable storage asynchronously, but their
memory behavior may be characterized along three dimensions:

In-memory copy timing: some algorithms perform an eager
copy of the state to be checkpointed in main memory, while oth-
ers perform copy on update. Algorithms that perform eager copies
are conceptually simpler, but they introduce pauses in the discrete-
event simulation loop of the game.

Objects copied: some algorithms copy only dirty objects, while
others copy all objects in the game state. The amount of state in-
cluded in a copy will affect the checkpoint time, and as a conse-
quence, the time required to replay the ticks during recovery.

Data organization on disk: some algorithms use a simple log
file, while others use a double-backup organization as proposed by
Salem and Garcia-Molina [29]. Depending on the disk organiza-
tion, we may be able to capitalize on sequential I/O when flushing
the checkpoint to disk.

Table 1 shows how existing algorithms fit into this design space.
We describe the algorithms in detail below.
Naive-Snapshot. The simplest consistent checkpointing technique
is to quiesce the system at the end of a tick and eagerly create a
consistent copy of the state in main memory. We then write the state
to stable storage asynchronously. Naive-Snapshot can use either
a double backup or log-based disk structure. We use the former
in our experiments. This strategy is very simple, and a number
of real systems have used it [2, 19, 30, 39]. Other than ease of
implementation, one advantage of this technique is that it can be
implemented at the system level without knowledge of the specific
application. On the other hand, copying the full state may introduce
significant pauses in the game. As games are extremely sensitive to
latency [4], such long pauses may make this algorithm inapplicable.
Dribble-and-Copy-on-Update. This algorithm takes a checkpoint
of the full game state without quiescing the system for an eager
copy [28]. Each game object has an associated bit that indicates
whether it has been flushed to the checkpoint or not. An asyn-
chronous process iterates (or “dribbles”) through each object in the
game and flushes the object to the checkpoint if its bit is not set.
The process sets the bit of any object it flushes. Additionally, when
an object whose bit is not set is updated, the object is copied and
its bit is set. If an object’s bit is already set, it is not copied again
until the next checkpoint. This method produces a checkpoint that
is consistent as of the time the copy was started. Note that it is not
necessary to reset all of the bits before starting the next checkpoint.
Instead, we can simply invert the interpretation of the bit attached
to each object [24]. In this strategy each object is copied exactly
once per checkpoint, regardless of how many times it is updated.
This is a critical property for handling the update-heavy workloads
of MMOs. Another advantage of this technique is that there is no
need to quiesce the system for an eager copy. A disadvantage of
this technique is that the decision to include the entire game state
in every checkpoint may lead to high main-memory copy overhead
and long checkpoint times.
Atomic-Copy-Dirty-Objects. This algorithm refines Naive-



Objects Eager Copy Copy on Update

Copied Double Log Double LogBackup Backup
All Naive Snapshot [2, 19, 30, 39] Dribble and Copy on Update [24, 28]Objects

Dirty Atomic Copy Dirty Objects [29] Partial Redo [29] Copy on Update [7, 29] Copy on Update Partial Redo [7, 29]Objects

Table 1: Algorithms For Checkpointing Game State

Snapshot by copying only the “dirty” state that has changed since
the last checkpoint. State that was not modified can be recovered
from the previous checkpoints. Though previous work has pro-
posed methods to copy this state without quiescence, they rely on
aborting transactions that read inconsistent state [24, 29]. To avoid
this overhead, we perform our copies eagerly during the natural pe-
riod of quiescence at the end of each tick. We follow Salem and
Garcia-Molina and organize our checkpoints in a double-backup
structure on disk [29]. In this technique, two copies of the state are
kept on disk and objects in main memory have two bits associated
with them, one for each backup. Each bit indicates whether the as-
sociated object has already been sent to the corresponding backup
on disk. Checkpoints alternate between the two backups to ensure
that at all times there is at least one consistent image on the disk.
Each object has a well-defined location in the disk-resident check-
point, allowing us to update objects in it directly. As one optimiza-
tion to avoid arbitrary random writes, we write the dirty objects to
the double backup in order of their offsets on disk. Note that even
if an in-memory sort operation is performed for that purpose, it can
be done asynchronously and its time is negligible compared to the
time spent writing the objects to disk. This sorted I/O optimization
is crucial for algorithms that use a double-backup organization, but
not necessary for log-based algorithms. The latter methods already
write to disk sequentially, and thus as fast as possible. This al-
gorithm will be an improvement over Naive-Snapshot if the dirty
object set is generally much smaller than the entire game state.
Partial-Redo. As in Atomic-Copy-Dirty-Objects, Partial-Redo
performs an eager copy in main memory of the objects dirtied since
the last checkpoint. As a consequence, it also has latency as a po-
tential disadvantage. On the other hand, Partial-Redo attempts to
improve the writing of checkpoints with respect to Atomic-Copy-
Dirty-Objects. One disadvantage of the double-backup organiza-
tion is that it may not write dirty objects contiguously on disk. To
address this problem, Partial-Redo writes dirty objects to a simple
log [9]. Note that while the log organization allows us to use a se-
quential write pattern, we may have to read more of the log in order
to find all objects necessary to reconstruct a full consistent check-
point. In order to avoid this overhead, we periodically create a full
checkpoint of the state using Dribble-and-Copy-on-Update.
Copy-on-Update. We can also refine Dribble-and-Copy-on-
Update to copy only dirty objects [7, 29]. In this algorithm the
in-memory copies are performed on update, and an object is copied
only when it is first updated. We use a double-backup structure on
disk as in Atomic-Copy-Dirty-Objects. A similar method was used
in SIREN, where the authors found that it may be beneficial to copy
at the tuple level rather than the page level [18]. In our experiments,
all copies are performed at the level of atomic objects whose size
may be configured (Section 4.1). An advantage of this algorithm
is that it has a smaller effect on latency since it does not perform
an eager copy. In addition, it may have smaller memory require-
ments because additional main memory is allocated only when an
update touches an object that is being flushed to the checkpoint. A
potential disadvantage is that the double-backup organization does

not allow fully sequential I/O.
Copy-on-Update-Partial-Redo. This algorithm is similar to
Copy-on-Update, but uses a log-based disk organization to trans-
form sorted writes into sequential writes. As with Partial-Redo, we
periodically run Dribble-and-Copy-on-Update to limit the portion
of the log that we must access during recovery. Combining copy
on update with logging, we aim to obtain the advantages of both
Copy-on-Update and Partial-Redo.

