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Abstract 
 

This study investigates the performance of a standard Ni-YSZ anode supported cell 
under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly 
operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used 
for comparison to check the conversion of ethanol and of reformate gases (H2, CO) in the 
fuel cell. The electrochemical properties of the fuel cell fed with 4 different fuel 
compositions were characterized between 710 and 860°C by I-V  and EIS measurements 
at OCV and under polarization. In order to elucidate the limiting processes, impedance 
spectra obtained with different gas compositions were compared using the derivative of 
the real part of the impedance with respect of the natural logarithm of the frequency. 

 
Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ 

anode only above 760°C. Comparisons of results obtained with reformate gas showed that 
the electrochemical cell performance is dominated by the conversion of hydrogen. The 
conversion of CO also occurs either directly or indirectly through the water-gas shift 
reaction but has a significant impact on the electrochemical performance only above 
760°C. 
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Introduction 

Ethanol is considered as a valuable candidate fuel for SOFC application [1]. It offers 

many advantages: 1) Being a liquid, it has a high energetic density, it is easy to store, 

handle and transport; 2) As ethanol contains oxygen and is perfectly miscible with water, it 

can easily be reformed by steam without additional fuel processing; 3) ethanol is widely 

available and can be produced from renewable sources (agricultural byproducts, biomass) 

allowing for CO2-neutral power generation. 

Ethanol cannot be fed directly to standard SOFC with Ni-cermet anodes because of the 

problem of carbon deposition that de-activates the anode catalyst [2, 3]. This problem can 

be overcome either by adding water, which will help reforming the ethanol into H2, CO and 

CH4 that in turn can be directly converted in the SOFC or by developing new anode 

materials, inactive towards C-deposition [4-10]. 

SOFC technology is particularly adapted to internal steam reforming of ethanol because 

of the suitable operation temperatures (700-800°C) and the tolerance towards CO, 

requiring no additional conversion steps (WGS, PrOx). In addition, internal steam 

reforming of ethanol is particularly interesting from a heat management point of view 

because, being endothermic, it allows removing the extra heat produced within the stack 

without the need for a large air excess. On the system level, it also allows to economize on 

an external reformer.  

There are several studies dedicated to the performance of SOFC fuelled with a mixture 

of water and ethanol [2, 11-19]. The first results were obtained with standard anode Ni-

cermets, either as electrolyte supported cells [14] or as planar [12] and tubular [2] anode 

supported cells, all of them with small active areas (≤ 1 cm2). Jiang and co-workers  

obtained power densities of 0.3 Wcm-2 at 650°C and 0.8 Wcm-2 at 800°C with a volumic 
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ratio of 1 on anode supported cells [12]. However, analysis of the gas outlet showed that in 

situ reforming did not readily occur at 800°C. The problem of carbon deposition was not 

addressed. Sasaki et al. obtained 0.3 Wcm-2 at 1000°C with an electrolyte supported cell 

[14]. There again, comparison of performances between internal and external steam 

reforming of ethanol showed that the conversion in a standard anode was not sufficient. 

More recent papers examined the use of alternative anodes for direct internal steam 

reforming. Ye and co-workers studied a Cu-CeO2-ScSZ composite, replacing Ni with Cu 

for current collection (Cu being less active for hydrocarbon cracking than Ni) and CeO2 for 

the ethanol steam reforming (ESR) catalysis [15]. Power densities of 0.2-0.25 Wcm-2 were 

reached at 800°C for a water/EtOH volumic ratio of 2, which corresponds to the values 

obtained with H2 at 750°C. However, as neither the local temperature nor the outlet 

composition were measured, an explanation of this difference was not possible. Short-term 

(50h) steady state operation was stable, but the issue of C-deposition was not closely 

investigated. A similar anode composition was also considered for other liquid fuels [20]. 

Huang et al. have studied the oxide anode (La,Sr)(Cr,Mn)O3 with a La-gallate electrolyte 

[13]. As expected with such anode materials, the electro-chemical performances were 

poor (0.1 Wcm-2 at 800°C, H2O/EtOH = 2 by vol.). Stability was demonstrated over 60h at 

750°C and 60 mAcm-2. The same author also investigated the use of Fe-Ni/ScSZ cermets 

prepared by impregnation of a porous SCSZ layer [11]. Only the Ni-free composition 

showed no C-deposit after 48h at 700°C with EtOH (EtOH:H2O=2:1 by vol.). The 

electrochemical performance of Fe0.5Ni0.5/ScSZ ASC was 20% lower than for Ni/ScSZ (0.5 

Wcm-2 at 800°C). Both compositions activated during 48h polarization at 700°C with 

ethanol, despite C-deposition. This was attributed to an improvement of the electrical 

conductivity of the anode thanks to carbon. 

