
World-set Decompositions:

Expressiveness and Efficient Algorithms⋆

Lyublena Antova, Christoph Koch, and Dan Olteanu

Lehrstuhl für Informationssysteme
Universität des Saarlandes, Saarbrücken, Germany

{lublena, koch, olteanu}@infosys.uni-sb.de

Abstract. Uncertain information is commonplace in real-world data
management scenarios. The ability to represent large sets of possible
instances (worlds) while supporting efficient storage and processing is
an important challenge in this context. The recent formalism of world-
set decompositions (WSDs) provides a space-efficient representation for
uncertain data that also supports scalable processing. WSDs are com-
plete for finite world-sets in that they can represent any finite set of
possible worlds. For possibly infinite world-sets, we show that a natu-
ral generalization of WSDs precisely captures the expressive power of
c-tables. We then show that several important problems are efficiently
solvable on WSDs while they are NP-hard on c-tables. Finally, we give
a polynomial-time algorithm for factorizing WSDs, i.e. an efficient algo-
rithm for minimizing such representations.

1 Introduction

Recently there has been renewed interest in incomplete information databases.
This is due to the many important applications that systems for representing in-
complete information have, such as data cleaning, data integration, and scientific
databases.

Strong representation systems [19, 3, 18] are formalisms for representing sets
of possible worlds which are closed under query operations in a given query
language. While there have been numerous other approaches to dealing with in-
complete information, such as closing possible worlds semantics using certain an-
swers [1, 7, 12], constraint or database repair [13, 10, 9], and probabilistic ranked
retrieval [14, 4], strong representation systems form a compositional framework
that is minimally intrusive by not requiring to lose information, even about the
lack of information, present in an information system: Computing certain an-
swers, for example, entails a loss of possible but uncertain information. Strong
representation systems can be nicely combined with the other approaches. For
example, data transformation queries and data cleaning steps effected within a
strong representation systems framework can be followed by a query with ranked
retrieval or certain answers semantics, closing the possible worlds semantics.

The so-called c-tables [19, 16, 17] are the prototypical strong representation
system. However, c-tables are not well suited for representing large incomplete

⋆ This article is an extended version of the paper [6] that has appeared in the Pro-
ceedings of the International Conference on Database Theory (ICDT) 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

databases in practice. Two recent works presented strong, indeed complete, rep-
resentation systems for finite sets of possible worlds. The approach of the Trio
x-relations [8] relies on a form of intensional information (“lineage”) only in com-
bination with which the formalism is strong. In [5] large sets of possible worlds
are managed using world-set decompositions (WSDs). The approach is based
on relational product decomposition to permit space-efficient representation. [5]
describes a prototype implementation and shows the efficiency and scalability of
the formalism in terms of storage and query evaluation in a large census data

scenario with up to 2106

worlds, where each world stored is several GB in size.

Examples of world-set decompositions. As WSDs play a central role in
this work, we next exemplify them using two manually completed forms that
may originate from a census and which allow for more than one interpretation
(Figure 1). For simplicity we assume that social security numbers consist of only
three digits. For instance, Smith’s social security number can be read either as
“185” or as “785”. We can represent the available information using a relation
in which possible alternative values are represented in set notation (so-called
or-sets):

(TID) S N M
t1 { 185, 785 } Smith { 1, 2 }
t2 { 185, 186 } Brown { 1, 2, 3, 4 }

This or-set relation represents 2 · 2 · 2 · 4 = 32 possible worlds.

We now enforce the integrity constraint that all social security numbers be
unique. For our example database, this constraint excludes 8 of the 32 worlds,
namely those in which both tuples have the value 185 as social security number.
This constraint excludes the worlds in which both tuples have the value 185 as
social security number. It is impossible to represent the remaining 24 worlds
using or-set relations. What we could do is store each world explicitly using a
table called a world-set relation of a given set of worlds. Each tuple in this table
represents one world and is the concatenation of all tuples in that world (see
Figure 1).

A world-set decomposition is a decomposition of a world-set relation into
several relations such that their product (using the product operation of rela-
tional algebra) is again the world-set relation. The world-set represented by our
initial or-set relation can also be represented by the product

t1.S

185
785

×
t1.N

Smith
×

t1.M

1
2

×
t2.S

185
186

×
t2.N

Brown
×

t2.M

1
2
3
4

In the same way we can represent the result of data cleaning with the unique-
ness constraint for the social security numbers as the product

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

t1.S t1.N t1.M t2.S t2.N t2.M

185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1

...
785 Smith 2 186 Brown 4

Fig. 1. Two completed survey forms and a world-set relation representing the possible
worlds with unique social security numbers.

t1.S t2.S

185 186
785 185
785 186

×
t1.N

Smith
×

t1.M

1
2

×
t2.N

Brown
×

t2.M

1
2
3
4

One can observe that the result of this product is exactly the world-set rela-
tion in Figure 1. The decomposition is based on the independence between sets
of fields, subsequently called components . Only fields that depend on each other,
for example t1.S and t2.S, belong to the same component. Since {t1.S, t2.S} and
{t1.M} are independent, they are put into different components.

WSDs can be naturally viewed as c-tables whose formulas have been put into
a normal form represented by the component relations. The following c-table
with global condition Φ is equivalent to the WSD with our integrity constraint
enforced.

T S N M cond
Φ = ((x = 185 ∧ z = 186) ∨ (x = 785 ∧ z = 185)∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2)∧
(w = 1 ∨ w = 2 ∨ w = 3 ∨ w = 4)

x Smith y

z Brown w

Formal definitions of WSDs and c-tables will be given in the body of this
article.

Contributions. The main goal of this work is to develop expressive yet effi-
cient representation systems for infinite world-sets and to study the theoretical
properties (such as expressive power, complexity of query-processing, and mini-
mization) of these representation systems. Many of these results also apply to –
and are new for – the world-set decompositions of [5].

Input Representation system W, instance I = (RI), tuple t

Problems Tuple Possibility: ∃A ∈ rep(W) : t ∈ RA

Tuple Certainty: ∀A ∈ rep(W) : t ∈ RA

Instance Possibility: ∃A ∈ rep(W) : RI = RA

Instance Certainty: ∀A ∈ rep(W) : RI = RA

Tuple Q-Possibility (query Q fixed): ∃A ∈ rep(W) : t ∈ Q(A)
Tuple Q-Certainty (query Q fixed): ∀A ∈ rep(W) : t ∈ Q(A)
Instance Q-Possibility (query Q fixed): ∃A ∈ rep(W) : RI = Q(A)
Instance Q-Certainty (query Q fixed): ∀A ∈ rep(W) : RI = Q(A)

Table 1. Decision Problems for Representation Systems.

In [18], a strong argument is made supporting c-tables as a benchmark for the
expressiveness of representation systems; we concur. Concerning efficient process-
ing, we adopt v-tables as a lower bound regarding succinctness and complexity.
The main development of this article is a representation system that combines,
in a sense, the best of all worlds: (1) It is just as expressive as c-tables, (2) it is
exponentially more succinct than unions of v-tables, and (3) on most classical
decision problems, the complexity bounds are not worse than those for v-tables.

In more detail, the technical contributions of this article are as follows:

– We introduce gWSDs, an extension of the WSD model of [5] with variables
and possibly negated equality conditions.

– We show that gWSDs are expressively equivalent to c-tables and are there-
fore a strong representation system for full relational algebra.

– We study the complexity of the main data management problems [3, 19]
regarding WSDs and gWSDs, summarized in Table 1. Table 2 compares the
complexities of these problems in our context to those of existing strong
representation systems like the well-behaved ULDBs of Trio1 and c-tables.

– We present an efficient algorithm for optimizing gWSDs, i.e., for computing
an equivalent gWSD whose size is smaller than that of a given gWSD. In
the case of WSDs, this is a minimization algorithm that produces the unique
maximal decomposition of a given WSD.

One can argue that gWSDs are a practically more applicable representation
formalism than c-tables: While having the same expressive power, many impor-
tant problems are easier to solve. Indeed, as shown in Table 2, the complexity
results for gWSDs on many important decision problems are identical to those
for the much weaker v-tables. At the same time WSDs are still concise enough
to support the space-efficient representation of very large sets of possible worlds
(cf. the experimental evaluation on WSDs in [5]). Also, while gWSDs are strictly
stronger than Trio representations, the complexity characteristics are better.

The results on finding maximal product decompositions relate to earlier
work done by the database theory community on relational decomposition given

1 The complexity results for Trio are from [8] and were not verified by the authors.

v-tables [3] gWSD Trio [8] c-tables [17]

Tuple Possibility PTIME PTIME PTIME NP-compl.
Tuple Certainty PTIME PTIME PTIME coNP-compl.
Instance Possibility NP-compl. NP-compl. NP-hard NP-compl.
Instance Certainty PTIME PTIME NP-hard coNP-compl.
Tuple Q-Possibility NP-compl. NP-compl. ? NP-compl.

pos relational algebra PTIME PTIME ? NP-compl.
Tuple Q-Certainty coNP-compl. coNP-compl. ? coNP-compl.

pos relational algebra PTIME coNP-compl. ? coNP-compl.
Instance Q-Possibility NP-compl. NP-compl. NP-hard NP-compl.
Instance Q-Certainty coNP-compl. coNP-compl. NP-hard coNP-compl.

pos relational algebra PTIME coNP-compl. NP-hard coNP-compl.

Table 2. Comparison of data complexities for standard decision problems.

schema constraints (cf. e.g. [2]). Our algorithms do not assume such constraints
and only take a snapshot of a database at a particular point in time into consider-
ation. Consequently, updates may require to alter a decomposition. Nevertheless,
our results may be of interest independently from WSDs as for instance in cer-
tain scenarios with very dense relations, decompositions may be a practically
relevant technique for efficiently storing and querying large databases.

Note that we do not consider probabilistic approaches to representing uncer-
tain data (e.g. the recent work [14]) in this article. However, there is a natural and
straightforward probabilistic extension of WSDs which directly inherits many of
the properties studied in this article, see [5].

The structure of the article basically follows the list of contributions.

2 Preliminaries

We use the named perspective of the relational model and relational algebra
with the operations selection σ, projection π, product ×, union ∪, difference −,
and renaming δ.