4. EXPERIMENTAL SETUP
In this section, we describe the experimental setup used in our

evaluation. We have implemented a detailed simulation to measure
the cost of checkpointing and recovery. A simulation model allows
us to understand all relevant performance parameters of the algo-
rithms of Section 3. Using the simulation model has three advan-
tages. First, we can use hardware parameters that would be found in
server configurations common in MMOs even though we might not
own the corresponding hardware. Second, it dramatically reduces
the effort necessary to implement all the algorithms described pre-
viously. Third, it enables other researchers or MMO developers to
easily repeat our results, modify parameters, and understand their
effects on the algorithms. In order to fully achieve the latter bene-
fits, we have made our simulation available for download [8]. All
of our code is written in Java 1.6.

In the following, we discuss in detail our implementation of the
checkpointing algorithms (Section 4.1) and our simulation model
(Section 4.2). In addition, we describe the simulation parameters
(Section 4.3) and the datasets (Section 4.4) used in our evaluation.

4.1 Implementation
Our implementation is organized into two main parts. The first

part is an algorithmic framework that isolates the main costs of the
checkpointing algorithms in subroutines. The second part com-
prises specific implementations of these subroutines for each algo-
rithm, done based on the cost model of our simulator. We describe
these two components of our implementation below.
Checkpointing Algorithmic Framework. As discussed in Sec-
tion 2, at the end of each tick, the state of the game in the discrete
simulation loop is consistent in main memory. The core idea of our
algorithmic framework is to capture this tick-consistent image of
the game state and checkpoint it to disk. We assume in our presen-
tation that updates are handled at the level of abstract game objects,
which we call atomic objects. In principle, an atomic object can be
as small as a single attribute of a row in the game state. However,
use of an atomic object size smaller than a disk sector adds signifi-
cant overheads, especially for double-backup schemes. Techniques
to improve I/O by organizing objects into logical pages are orthog-
onal to our description [18]. We assume they have been applied in
order to make the atomic object size equal to a disk sector.

The Checkpointing Algorithmic Framework shows the general
method we follow in our implementation. At the end of each game
tick, the algorithm checks whether we have finished taking the last
checkpoint. If so, a new checkpoint is started. First, we syn-



Algorithm Subroutine
Copy-To-Memory Write-Copies-To-Stable-Storage Handle-Update Write-Objects-To-Stable-Storage

Naive-Snapshot All objects All objects, log No-op No-op
Dribble-and-Copy-on-Update No-op No-op First touched, all All objects, log
Atomic-Copy-Dirty-Objects Dirty objects Dirty objects, double backup No-op No-op

Partial-Redo Dirty objects Dirty objects, log No-op No-op
Copy-on-Update No-op No-op First touched, dirty Dirty objects, double backup

Copy-on-Update-Partial-Redo No-op No-op First touched, dirty Dirty objects, log

Table 2: Subroutine Implementations for Checkpoint Recovery Algorithms

Checkpointing Algorithmic Framework
Input: ObjectSet Oall containing all objects in game data
do synchronous on end of game tick :1

if last checkpoint finished then2
//perform synchronous copy actions at end of tick:3
ObjectSet Ocopy ← Copy-To-Memory(Osync ⊆ Oall)4
if Ocopy , ∅ then5

do asynchronous6
Write-Copies-To-Stable-Storage(Ocopy)

end7
// register synchronous handler for update events:8
do synchronous on each Update u of an Object o ∈ Oall :9

Handle-Update(u, o)10
end11
// perform asynchronous copy of remaining information:12
do asynchronous13
Write-Objects-To-Stable-Storage(Oall \ Osync)

end14
end15

chronously copy in-memory part (or all) of the game state (Copy-
To-Memory subroutine). This portion of the state is then written
to the appropriate data structures in stable storage on the back-
ground (Write-Copies-To-Stable-Storage subroutine). For the re-
mainder of the game state, we start an asynchronous copy to stable
storage (Write-Objects-To-Stable-Storage subroutine) and register a
handler routine that reacts to updates while this copy operation is
running (Handle-Update subroutine).
Instantiating algorithms. We implement all algorithms of Sec-
tion 3 by providing appropriate implementations of the subroutines
in the Checkpointing Algorithmic Framework. We summarize in
Table 2 how each subroutine is implemented for each checkpoint-
ing algorithm. We state whether the routine acts on all objects of
the game state or only on dirty objects and also whether the routine
is implemented or is a no-op. When different from a no-op, the
subroutines perform the operations below:

1. Copy-To-Memory: this subroutine computes the time neces-
sary to copy either all objects or dirty objects to main mem-
ory and advances the simulation time.

2. Write-Copies-To-Stable-Storage: this subroutine com-
putes, at every tick, the amount of data from the memory
copy that has been flushed to disk. It takes into account
whether we are writing to a sequential log or to a double
backup. This routine operates on state copied by the Copy-
To-Memory routine and thus may be implemented without
thread-safety concerns.

3. Handle-Update: this subroutine computes the time to per-
form bit tests, acquire locks, and save the old value of an
item in memory. Since we save the old value, this routine is
only executed the first time we update an item.

4. Write-Objects-To-Stable-Storage: this subroutine com-
putes, at every tick, the amount of data from the objects to

be checkpointed that has been flushed to disk. As with the
Write-Copies-To-Stable-Storage routine, the amount flushed
depends on whether we are writing to a log or to a double
backup. Unlike Write-Copies-To-Stable-Storage, this rou-
tine reads the actual game state concurrently and thus must
be thread-safe.

It is important to emphasize that our simulation does not per-
form any actual I/O operations or memory copies. Rather, we keep
track of which objects have been updated since the last checkpoint
and compute the time necessary for these operations based on the
detailed simulation model presented in the next section.

