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Abstract

Sparse methods are widely used in image and
audio processing for denoising and classifica-
tion, but there have been few previous appli-
cations to neural signals for brain-computer
interfaces (BCIs). We used the dictionary-
learning algorithm K-SVD, coupled with Or-
thogonal Matching Pursuit, to learn dictio-
naries of spatial and temporal EEG primi-
tives. We applied these to P300 and ErrP
data to denoise the EEG and better estimate
the underlying P300 and ErrP signals. This
methodology improved single-trial classifica-
tion performance across 13 of 14 subjects, in-
dicating that some of the background noise
in EEG signals, presumably from neural or
muscular sources, is highly structured. Fur-
thermore, this structure can be captured via
dictionary learning and sparse coding algo-
rithms, and exploited to improve BCIs.

1. Introduction

Sparse methods, including unsupervised dictionary
learning algorithms and sparse coding algorithms,
have been widely used in audio and visual process-
ing for denoising and classification. Dictionary learn-
ing algorithms take in unlabeled visual data (pixel in-
tensity values) or audio data (spectrograms) and then
construct dictionaries of elements that commonly oc-
cur in this data. Sparse coding algorithms approxi-
mate points in the dataset as the linear combination
of a small number of dictionary elements. This non-
linear transformation creates a new representation of
the data, which may be more useful for denoising and

supervised machine learning applications than the raw
dataset. (Coates et al., 2010; Klein et al., 2003)

In this paper, we apply sparse methods to electroen-
cephalogram (EEG) signals for applications in non-
invasive Brain-Computer Interfaces (BCIs). Many
different EEG-based brain-computer interfaces BCIs
have recently been developed. In these, features are
extracted from EEG signals to restore communica-
tion to patients with locked-in syndrome or to aid pa-
tients with muscular deficiencies. EEG signals useful
for BCI applications can be split into two broad cat-
egories: event-related potentials (ERPs) and sponta-
neous rhythms. ERPs occur as a result of external
stimulation, and include the P300 response and Error
Potential (ErrP). Spontaneous rhythms, such as the
sensorimotor rhythm (SMR) can be modulated spon-
taneously by the subject, without any external stimuli
(Millán et al., 2010). For this study, we focus on the
P300 and ErrP signals.

The P300 signal occurs during oddball paradigm,
where subjects observe randomly occurring stimuli and
attend one of them. A positive deflection in central lo-
cations on the scalp EEG occurs approximately 300 ms
after the attended stimuli. This is termed the P300
and has been used to make BCI applications for com-
munication with severely paralyzed patients (Donchin
et al., 2000). The ErrP signal is observed when sub-
jects perceive erroneous actions, and is characterized
by activity in fronto-central areas approximately 200–
500 ms after the error is observed (Chavarriaga &
Millán, 2010). P300 BCIs discriminate between at-
tended and unattended stimuli, and BCIs using ErrPs
discriminate between correct and erroneous actions.

While sparse techniques have been applied to blind
source separation in EEG (Studer et al., 2006), these
have involved predefined dictionaries and have not
been geared towards BCI applications. Other ap-
proaches include using dynamic Bayesian networks to
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model the non-stationary temporal structure of EEG
SMRs (Song et al., 2009). In this study, we apply
sparse coding algorithms to learn dictionaries of spa-
tial and temporal EEG primitives across subjects in
an unsupervised manner. We then use these prim-
itives as models of background neural activity and
other sources of noise to denoise single-trial estimates
of P300 and ErrP signals.

2. Methodology

2.1. Experimental Protocol

For the P300 data, eight subjects were recorded with
the BCI2000 P300 Speller application. Each subject
was recorded for a training session and testing session,
with testing sessions 5–8 days after the training ses-
sions. The sessions consisted of 2–6 runs, where sub-
jects were given a word to spell. In each run, a 6-by-6
grid of alphanumeric characters was displayed on the
screen. At the beginning of each trial, the next letter
in the word was displayed on the top of the screen.
Subjects were instructed to count the number of times
this letter flashed. Then, rows and columns individu-
ally flashed at a rate of 4.5 Hz in pseudorandom order,
with each row and column going through 15 intensifica-
tions. EEG signals were recorded at a 250 Hz sampling
rate.