A relation schema is a construct of the form R[U], where R is a relation
name and U is a nonempty set of attribute names.2 Let D be an infinite set of
atomic values, the domain. A relation over schema R[A1, . . . , Ak] is a finite set
of tuples (A1 : a1, . . . , Ak : ak) where a1, . . . , ak ∈ D. A relational schema is a
tuple Σ = (R1[U1], . . . , Rk[Uk]) of relation schemas. A relational structure (or
database) A over schema Σ is a tuple (RA

1 , . . . , RA
k), where each RA

i is a relation
over schema Ri[Ui]. When no confusion may occur, we will also use R rather
than RA to denote one particular relation over schema R[U]. For a relation R,
sch(R) denotes the set of its attributes, ar(R) its arity and |R| the number of
tuples in R.

A set of possible worlds (or world-set) over schema Σ is a set of databases
over schema Σ. Let W be a set of finite structures, and let rep be a function
that maps each W ∈ W to a world-set of the same schema. Then (W, rep) is

2 For technical reasons involving the WSDs presented later, we exclude nullary rela-
tions and will represent these (e.g., when obtained as results from a Boolean query)
using unary relations over a special constant “true”.

called a strong representation system for a query language if, for each query Q

of that language and each W ∈ W such that the schema of Q is consistent with
the schema of the worlds in rep(W), there is a structure W ′ ∈ W such that
rep(W ′) = {Q(A) | A ∈ rep(W)}.

2.1 Tables

We now review a number of representation systems for incomplete information
that are known from earlier work (cf. e.g. [17, 2]).

Let X be a set of variables. We call an equality of the form x = c or x = y,
where x and y are variables from X and c is from D an atomic condition, and
will define (general) conditions as Boolean combinations (using conjunction,
disjunction, and negation) of atomic conditions.

Definition 1 (c-table). A c-multitable [19, 17] over schema (R1[U1], . . . , Rk[Uk])
is a tuple

T = (RT
1 , . . . , RT

k , φT , λT)

where each RT
i is a set of ar(Ri)-tuples over D∪X, φT is a Boolean combination

over equalities on D ∪ X called the global condition, and function λT assigns
each tuple from one of the relations RT

1 , . . . , RT
k to a condition (called the local

condition of the tuple). A c-multitable with k = 1 is called a c-table.
The semantics of a c-multitable T , called its representation rep(T), is defined

via the notion of a valuation of the variables occurring in T (i.e., those in the
tuples as well as those in the conditions). Let ν : X → D be a valuation that
assigns each variable in T to a domain value. We overload ν in the natural way
to map tuples and conditions over D ∪ X to tuples and formulas over D.3 A
satisfaction of T is a valuation ν such that ν(φT) is true. A satisfaction ν takes

T to a relational structure ν(T) = (R
ν(T)
1 , . . . , R

ν(T)
k) where each relation R

ν(T)
i

is obtained as R
ν(T)
i := {ν(t) | t ∈ RT

i ∧ ν(λT (t)) is true}. The representation of
T is now given by its satisfactions, rep(T) := {ν(T) | ν is a satisfaction of T }.

�

Proposition 1 ([19]). The c-multitables are a strong representation system for
relational algebra.

We consider two important restrictions of c-multitables.

1. By a g-multitable [3], we refer to a c-multitable in which the global condition
φT is a conjunction of possibly negated equalities and λT maps each tuple to
“true”.

2. A v-multitable is a g-multitable in which the global condition φT is a con-
junction of equalities.

3 Done by extending ν to be the identity on domain values and to commute with the
tuple constructor, the Boolean operations, and equality.

Without loss of generality, we may assume that the global condition of a
g-multitable is a conjunction of negated qualities and the global condition of a
v-multitable is simply “true”.4 Subsequently, we will always assume these two
normal forms and omit local conditions from g-multitables and both global and
local conditions from v-multitables.

φT = (x 6= y)

RT A B

x 1
2 x

ST C

y

3

R A B

1 1
2 1

S C

2
3

ν :

x 7→ 1
y 7→ 2

(a) (b) (c)

Fig. 2. A g-multitable T (a), possible world A (b), and a valuation s.t. ν(T) = A (c).

Example 1. Consider the g-multitable T = (RT , ST , φT) of Figure 2 (a). Then
the valuation of Figure 2 (c) satisfies the global condition of T , as ν(x) 6= ν(y).
Thus A ∈ rep(T), where A is the structure from Figure 2 (b). �

Remark 1. It is known from [19] that v-tables are not a strong representation
system for relational selection, but for the fragment of relational algebra built
from projection, product, and union.

The definition of c-multitables used here is from [17]. The original definition
from [19] has been more restrictive in requiring the global condition to be “true”.
While c-tables without a global condition are strictly weaker (they cannot repre-
sent the empty world-set), they nevertheless form a strong representation system
for relational algebra.

In [2], the global conditions of c-multitables are required to be conjunctions
of possibly negated equalities. It will be a corollary of a result of this paper
(Theorem 2) that this definition is equivalent to c-multitables with arbitrary
global conditions. �

We next define a restricted form of c-tables, called mutex-tables, or x-tables
for short. This formalism is of particular importance in this paper as it is closely
related to gWSDs, our main representation formalism. An x-table is a c-table
where the global condition is a conjunction of negated equalities and the local
conditions are conjunctions of equalities and a special form of negated equalities.
We make this more precise next.

Consider a set of variables Y and a function µ : Y 7→ N
+ mapping variables

to positive numbers. The mutex set M(Y, µ) for Y and µ is defined by

{true} ∪ {(x = i) | x ∈ Y, 1 ≤ i ≤ µ(x)} ∪ {(x 6= 1 ∧ . . . ∧ x 6= µ(x)) | x ∈ Y}.

4 Each g-multitable resp. v-multitable can be reduced to one in this normal form by
variable replacement and the removal of tautologies such as x = x or 1 = 1 from the
global condition.

Intuitively, M defines for each variable of Y possibly negated equalities such that
a variable valuation satisfies precisely one of these conditions.

Definition 2 (mutex-table). A (mute)x-multitable is a c-multitable

T = (RT
1 , . . . , RT

k , φT , λT),

where (1) the global condition φT is a conjunction of negated equalities, (2) all
local conditions defined by λT are conjunctions over formulas from a mutex set
M(Y, µ) and equalities over X ∪ D, and (3) the variables Y do not occur in
RT

1 , . . . , RT
k , φT . An x-multitable with k = 1 is called an x-table. �

It will be a corollary of joint results of this paper (Lemma 1 and Theorem 2)
that x-multitables are as expressive as c-multitables.

Proposition 2. The x-multitables capture the c-multitables.

This result implies that x-tables are a strong representation system for rela-
tional algebra. In this paper, however, we will make particular use of a weaker
form of strongness, namely for positive relational algebra, in conjunction with
efficient query evaluation.

Proposition 3. The x-multitables are a strong representation system for pos-
itive relational algebra. The evaluation of positive relational algebra queries on
x-multitables is in PTIME.

Proof. We use the algorithm of [19, 17] for the evaluation of relational algebra
queries on c-multitables and obtain an answer c-multitable of polynomial size.
Consider a positive relational algebra query Q and c-multitables T and T ′, where
T ′ represents the answer to Q on T . We compute T ′ by recursively applying each
operator in Q. The evaluation follows the relational case except for the compu-
tation of global and local conditions (which do not exist in the relational case).
The global condition of T becomes the global condition of T ′. For projection and
union, tuples preserve their local conditions from the input. In case of selection,
the local condition of a result tuple is the conjunction of the local condition
of the input tuple and, if required by the selection condition, of new equalities
involving variables in the tuple and constants from the positive selections of Q.
In case of product, the local condition of a result tuple is the conjunction of the
local conditions of the constituent input tuples.

The local conditions in T ′ are thus conjunctions of local conditions of T and
possibly additional equalities. In case T is an x-table, then its local conditions
are conjunctions over formulas from a mutex set M and further equalities. Thus
the local conditions of T ′ are also conjunctions over formulas from M and further
equalities. T ′ is then an x-table. �

3 Representation Systems

This section develops the notion of world-set decompositions from tables and
studies some of their basic properties.

3.1 Tabsets and Tabset Tables

We consider finite sets of multitables as representation systems, and will refer
to such constructs as tabsets (rather than as multitable-sets , to be short).

A c-(resp., g-, v-)tabset T = {T1, . . . , Tn} is a finite set of c-(g-, v-)multitables.
The representation of a tabset is the union of the representations of the con-
stituent multitables,

rep(T) := rep(T1) ∪ · · · ∪ rep(Tn).

We next construct an inlined representation of a tabset as a single table by
turning each multitable into a single tuple.

Let A be a g-tabset over schema Σ. For each R[U] in Σ, let |R|max =
max{|RA| : A ∈ A} denote the maximum cardinality of R in any multitable
of A. Given a g-multitable A ∈ A with RA = {t1, . . . , t|RA|}, let inline(RA) be

the tuple obtained as the concatenation (denoted ◦) of the tuples of RA padded
with a special symbol ⊥ up to arity |R|max · ar(R),

inline(RA) := t1 ◦ · · · ◦ t|RA| ◦ (⊥, ,⊥
︸ ︷︷ ︸

(|R|max−|RA|)·ar(R)

).

Then tuple
inline(A) := inline(RA

1) ◦ · · · ◦ inline(RA
|Σ|)

encodes all the information in A.

Definition 3 (gTST). The g-tabset table (gTST) of a g-tabset A is the pair
(W, λ) consisting of the table5 W = {inline(A) | A ∈ A} and the function λ

which maps each tuple inline(A) of W to the global condition of A. �

A vTST (TST) is obtained in strict analogy, omitting λ (λ and variables).
To compute inline(RA), we have fixed an arbitrary order of the tuples in RA.

We represent this order by using indices di to denote the i-th tuple in RA for
each g-multitable A, if that tuple exists. Then the TST has schema

{R.di.Aj | R[U] in Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}.

Example 2. An example translation from a tabset to a TST is given in Figure 3.