4.2 Simulation Model
We describe the main components of the performance model we

have used in our simulation below. We assume that the game server
is a dedicated machine and, therefore, there is no resource con-
tention with other workloads. MMOs are cognizant of issues that
influence performance and avoid running processes that might neg-
atively affect game experience. Scheduled maintenance activities,
for example, are typically performed at well-defined times during
off-peak hours.

Assume n is the number of atomic objects in the game state.
Duration of synchronous copy. The function Copy-To-Memory
in the Checkpointing Algorithmic Framework performs a syn-
chronous, in-memory copy, which introduces a pause in the sim-
ulation loop. Given k contiguous atomic objects of size Sobj to be
included in the synchronous copy and memory bandwidth Bmem,
we can calculate the time ∆Tsync(k) required to copy these objects
by:

∆Tsync(k) = Omem +
k ·Sobj

Bmem

Here the constant term Omem represents memory copy startup over-
head, including possible cache misses. The total pause time is
computed by summing this formula over all contiguous groups of
atomic objects to be copied.

Because latency affects the gaming experience, there is a (game-
dependent) hard bound on the maximum duration of a pause [4].
Thus it is important to consider the latency introduced in the
discrete-event simulation loop in order to understand the applica-
bility of a checkpoint recovery technique.
Duration of asynchronous write. The functions Write-Copies-To-
Stable-Storage and Write-Objects-To-Stable-Storage perform asyn-
chronous copies of atomic objects. If we write k≤ n contiguous ob-
jects to a log-based organization on disk, I/O is sequential and we
can take maximum advantage of the disk bandwidth Bdisk. Thus,
the duration function ∆Tasync(k) of the asynchronous copy will be:

∆Tasync(k) =
k ·Sobj

Bdisk
(log-based)

This approximation does not consider the initial seek and rotational
delay, but for realistic game state sizes the error introduced is neg-
ligible.



For algorithms using a double-backup disk organization we as-
sume a sorted write I/O pattern, in which disk sectors are trans-
ferred in order of increasing offset in a contiguously allocated
backup file. We assume for simplicity that the objects to be writ-
ten are uniformly spaced in the file. If more than a tiny fraction of
the sectors are written, with high probability, there will be a dirty
atomic object to be written in every track of the file. As a conse-
quence, this pattern requires a full rotation for every track of the
file, so the cost of writing k sectors can be approximated well by
the cost of a full transfer,

∆Tasync(k) ≈
n ·Sobj

Bdisk
(double-backup)

As above, this approximation does not consider the initial seek and
rotational delay; it also ignores the fact that the expected distance
from the first to the last sector transferred is actually shorter than
n by O(n/k). Again, for the values of n and k we consider, the
error introduced is negligible. This model has the slightly counter-
intuitive (but correct) property that, for reasonable values of k, the
amount of data written to the backup file is proportional to k, but
the elapsed time to write that data is independent of k.
Effect of copy on update. All algorithms on the right of Table 1
use a copy-on-update scheme, in which synchronous in-memory
copy operations may be performed during checkpointing in order to
save old values of game objects being updated. These copy opera-
tions add overhead to the simulation loop, potentially over multiple
ticks. To estimate this overhead, we examine each atomic object
update operation and compute an overhead cost of the form

∆Toverhead = Obit +Olock +∆Tsync(1)

The first term in this expression represents the overhead for the
simulation loop to test a per-atomic-object dirty bit. If that test
fails, the second term is added, representing the cost to lock out
the asynchronous copy thread. The third term is added if necessary
to represent the cost of a memory copy of a single atomic object.
This detailed simulation is needed because dirty bit maintenance,
while comparatively cheap, is embedded in the inner loop of the
simulator, so the overhead it introduces can be quite significant and
must be modeled.
Recovery time. The recovery time ∆Trecovery of our methods is di-
vided into two components: the time to read a checkpoint, ∆Trestore,
and the time to replay the simulation after the checkpoint is re-
stored, ∆Treplay. It is given by

∆Trecovery = ∆Trestore +∆Treplay

For all schemes except Partial-Redo and Copy-on-Update-Partial-
Redo, we have:

∆Trestore =
n ·Sobj

Bdisk

For Partial-Redo and Copy-on-Update-Partial-Redo, the time to re-
store will be larger whenever updates are concentrated into a subset
of the game objects. In the worst case, we will have to read the log
backwards until we find the last time all objects have been flushed
to the log. Assuming that k objects are written to the log per check-
point and that we perform a full write of the n game objects every
C checkpoints, we may estimate the time to restore by:

∆Trestore =
(k ·C +n) ·Sobj

Bdisk

The time to replay ∆Treplay is, in the worst case, equal to the time
to checkpoint ∆Tcheckpoint . This situation may happen if the sys-
tem crashes right before a new checkpoint is finished. In that case,

we restore the previous checkpoint and expect the simulation to
take exactly the same time between checkpoints to redo its work.
Note that the time to checkpoint will be given either by ∆Tasync or
∆Tsync +∆Tasync, depending on the method used.

4.3 Simulation Parameters

parameter notation setting
Tick Frequency Ftick 30 Hz
Atomic Object Size Sobj 512 bytes
Memory Bandwidth Bmem 2.2 GB/s
Memory Latency Omem 100 ns
Lock overhead Olock 145 ns
Bit test/set overhead Obit 2 ns
Disk Bandwidth Bdisk 60 MB/s

Table 3: Parameters for cost estimation

As described in Section 4.2, we explicitly model the hardware
parameters and compute all relevant costs for the algorithms. The
parameters we have used in our evaluation are given in Table 3.
During each tick, the simulator selects a set of objects to update and
then invokes the appropriate checkpointing strategy. We update at
the granularity of an atomic object, and we allow an object to be
updated more than once per tick. Since we simulate all relevant
hardware parameters, our hardware setup is unimportant.

Note that the parameters in Table 3 fall into several different cat-
egories. Some parameters, such as Ftick, are properties of the game
being simulated. Others, such as Sobj, are parameters of the algo-
rithms. The most challenging parameters are those representing
system performance. The values presented here were measured
for one particular server in our lab, using a collection of micro-
benchmarks written for the purpose.

Memory bandwidth: We measured effective memory band-
width Bmem by repeated memcpy calls using aligned data, each call
copying an order of magnitude more data than the size of the L2
cache of the machine.

