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Abstract. In this paper we prove the global in time well-posedness of the

following non-local diffusion equation with α ∈ [0, 2/3):

∂tu =
˘
(−4)−1u

¯
4u + αu2, u(t = 0) = u0.

The initial condition u0 is positive, radial, and non-increasing with u0 ∈
L1 ∩ L2+δ(R3) for some small δ > 0. There is no size restriction on u0.
This model problem appears of interest due to its structural similarity with

Landau’s equation from plasma physics, and moreover its radically different

behavior from the semi-linear Heat equation: ut = 4u + αu2.
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1. Introduction and main results

We study the following model equation for α ∈ [0, 2/3):

(1.1) ∂tu =
{
(−4)−1u

}
4u + αu2, u(0, x) = u0,

where as usual

(−4)−1u =
(
− 1

4π| · |
∗ u

)
(x) = − 1

4π

∫
R3

dy
u(y)
|x− y|

.

We also consider (t, x) ∈ R≥0 × R3. Moreover, we shall restrict to u0 positive and
radial; a condition which is propagated by the equation. Note∫

R3
dx u(t, x) + (1− α)

∫ t

0

∫
R3

dsdx |u(s, x)|2 =
∫

R3
dx u0(x).

In other words for solutions to (1.1), the quantity above is formally conserved.
Our motivation is partially derived from the spatially-homogeneous Landau equa-

tion 1936 [8] in plasma physics, which takes the form

∂tf = Q(f, f),
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where for ∂i = ∂
∂vi

we have

Q(f, f) def=
3∑

i,j=1

∂i

∫
R3

dv∗ aij(v − v∗) {f(v∗)(∂jf)(v)− f(v)(∂jf)(v∗)} .

Here the projection matrix is given by

aij(v) =
L

8π
|v|γ+2

(
δij −

vivj

|v|2

)
, L > 0.

The parameter satisfies γ ≥ −3, and we are solely concerned with the main physi-
cally relevant Coulombian case of γ = −3. Then formally differentiating under the
integral sign and integrating by parts we obtain

Q(f, f) =
3∑

i,j=1

āij(f)∂i∂jf −

∫
R3

dv∗

3∑
i,j=1

∂i∂ja
ij(v − v∗)f(v∗)

 f(v),

where

āij(f) def=
(

L

8π|v|

(
δij −

vivj

|v|2

))
∗ f.

Furthermore
∑3

i,j=1 ∂i∂ja
ij(v − v∗) is a delta function, so that

(1.2) ∂tf =
∑

1≤i,j≤3

āij(f)∂i∂jf + Lf2, (t, x) ∈ R≥0 × R3.

See [10, Page 170, Eq. (257)]. We can set L = 1 for simplicity.
It is well known that non-negative solutions to (1.2) preserve the L1 mass. This

suggests that (1.1) with α = 1 may be a good model for solutions to the Landau
equation (1.2). It appears that neither existence of global strong solutions for
general large data, nor formation of singularities is known for either (1.2), or (1.1).

For the Landau equation (1.2), Desvillettes and Villani [3] have established the
global existence of unique weak solutions and the instantaneous smoothing effect
for a large class of initial data in the year 2000 with γ ≥ 0. Then Guo [6] in 2002
proved the existence of classical solutions with the physical Coulombian interactions
(γ = −3) for smooth nearby Maxwellian initial data. For further results in these
directions we refer to [1, 2, 4, 10] and the references therein.

Furthermore, it is well known that the nonlinear heat equations such as

∂tu = ∆u + αu2,

will experience blow-up in finite time even for small initial data. This problem has
a long and detailed history which we omit. We however refer to the results and
discussion in [9], and the references therein, for more on this topic.

At one point, [10, Page 170, Eq. (257)], it was thought that equations such as
(1.2) could generally blow up in finite time. It was a common point of view that the
diffusive effects of the Laplace operator would be too weak to prevent the blow-up
effects that are caused by a quadratic source term. Then since the diffusion matrix
such as āij(f) or (−4)−1u may be bounded (or decay at infinity, such as in (2.4)
and [6]) then blow-up may indeed occur, as is the case for the Heat equation.

This intuition may no longer be as widespread as it once was for the Landau
equation [10], in particular because it has a divergence structure and since also
there seems to be lack of numerical simulations finding blow-up. Yet these issues
have still been without rigorous clarification.



GLOBAL SOLUTIONS TO A NON-LOCAL DIFFUSION EQUATION 3

Furthermore, for u non-negative, we have that

āij(u) ≤ (−4)−1u.

This gives the expectation that the diffusive effects of (−4)−1u4u will be stronger
than those of

∑
1≤i,j≤3 āij(f)∂2

ijf .
The main contribution of this paper is to show that in contrast to the behavior of

nonlinear Heat equations, solutions to (1.1) indeed can exist globally in time even
for large radial monotonic initial data. We initiate the study of (1.1), and attempt
to construct global solutions for α > 0 as close to 1 as possible. We have

Theorem 1.1. Let 0 ≤ α < 1
2 . Suppose that u0(x) is positive, radial, and non-

increasing with u0 ∈ L1(R3)∩L2+(R3). Additionally suppose that −4ũ0 ∈ L2(R3),
where ũ0

def= 〈x〉 1
2 u0. Then there exists a unique global solution with

u(t, x) ∈ C0([0,∞), L1 ∩ L2+(R3)) ∩ C0(R≥0,H
2(R3)),

〈x〉 1
2 (−4)u(t, x) ∈ C0([0,∞), L2(R3)).

The solution decays toward zero at t = +∞, in the following sense:

lim
t→∞

‖u(t, ·)‖Lq(R3) = 0, q ∈ (1, 2].