The semantics of a gTST (W, λ) as a representation system is given in strict
analogy with tabsets,

rep(W, λ) :=
⋃

{rep(inline−1(t), λ(t)) | t ∈ W}.

Remark 2. Computing the inverse of “inline” is an easy exercise. In particular,
we map inline(RA) to RA as

(a1, . . . , aar(R)·|R|max
) 7→ {(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max,

aar(R)·k+1 6= ⊥, . . . , aar(R)·(k+1) 6= ⊥}.

5 Note that this table may contain variables and occurrences of the ⊥ symbol.

φA φB φC

RA A B

a1 a2

a3 a4

SA C

a5

a6

RB A B

b1 b2

b3 b4

b5 b6

SB C RC A B

c1 c2

SC C

c3

c4

c5

(a) Three (R[A,B], S[C])-multitables A, B, and C.

R.d1.A R.d1.B R.d2.A R.d2.B R.d3.A R.d3.B S.d1.C S.d2.C S.d3.C λ

a1 a2 a3 a4 ⊥ ⊥ a5 a6 ⊥ φA

b1 b2 b3 b4 b5 b6 ⊥ ⊥ ⊥ φB

c1 c2 ⊥ ⊥ ⊥ ⊥ c3 c4 c5 φC

(b): TST of tabset {A,B, C}.

Fig. 3. Translation from a tabset (a) to a TST (b).

By construction, the gTST capture the g-tabsets.

Proposition 4. The g-(resp., v-)TST capture the g-(v-)tabsets.

Finally, there is an noteworthy normal form for gTSTs.

Proposition 5. The gTST in which λ maps each tuple to a common global
condition φ unique across the gTST, that is, λ : · 7→ φ, capture the gTST.

Proof. Given a g-tabset A, we may assume without loss of generality that no
two g-multitables from A share a common variable, either in the tables or the
conditions, and that all global conditions in A are satisfiable. (Otherwise we
could safely remove some of the g-multitables in A.) But, then, φ is simply the
conjunction of the global conditions in A. For any tuple t of the gTST of A, the
g-multitable (inline−1(t), φ) is equivalent to (inline−1(t), λ(t)). �

Proviso. We will in the following write gTSTs as pairs (W, φ), where W is the
table and φ is a single global condition shared by the tuples of W .

3.2 World-set Decompositions

We are now ready to define world-set decompositions, our main vehicle for effi-
cient yet expressive representation systems.

A product m-decomposition of a relation R is a set of non-nullary relations
{C1, . . . , Cm} such that C1 × · · · ×Cm = R. The relations C1, . . . , Cm are called
components. A product m-decomposition of R is maximal(ly decomposed) if there
is no product n-decomposition of R with n > m.

Definition 4 (attribute-level gWSD). Let (W, φ) be a gTST. Then an attri-
bute-level world-set m-decomposition (m-gWSD) of (W, φ) is a pair of a product
m-decomposition of W together with the global condition φ. �

R A B

d1 1 2
d2 5 6

R A B

d1 1 2
R A B

d1 3 4
d2 5 6

R A B

d1 3 4
C1 R.d1.A R.d1.B

1 2
3 4

×
C2 R.d2.A R.d2.B

5 6
⊥ ⊥

Fig. 4. Four worlds and a corresponding 2-WSD.

We also consider two important simplifications of (attribute-level) gWSDs,
those without global condition (called vWSDs), and vWSDs without variables
(called WSDs). An example of a WSD is shown in Figure 4.

The semantics of a gWSD is given by its exact correspondence with a gTST,

rep ({C1, . . . , Cm}, φ)
︸ ︷︷ ︸

gWSD

:= rep (C1 × · · · × Cm, φ)
︸ ︷︷ ︸

gTST

.

To decompose W , we treat its variables and the ⊥-value as constants. Clearly,
A and any gWSD of A represent the same set of possible worlds.

It immediately follows from the definition of WSDs that

Proposition 6. Any finite set of possible worlds can be represented as a 1-WSD.

Corollary 1. WSDs are a strong representation system for any relational query
language.

The lack of power to express negated equalities, despite the ability to express
disjunction, keeps vWSDs (and thus equally v-tabsets) from being strong.

Proposition 7. vWSDs are a strong representation system for projection, prod-
uct and union but do not form a strong representation system for selection or
difference.

Proof. We show that v-tabsets are a strong representation system for projection,
product and union but not for selection. From the equivalence of v-tabsets and
vWSDs the property also holds for vWSDs.

Let T = {T1, . . . , Tn} be a v-tabset of multitables over schema (R1, . . . , Rm).
The results of the operations projection πU (R), product R1 × R2 and union
R1 ∪ R2 on T , respectively, are then defined as

– πU (R)(T) = {R′ | Ti ∈ T , R′ = πU (RTi)}
– (R1 ∪ R2)(T) = {R′ | Ti ∈ T , R′ = RTi

1 ∪ RTi

2 }

– (R1 × R2)(T) = {R′ | Ti ∈ T , R′ = RTi

1 × RTi

2 }

To show that v-tabsets do not support selection, let T be a v-tabset consisting
of a single v-table R:

R A B

d1 x 2
d2 1 x

Consider the selection query q1 := σA=1(R) which we evaluate on T . The
resulting world-set consists of the world {〈A : 1, B : 2〉, 〈A : 1, B : 1〉} for the case
that the value of x is 1 and the worlds {〈A : 1, B : c〉}, where the c are constant
different from 1 for the cases where x takes values c other than 1. That is, in
the worlds where x 6= 1, q1 returns only the second tuple of R. Let us call this
result world-set W .

We prove by contradiction that there is no v-tabset representing precisely
the world-set W . Since W is an infinite set of worlds and a v-tabset consists of
only finitely many v-tables, there must be at least one v-table T that represents
infinitely many worlds of the form {〈A : 1, B : c〉 | c ∈ D} and rep(T) ⊆ W . Since
all tuples in a world of W have 1 as a value for A, all tuples in T must have
it too, otherwise T will represent worlds that are not in W . Also, to represent
infinitely many worlds, T must contain at least one variable. Assume first T has
a single tuple. Then it must be of the form 〈A : 1, B : x〉, where x is a variable.
But then T represents the world 〈A : 1, B : 1〉, which is not in W .

Then T must have at least two tuples and each tuple is of the form 〈A : 1, B : x〉,
where x is a variable or a constant. Let 〈A : 1, B : x〉 and 〈A : 1, B : y〉 be two
tuples of T with x and y in D ∪ X.

If at least one of x and y is a variable, for example x, then the worlds where
x = 3 are not contained in W .

If both x and y are constants, then we either have x = y = c and c 6= 1 (to
represent the world with one tuple from W), or x = 2 and x = 1 (to represent
the world with two tuples from W). In both cases, for T to represent infinitely
many worlds from W , there must be a tuple 〈1, z〉 in T where z is a variable.
However, the worlds where z = 4 are not in W . Contradiction.

Let now R′ := R\S be the result of the difference operation applied on the
v-multitable (R, S), where R is the v-table from the previous example:

R A B

d1 x 2
d2 1 x

S A B

d3 1 1

The resulting world-set W consists of worlds with different number of tuples
for R′ depending on the value of x. In the worlds where x = 1 R′ contains the tu-
ple 〈A : 1, B : 2〉, and in the worlds where x 6= 1 R′ is {〈A : c, B : 2〉, 〈A : 1, B : c〉}
with c a constant different from 1. Using similar arguments as in the selection
case we show that there is no single v-table T that represents infinitely many
worlds of the form {〈A : c, B : 2〉, 〈A : 1, B : c〉 | c ∈ D} and rep(T) ⊆ W . �

Remark 3. Note that verifying nondeterministically that a structure A is a pos-
sible world of gWSD ({C1, . . . , Cm}, φ) is easy: all we need is choose one tuple
from each of the component tables C1, . . . , Cm, concatenate them into a tuple t,
and check whether a valuation exists that satisfies φ and takes inline−1(t) to A.

Already the vWSDs are exponentially more succinct than the v-tabsets. As
is easy to verify,

Proposition 8. Any v-tabset representation of the WSD

C1 R.d1.A

a1

b1

· · ·
Cn R.dn.A

an

bn

where the ai, bi are distinct domain values takes space exponential in n.

This greater succinctness is obtained at a price:

Theorem 1. Given an attribute-level (g)WSD W, checking whether the empty
world is in rep(W) is NP-complete.

Proof. To prove this, we show that the problem is in NP for attribute-level
gWSDs and NP-hard for attribute-level WSDs.

Let W = ({C1, . . . , Cn}, φ) be a gWSD. The problem is in NP since we
can nondeterministically check whether there is a choice of component tuples
t1 ∈ C1, . . . , tn ∈ Cn such that t1 ◦ · · · ◦ tn represents the empty world.

The proof of NP-hardness is by reduction from Exact Cover by 3-Sets (X3C)
[15]. Given a finite set X of size |X | = 3q and a set C of three-element subsets
of X .

Construction. We construct an attribute-level WSD {C1, . . . , Cq} as fol-
lows. Let Ci be a table of schema Ci[t1.Ai, . . . , t|X|.Ai] with tuples (t1.Ai :
a1, . . . , t|X|.Ai : a|X|) for each S ∈ C such that aj = ⊥ if j ∈ S and aj = 1
otherwise.

Correctness. This is straightforward to show, but note that each tuple of a
component relation contains exactly three ⊥ symbols. The WSD represents a set
of worlds in which each one contains, naively, up to 3 ·q tuples. The composition
of q component tuples w1 ∈ C1, . . . , wq ∈ Cq can only represent the empty world
if the ⊥ symbols in w1, . . . , wq do not overlap. This guarantees that w1 ◦ · · · ◦wq

represents the empty set only if the sets from C corresponding to w1, . . . , wq

form an exact cover of X .
It follows that the problem of deciding whether the q-ary tuple (1, . . . , 1) or

whether the world containing just that tuple is uncertain is NP-complete. �

Note that this NP-hardness is a direct consequence of the succinctness in-
crease in gWSDs as compared to gTSTs. On gTSTs, checking for the empty
world is a trivial operation.