In this paper, we investigate further internal steam reforming of ethanol on a standard Ni-

YSZ anode-supported cell at intermediate temperatures (700-850°C). By comparing the 
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performance of the fuel cell fed with steam/ethanol (molar ratio 3 to 1) and its 

corresponding reformate, we try to identify the appropriate operating conditions and 

elucidate the limitations and underlying mechanisms of internal reforming. Other gas 

mixtures were also used to check the influence of steam and CO/CO2. In addition, catalytic 

tests for ethanol steam reforming were conducted on ground Ni-YSZ anode for 

comparison with the electrochemical data. 

 

     1. Experimental 

Catalytic tests 

For the catalytic testing, a standard Ni-YSZ anode supported cell provided by HTceramix 

was ground in a mortar and sieved to obtain particle sizes comprised between 80 and 160 

μm. 60 mg of the powder was packed between two quartz wool plugs inside a 4mm 

internal diameter quartz tube (cf. inset of Figure 1) placed in the centre of a furnace. The 

temperature of the reactor was measured with a K-type thermo-couple, protected by a 

quartz sleeve and positioned into contact with the catalytic bed. A schematic view of the 

set-up is depicted in Figure 1. A 10 μl·min-1 flow of 3:1 molar water:ethanol mixture was 

vaporized in a heated metal frit and diluted with 100 Nml·min-1 Ar before entering the 

reactor. The corresponding weight hourly space velocity (WHSV) was approximatively 2.5 

letOHgcat
-1h-1.The composition of the product gas was analyzed with a gas chromatograph 

(GC, Varian), equipped with MS 5Å and Poraplot Q capillary columns coupled with TCD 

and FID detectors. The hot product gas was either directly fed to the GC for the 

quantification of ethanol and acetaldehyde vapors (a) or cooled down to condensate all 

vapors before the analysis of the permanent gases (b). 

The catalyst was initially reduced at 950°C with 10% H2 diluted in Ar. Measurements were 

performed starting at high temperature then lowering it gradually down to 500°C. 
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Electrochemical tests 

The cell used in this study is a standard Ni-YSZ anode supported cell with a composite 

(La0.70Sr0.30)0.90MnO3±δ-8YSZ cathode (50% vol.) prepared by mixing the LSM powder 

(Fuel Cells Materials, USA) with ground 8YSZ powder (Tosoh Corp., Japan), both having 

an average particle diameter equal to 0.3 μm [21]. The cathode (∅ 12mm) was screen-

printed on an anode supported electrolyte (∅ 20mm) provided by HTceramix 

(Switzerland). The applied ink consisted of 60 %wt powder, ethylcellulose binder and 

terpineol-based solvent. 

The cathode was sintered in air at 1060°C for 1 hour. For the current collection, gold 

meshes (∅ 12mm) were contacted to the electrodes using (La0.65Sr0.35)0.95MnO3±δ (Fuel 

Cells Materials, USA) paste on the cathode side and NiO (J.T. Baker)-8YSZ (90:10 %wt) 

on the anode side, sintered 1 hour at 1010°C. 

The cell was assembled in a Probostat™ set-up (NorECs, Norway), as depicted in Figure 

2: the cell was clamped between a bottom alumina tube and a spring loaded compression 

system. The gas tightness was achieved with a gold ring. The temperature was measured 

with a S-type thermocouple placed next to the cell (cf. Figure 2). Air was fed from the 

bottom by an internal tube and the fuel was brought to the anode via a quartz tube cane. 

The water (deionized) and the water/ethanol (99.8% Sigma-Aldrich) mixture was injected 

using a peristaltic pump (Ismatec, Switzerland) and vaporized through a heated metal frit. 