The ErrP experimental protocol and data described in
(Chavarriaga & Millán, 2010) was used for this study.
Six subjects were recorded on two different days us-
ing a Biosemi ActiveTwo system with a sampling rate
of 512 Hz. Subjects observed a green square (“cur-
sor”) on a horizontal line of 20 squares on a computer
screen. The target square was highlighted, and the
cursor moved towards the target with probability 0.8
and away from it with probability 0.2. Data from the
first recording day was used for training, and data from
the second was used for testing. The time between the
training and testing sessions ranged from 50–643 days.

2.2. EEG Preprocessing

All EEG signals were re-referenced with the common
average reference and band-pass filtered with a 0.5–
10 Hz 4th-order Butterworth filter. No trials were re-
moved from either experimental dataset.

2.3. Dictionary Learning

K-SVD was used to learn dictionaries of spatial and
temporal primitives across the P300 training data and
ErrP training data. K-SVD was investigated as a gen-

eralization of the N-Microstate algorithm1 (Pascual-
Marqui et al., 1995) that permits multiple simulta-
neous component activations. K-SVD alternates be-
tween a sparse coding stage and a codebook update
stage (Aharon et al., 2006). Orthogonal Matching Pur-
suit (OMP), which starts with an empty set of dictio-
nary atoms and then greedily adds atoms in order to
minimize reconstruction error, was used in the sparse
coding stage (Pati et al., 1993). K-SVD is parameter-
ized by the number of dictionary elements and OMP
is parameterized by the maximum number of atoms
used to reconstruct the signal. A dictionary of 100
primitives was learned for each feature set, with two
components simultaneously active.

2.4. Feature Extraction

Epochs in the P300 dataset were taken from 0–732 ms
post-stimulus and downsampled by a factor of three,
giving a 61 time-sample by 61 channel matrix per
epoch. Epochs in the ErrP dataset were taken from
0–750 ms post-stimulus and downsampled by a factor
of 6, giving a 64-by-64 matrix per epoch.

For each P300 subject, the grand average was com-
puted across the P300 epochs to estimate the underly-
ing neural signal. The same was done for the ErrP sub-
jects. This provided a set of spatial filters (rows of the
grand average matrices) and temporal filters (columns)
for feature extraction. Two types of features were cal-
culated in each domain: raw and denoised. To calcu-
late the raw spatial features, we took the dot products
between the signal at each time point in the individual
epochs and the corresponding time point in the grand
average. Raw temporal features were computed in a
corresponding manner.

To calculate the denoised features, we used the dictio-
naries of spatial or temporal elements as a model of
the noise in the EEG signal (which may be from back-
ground neural activity, muscular artifacts, or electrical
noise) and applied a modified version of OMP. Instead
of initializing OMP with an empty set, we added the
spatial or temporal component of the grand average
for the estimated feature to the corresponding dictio-
nary, and automatically included this component in
the sparse approximation. In this manner, we esti-
mated the current component of EEG activity that
could be due to an underlying P300 or ErrP, after “ex-
plaining away” a portion of the noise with the learned
dictionary. A maximum of five dictionary elements
were used in the sparse approximation of the signal.

1This algorithm was designed to segment EEG data into
topographic maps, with only one map active at any point
in time.
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Figure 1. Samples of spatial and temporal EEG primitives
learned from the P300 subjects’ training data

2.5. Classification

Fischer’s Linear Discriminant (FLD) was used to clas-
sify each of the feature sets. Area under the receiver-
operator characteristic (AUC) was used to evaluate the
performance of the different feature sets after classifi-
cation. For each subject and feature set, forty bagged
training and testing sets were constructed and evalu-
ated.

3. Results and Discussion

Figure 1 shows examples of spatial and temporal prim-
itives learned through K-SVD and OMP on the prepro-
cessed EEG data. The spatial primitive with a strong
frontal activation (top-middle) results from EEG arti-
fact contamination due to eye blinks, the one on the
bottom-right comes from noise and artifacts in a single
occipital electrode, and the rest likely have neural ori-
gins. Some of the temporal primitives show temporary
deflections in the EEG signal, whereas others show
sustained oscillatory behavior. While only a few ele-
ments of the spatial and temporal dictionaries learned
for the P300 training data are depicted, these are qual-
itatively similar to the remaining dictionary elements
and to the dictionaries learned for ErrP data.