Example 3. We give an example of the previous reduction from X3C to test-
ing whether the empty world is in the representation of a WSD. Let X =
{1, 2, 3, 4, 5, 6, 7, 8, 9} and let C = {{1, 5, 9}, {2, 5, 8}, {3, 4, 6}, {2, 7, 8}, {1, 6, 9}}.
Then the WSD {C1, C2, C3} with each Ci the table

Ci d1.Ai d2.Ai d3.Ai d4.Ai d5.Ai d6.Ai d7.Ai d8.Ai d9.Ai

⊥ 1 1 1 ⊥ 1 1 1 ⊥
1 ⊥ 1 1 ⊥ 1 1 ⊥ 1
1 1 ⊥ ⊥ 1 ⊥ 1 1 1
1 ⊥ 1 1 1 1 ⊥ ⊥ 1
⊥ 1 1 1 1 ⊥ 1 1 ⊥

for 1 ≤ i ≤ 3 represents the empty world. Therefore, the first, third and fourth
sets in C are an exact cover of X . �

Corollary 2. Tuple certainty is coNP-hard for attribute-level WSDs.

This problem remains in coNP even for general gWSDs. Nevertheless, since
computing certain answers is a central task related to incomplete information,
we will consider also the following restriction of gWSDs. As we will see, this
alternative definition yields a representation system in which the tuple and in-
stance certainty problems are in polynomial time while the formalism is still
exponentially more succinct than gTSTs.

Definition 5 (gWSD). An attribute-level gWSD is called a tuple-level gWSD
if for any two attributes Ai, Aj from the schema of relation R, and any tuple
id d, the attributes R.d.Ai, R.d.Aj of the component tables are in the same
component schema. �

In other words, in tuple-level gWSDs, values for one and the same tuple
cannot be split across several components – that is, here the decomposition is
less fine-grained than in attribute-level gWSDs. In the remainder of this article,
we will exclusively study tuple-level (g-, resp. v-)WSDs, and will refer to them as
just simply (g-, v-)WSDs. Obviously, tuple-level (g)WSDs are just as expressive
as attribute-level (g)WSDs, since they all are just decompositions of 1-(g)WSDs.

However, tuple-level (g)WSDs are less succinct than attribute-level (g)WSDs.
For example, any tuple-level WSD equivalent to the attribute-level WSD

C1 R.d.A1

a1

b1

· · ·
Cn R.d.An

an

bn

must be exponentially larger. Note that the WSDs of Proposition 8 are tuple-
level.

4 Main Expressiveness Result

In this section we study the expressive power of gWSDs. We show that gWSDs
and c-multitables are equivalent in expressive power, that is, for each gWSD
one can find an equivalent c-multitable that represents the same set of possible
worlds and vice versa. Thus, gWSDs form a strong representation system for
relational algebra.

Theorem 2. The gWSDs capture the c-multitables.

Corollary 3. gWSDs are a strong representation system for relational algebra.

Corollary 4. The g-tabsets capture the c-tabsets.

That is, disjunction on the level of entire tables plus conjunctions of negated
equalities as global conditions, as present in g-tables, are enough to capture the
full expressive power of c-tables. In particular, we are able to eliminate all local
conditions.

We prove Theorem 2 by providing a translation of gWSDs into x-multitables,
a syntactically restricted form of c-multitables, and a translation of c-multitables
into gWSDs.

Lemma 1. gWSDs can be translated in linear time into equivalent x-multitables.

Proof. Let W = ({C1, . . . , Cm}, φ) be a (tuple-level) m-gWSD over relational
schema (R1[U1], . . . , Rk[Uk]).

Construction. In case a component Cj is empty, then W represents the
empty world-set. Then W is equivalent to any x-(multi)table with an unsatisfi-
able global condition, i.e., x 6= x.

We consider next the case when all components Cj are non-empty, i.e., nj > 0
for all 1 ≤ j ≤ m. Let Cj = {w1, . . . , wnj

}. We define a translation f from W to

an equivalent c-multitable T = (RT
1 , . . . , RT

k , φT , λT) in the following way.

1. The global condition φ of W becomes the global condition φT of the x-
multitable T .

2. For each relation schema R[U] we create a table RT with the same schema.
3. We translate each component Cj = {w1, . . . , wnj

} of W in the following way.
Let wi ∈ C. Let d be a tuple identifier for a relation R defined in Cj and t

be the tuple for d in wi. If t is not a ⊥-tuple, then we add the tuple t with
local condition λT (t) to RT , where RT is the corresponding table from the
c-multitable. The local condition λT (t) is defined as

λT (t) =

true nj = 1

(xj = i) 1 ≤ i < nj

(xj 6= 1 ∧ . . . ∧ xj 6= nj − 1) 1 < i = nj .

Here xj is a new variable for the component Cj not occurring in W , which
encodes to which row of component Cj a tuple belongs to.

Correctness. Let A be the g-tabset over relational schema (R1[U1], . . . , Rk[Uk])
encoded by W . We denote our translation by f . We next prove that the trans-
lation is correct, that is,

rep (W) = rep (f(W))

Let T = f(W) = (RT
1 , . . . , RT

k , φT , λT) be the resulting x-multitable with
global condition φT and a mapping λT from the tuples to their local conditions.
We show that

A ∈ rep (W) ⇔ A ∈ rep(T)

The case when W has empty components follows immediately from the definition
of gWSDs and unsatisfiable x-tables. We consider next the case of non-empty
components.

Let T be a set of tuple identifiers for a table R. We denote by θA the partial
injective function from tuple identifiers to tuples in A. For each g-multitable
A ∈ A and tuple identifier d ∈ T , if defined, θA(d) is a tuple of the schema of
R, possibly with variables.

Let x1, . . . , xm be the variables for components C1, . . . , Cm, respectively, that
were created by the translation f .

1) Let A ∈ rep(W). Then there exists a valuation ν consistent with φ and
tuples wij

∈ Cj , such that A = ν(inline−1(wi)), where wi = wi1 × . . . × wim
.

Let ν′ be the valuation ν extended with the mappings xj 7→ ij . Let A′ =
ν′(T).

Let d be a tuple identifier for a relation schema R[U] and let RT be the image

of R under f . If t = θinline−1
(wi)(d) is defined, then ν(t) ∈ RA. But then f(t) is

defined and let the tuple t′ with local condition λT (t′) be the image of t under
f . From the construction of ν′ we have ν′(t′) = ν(t) and ν′(λT (t′)) = true.

But then ν′(t′) ∈ Rν′(T) and hence ν(t) ∈ Rν′(T). If for a tuple t′ ∈ RT we have

ν′(t′) ∈ Rν′(T), then for the prototype t of t′ we have ν(t) = ν′(t′) and ν(t) ∈ RA

and hence ν′(t′) ∈ RA. It follows A = A′.
2) Let now A ∈ rep(T). Then there exists a valuation ν consistent with φT

such that A = ν(T) and if t is a tuple in a table RT with local condition λT (t)

ν(t) ∈ Rν(T) iff ν(λT (t)) = true

For 1 ≤ j ≤ m if variable xj exists, let ij := ν(xj). Let wij
be the tuple

wij
∈ Cj if 1 ≤ ij ≤ nj , otherwise let wij

= wnj
. If xj does not exist, then by

our construction component Cj contained a single tuple and let wij
:= w1 be

that tuple. Let w = wi1 × . . .×wim
. Let A′ = ν(w). For a tuple t ∈ RT we have

ν(t) ∈ Rν(T) iff ν(λT (t)) = true. If ν(t) ∈ Rν(T), let t′ be the prototype of t in

w. By construction we have ν(t) = ν(t′) and ν(t) ∈ RA′

. By analogy, if for a

tuple identifier d the image t = θinline−1
(w)(d) is defined, then ν(t) ∈ RA′

. But
then for the image t′ = f(t) we have ν(λT (t′)) = true and ν(t′) ∈ Rν(T). Hence
A = A′. �

Example 4. Consider the 1-gWSD ({C1}, φ) given in Figure 5(a). The first tuple
of C1 encodes a g-table R with a single tuple (with identifier d1), and the second
tuple of C1 encodes two v-tuples with identifiers d1 and d2. The encoding of C1

as an x-table T with global condition φT is given in Figure 5(b). �

C1 R.d1.A R.d1.B R.d2.A R.d2.B

x y ⊥ ⊥
1 z z 3

φ = (x 6= 1) ∧ (x 6= y) ∧ (z 6= 2)
(a) 1-gWSD

T A B cond

φT = (x 6= 1) ∧ (x 6= y) ∧ (z 6= 2)
x y (x1 = 1)
1 z (x1 6= 1)
z 3 (x1 6= 1)

(b) x-table equivalent to the 1-gWSD (a)

Fig. 5. Translating gWSDs into x-multitables.

For the other, somewhat more involved direction,

Lemma 2. Any c-multitable can be represented by an equivalent gWSD.

Proof. For simplicity we show the construction for c-tables but it can be straight-
forwardly generalized for c-multitables. Let T = (T T , φT , λT) be a c-table with
global condition φT and a mapping λT from the tuples to their local condi-
tions. Without loss of generality we assume that all variables in the c-table are
different.

T T A1 . . . Ak cond

φT

d1 x1,1 . . . x1,k λT
1

...
...

...
...

dn xn,1 . . . xn,k λT
n

Let XT and DT be the set of all variables and the set of all constants appearing
in the c-table, respectively.

Construction. We define a corresponding 1-gWSD ({C}, φ′) with gTST C

of schema
C(d1.A1, . . . , d1.Ak, . . . , dn.A1, . . . , dn.Ak)

as follows. We consider comparisons of the form τ = τ ′ and τ 6= τ ′ where
τ, τ ′ ∈ XT ∪ DT are variables or constants from the c-table. We compute a set
of consistent Θ =

∧
{τ θτ,τ ′ τ ′ | τ, τ ′ ∈ XT ∪ DT } where θτ,τ ′ ∈ {=, 6=} for all τ ,

τ ′ and Θ � φT . Note that the equalities in Θ define an equivalence relation on
XT ∪DT . In particular, we take into account that c = c′ is consistent iff c and c′

are the same constant. We denote by [xi,j]= the equivalence class of a variable
xi,j with respect to the equalities given by Θ and by h([xi,j]=) the representative
element of that equivalent class (e.g. the first element with respect to any fixed
order of the elements in the class).