 

The air flow was maintained at 100 Nml·min-1 throughout the test. The total fuel flow was 

kept at 50 Nml·min-1 but with three different compositions, which are given in Table 1. The 

“syngas” corresponds to the thermodynamic equilibrium composition of a 3 to 1 molar 

steam/ethanol reformed mixture. The minor (<2%) amount of CH4 normally present at 
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lower temperature was ignored. In the “humid” mixture the CO and CO2 were replaced by 

Ar, whereas in the “dry” mixture solely H2 was maintained beside Ar. These gas mixtures 

are referred to hereafter by their name or their initial letter (dry, humid, syngas). These 

different gas mixtures were used to check the influence of the different gas components on 

the performance of the Ni-YSZ anode. 32 μl·min-1  of liquid water/ethanol (3 to 1 molar) 

mixture was also vaporized and directly injected to the anode. This mixture is simply 

referred to as etOH.  

All electrochemical measurements (EIS, I-V) were performed with a IM6 electrochemical 

workstation (Zahner, Germany) using a two electrodes configuration with four wires. The I-

V measurements were done in potentiostatic control mode from OCV to 0.6 V using 2 

mVs-1 scans. All EIS measurements were performed with a 10 mV perturbation in the 

frequency range from 100 k to 0.1 Hz, under various current biases (OCV, 88, 265 and 

442 mAcm-2). 

 

2. Results and discussion 

Catalysis 

The results for ethanol steam reforming on ground Ni-YSZ are shown in Figure 3. It can be 

observed that ethanol conversion is only 30% at 700°C but then rapidly increases to reach 

80% at 780°C. Complete conversion occurs above 900°C. The gas composition after 

condensation of the vapors is also given in the same figure. The composition is very 

different from that predicted by thermodynamics (cf. Figure 4): in particular, the proportion 

of methane is more important above 780°C. Additionally, there is a significant amount of 

ethene (ethylene). The latter is usually produced by the dehydration of ethanol and 

provokes coke deposition through its decomposition. 
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Electrochemistry 

All I-V curves obtained for the different gas compositions and temperatures are shown in 

Figures 5 to 8. The corresponding power densities measured at 0.7 V are plotted in Figure 

9. Furthermore, the OCV measured with the humid and the etOH mixtures are compared 

in Table 2 with those calculated from thermodynamics using Nernst law. A few general 

observations can be drawn from these figures:  

i) At 710°C, the performance of the fuel cell fed with a mixture of steam and ethanol is 

lower than with the corresponding syngas mixture, indicating that ethanol is not fully 

converted by the standard Ni-YSZ anode. This is however not the case above 760°C 

where the cell performance with ethanol even surpasses that obtained with syngas. These 

results can be understood in the light of the catalytic test performed on the ground Ni-YSZ 

anode support and reported above (cf. Figure 3): the cell performance is related to the 

availability of H2 and therefore to the catalytic conversion of ethanol in the anode. At 

700°C, the latter is only 30% whereas at 780°C it reaches 80%. 

ii) Furthermore, at lower temperatures (< 760°C), the performances with the humid gas 

mixture and the syngas seem to coincide, indicating that H2 is preferably converted 

electrochemically on Ni-YSZ than CO, which almost acts as an inert gas. The contribution 

of CO only becomes more significant at higher temperatures. 

iii) Finally, at all temperatures, the presence of 20% excess steam in the fuel induces a cell 

voltage penalty clearly noticeable at open circuit. However, as the current density (i.e. the 

fuel utilization) increases, the difference between the I-V curves for the dry and humid gas 

mixtures vanishes. 

In what follows, we shall look more carefully at the difference of performance between 

the different fuels by comparing the corresponding electrochemical impedance spectra. 

We hereby apply the method suggested by S.H. Jensen and co-workers [22] to separate 

the process contributions in impedance spectra [23]. For each impedance spectrum, the 
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function dReZ/dLnf (where ReZ is the real part of the impedance and f is the frequency) 

was calculated numerically with the data analysis and graphing software OriginPro® 8 

(OriginLab). This allows distinguishing more sharply the different electrochemical 

contributions. 