Memory latency: We measured memory latency Omem using
another memcpy benchmark with memory reference patterns mix-
ing sequential and random access. The intent was to take into ac-
count both hardware cache-miss latency and the startup cost of the
memcpy implementation.

Lock overhead: We measured lock overhead Olock as the ag-
gregate cost of uncontested calls to pthread_spinlock, again with a
mixture of sequential and random access patterns.

Bit test overhead: The bit test overhead Obit is intended to
model the cost of the dirty-bit check that must be added to the simu-
lation loop for the copy-on-update variants of the algorithms. This
benchmark measures the incremental cost of naive code to count
dirty bits, roughly half of which are set. The code is added to a
loop intended to model the memory reference behavior of the up-
date phase of the game simulation loop.

Disk bandwidth: We measured the effective disk bandwidth
Bdisk by performing large sequential writes to a block device al-
located to our recovery disk.

All these benchmarks required considerable care to achieve re-
peatable results and to eliminate errors due to loop overheads, com-
piler optimizations, and the cost of timing calls themselves.

4.4 Datasets
The input to our simulator is an update trace indicating which

attributes of game objects, termed cells, have been updated on each
tick of the game. We consider several methods for choosing which
cells to update. In the first set of experiments, we generate updates
according to a Zipf distribution with parameter α. We choose the



parameter setting
number of ticks 1,000

number of table cells 10,000,000
number of updates per tick 1,000 . . . 64,000 . . . 256,000
skew of update distribution 0 . . . 0.8 . . . 0.99

Table 4: Parameter settings used in the Zipfian-generated up-
date traces

parameter setting
number of units 400,128

number of attributes per unit 13
number of ticks 1,000

avg. number of updates per tick 35,590

Table 5: Characteristics of the update trace from our prototype
game server.

row and column to update independently with the same distribu-
tion. By varying α, we can control the skew of the distribution.
As α grows, we are more likely to update a small number of “hot”
objects. Our Zipfian generator is from [10]. In addition to the up-
date skew, we also vary the number of updates per tick and analyze
latency peaks introduced by the different methods. Table 4 shows
the range of parameter values we used. The numbers in bold are
the default values we used when varying the other variables.

For each of these three independent variables, we measure the
overhead time due to bit testing, locking, and synchronous in-
memory copies. This time is extremely important for MMOs, be-
cause these overheads must be compensated by MMO developers
by reducing the amount of work performed in a given tick. In ad-
dition to the runtime overhead of the recovery algorithms, we are
also interested in measuring the time to checkpoint and the recov-
ery time. While the behavior of the recovery time will be of great
interest to MMO developers, the time to checkpoint gives us insight
into the cost breakdown of the recovery time. It is equivalent to the
time to replay the simulation (Section 4.2), so the remaining time
spent during recovery is due to restoring the last checkpoint taken.
We discuss these experiments in Sections 5.1 to 5.3.

To better understand realistic update patterns, we have also im-
plemented a prototype game that simulates a medieval battle of
the type common in many MMOs. It is based on the Knights
and Archers Game of [37]. The simulation contains three types of
characters: knights, archers, and healers, that are divided into two
teams. Each team has a home base, and the objective is to defeat
as many enemies as possible. Each unit is controlled by a simple
decision tree. Knights attempt to attack and pursue nearby targets,
while healers attempt to heal their weakest allies. Archers attempt
to attack enemies while staying near allied units for support. Fur-
thermore, each unit tries to cluster with allies to form squads.

In typical MMOs, not all characters are active at all times. In the
Knights and Archers game, 10% of the characters are active at any
given moment and the active set changes over time. Units leave
and join the active set such that it is completely renewed every 100
ticks with high probability. We have instrumented this game to
log every update to a trace file, which we then use as input to our
checkpoint simulator. Table 5 summarizes the basic characteristics
of our trace. Note that the update distribution follows the skew
determined by the game logic. We consider these experiments in
Section 5.4.

5. EXPERIMENTAL RESULTS
In this section, we present the results of our experimental eval-

uation. The goals of our experiments are twofold. First, we want

to understand how the different checkpoint recovery algorithms be-
have as we scale the number of updates per tick (Section 5.1), what
latency peaks we can observe (Section 5.2), and how the skew of
the update distribution affects the algorithms (Section 5.3). Second,
we want to understand how the checkpoint recovery algorithms per-
form with an update trace generated by realistic game simulations
(Section 5.4).

5.1 Scaling on Number of Updates Per Tick
In this section, we evaluate how the different recovery methods

scale as we increase the number of updates per game tick. Recall
that an update is a change in one of the cells of the game state table.
Average Overhead Time. We begin by analyzing the time added
by the different algorithms to the game ticks; we call this time the
overhead time or short overhead. Keeping the overhead low is key
in MMOs because it represents how much recovery penalizes tick
processing. Our simulation assumes that game logic and update
processing take the whole tick length. A recovery method intro-
duces overhead that stretches ticks beyond their previous length,
reducing the frame rate of the game. In order to compensate for
recovery overhead, MMO developers have to diminish the amount
of work performed per tick. If the pauses introduced by a recov-
ery algorithm are too high, then the use of that recovery algorithm
becomes infeasible.

Figure 2(a) shows the effect of varying the number of updates
per tick on the average overhead per tick. Recall that we have one
million rows with ten columns each. In typical MMOs, a subset of
the game objects are active at any given time. In battle games with
very intense action sequences, update rates may reach hundreds of
thousands of updates per tick [34]. This extreme scenario is the
rightmost point of the graph. Game characters typically have a
set of relatively static attributes along with attributes that are more
often updated. Thus we expect this extreme situation to occur only
in games with very hot objects that receive many updates per tick
or in games in which a large set of active objects is moving every
single tick.

The average overhead of Naive-Snapshot is 0.85 msec per tick
— however, this average is not spread uniformly among all ticks
of the game. The method performs a single synchronous copy per
checkpoint in which all of the overhead is incurred. This copy takes
nearly 17 msec (see Section 5.2), a value in excess of half the length
of a tick.