We have tuple 〈s1,1, . . . , s1,k, . . . , sn,1, . . . , sn,k〉 ∈ C if and only if for some
consistent Θ

si,j =

⊥ . . . Θ 2 λT
i

c . . . c ∈ DT , Θ � λT
i , Θ � (xi,j = c)

h([xi,j]=) . . . Θ � λT
i , ∀c ∈ DT Θ � (xi,j 6= c)

To construct the global condition for the gWSD, we create a conjunction over
the negated equalities appearing in the Θ-s from the previous step.

Let T = (T T , φT , λT) be a c-table with global condition φT and a mapping
λT from the tuples to their local conditions and let the 1-gWSD ({C}, φ′) be
the result of translating the given c-table.

Correctness. We next show that:

A ∈ rep(T T , φT , λT) ⇔ A ∈ rep({C}, φ′)

(1) Given any world A ∈ rep(T T , φT , λT). Then there exist an injective
function f mapping each tuple of A to a distinct tuple of the c-table, and a
consistent Θ such that

(a) Θ � φT ,
(b) for all tuples ti of the c-table not in the image of f , Θ 2 λT

i ,
(c) for all tuples ti = f(t′) of the c-table for some tuple t′ of A, Θ � λT

i and
xi,j = sj, and

(d) for all τ, τ ′ ∈ (XT ∪ DT), either τ = τ ′ or τ 6= τ ′.

But then, it is immediate that by our construction there is a tuple w =
〈s1,1, . . . , s1,k, . . . , sn,1, . . . , sn,k〉 ∈ C such that si,j = ci,j iff there is a t′ in A
with f(t′) = ti and sj = ci,j , and si,· = ⊥ iff there is no t′ in A with f(t′) = t′i.
Thus A ∈ rep(w) and therefore A ∈ rep({C}, φ′).

(2) Given any world A ∈ rep({C}, φ′). Then there is a tuple

w = 〈s1,1, . . . , s1,k, . . . , sn,1, . . . , sn,k〉 ∈ C

that represents A with an associated Θ.
Let Θ′ be the consistent conjunction that extends Θ by the equalities xi,j =

ai,j given by A and defines an equivalence relation on XT ∪ DT ∪ |A|. Since
tuple w of C represents A, for all si,j = xi,j , (Θ ∧ φT) 2 xi,j 6= ai,j . Thus such
a consistent Θ′ exists.

It follows that Θ′
� φT and that Θ′

� λT
i if and only if Θ � λT

i . But then
A ∈ rep(T, φT , λT). �

Example 5. Consider the c-table T with global condition φ of Figure 6(a). The
equivalent gWSD ({C}, φ′) is given in Figure 6(b). �

T A B cond

φ = (x 6= 1) ∧ (x = z)
d1 x 1 (x 6= 2)
d2 z y (y 6= 2)

(a) c-table T with global condition φ

C R.d1.A R.d1.B R.d2.A R.d2.B

⊥ ⊥ ⊥ ⊥
⊥ ⊥ 2 y

x 1 ⊥ ⊥
x 1 x y

φ′ = (x 6= 1) ∧ (x 6= 2) ∧ (y 6= 2)

(b) Equivalent 1-gWSD ({C}, φ′)
for the c-table of Figure 6(a).

Fig. 6. Translating c-tables into gWSDs.

As a corollary of Lemma 1, it follows that x-multitables, a syntactically
restricted form of c-multitables, are at least as expressive as gWSDs. However,
by Lemma 2, gWSDs are at least as expressive as c-multitables. This implies
that

Corollary 5. The x-multitables capture gWSDs and thus c-multitables.

In the next section we will use the linear-time translation of gWSDs into x-
multitables to characterize the data complexity of the tuple q-possibility problem
for gWSDs and positive relational algebra.

C1 R.d1.A R.d2.A S.d1.B

2 y z

⊥ 2 2

C2 R.d3.A

1

C3 S.d2.B

1
2

(a) 3-gWSD W = ({C1, C2, C3}, true)

R A cond

true
2 x1 = 1
y x1 = 1
2 x1 6= 1
1 true

S B cond

true
z x1 = 1
2 x1 6= 1
1 x3 = 1
2 x3 6= 1

(b) x-multitable T = (R, S)

Fig. 7. Example of a 3-gWSD and an equivalent x-multitable.

5 Complexity of Managing gWSDs

We consider the data complexity of the decision problems defined in Section 1.
Note that in the literature the tuple (q-)possibility and (q-)certainty problems
are sometimes called bounded or restricted (q-)possibility, and (q-)certainty re-
spectively, and the instance (q-)possibility and (q-)certainty are sometimes called
(q-)membership and (q-)uniqueness [3]. A comparison of the complexity results
for these decision problems in the context of gWSDs to those of c-tables [3] and
Trio [8] is given in Table 2.

We first prove complexity results for tuple q-possibility in the context of x-
tables. This is particularly relevant as gWSDs can be translated in linear time
into x-tables, as done in the proof of Lemma 1.

Lemma 3. Tuple q-possibility is in PTIME for x-tables and positive relational
algebra.

Proof. Recall from Definition 2 and Proposition 3 that x-tables are closed un-
der positive relational algebra and the evaluation of positive relational algebra
queries on x-tables is in PTIME.

Consider a constant tuple t and a fixed positive relational query Q, both over
schema U , and two x-multitables T and T ′ such that T ′ = Q(T).

In case the global condition of T ′ is unsatisfiable, then T ′ represents the
empty world-set and t is not possible. The global condition is a conjunction of
negated equalities and we can check its unsatisfiability in PTIME. We consider
next the case of satisfiable global conditions. Following the semantics of x-tables,
the tuple t is possible in T ′ iff there is a tuple t′ in T ′ and a valuation ν consistent
with the global and local conditions such that t′ equals t under ν. This can be
checked for each T ′-tuple individually and in PTIME. �

Theorem 3. Tuple q-possibility is in PTIME for gWSDs and positive relational
algebra.

Proof. This follows from the linear time translation of gWSDs into x-multitables
ensured by Lemma 1 and the PTIME result for x-multitables given in Lemma 3.�

For full relational algebra, tuple q-possibility becomes NP-hard even for v-
tables where each variable occurs at most once (also called Codd tables) [3].

Theorem 4. Tuple q-possibility is in NP for gWSDs and relational algebra and
NP-hard for WSDs and relational algebra.

Proof. Tuple q-possibility is in NP for gWSDs and relational algebra because
gWSDs can be translated linearly into c-tables (see Lemma 1) and tuple q-
possibility is in NP for c-tables and full relational algebra [3].

We show NP-hardness for WSDs and relational algebra by a reduction from
3CNF-satisfiability [15]. Given a set Y of propositional variables and a set of
clauses ci = ci,1∨ci,2∨ci,3 such that for each i, k, ci,k is x or ¬x for some x ∈ Y,
the 3CNF-satisfiability problem is to decide whether there is a satisfying truth
assignment for

∧

i ci.
Construction. We create a WSD W = (C1, . . . , C|Y|, CS) representing

worlds of two relations R and S over schemas R(C) and S(C), respectively,
as follows6. For each variable xi in Y we create a component Ci with two lo-
cal worlds, one for xi and the other for ¬xi. For each literal ci,k we create an
R-tuple 〈i〉 with id di,k. In case ci,k = xj or ci,k = ¬xj , then the schema of Cj

contains the attribute R.di,k.C and the local world for xj or ¬xj , respectively,
contains the values 〈i〉 for these attributes. All component fields that remained
unfilled are finally filled in with ⊥-values. The additional component SC has n

attributes S.d1.C, . . . , S.dn.C and one local world (1, . . . , n). Thus, by construc-
tion, S = {〈1〉, . . . , 〈n〉} and R ⊆ S in all worlds defined by W .

The problem of deciding whether
∧

i ci has a satisfying truth assignment is
equivalent to deciding whether there is a world A ∈ rep(W) such that the answer
to the query S − R is empty.

Correctness. We prove the correctness of the reduction by showing that
∧

i ci has a satisfying truth assignment exactly when ∃A ∈ rep(W) : SA −
RA = ∅. Because ∀A ∈ rep(W) : RA ⊆ SA, the condition is equivalent to
∃A ∈ rep(W) : SA = RA.

First, assume there is a truth assignment ν of Y that proves
∧

i ci is satisfi-
able. Then, ν(ci) is true for each clause ci. Because each clause ci is a disjunction,
this means there is at least one ci,k for each ci such that ν(ci,k) is true.

Turning to W , ν represents a choice of local worlds of W such that for each
variable xj ∈ Y if ν(xj) = true then we choose the first local world of Cj and
if ν(xj) = false then we choose the second local world of Cj . Let wj be the
choice for Cj and let wCS

be the only choice for CS . Then, W defines a world

A = inline−1(w1 × . . . × w|Y| × wCS
) and RA contains those tuples defined in

the chosen local worlds. Because there is at least one ci,k per clause ci such that
ν(ci,k) is true, there is also a local world wj that defines R-tuple 〈i〉 for each ci.
Thus RA = SA.

Now, assume there exists a world A ∈ rep(W) such that SA = RA. Thus
RA = {〈1〉, . . . , 〈n〉} and there is a choice of local worlds of the components in W
that define all R-tuples 〈1〉 through 〈n〉. By construction, this choice corresponds
to a truth assignment ν that maps at least one literal ci,k of each ci to true. Thus
ν is a satisfying truth assignment of

∧

i ci. �

Example 6. Figure 8 gives a 3CNF clause set and its WSD encoding. Checking
the satisfiability of c1∧c2∧c3 is equivalent to checking whether there is a choice of

6 For clarity reasons, we use two relations; they can be represented as one relation
with an additional attribute stating the relation name.