  

Comparison of performance with dry and humid mixtures: effect of steam 

Figure 10 represents the difference between the dReZ/dLnf fonctions calculated for the dry 

and the humid gas mixtures. One major peak is present at 2 Hz, which is independent of 

temperature but strongly decreases under polarization. A broad shoulder can be observed 

between 50 and 1000 Hz, which decreases under polarization and is shifted towards 

higher frequencies as temperature and current are increased. These observations are very 

similar to those reported by R. Barfod and co-workers [24] in their characterization of an 

anode supported SOFC with various hydrogen-steam mixtures. According to their 

analysis, the low-frequency peak is related to the gas conversion, whereas the higher 

frequency peak is attributed to charge transfer between YSZ and Ni and diffusion of 

charged species to the triple phase boundary (TPB). They also report a third intermediate 

peak around 10-100Hz due to gas diffusion. A similar peak can be distinguished here at 

860°C in the corresponding frequency range. 

Therefore, the initial voltage penalty due to the influence of the excess steam on the 

Nernst voltage is gradually compensated under polarization by a lower area specific 

resistance resulting from the facilitated conversion of hydrogen in presence of steam. 

 

 Comparison of performance with humid and syngas mixtures: effect of CO/CO2 

Figures 11 and 12 show the impedance spectra measured at respectively 710°C and 

860°C under different current biases (OCV, 88, 265 and 442mAcm-2). In accordance with 

the I-V data, the polarization resistances for the two fuels are similar at 710°C, in particular 
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at 265 mAcm-2 bias. On the contrary, at 860°C, the polarization resistance of the cell with 

syngas is systematically smaller. 

The difference between dReZ/dLnf functions calculated for syngas and the humid fuel is 

shown in Figure 13. Its analysis is not as straight-forward as for the previous case. A low-

frequency positive peak can be observed below 1 Hz, which seems to be independent of 

temperature but diminishes as current is drawn. Two negative peaks are present in the 

intermediate-frequency range (1-100 Hz).  The peak at 6 Hz seems dominant at 710°C but 

is exceeded by the secondary 40 Hz peak at 810°C. Both peaks are reduced under 

polarization and increase with temperature. As we are considering the difference (humid-

syngas), a positive peak corresponds to additional impedance due to the presence of CO-

CO2 in the fuel. Therefore, the lowest frequency peak (<1 Hz) could be attributed to CO 

conversion, by analogy to the analysis of the (dry-humid) case. This peak being at a lower 

frequency compared to the H2 conversion peak (2 Hz) is consistent with the fact that 

electrochemical conversion of CO on Ni-YSZ is known to be slower than that of H2 [25, 

26]. Furthermore, this low-frequency peak is negligible at 710°C and becomes significant 

only above 760°C, indicating that CO is only scarcely electrochemically converted at 

710°C. 

 The intermediate-frequency peaks are more puzzling. Being negative means that they 

correspond to an improvement compared to the humid H2 case. Furthermore, this 

comparative improvement increases with temperature. Intermediate-frequency 

impedances are often attributed to gas diffusion limited processes [24]. In our case, this is 

consistent with the fact that the position (frequency) of the peaks is almost not affected by 

temperature, meaning that the corresponding activation energy is low as for gas diffusion. 

Matsuzaki and co-workers have shown that, in H2/CO mixtures, the water-gas shift 

reaction plays an important role because it is much faster than the oxidation reactions [26]. 
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Therefore, the intermediate peaks could be related to the additional H2 production through 

the water-gas shift reaction. 

According to these considerations, CO would contribute directly to the electrochemical 

reaction but in a minor way and also indirectly through the water-gas shift reaction. These 

contributions are however negligible at low temperature, because of the low fuel utilization 

conditions reached in this study and the preferential oxidation of H2. These beneficial 

contributions become however significant at higher temperatures as the global polarization 

resistance is reduced, explaining the improved performance of syngas over the humid 

hydrogen. This however remains speculative and would require additional investigations. 

 

Comparison of performance with syngas and ethanol mixture 

Regarding the difference between steam/ethanol and syngas, the impedance spectra 

measured at 710°C show that the polarization resistance is larger for the internal reforming 

conditions (Figure 14). At 860°C (Figure 15), the total resistances for both fuels are similar 

although the polarization resistance remains larger for the steam/ethanol mixture. The 

latter is however compensated by a reduction of the ohmic resistance, which could 

originate from an improvement of the contact resistance due to carbon deposition, as 

suggested by references [11] and [4]. The formation of coke at higher temperatures is also 

suggested by the significant amount of ethene (7% of the dry gas composition) observed  

at 780°C in the catalytic  test (cf. Figure 3). Ethene is effectively known to form easily coke 

by decomposition. It is however difficult to know where this carbon deposition occurred. 