Atomic-Copy-Dirty-Objects and Partial-Redo exhibit similar be-
havior as both methods perform eager copies of only the dirty ob-
jects. We see that these strategies outperform Naive Snapshot for
update rates below 10,000 updates per tick. For such low update
rates, these two methods achieve lower total memory copy time
than Naive-Snapshot, which always copies the whole game state.
Above 10,000 updates per tick, however, these methods tend to
become worse than Naive Snapshot. At high update rates, most ob-
jects in the game state get updated between checkpoints. Thus these
methods have to copy as much data in main memory as Naive Snap-
shot. In contrast to Naive Snapshot however, these methods must
also pay for bit checking overhead for each update. At 256,000
updates per tick, this difference amounts to an average overhead of
1.4 msec for Atomic-Copy-Dirty-Objects versus 1 msec for Naive-
Snapshot, a 60% difference.

The methods based on copy on update, namely Dribble-and-
Copy-on-Update, Copy-on-Update, and Copy-on-Update-Partial-
Redo, present an interesting trend. Under 8,000 updates per tick,
these methods add less average overhead than Naive-Snapshot by
up to a factor of five. In addition, these methods also outperform
other eager copy methods. Above 8,000 updates per tick, how-
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Figure 2: Overhead, checkpoint, and recovery times when scaling up on the number of updates per tick.

ever, these methods add more average overhead per tick by up to a
factor of 2.7. In spite of adding more overhead when the num-
ber of updates per tick is larger, copy on update methods may
still be the most attractive even in these situations. Recall that
all eager methods mentioned previously, such as Naive-Snapshot,
concentrate their total overhead of all the ticks associated with a
checkpoint into one single tick. Copy on update methods, on the
other hand, spread their overhead over a number of ticks, present-
ing smaller latency peaks even when the total latency introduced
is larger than for eager methods (see Section 5.2). Unfortunately,
even copy on update methods will introduce significant latency if
most atomic objects in the game state are updated in at least one
tick after a checkpoint. This situation happens in our experiment
for update rates over 100,000 updates per tick. At these extreme
update rates, all methods are undesirable in terms of latency. The
strategy of last resort is to take the method with lowest total latency,
i.e., NaiveSnapshot and to invest development effort into latency
masking techniques for the game [4].
Checkpoint and Recovery Times. Figure 2(b) shows how the
checkpoint time changes as we increase the number of updates
processed in each tick of the game. Naive-Snapshot, Dribble-
and-Copy-on-Update, Atomic-Copy-Dirty-Objects, and Copy-on-
Update write the entire game state to disk on every checkpoint.
As a consequence, these methods present constant checkpoint time
of around 0.68 sec for all update rates. Note that Atomic-Copy-
Dirty-Objects and Copy-on-Update copy only dirty objects in main
memory. Given that the atomic objects dirtied every checkpoint are
a significant fraction of the game state, the fastest way for these
strategies to commit their checkpoint to the double backup is a sin-
gle sequential write of the whole state.

Partial-Redo performs like Copy-on-Update-Partial-Redo.
Again the time to flush the checkpoint to disk dominates the
checkpoint time. These two algorithms rely on a log-based disk
organization and perform sequential I/O. At 1,000 updates per
tick, Partial-Redo and Copy-on-Update-Partial-Redo take 0.1 sec
to write a checkpoint. That represents a gain of a factor of 6.8 over
Naive-Snapshot.

In Figure 2(c), we see how this gain in checkpoint time trans-
lates into recovery time. Recall from Section 4.2 that the time to
replay the simulation once a checkpoint is restored is roughly equal
to the checkpoint time. Moreover, for Naive-Snapshot, Dribble-
and-Copy-on-Update, Atomic-Copy-Dirty-Objects, and Copy-on-
Update, the time to restore is equal to the time to read the check-
point sequentially and thus roughly equal to the time these algo-
rithms take to save the checkpoint to disk. As such, the recovery
time for these algorithms is nearly twice their checkpoint times,
reaching around 1.4 sec for all update rates.

Partial-Redo and Copy-on-Update-Partial-Redo show more in-
teresting behavior. While their time to replay the simulation is

again roughly equal to the checkpoint time, the methods differ in
the time necessary to restore the checkpoint from disk. Partial-
Redo and Copy-on-Update-Partial-Redo have the best checkpoint
times, and thus the lowest times to replay the simulation. On the
other hand, these algorithms have recovery times that are consis-
tently worse than Naive-Snapshot above 4,000 updates per tick.
These methods must read through a log in order to restore the
checkpoint, leading to restore times much larger than for the other
algorithms. While these restore times could be reduced by flushing
the whole state to the log more often, doing so would also make
the checkpoint times of these algorithms much closer to a simple
sequential write of the whole game state, eliminating the advan-
tage of a reduced time to replay the simulation. At 256,000 updates
per tick, these methods spend 7.2 sec to recover, a value 5.4 times
larger than the time required by Naive-Snapshot.

In summary, the three methods Dribble-and-Copy-on-Update,
Copy-on-Update, and Copy-on-Update-Partial-Redo have the
smallest overhead for low numbers of updates per tick. Even when
the number of updates per tick is high, these methods may still
be preferable given that they spread their overhead over several
ticks instead of concentrating it into a single tick. Out of these
three methods, Copy-on-Update and Dribble-and-Copy-on-Update
are the most efficient in terms of recovery times, being vastly supe-
rior to Copy-on-Update-Partial-Redo for high numbers of updates
per tick. Eager copy methods only display overhead significantly
lower than copy on update methods with very high update rates. In
these extreme situations, all methods introduce latency peaks in the
game. The method with the lowest overall latency for these cases
is Naive-Snapshot.

5.2 Latency Analysis
In order to better understand the latency behavior of the algo-

rithms, we look in depth at a scenario with 64,000 updates per tick.
Given the results in Figure 2(a), we expect copy on update methods
to introduce nearly twice the average latency of eager copy meth-
ods. We have plotted the tick length as we run the algorithms in
order to observe how much overhead is introduced on top of the
basic tick length of 33 msec. The results are shown in Figure 3 for
ticks 55 to 110 of the simulation. The same pattern for all methods
repeats itself over the remaining 945 ticks not shown in the figure.