3CNF clause set: {c1 = x1 ∨ x2 ∨ x3, c2 = x1 ∨ ¬x2 ∨ x4, c3 = ¬x1 ∨ x2 ∨ ¬x4}

C1 R.d1,1.C R.d2,1.C R.d3,2.C
(x1) 1 2 ⊥

(¬x1) ⊥ ⊥ 3

C2 R.d1,2.C R.d2,2.C R.d3,2.C
(x2) 1 ⊥ 3
(¬x2) ⊥ 2 ⊥

C3 R.d1,3.C
(x3) 1
(¬x3) ⊥

C4 R.d2,3.C R.d3,3.C
(x4) 2 ⊥

(¬x4) ⊥ 3

CS S.d1.C S.d2.C S.d3.C
wCS

1 2 3

Fig. 8. 3CNF clause set encoded as tuple q-possibility problem for WSDs.

local worlds in the WSD such that S−R is empty. This also means that R should
contain the tuples 〈1〉 through 〈3〉. For example, x1 7→ true, x2 7→ true, x3 7→
true, x4 7→ true is a satisfying truth assignment. Indeed, the corresponding choice
of local worlds (C1 : x1, C2 : x2, C3 : x3, C4 : x4, CS : wCS

) defines a world A in
which RA equals SA. �

Theorem 5. Tuple possibility and certainty are in PTIME for gWSDs.

Proof. The result for tuple possibility follows directly from Theorem 3, where
the positive relational query is the identity.

For tuple certainty, consider a tuple-level gWSD W = ({C1, . . . , Cm}, φ) and
a tuple t. Tuple t is certain exactly if φ is unsatisfiable or there is a component Ci

such that each tuple of Ci contains t (without variables). Suppose φ is satisfiable
and for each component Ci there is at least one tuple wi ∈ Ci that does not
contain t. Then there is a world-tuple w ∈ C1 × · · · ×Cm such that tuple t does
not occur in w. If there is a mapping θ that maps some tuple in w to t and
for which θ(φ) is true, then there is also a mapping θ′ such that θ′(w) does not
contain t but θ′(φ) is true. Thus t is not certain. �

Theorem 6. Instance possibility is in NP for gWSDs and NP-hard for WSDs.

Proof. Let W = ({C1, . . . , Cn}, φ) be a gWSD. The problem is in NP since
we can nondeterministically check whether there is a choice of tuples t1 ∈
C1, . . . , tn ∈ Cn such that t1 ◦ · · · ◦ tn represents the input instance.

We show NP-hardness for WSDs with a reduction from Exact Cover by 3-Sets
[15].

Given a set X with |X | = 3q and a collection C of 3-element subsets of X , the
exact cover by 3-sets problem is to decide whether there exists a subset C′ ⊆ C,
such that every element of X occurs in exactly one member of C′.

Construction. The set X is encoded as an instance consisting of a unary
relation IX over schema IX [A] with 3q tuples. The collection C is represented
as a WSD W = {C1, . . . , Cq} encoding a relation R over schema R[A], where
C1, . . . , Cq are component relations. The schema of a component Ci is
Ci[R.dj+1.A, R.dj+2.A, R.dj+3.A], where j = ⌊ i

3⌋. Each 3-element set c = {x, y, z}
∈ C is encoded as a tuple (x, y, z) in each of the components Ci.

IX A
1
2
3
4
5
6
7
8
9

C1 t1.A t2.A t3.A
w1 1 5 9
w2 2 5 8
w3 3 4 6
w4 2 7 8
w5 1 6 9

C2 t4.A t5.A t6.A
w1 1 5 9
w2 2 5 8
w3 3 4 6
w4 2 7 8
w5 1 6 9

C3 t7.A t8.A t9.A
w1 1 5 9
w2 2 5 8
w3 3 4 6
w4 2 7 8
w5 1 6 9

Fig. 9. Exact cover by 3-sets encoded as instance possibility problem for WSDs.

The problem of deciding whether there is an exact cover by 3-sets of X is
equivalent to deciding whether IX ∈ rep(W).

Correctness. We prove the correctness of the reduction, that is, we show
that X has an exact cover by 3-sets exactly when IX ∈ rep(W).

First, assume there is a world A ∈ rep(W) with RA = IX . Then there exist
tuples wi ∈ Ci, 1 ≤ i ≤ q, such that A = rep({w1}× . . .×{wq}). As IX and RA

have the same number of tuples and all elements of IX are different, it follows
that the values in w1, . . . , wq are disjoint. But then this means that the elements
in w1, . . . , wq are an exact cover of X .

Now, assume there exists an exact cover C′ = {c1, . . . , cq} of X . Let wi ∈ Ci

such that wi = ci, 1 ≤ i ≤ q. As the elements ci are disjoint, the world A =
rep({w1} × . . . × {wq}) contains exactly 3q tuples. Since C′ is an exact cover
of X and each element of X (and therefore of IX) appears in exactly one local
world wi, it follows that IX = RA. �

Example 7. Consider the set X and the collection of 3-element sets C defined as

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

C = {{1, 5, 9}, {2, 5, 8}, {3, 4, 6}, {2, 7, 8}, {1, 6, 9}}

The encoding of X and C is given in Figure 9 as WSD W and instance IX .
A possible cover of X , or equivalently, a world of rep(W) equivalent to IX , is
the world inline−1(w1 ◦ w3 ◦ w4) or, by resolving the record composition,

inline−1(t1.A : 1, t2.A : 5, t3.A : 9, t4.A : 3, t5.A : 4, t6 : A : 6, t7 : 2, t8 : 7, t9.A : 8).

�

Theorem 7. Instance certainty is in PTIME for gWSDs.

Proof. Given an instance I and a gWSD W representing a relation R, the prob-
lem is equivalent to checking for each world A ∈ rep(W) whether (1) I ⊆ RA

and (2) RA ⊆ I. Test (1) is reducible to checking whether each tuple from I

is certain in R, and is thus in PTIME (cf. Theorem 5). For (2), we check in
PTIME whether there is a non ⊥-tuple in some world of rep(W) that is not in
the instance I. If W has variables then it cannot represent certain instances. �

Theorem 8. Instance q-possibility is NP-complete for gWSDs and relational
algebra.

Proof. For the identity query, the problem becomes instance possibility, which is
NP-complete (see Theorem 6). To show it is in NP, we use the PTIME reduction
from gWSDs to c-tables given in Lemma 1 and the NP-completeness result for
instance q-possibility and c-tables [3]. �

Theorem 9. Tuple and instance q-certainty are in coNP for gWSDs and rela-
tional algebra and coNP-hard for WSDs and positive relational algebra.

Proof. Tuple and instance q-certainty are in coNP for gWSDs and positive re-
lational algebra because gWSDs can be translated linearly into c-tables (see
Lemma 1) and tuple and instance q-certainty are in coNP for c-tables and full
relational algebra [3].

We show coNP-hardness for WSDs and positive relational algebra by a re-
duction from 3DNF-tautology [15]. Given a set Y of propositional variables and
a set of clauses ci = ci,1 ∧ ci,2 ∧ ci,3 such that for each i, k, ci,k is x or ¬x for
some x ∈ Y, the 3DNF-tautology problem is to decide whether

∨

i ci is true for
each truth assignment of Y.

Construction. We create a WSD W = (C1, . . . , C|Y|) representing worlds
of a relation R over schema R(C, P) as follows. For each variable xi in Y we
create a component Ci with two local worlds, one for xi and the other for ¬xi.
For each literal ci,k we create an R-tuple (i, k) with id di,k. In case ci,k = xj or
ci,k = ¬xj , then the schema of Cj contains the attributes R.di,k.C and R.di,k.P ,
and the local world for xj or ¬xj , respectively, contains the values (i, k) for these
attributes. All component fields that remained unfilled are finally filled in with
⊥-values.

The problem of deciding whether
∨

i ci is a tautology is equivalent to deciding
whether the empty tuple 〈〉 is certain in the answer to the fixed positive relational
algebra query Q := π∅(σφ(R r1 × R r2 × R r3)), where

φ := (r1.C = r2.C and r1.C = r3.C and r1.P = 1 and r2.P = 2 and r3.P = 3).

Correctness. We prove the correctness of the reduction, that is, we show
that

∨

i ci is a tautology exactly when ∀A ∈ rep(W) : 〈〉 ∈ RA.
First, assume there is a truth assignment ν of Y that proves

∨

i ci is not a
tautology. Then, there exists a choice of local worlds of W such that for each
variable xi ∈ Y if ν(xi) = true then we choose the first local world of Ci and
if ν(xi) = false then we choose the second local world of Ci. Let wi be the
choice for Ci. Then, W defines a world A = inline−1(w1 × . . . × w|Y|) and RA

contains those tuples defined in the chosen local worlds. If ν proves
∨

i ci is not
a tautology, then ν(

∨

i ci) is false and, because
∨

i ci is a disjunction, no clause
ci is true. Thus RA does not contain tuples (i, 1), (i, 2), and (i, 3) for each clause
ci. This means that the condition of Q cannot be satisfied and thus the answer
of Q is empty. Thus the tuple 〈〉 is not certain in the answer to Q.