Unfortunately, no post-test examination could be done on the cell because it experienced 

a fuel shortage during steady-state polarization, which resulted in its failure. After 

disassembly of the set-up, the internal surface of the fuel inlet quartz cane was covered 

with coke, which shows that ethanol tends to form coke even at a steam to carbon molar 

ratio of 1.5 that is supposed to be safe from a thermodynamical point of view. Furthermore, 
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the gold mesh used for the anode current collection was completely swollen at the fuel 

inlet, indicating possible coke accumulation between the Ni-rich current collection layer 

and the mesh. Nevertheless, short-term steady-state polarization at 0.3 Acm-2 and 800°C 

during 20 hours showed no significant voltage degradation. All these observations seem to 

indicate that coke formation occurred in the Ni-rich anode contact layer but not on the 

anode active sites. In this case, there is nevertheless a risk of plugging on the long-term. 

The difference plot of the dReZ/dLnf functions calculated for syngas and ethanol is 

shown in Figure 16. Here again the trend is quite complex. At 710°C, a series of 3 peaks 

between 10 and 20’000 Hz  and a low-frequency peak around 0.1 Hz can be distinguished. 

At 760, 810°C, the picture is more confused and at 860°C, the peaks have almost 

vanished except the low-frequency peak. At 710°C, we can basically distinguish peaks 

around 100, 1’000 and 10’000 Hz. The 100 and 1’000 Hz peaks are reduced under 

polarization, whereas the 10 kHz peak is independent of the current bias. The catalytic 

ethanol steam reforming measurements performed separately on crushed Ni-YSZ anode 

support powder  have revealed the presence of more methane and ethene in the 

reformate gas (respectively 7-10% and 4-7% of the dry gas composition) than predicted by 

thermodynamic calculation, especially above 700°C (cf. Fig. 3 and 4). In their study of 

internal reforming of methane on Ni-YSZ anode, Bebelis and co-workers [27] observed at 

OCV a principal peak around 1kHz and a small peak around 0.1 Hz. They observed a 

reduction of the amplitude of the peaks with increasing temperature and bias, and a shift of 

the 1kHz peak towards higher frequencies with increasing polarization. These trends can 

also be observed for the 1kHz peak in Figure 16, particularly at 760 and 810°C. The peaks 

in Fig. 16 could therefore be attributed to the presence of methane and ethene in the 

internally reformed steam/ethanol mixture. 

A more refined analysis of the impedance spectra using equivalent circuits would be 

necessary to get a better understanding of the limiting mechanisms ruling internal ethanol 
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steam reforming on Ni-YSZ. However, the electrochemical performance of Ni-YSZ is 

strongly influenced by its catalytic properties: at low temperature, where ethanol is only 

partially reformed, the performance is poor, whereas above 800°C, where ethanol is 

catalytically almost fully reformed, the performance is improved by the direct and the 

indirect conversion of CO. The possible presence of methane and ethene increases the 

polarization losses and is accompanied by carbon deposition. 

 

Conclusions 

Internal ethanol steam reforming on a standard Ni-YSZ anode supported solid oxide fuel 

cell was investigated by comparing the electrochemical performance of the cell with 

different fuels: steam/ethanol, its corresponding reformate gas, humidified hydrogen and 

dry hydrogen. Electrochemical impedance spectroscopy was further used to get a better 

insight of the limiting mechanisms. 

It was shown that the electrochemical performance of standard Ni-YSZ anode for the 

internal steam reforming of ethanol is directly related to the catalytic conversion of ethanol, 

i.e. to the availability of H2. At 700°C, the latter is only 30% and therefore, the 

electrochemical performance is poor compared to that obtained with the reformate gas.  At 

780°C, it reaches 80% and the electrochemical performance is similar to that obtained with 

the reformate gas. 

Comparison between the performances obtained with humid H2 and reformate gas 

indicates that CO contributes to the electrochemical reaction on Ni-YSZ only above 760°C 

and mainly through the water-gas shift reaction, at least under low fuel utilization testing 

conditions. 

Carbon deposition above 760°C was suspected because of the sudden reduction of the 

cell’s contact resistance with steam/ethanol (3 to 1 molar) and attributed to the 

decomposition of ethene. 
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Additional polarization losses were observed with steam/ethanol feed and attributed to 

the presence of methane and ethene resulting from the internal steam reforming of ethanol 

on the anode material. Ni-YSZ seems to operate well under fully reformed ethanol and 

should therefore be coupled with a better reforming catalyst less sensitive to carbon 

deposition. 