Figure 2 shows the classification performance of dif-
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Figure 2. The classification performance of spatial and
temporal features on P300 test data. * designates denoised
features that show a significant difference in performance
from the corresponding raw features (p < 0.01).

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

A
U

C

ErrP Spatial

 

 

Raw

Denoised

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

Subject

A
U

C

ErrP Temporal

Figure 3. The classification performance on the ErrP data.

ferent features for the P300 dataset. For 7 out of
the 8 subjects, the denoised spatial features show a
significant improvement compared to the raw spatial
features (p < 0.01). These performance gains, how-
ever, do not hold with the temporal features. Only
one subject (the subject that showed a decrease in per-
formance with the spatial features) showed significant
performance improvements with the denoised tempo-
ral features, three saw no significant change, and four
saw a significant decrease.
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Figure 3 shows the classification performance of differ-
ent features for the ErrP dataset. Both the denoised
spatial features and denoised temporal features show
significant increases in performance relative to the raw
features on four of six subjects, and there was only one
subject that did not show a significant increase in per-
formance on at least one of the denoised features.

These results indicate that EEG signals have a sparse
spatial and temporal structure, and that this struc-
ture may be utilized to improve signal classification
for BCIs across multiple subjects and modalities. This
merits a more extensive investigation into sparse mod-
eling of the spatiotemporal structure of EEG and com-
parison with existing techniques, such as Indepen-
dent Component Analysis. This methodology could
also be coupled with inverse modeling techniques to
learn primitives directly attributable to specific neural
sources.

The dictionary-learning algorithm is computationally
intensive, but can be run offline and does not require
subject-specific training data. The modified version
of OMP used for denoising single trial EEG signals is
suitable for online applications.

The methods presented here depend on two underlying
assumptions. The first is that each of the P300 and
ErrP signals is the result of a corresponding constant
underlying neural mechanism. If the neural mecha-
nisms vary according to stimulus or another factor,
then using the grand average to approximate the neu-
ral response and then comparing single trials to this
grand average is a suboptimal learning mechanism.
The second is that the ERP is jitter-free. If there
is a substantial jitter (variation in the timing of the
ERP relative to the stimulus), then the grand average
will not represent the underlying neural signal in signal
trials. Jitter may be one cause of the relatively lower
performance of the denoised temporal P300 features.

4. Conclusions and Future Work

In this study, we have demonstrated that EEG has a
sparse spatial and temporal structure that can be used
to denoise the EEG signal. This increases the offline
single-trial classification performance of EEG signals
across two modalities, and we hypothesize that these
performance gains will hold in online BCI applications.

This preliminary investigation considered a single un-
supervised dictionary-learning algorithm and sparse
coding algorithm. In the future, we intend to explore
a larger variety of sparse techniques, along with deep
learning and Bayesian methods, for their applicability
to EEG signals. Also, we considered the spatial and

temporal structure independently. Future work will
consider joint spatiotemporal decompositions of EEG
signals. Additionally, we plan to investigate whether
the performance gains we found for two types of ERPs,
the P300 and ErrP, extend to other EEG signals, in-
cluding slow cortical potentials and SMRs.
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rre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper,
C., Müller, K.-R., and Mattia, D. Combining brain-
computer interfaces and assistive technologies: state-of-
the-art and challenges. Frontiers in Neuroscience, 4:
161–176, 2010.

Pascual-Marqui, R.D., Michel, C.M., and Lehmann,
D. Segmentation of brain electrical activity into mi-
crostates: model estimation and validation. IEEE Trans.
Biomed Eng., 42(7):658–65, 1995.

Pati, Y.C., Rezahfar, R., and Krishnaprasad, P. S. Or-
thogonal matching pursuit: Recursive function approx-
imation with applications to wavelet decomposition. In
Proc. of the 27th Annual Asimolar Conference on Sig-
nals Systems and Computers, 1993.

Song, L., Kolar, Mladen, and Xing, E. P. Time-varying
dynamic bayesian networks. In NIPS, 2009.

Studer, D., Hoffmann, U., and Koenig, T. From EEG de-
pendency multichannel matching pursuit to sparse to-
pographic EEG decomposition. J. Neuroscience Meth.,
153(2):261–75, 2006.