Now, assume there exists a world A ∈ rep(W) such that 〈〉 6∈ RA. Then, RA

contains no triple (i, 1), (i, 2), and (i, 3) for any clause ci, because such a triple

3DNF clause set: {c1 = x1 ∧ x2 ∧ x3, c2 = x1 ∧ ¬x2 ∧ x4, c3 = ¬x1 ∧ x2 ∧ ¬x4}

C1 R.d1,1.(C,P) R.d2,1.(C,P) R.d3,2.(C,P)
(x1) (1,1) (2,1) ⊥
(¬x1) ⊥ ⊥ (3,2)

C3 R.d1,3.(C,P)
(x3) (1,3)
(¬x3) ⊥

C2 R.d1,2.(C,P) R.d2,2.(C,P) R.d3,1.(C,P)
(x2) (1,2) ⊥ (3,1)
(¬x2) ⊥ (2,2) ⊥

C4 R.d2,3.(C,P) R.d3,3.(C,P)
(x4) (2,3) ⊥

(¬x4) ⊥ (3,3)

Fig. 10. 3DNF clause set encoded as tuple and instance q-certainty problem for WSDs.

satisfies the selection condition. This means that the choice of local worlds of
the components in W correspond to a valuation ν that does not map all ci,1,
ci,2, and ci,3 to true, for any clause ci. Thus

∨

i ci is not a tautology.
Because by construction RA is either {} or {〈〉} for any world A ∈ rep(W),

the same proof works also for instance q-certainty with instance {〈〉}. �

Example 8. Figure 10 gives a 3DNF clause set and its WSD encoding. Checking
tautology of H := c1 ∨ c2 ∨ c3 is equivalent to checking whether the empty tuple
is certain in the answer to the query from the proof of Theorem 9. Formula H

is not a tautology because it becomes false under the truth assignment {x1 7→
true, x2 7→ true, x3 7→ false , x4 7→ true}. This is equivalent to checking whether
the empty tuple is in the answer to our query in the world A defined by the first
local world of C1 (encoding x1 7→ true), the first local world of C2 (encoding
x2 7→ true), the second local world of C3 (encoding x3 7→ false), and the first
local world of C4 (encoding x4 7→ true). The relation RA contains the tuples
{(1, 1), (2, 1), (1, 2), (3, 1), (2, 3)} and the query answer is empty. �

6 Optimizing gWSDs

In this section we study the problem of optimizing a given gWSD by further
decomposing its components using the product operation. We note that prod-
uct decomposition corresponds to the notion of relational factorization. We then
define this new notion and study some of its properties, like uniqueness and
primality or minimality. It turns out that any relation admits a unique minimal
factorization, and there is an algorithm that can compute it efficiently. Because
gWSD components are special relations with variables and the ⊥-symbol, they
can admit several minimal factorizations and our efficient algorithm can not al-
ways find one of them (but it can still find good non-optimal factorizations by
treating variables as constants). However, the (tuple-level) WSDs admit prime
factorizations that are unique modulo the ⊥-symbol7 and can be efficiently com-
puted by a trivial extension of our algorithm with the tuple-level constraint.

7 Two tuples (A1 : ⊥, . . . , An : ⊥) and (A1 : a1, . . . , An : an) of a relation defined by
a (g)WSD, where at least one ai is ⊥, are equivalent modulo the ⊥-symbol.

6.1 Prime Factorizations of Relations

Definition 6. Let there be schemata R[U] and Q[U ′] such that ∅ ⊂ U ′ ⊆ U . A
factor of a relation R over schema R[U] is a relation Q over schema Q[U ′] such
that there exists a relation R′ with R = Q × R′.

A factor Q of R is called proper, if Q 6= R. A factor Q is prime, if it has no
proper factors. Two relations over the same schema are coprime, if they have no
common factors.

Definition 7. Let R be a relation. A factorization of R is a set {C1, . . . , Cn}
of factors of R such that R = C1 × . . . × Cn.

In case the factors C1, . . . , Cn are prime, the factorization is said to be prime.
From the definition of relational product and factorization, it follows that the
schemata of the factors C1, . . . , Cn are a disjoint partition of the schema of R.

Proposition 9. For each relation a prime factorization exists and is unique.

Proof. Consider any relation R. Existence is clear because R admits the factor-
ization {R}, which is prime in case R is prime.

Uniqueness is next shown by contradiction. Assume R admits two different
prime factorizations {πU1

(R), . . . , πUm
(R)} and {πV1

(R), . . . , πVm
(R)}. Since the

two factorizations are different, there are two sets Ui, Vj such that Ui 6= Vj

and Ui ∩ Vj 6= ∅. But then, as of course R = πU−Vj
(R) × πVj

(R), we have

πUi
(R) = πUi

(
πU−Vj

(R) × πVj
(R)

)
= πUi−Vj

(R) × πUi∩Vj
(R). It follows that

{πU1
(R), . . . , πUi−1

(R), πUi−Vj
(R), πUi∩Vj

(R), πUi+1
(R), . . . , πUm

(R)} is a factor-
ization of R, and the initial factorizations cannot be prime. Contradiction. �

6.2 Computing Prime Factorizations

This section first gives two important properties of relational factors and factor-
izations. Based on them, it further devises an efficient yet simple algorithm for
computing prime factorizations.

Proposition 10. Let there be two relations S and F , an attribute A of S and
not of F , and a value v ∈ πA(S). Then, for some relations R, E, and I holds

S = F × R ⇔ σA=v(S) = F × E and σA 6=v(S) = F × I.

Proof. Note that the schemata of F and R represent a disjoint partition of the
schema of S and thus A is an attribute of R.

⇒. Relation F is a factor of σA=v(S) because

σA=v(S) = σA=v(F × R) = F × σA=v(R).

Analogously, F is a factor of σA 6=v(S).
⇐. Relation F is a factor of S because

S = σA=v(S) ∪ σA 6=v(S) = F × E ∪ F × I = F × (E ∪ I). �

algorithm prime-factorization (S)
// Input: Relation S over schema S[U].
// Result: Prime factorization of S as a set Fs of its prime factors.

1. Fs := {{πB(S)} | B ∈ U, |πB(S)| = 1}; S := S ÷
Q

F∈F s

(F);

2. if S = ∅ then return Fs;
3. choose any A ∈ sch(S), v ∈ πA(S) such that |σA=v(S)| ≤ |σA6=v(S)|;
4. Q := σA=v(S); R := σA6=v(S);
5. foreach F ∈ prime-factorization(Q) do

6. if (R ÷ F) × F = R then Fs := Fs ∪ {F};
7. if

Q

F∈F s

(F) 6= S then Fs := Fs ∪ {S ÷
Q

F∈F s

(F)};

8. return Fs ;

Fig. 11. Computing the prime factorization of a relation.

Corollary 6. A relation S is prime iff σA=v(S) and σA 6=v(S) are coprime.

The algorithm prime-factorization given in Figure 11 computes the prime fac-
torization of an input relation S as follows. It first finds the trivial prime factors
with one attribute and one value (line 1). These factors represent the prime fac-
torization of S, in case the remaining relation is empty (line 2). Otherwise, the
remaining relation is disjointly partitioned in relations Q and R (line 4) using
any selection with constant A = v such that Q is smaller than R (line 3). The
prime factors of Q are then probed for factors of R and in the positive case
become prime factors of S (lines 5 and 6). This property is ensured by Propo-
sition 10. The remainder of Q and R, which does not contain factors common
to both Q and R, becomes a factor of S (line 7). According to Corollary 6, this
factor is also prime.

Example 9. We exemplify our prime factorization algorithm using the following
relation S with three prime factors.

S A B C D E
a1 b1 c1 d1 e1

a1 b1 c1 d1 e2

a1 b1 c1 d2 e1

a1 b1 c1 d2 e2

a2 b1 c1 d1 e1

a2 b1 c1 d1 e2

a2 b1 c1 d2 e1

a2 b1 c1 d2 e2

a2 b2 c2 d1 e1

a2 b2 c2 d1 e2

a2 b2 c2 d2 e1

a2 b2 c2 d2 e2

A B C
a1 b1 c1

a2 b1 c1

a2 b2 c2

×
D
d1

d2

×
E
e1

e2

To ease the explanation, we next consider all variables of the algorithm followed
by an exponent i, to uniquely identify their values at recursion depth i.

Consider the sequence of selection parameters (A, a1), (D, d1), (E, e1).
The relation S1 has no factors with one attribute. We next choose the selec-

tion parameters (A, a1). The partition Q1 = σA=a1
(S1) and R1 = σA 6=a1

(S1)) is
shown below

Q1 A B C D E
a1 b1 c1 d1 e1

a1 b1 c1 d1 e2

a1 b1 c1 d2 e1

a1 b1 c1 d2 e2

R1 A B C D E
a2 b1 c1 d1 e1

a2 b1 c1 d1 e2

a2 b1 c1 d2 e1

a2 b1 c1 d2 e2

a2 b2 c2 d1 e1

a2 b2 c2 d1 e2

a2 b2 c2 d2 e1

a2 b2 c2 d2 e2

We proceed to depth two with S2 = Q1. We initially find the prime factors with
one of the attributes A, B, and C. We further choose the selection parameters
(D, d1) and obtain Q2 and R2 as follows

Q2 D E
d1 e1

d1 e2

R2 D E
d2 e1

d2 e2

We proceed to depth three with S3 = Q2. We initially find the prime factor with
the attribute D. We further choose the selection parameters (E, e1) and obtain
Q3 and R3 as follows

Q3 E
e1

R3 E
e2

We proceed to depth four with S4 = Q3. We find the only prime factor πE(Q3) =
Q3 with the attribute E and return the set {Q3}.

At depth three, we check whether Q3 is also a factor of R3. It is not, and we
infer that Q3 ∪ R3 is a prime factor of Q2 (the other prime factor πD(Q2) was
already detected). We thus return {πD(Q2), πE(Q2)}.

At depth two, we check the factors of Q2 for being factors of R2 and find that
πE(Q2) is also a factor of R2, whereas πD(Q2) is not. The set of prime factors of
Q1 is thus {πE(Q2), πA(Q1), πB(Q1), πC(Q1), πD(Q1)}, where πA(Q1), πB(Q1),
and πC(Q1) were already detected as factors with one attribute and one value,
and πD(Q1)} is the rest of Q1.

At depth one, we find that only πE(Q2) and πD(Q1)} are also factors of R1.
Thus the prime factorization of S1 is {πE(Q2), πD(Q1), πA,B,C(S1)}. The last
factor is computed in line 7 by dividing S1 to the product of the factors πE(Q2)
and πD(Q1)}. �

Remark 4. It can be easily verified that choosing another sequence of selection
parameters, e.g., (D, d1), (E, e1) and (A, a1), does not change the output of the
algorithm.

Because the prime factorization is unique, the choice of the attribute A and
value v (line 3) can not influence it. However, choosing A and v such that
|σA=v(S)| ≤ |σA 6=v(S)| ensures that with each recursion step the input relation
to work on gets halved. This affects the worst-case complexity of our algorithm.

In general, there is no unique choice of A and v that halve the input relation.
There are choices that lead to faster factorizations by minimizing the number of
recursive calls and also the sizes of the intermediary relations Q. �

Theorem 10. The algorithm of Figure 11 computes the prime factorization of
any relation.

Proof. The algorithm terminates, because (1) the input size at the recursion
depth i is smaller (at least halved) than at the recursion depth i−1, and (2) the
initial input is finite.