The results presented in this study should be considered as preliminary: the impedance 

spectra obtained with the different fuels still have to be analyzed in more detail using 

equivalent circuits in order to elude the limiting mechanisms. This study on standard Ni-

YSZ will nevertheless be used as a benchmark for the characterization of improved anode 

materials. 
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Table 1: gas compositions (%) used for the characterization of the cell 

Gas mixture H2 H2O CO CO2 Ar 

Dry 56 - - - 44 

Humid 56 20 - - 24 

Syngas 56 20 18 6 - 

 

 

Table 2: Comparison between measured OCVs and calculated Nerst voltage for the humid 

gas mixture and etOH-steam mixture 

Humid etOH T / °C ± 5 

OCV / mV Nernst / mV OCV / mV Nernst / mV 

710 1007 1011 1003 1017 

760 989 998 1001 1002 

810 975 985 972 989 

860 963 971 968 975 
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Figure captions 

Figure 1: Schematic representation of the catalysis set-up 

Figure 2: a) Schematic representation of the cell assembly in the Probostat™. b) Picture 

(by courtesy of NorECs) 

Figure 3: Ethanol conversion and dry gas composition obtained from ethanol steam 

reforming on crushed Ni-YSZ anode support 

Figure 4: Thermodynamic dry gas composition for a steam:ethanol 3 to 1 molar ratio. 

Figure 5: I-V curves for different gas mixtures feed (cf. Table 1) at 710°C. 

Figure 6: I-V curves for different gas mixtures feed (cf. Table 1) at 760°C. 

Figure 7: I-V curves for different gas mixtures feed (cf. Table 1) at 810°C. 

Figure 8: I-V curves for different gas mixtures feed (cf. Table 1) at 860°C. 

Figure 9: Power densities measured at 0.7 V for different gas feeds (cf. Table 1) as a 

function of temperature. 

Figure 10: Difference between the dReZ/dLnf functions calculated for the dry and the 

humid gas mixtures (d-h) at various temperatures. 

Figure 11: Comparison of impedance spectra obtained for humid (h) gas mixture and 

syngas (s) (cf. Table 1) under various DC bias at 710°C. 

Figure 12: Comparison of impedance spectra obtained for humid (h) gas mixture and 

syngas (s) (cf. Table 1) under various DC bias at 860°C. 

Figure 13: Difference between the dReZ/dLnf functions calculated for the humid gas 

mixture and the syngas (h-s) at various temperatures. 

Figure 14: Comparison of impedance spectra obtained for humid syngas (s) and 

steam/ethanol (e) (cf. Table 1) under various DC bias at 710°C. 

Figure 15: Comparison of impedance spectra obtained for syngas (s) and steam/ethanol 

(e) (cf. Table 1) under various DC bias at 860°C. 
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Figure 16: Difference between the dReZ/dLnf functions calculated for the syngas and the 

steam/ethanol (s-e) at various temperatures. 
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Figure 15 

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.0

-0.1

-0.2

Im
Z 

/Ω
cm

2

ReZ /Ωcm2

 s409mAcm-2

 s246mAcm-2

 s88mAcm-2

 s5mAcm-2

 e495mAcm-2

 e279mAcm-2

 e132mAcm-2

 e6mAcm-2

860°C

 
 
 

Figure 16 

0.1 1 10 100 1000 10000
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.1 1 10 100 1000 10000
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.1 1 10 100 1000 10000
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.1 1 10 100 1000 10000
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Δd
R

eZ
/d

L
nf

Frequency /Hz

 265mAcm-2

 88mAcm-2

 OCV

710°C

Δd
R

eZ
/d

L
nf

Frequency /Hz

 442mAcm-2

 265mAcm-2

 88mAcm-2

 OCV

760°C

Δd
R

eZ
/d

L
nf

Frequency /Hz

 442mAcm-2

 265mAcm-2

 88mAcm-2

 OCV

810°C

Δd
R

eZ
/d

L
nf

Frequency /Hz

 442mAcm-2

 265mAcm-2

 88mAcm-2

 OCV

860°C

 
 

 25