The figure clearly shows that eager copy methods introduce the
largest overhead peaks, with some game ticks being lengthened by
17 msec. This value is approximately the same for Naive-Snapshot,
Atomic-Copy-Dirty-Objects, and Partial-Redo. As the number of
updates is relatively high in this scenario, most atomic objects in
the game state are touched between successive checkpoints for all
methods. As a consequence, all eager copy methods have identi-
cal synchronous copy times. This time is the single latency factor
for Naive-Snapshot and dominates latency for the other eager copy
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Figure 3: Latency analysis: 10M objects, 64K updates per tick.

methods, given that overheads for bit testing are small.
Considering that the tick frequency of the game is 30 Hz, and

thus each tick is about 33 msec long, the eager copy algorithms
introduce a pause of over half a tick in the game. As such, the la-
tency impact of these algorithms is undesirable. In fact, we argue
that pauses longer than half the length of a tick introduce latency
that has to be dealt with by MMO developers via latency masking
techniques [4]. In Figure 3, we plot an additional line that rep-
resents this latency limit of half a tick. Neither Naive-Snapshot,
Atomic-Copy-Dirty-Objects, nor Partial-Redo is able to respect the
latency bound.

Copy on update methods present different behavior. Their over-
head is spread over a number of game ticks instead of being con-
centrated into a few ticks. The latency peak for all of these methods
is 12 msec for the first tick after a checkpoint is started, dropping
to seven msec for the second tick, four msec for the third, and even
smaller times for subsequent ticks. In the first tick, no atomic ob-
jects are dirty yet and thus copy on update methods must incur lock-
ing, memory latency, and copying overhead for many objects. As
we move through the checkpoint period, however, many updates
will be applied to objects that have already been dirtied in previous
ticks. For all of these updates, copy on update methods perform
only inexpensive bit tests.

According to what we have discussed above, almost all of the
atomic objects in the game state are touched between successive
checkpoints for all methods. As copy on update methods perform
copies randomly and have to acquire locks for synchronization,
their total overhead is larger than the overhead to perform a sequen-
tial copy of the state, as done by eager copy methods. In contrast
to eager copy methods, however, copy on update methods have a
much better distribution of their overhead along ticks of the game.
In addition, when smaller fractions of the game state are updated,
copy on update methods tend to incur both lower and better dis-
tributed overhead than eager copy methods.

5.3 Effect of Skew
Finally, we evaluate the effect of update skew on the various re-

covery methods. The primary effect of increasing the skew is to
decrease the number of dirty objects. This has no effect on the
Naive-Snapshot algorithm, but it causes slightly different behavior
in the other strategies. The graphs in this section are not log-scaled
in order to emphasize the trends.
Average Overhead Time. Figure 4(a) shows the overhead as a
function of skew. The relative performance of the strategies is sim-
ilar to that in the previous experiments with about 64,000 updates
per tick. The lowest overhead is introduced by Naive-Snapshot,
while other methods fall within a factor of 2.5. Since the num-

ber of dirty objects decreases as the skew increases, we expect
strategies that copy only dirty objects to perform better with high
skew. Atomic-Copy-Dirty-Objects and Partial-Redo benefit less
from skew, however, than Copy-on-Update and Copy-on-Update-
Partial-Redo. Recall that the large number of updates per tick in
the experiment leads to most of the atomic objects in the game state
being updated between checkpoints. For Copy-on-Update, extreme
skew diminishes the updated portion from roughly 100% to 84% of
the atomic objects. All copy on update methods benefit more from
a smaller fraction of objects updated than eager copy methods be-
cause they do not need to incur locking and latency overheads for
these objects.

Interestingly, Dribble-and-Copy-on-Update also gets some ben-
efit from skew, although it writes the whole game state to disk. This
method copies fewer objects with high skew because game objects
are copied only on the first update. Thus a larger fraction of the
updates avoid copying, and more of the objects are flushed to disk
directly by the asynchronous process.
Checkpoint and Recovery Times. Figure 4(b) shows the time to
checkpoint as a function of the data skew, and Figure 4(c) shows the
recovery time. As a large fraction of the atomic objects are updated
between checkpoints, most strategies display very similar times to
checkpoint. For Copy-on-Update-Partial-Redo and Partial-Redo,
the time to checkpoint decreases as the skew increases, because
there are fewer dirty objects and these methods benefit from fast
sequential writes of only dirty objects to a log.

This effect is more clear in the graph that shows recovery time.
Here the time for Copy-on-Update-Partial-Redo and Partial-Redo
decreases from 7.3 sec to 6.3 sec. This graph also shows some
of the same trends observed in the previous sections. Partial redo
methods have much larger recovery times than other strategies,
while the remaining strategies have similar recovery times given
that the whole game state is written by them to disk.

In summary, we conclude that skew has a fairly minor effect on
the performance of the algorithms. Copy on update methods ben-
efit relatively more from skew than other methods, as these meth-
ods may then avoid locking and memory latency overheads. Copy-
on-Update-Partial-Redo and Partial-Redo have very large recovery
times, and for this reason are not competitive.

5.4 Experiments with Prototype Game Server
In this section we run our simulation with the update trace of

the Knights and Archers Game described in Section 4.4. Our goal
is to understand whether the observations we made regarding Zipf
distributions carry over to more realistic datasets. Recall that this
trace contains 400,128 rows of 13 attributes. The trace applies up-
dates only to 10% of the units, exhibiting an average update rate of
35,590 attributes per tick. This corresponds to the fact that many
characters update their position during each tick (possibly only in
one dimension), but that other attributes such as health remain rel-
atively stable.