We first show by complete induction on the recursion depth that the algo-
rithm is sound, i.e., it occasionally computes the prime factorization of the input
relation.

Consider d the maximal recursion depth. To ease the rest of the proof, we
uniquely identify the values of variables at recursion depth i (1 ≤ i ≤ d) by an
exponent i.

Base Case. We show that at maximal recursion depth d the algorithm com-
putes the prime factorization. This factorization corresponds to the case of a
relation Sd with a single tuple (line 2), where each attribute induces a prime
factor (line 1).

Induction Step. We know that Fs i+1 represents the prime factorization of
Si+1 = Qi and show that Fsi represents the prime factorization of Si.

Each factor F of Qi is first checked for being a factor of Ri (lines 5 and 6).
This check uses the definition of relational division: the product of F and the
division of Ri with F must give back Ri. Using Proposition 10, each factor F

common to Ri and Si is also a factor of Si. Obviously, because F is prime in
Qi, it is also prime in Si.

We next treat the case when the factors common to Qi and Ri do not entirely
cover Si (line 7). Let P be the product of all factors common to Qi and Ri, i.e.,
P = ΠFsi. Then there exists Qi

∗ and Ri
∗ such that Qi = Qi

∗×P and Ri = Ri
∗×P .

It follows that Si = Qi ∪ Ri = (Qi
∗ ∪ Ri

∗) × P , thus (Qi
∗ ∪ Ri

∗) is a factor of Si.
Because Qi

∗ and Ri
∗ are coprime (otherwise they would have a common factor),

Corollary 6 ensures that their union (Qi
∗ ∪ Ri

∗) is prime.
This concludes the proof that the algorithm is sound. The completeness fol-

lows from Proposition 10, which ensures that the factors of Si, which do not
have the chosen attribute A, are necessarily factors of both Qi and Ri at any
recursion depth i. Additionally, this holds independently of the choice of the
selection parameters. �

Our relational factorization is a special case of algebraic factorization of
Boolean functions, as used in multilevel logic synthesis [11]. In this light, our
algorithm can be used to algebraically factorize disjunctions of conjunctions of
literals. A factorization is then a conjunction of factors, which are disjunctions

of conjunctions of literals. This factorization is only algebraic, because Boolean
identities (e.g., x · x = x) do not make sense in our context and thus are not
considered (Note that Boolean factorization is NP-hard, see e.g., [11]).

The algorithm of Figure 11 computes prime factorizations in polynomial time
and linear space, as stated by the following theorem.

Theorem 11. The prime factorization of a relation S with arity m and size n

is computable in time O(m · n · log n) and space O(n).

Proof. The complexity results consider the input and the temporary relations
available in secondary storage.

The computations in lines 1, 3, 4, and 7 require a constant amount of scans
over S. The number of prime factors of a relation is bounded in its arity. The
division test in line 6 can be also implemented as

πsch(P)(R) = P and |P | · |πsch(R)−sch(P)(R)| = |R|.

(Here sch maps relations to their schemata). This requires to sort P and πsch(P)(R)
and to scan R two times and P one time. The size of P is logarithmic in the size
of Q, whereas Q and R have sizes linear in the size of S. The recursive call in
line 5 is done on Q, whose size is at most a half of the size of S.

The recurrence relation for the time complexity is then (for sufficiently large
constant a; n is the size of S and m is the arity of S)

T (n) = 7n + m · n · log n + T (
n

2
)

≤ T ′(n) = a · m · n · log n + T ′(
n

2
) = a · m ·

⌈log n⌉

Σ
i=1

(
n

2i
· log(

n

2i
))

≤ a · m ·
∞
Σ
i=1

(
n

2i
· log(

n

2i
)) = a · m · n · log n = O(m · n · log n).

Each factor of S requires space logarithmic in the size of S. The sum of the
sizes of the relations Q and R is the size of S. Then, the recurrence relation for
the space complexity is (n is the size of S and m is the arity of S)

S(n) = n + m · log n + S(
n

2
) =

⌈log n⌉

Σ
i=1

(
n

2i
+ m · log(

n

2i
))

≤ m ·
∞
Σ
i=1

(
n

2i
+ m · log(

n

2i
)) = n + m · log n = O(n).

�

We can further trade the space used to explicitly store the temporary rela-
tions Q, R, and the factors for the time needed to recompute them. For this, the
temporary relations computed at any recursion depth i are defined intentionally
as queries constructed using the chosen selection parameters. This leads to a
sublinear space complexity at the expense of an additional logarithmic factor for
the time complexity.

Proposition 11. The prime factorization of a relation S with arity m and size
n is computable in time O(m · n · log2 n) and space O(m · log n).

Proof. We can improve the space complexity result of Theorem 11 in the follow-
ing way. The temporary relations computed at any recursion depth i are defined
intentionally as queries constructed using their schema, say U i, and the chosen
selection parameters (Ai, vi).

The relation Qj at recursion depth j ≤ i is

Qj = πU j (σ
φ

Q
j
(S)), φ

Q
j =

∧

1≤l≤j

(Al = vl)

The relation Rj is defined similarly and their factors additionally require to
only store their schema. Such queries have the size bounded in the maximal
recursion depth, thus in the logarithm of the input relation size. At each recursion
depth, only an attribute-value pair needs to be stored. Thus the space complexity
becomes (n is the size of S and m is the arity of S)

S(n, m) = m · log n + S(
n

2
, m − 1) ≤

⌈log n⌉

Σ
i=1

(m · log
n

2i
) ≤

∞
Σ
i=1

(m · log
n

2i
) = m · log n.

The time complexity increases, however. All temporary relations need to be
recomputed from the original relation S seven times at each recursion depth.
Thus, in contrast to T (n, m) from the proof of Theorem 11, the factor 1

2i does
not appear in the new formula of T (n′). The new recurrence function for T (n′)
(for sufficiently large a > 0; n is the size of the initial S and m is the arity of
the initial S; n′ is initially n) is

T (n′) = 7n + m · n · log n + T (
n′

2
)

≤ T ′(n′) = a · m · n · log n + T ′(
n′

2
) =

⌈log n⌉

Σ
i=1

(a · m · n · log n)

= a · m · n · log2 n = O(m · n · log2 n).

�

Remark 5. An important property of our algorithm is that it is polynomial in
both the arity and the size of the input relation S. If the arity is considered
constant, then a trivial prime factorization algorithm (yet exponential in the ar-
ity of S) can be devised as follows: First compute the powerset PS (U) over
the set U of attributes of S. Then, test for each set U ′ ∈ PS(U) whether
πU ′(S) × πU−U ′(S) = S holds. In the positive case, a factorization is found
with factors πU ′ (S) and πU−U ′ (S), and the same procedure is now applied to
these factors until all prime factors are found. Note that this algorithm requires
time exponential in the arity of the input relation (due to the powerset con-
struction). Additionally, if the arity of the input relation is constant, then the
question whether a relation S is prime (or factorizable) becomes FO-expressible
(also supported by the space complexity given in Proposition 11). �

6.3 Optimization Flavors

The gWSD optimization discussed here is a facet of the more general problem
of finding minimal representations for a given g-tabset or world-set. To find a
minimal representation for a given g-tabset A, one has to take into account all
possible inlinings for the g-tables of A in g-tabset tables. Recall from Section 3
that we consider a fixed arbitrary inlining order of the tuples of the g-tables in A.
Such an order is supported by common identifiers of tuples from different worlds,
as maintained in virtually all representation systems [19, 3, 17, 8] and exploited
in practitioner’s representation systems such as [8, 4]. We note that when no
correspondence between tuples from different worlds has to be preserved, smaller
representations of the same world-set may be possible.

Acknowledgments. The authors were supported in part by DFG project grant
KO 3491/1-1. The first author was supported by the International Max Planck
Research School for Computer Science, Saarbrücken, Germany.

References

1. S. Abiteboul and O. M. Duschka. “Complexity of Answering Queries Using Mate-
rialized Views”. In Proc. PODS, pages 254–263, 1998.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying
of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187, 1991.

4. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A
probabilistic approach. In Proc. ICDE, 2006.

5. L. Antova, C. Koch, and D. Olteanu. 1010
6

worlds and beyond: Efficient represen-
tation and processing of incomplete information. In Proc. ICDE, 2007.

6. L. Antova, C. Koch, and D. Olteanu. World-set decompositions: Expressiveness
and efficient algorithms. In Proc. ICDT, pages 194–208, 2007.

7. M. Arenas, L. E. Bertossi, and J. Chomicki. “Answer sets for consistent query
answering in inconsistent databases”. TPLP, 3(4–5):393–424, 2003.

8. O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In Proc. VLDB, 2006.

9. L. E. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. “Complexity and Approx-
imation of Fixing Numerical Attributes in Databases Under Integrity Constraints”.
In Proc. DBPL, pages 262–278, 2005.

10. P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. “A Cost-Based Model and
Effective Heuristic for Repairing Constraints by Value Modification”. In Proc.
SIGMOD, June 2005.

11. R. K. Brayton. Factoring logic functions. IBM J. Res. Develop., 31(2), 1987.
12. D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati. “Logical Foundations

of Peer-To-Peer Data Integration”. In PODS 2004, pages 241–251, 2004.
13. J. Chomicki, J. Marcinkowski, and S. Staworko. “Computing consistent query

answers using conflict hypergraphs”. In Proc. CIKM, pages 417–426, 2004.
14. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In

Proc. VLDB, pages 864–875, 2004.
15. M. R. Garey and D. S. Johnson. Computers and intractability; a guide to the theory

of NP-completeness. W.H. Freeman, 1979.

16. G. Grahne. Dependency satisfaction in databases with incomplete information. In
Proc. VLDB, pages 37–45, 1984.

17. G. Grahne. The Problem of Incomplete Information in Relational Databases. Num-
ber 554 in LNCS. Springer-Verlag, 1991.

18. T. J. Green and V. Tannen. “Models for Incomplete and Probabilistic Infor-
mation”. In International Workshop on Incompleteness and Inconsistency in
Databases (IIDB), 2006.

19. T. Imielinski and W. Lipski. Incomplete information in relational databases. Jour-
nal of ACM, 31:761–791, 1984.