The results in Figure 5 confirm several of our previous observa-
tions. At the update rate exhibited by the game, copy on update
methods have average per tick overheads that are larger than the
overheads of eager copy methods. However, copy on update meth-
ods spread this overhead better over several ticks, while eager copy
methods concentrate all of their overhead into a single tick. Copy-
on-Update-Partial-Redo presents higher overhead than other copy
on update methods. It reaches 1.6 msec compared to only 1.2 msec
for Copy-on-Update. This effect occurs because Copy-on-Update-
Partial-Redo checkpoints more often than Copy-on-Update, as can
be seen in Figure 5(b). Recall from Section 5.2 that all copy on
update strategies exhibit more overhead in the first few ticks of



 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  0.2  0.4  0.6  0.8  1

A
v
g
. 
O

v
e
rh

e
a
d
 T

im
e
 [
s
e
c
]

Skew

Naive Snapshot
Dribble and Copy on Update

Atomic Copy Dirty Objects
Partial Redo

Copy-on-Update
Copy-on-Update-Partial-Redo

(a) Skew vs. overhead time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1

A
v
g
. 
T

im
e

 t
o
 C

h
e
c
k
p

o
in

t 
[s

e
c
]

Skew

Naive Snapshot
Dribble and Copy on Update

Atomic-Copy-Dirty-Objects
Partial-Redo

Copy-on-Update
Copy-on-Update-Partial-Redo

(b) Skew vs. time to checkpoint

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

E
s
t.
 R

e
c
o
v
e
ry

 T
im

e
 [
s
e
c
]

Skew

Naive Snapshot
Dribble and Copy on Update

Atomic Copy Dirty Objects
Partial Redo

Copy-on-Update
Copy-on-Update-Partial-Redo

(c) Skew vs. recovery time

Figure 4: Overhead, checkpoint, and recovery times when varying the skew.
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Figure 5: Overhead, checkpoint, and recovery times for a trace with 400,128 units and updates to 10% of the units every tick.

a checkpoint than in later ticks. As Copy-on-Update checkpoints
less often, it spends more of its time in the region of lower over-
head than Copy-on-Update-Partial-Redo. Typically, one would ex-
pect longer recovery times as a consequence of less frequent check-
points. In the case of Copy-on-Update-Partial-Redo, however, the
recovery times shown in Figure 5(c) are also longer than for Copy-
on-Update. This confirms our previous observation that methods
based on partial redo are slower than other strategies since they
have to read more of the log from disk. We saw this behavior previ-
ously when we had a very high update rate (Figures 2(c) and 4(c)).

Similar trade-offs can be observed for other strategies. Atomic-
Copy-Dirty-Objects checkpoints more often than Partial-Redo, and
shows both lower overhead and lower recovery time than the lat-
ter. Atomic-Copy-Dirty-Objects is in fact the method with lower
average overhead time, having a value slightly lower than Naive-
Snapshot. Dribble-and-Copy-on-Update exhibits slightly higher
overhead than Copy-on-Update, as Dribble-and-Copy-on-Update
copies in main memory all objects touched on first update, while
Copy-on-Update can restrict its copies to objects that have been
dirtied since the last consistent image of the backup currently be-
ing written. As observed previously in other experiments, similar
checkpoint and recovery times are observed for Naive-Snapshot,
Atomic-Copy-Dirty-Objects, and the lazy methods Dribble-and-
Copy-on-Update and Copy-on-Update. Overall, the game trace
falls comfortably into the range of parameters we explored using
synthetic data.

6. EXPERIMENTAL VALIDATION
In this section, we present experimental results that validate our

simulation model against an actual implementation of two recov-
ery methods: Naive-Snapshot and Copy-on-Update. These meth-
ods are the most relevant methods as identified by our simulation
results. For a wide range of update rates, copy on update meth-

ods exhibit the best latency behavior and recovery times. When
compared to Dribble-and-Copy-on-Update, Copy-on-Update intro-
duces slightly less overhead time on the game as it copies only
dirty objects on update. Copy-on-Update also consistently out-
performs Copy-on-Update-Partial-Redo in terms of recovery times.
For extreme update rates of over 100,000 updates per tick, Naive-
Snapshot is the method with the lowest overhead time. Taken to-
gether, these two methods ourperform the other algorithms over
the entire range of performance metrics included in our simulation
model, including memory latency, locking overhead, and memory
and disk bandwidths.
Validation Setup. We implemented Naive-Snapshot and Copy-on-
Update in C++ and ran them on an Intel Core 2 Quad 2.4 GHz ma-
chine with 4MB cache and 4GB of main memory. The operating
system used was Ubuntu Linux kernel 2.6.27-14. To avoid frag-
mentation at the filesystem level, we put the checkpoint files on a
dedicated hard drive to which we wrote directly through a Linux
block device. The disk was an 80GB 7200 rpm SATA drive with an
8MB cache.

We repeated the experiments from Section 5.1 for validation.
Our implementation is driven by trace files with update distribu-
tions as described in Section 4.4. It is divided into a mutator thread
and an asynchronous writer thread. In order to reproduce the work
done in realistic games that tick at 30Hz, the mutator executes each
tick in three phases: query, update, and sleep. The query phase
is adjusted for each update rate in order to fill a tick. It performs
a sequence of random lookups in the game state. After the query
phase is over, the update phase processes the updates from the trace
for the given tick. We keep all trace files completely loaded in
main memory to avoid introducing disk access delays in the update
phase. Finally, the (short) sleep phase fills the remaining time so
that the game ticks at 30Hz. In our experiments, the sleep phase
averaged less than 1 msec and we ensure that this time does not



affect the measurement of overhead time. The asynchronous writer
flushes consistent checkpoints to disk. The state to be written is
either created by the mutator as in Naive-Snapshot, or it is directly
accessed by the asynchronous writer using appropriate locks, as in
Copy-on-Update.
Validation Results. Figure 6 shows the results from our imple-
mentation as we scale the number of updates per tick. For refer-
ence, the figure also shows the results predicted by our simulation
model, where we calibrated the parameters in the simulation with
the micro-benchmarks described in Section 4.3.

The trends predicted by our simulation model are closely
matched by the implementation. The real implementation of Naive-
Snapshot exhibits practically the same overhead, checkpoint, and
recovery times as the simulation. This is expected as the perfor-
mance of Naive-Snapshot depends essentially on the memory and
disk bandwidths.

Copy-on-Update displays similar behavior regarding checkpoint
and recovery times. The overhead time shown by the implementa-
tion is, however, larger than the simulation model’s prediction by
up to a factor of 3. This occurs because the real implementation
has overheads not accurately modeled in our simulation, for ex-
ample, lock contention between the mutator and the asynchronous
writer and interference on the mutator from the I/O performed by
the asynchronous writer. We have observed in a separate experi-
ment that the latter effect is significant and explains why the differ-
ence between implementation and simulation increases for higher
update rates. In spite of these differences, the simulation model
accurately predicts the overhead trends shown by the algorithm.

7. RELATED WORK
Several approaches have been proposed for taking database snap-

shots [1]. Kähler and Risnes explore how to use logging to refresh
a snapshot, proposing a technique that resembles incremental view
maintenance [15]. Other work has investigated how to provide ef-
ficient access to a large collection of past snapshots [31, 32]. Our
focus is different, as we target instead recording the most recent
consistent snapshot of the data efficiently and as often as possi-
ble. Furthermore, in our scenario all primary data is main-memory
resident for performance reasons, while these previous approaches
assume disk storage of both the database and the snapshots.

Levy and Silberschatz propose a recovery scheme for databases
with large main memories termed log-based backup [17]. Log-
based backup works by continuously applying log records to a
backup copy of the database. Both a redo log and the backup copy
are maintained. In order to decouple transaction processing from
log I/O, the authors suggest the use of stable memory to keep the
log’s tail. However, as previously discussed, schemes based on log-
ging all game updates are infeasible for MMOs in practice.

Fuzzy checkpointing does not produce a consistent checkpoint,
requiring the system to keep a physical log [13, 29]. In MMOs, this
requirement makes this technique infeasible, given that all game
updates would have to be logged to disk whenever a checkpoint is
being taken.

A number of systems study how to optimize recovery in a dis-
tributed setting. ClustRa uses the idea of hot standbys and log ship-
ping to provide high availability [14]. To achieve higher perfor-
mance, log records are not written to disk, but rather to the main
memory of a neighboring node. Whitney et al. execute transac-
tions in both a primary site and in a number of backup sites [39].
Backup sites use a variant of the Naive-Snapshot algorithm from
the previous section to save checkpoints to stable storage. More
recently, Lau and Madden [16] and Stonebraker et al. [33] advo-
cate a distributed design in which no logging is performed by the

system. In contrast to Whitney et al. [39], all sites are active and
thus updates are processed in all sites that replicate a given por-
tion of the data. Data is replicated in a minimum of K sites so
that the system will survive up to K site failures. If we apply their
model to our scenario, we need to use K servers to execute copies
of the discrete event simulation loop. This basic solution is similar
to the process-pairs solution for high-performance scientific simu-
lations [30]. While availability is high, system utilization is rather
low (1/K), given that all active copies of the simulation loop per-
form redundant work. We follow instead a checkpoint recovery
model, which increases utilization at a potential increase in recov-
ery time; a detailed exploration of recovery methods for MMOs
inspired by K-safety is future work.

8. SUMMARY AND RECOMMENDATIONS
In this paper, we have experimentally evaluated the performance

of main-memory checkpoint recovery techniques for MMOs. In-
stead of requiring MMO developers to hand-code persistence logic
for their games, our experimental study shows that these techniques
can be used as a viable alternative to provide durability for local up-
dates.

One important conclusion of our study is that not all checkpoint
recovery techniques are equally suited for MMOs. MMOs have
stringent latency requirements, ruling out algorithms that introduce
excessive pauses in the game’s discrete-event simulation loop. In
our study, we have quantified the duration of these pauses and ob-
served which algorithms introduce the least overhead. We summa-
rize our principal findings as a set of recommendations for MMO
developers:

1. Methods based on copy on update that checkpoint only dirty
objects have clear advantages over other checkpoint recov-
ery methods for MMOs. These methods introduce up to a
factor of five less overhead in the game than methods that
perform eager copies in main memory when the number of
updates is low. In addition, even when update rates are high,
these methods avoid latency peaks by spreading their over-
head over a number of game ticks.

2. Some games may have such extreme update rates that they
update a huge number of objects within some tick. In
these situations, all methods we have evaluated will intro-
duce significant latency peaks in the game. The method that
has shown the lowest overall latency under such heavy and
skewed load is Naive-Snapshot, as it avoids any overheads
associated with locking and performs fully sequential mem-
ory copies of the whole game state.

3. Methods based on a double-backup organization that check-
point only dirty objects exhibit recovery times either better or
comparable to other methods across all ranges of parameters
we have investigated. In particular, methods based on check-
pointing dirty objects to a log file have larger recovery times
due to the time needed to process the log when restoring the
checkpoint.

4. The best method in terms of both latency and recovery time
is Copy-on-Update. This method combines checkpointing
of dirty objects with copy on update and a double-backup
organization. When compared to Naive-Snapshot, we have
observed up to a factor of five gain in latency and no degra-
dation in recovery time.

In the future, we plan to explore how choices for different hard-
ware parameters affect the performance of the various recovery



 0.0001

 0.001

 0.01

 1000  10000  100000

A
v
g
. 
O

v
e
rh

e
a
d
 T

im
e
 [
s
e
c
],
 l
o
g
s
c
a
le

# Updates per Tick, logscale

Naive Snapshot (Simulation)
Naive Snapshot (Implementation)

Copy-on-Update (Simulation)
Copy-on-Update (Implementation)

(a) Updates per tick vs. overhead time

 0.1

 1

 1000  10000  100000

A
v
g
. 
T

im
e
 t

o
 C

h
e
c
k
p
o

in
t 
[s

e
c
],
 l
o

g
s
c
a
le

# Updates per Tick, logscale

Naive Snapshot (Simulation)
Naive Snapshot (Implementation)

Copy-on-Update (Simulation)
Copy-on-Update (Implementation)

(b) Updates per tick vs. time to checkpoint

 1

 10

 1000  10000  100000

E
s
t.

 R
e
c
o
v
e

ry
 T

im
e
 [
s
e
c
],
 l
o
g
s
c
a
le

# Updates per Tick, logscale

Naive Snapshot (Simulation)
Naive Snapshot (Implementation)

Copy-on-Update (Simulation)
Copy-on-Update (Implementation)

(c) Updates per tick vs. recovery time

Figure 6: Validation of overhead, checkpoint, and recovery times when scaling up on the number of updates per tick. We compare
the results of our simulation model with a real implementation of Naive-Snapshot and Copy-on-Update.

algorithms. In addition, we plan to extend our analysis to multi-
server MMOs. This will require synchronizing and recovering
shared state between servers.
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