Above the space L2+ means that there exists a small δ > 0 such that we are in
the space L2+δ(R3). Furthermore we use the notation 〈x〉 def=

√
1 + |x|2. Also the

space X is defined by X
def= L1 ∩ L2+(R3).

Remark 1.2. Due to instantaneous smoothing for parabolic equations, one can
strengthen the above result to the effect that u ∈ C∞(R+ × R3).

The reason for the upper bound α < 1
2 comes from the interplay of the local

well-posedness we can establish for (1.1), and global a priori bounds. In effect, we
shall show that this problem is strongly locally well-posed for data of the form of
the theorem. Furthermore, the equation immediately implies a priori bounds for
the norms ‖u(t, ·)‖Lq(R3) for 1 ≤ q ≤ 2 + δ for a small δ = δ(α) > 0. The quasi-
linear character imposes the added difficulty of establishing the non-degeneration
of the operator

{
(−4)−1u

}
4, which we ensure by exploiting the additional sym-

metries/monotonicity properties of the data. Note that the method employed in
this paper suggests a natural threshold α ≤ 2

3 which corresponds to conservation
of L

3
2 -norm. This appears as a natural limit for the well-posedness of (1.1) in light

of the optimal local well-posedness for

∂tu = 4u + u2,

established in [11]. Indeed, we can strengthen the preceding theorem by exploiting
a more subtle a priori bound to get

Theorem 1.3. Let 0 ≤ α < 2
3 , and u0 be as in Theorem 1.1. Then there exists a

global solution in the same spaces as in Theorem 1.1; this solution further satisfies

lim
t→∞

‖u(t, ·)‖Lq(R3) = 0, q ∈ (1, 3/2].

It appears that the case α = 1 is the natural threshold for global well-posedness.
Note that in the latter case, the problem (1.1) admits static solutions of the form

Q(x) def=
e−µ|x|

|x|
.
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See e.g. [7]. These are the counterparts of the (smooth) Maxwellian static solutions
of (1.2), and by contrast to the theorem proved in this paper, one usually expects
solutions to (1.1) with α = 1 to converge to such static solutions as t →∞.

It further seems reasonable to conjecture that increasing α beyond α > 1, one
should get finite time blow up solutions. We are unable to show this, but we do
have the following simple example:

Proposition 1.4. Consider (1.1) but on the ball B1(0) def= {x ∈ R3 | |x| ≤ 1},
choosing (−4)u to have vanishing values on {|x| = 1}, α > 1. Then nontrivial
non-negative smooth global solutions of (1.1) vanishing on ∂B1(0) cannot exist.

Proof. Let u(t, x) ≥ 0 be such a solution, t ≥ 0. Then using integration by parts:

d

dt

∫
B1(0)

u(t, x)dx = (α− 1)
∫

B1(0)

u2(t, x)dx &

(∫
B1(0)

u(t, x)dx

)2

,

using the Hölder inequality in the last step. But then we infer

lim
t→T

∫
B1(0)

u(t, x)dx = ∞,

for some T > 0 since
∫

B1(0)
u0dx > 0. �

The difficulty in extending this reasoning to the context of R3 is that the L1-mass
could spread out to spatial infinity ‘too quickly’.

We will use the notation A . B to mean that there exists an inessential uniform
constant C > 0 such that A ≤ CB. In general C will denote an inessential uniform
constant whose value may change from line to line. Furthermore, A & B means
B . A, and A ≈ B is defined as A . B . A.

In the next section we discuss the local existence theory. Then in Section 3 we
extend this local existence theory globally in time and prove the decay rates as
t →∞, both of these make use of monotonicity formula.

2. Local existence theory

Our main result in this section is the following local existence theorem:

Proposition 2.1. Consider (1.1) with α ≥ 0, and let u0, ũ0 be as in Theorem 1.1.
Pick r0 > 0 such that

(2.1)
∫

r−1
0 >|x|>r0

u0(x)dx > 0.

Then there exists

T = T

(
‖u0‖L1∩L2+(R3) + ‖4ũ0‖L2(R3), r0,

∫
r−1
0 >|x|>r0

u0(x)dx

)
> 0,

and a unique solution u(t, x) on [0, T ) × R3 satisfying the following properties:
u(t, x) is radial, non-increasing, and positive. Furthermore

u ∈ C0([0, T ), L1 ∩ L2+(R3)), 〈x〉 1
24u ∈ L2(R3).

Finally we have the pointwise bound

(2.2) D1 > (−4)−1u(t, x) >
D2

〈x〉
, D1, D2 > 0.
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This will hold uniformly on [0, T )× R3.

We recall the Newton formula for radial functions (Lieb-Loss [7, Theorem 9.7]):

(−4)−1u(x) =
1

4π|x|

∫
|y|≤|x|

u(y)dy +
∫
|y|≥|x|

u(y)
4π|y|

dy,

=
1

3|x|

∫ |x|

0

u(ρ)ρ2dρ +
1
3

∫ ∞

|x|
u(ρ)ρdρ.

(2.3)

We claim that (2.3) combined with u ∈ L∞t L1
x implies

(−4)−1u(t, x) ≤ D̃1

〈x〉
, D̃1 > 0.

This follows easily by splitting into the separate regions |x| ≥ 1 and |x| ≤ 1. On
the former region we use Newton’s formula (2.3) and on the latter region we use
the upper bound in (2.2). We conclude uniformly on [0, T )× R3 that

(2.4) (−4)−1u(t, x) ≈ 〈x〉−1.

This estimate will be used several times below.
We prove Proposition 2.1 by constructing a local solution by means of an iteration

scheme. Specifically we set

u(0)(t, x) def= et4u0(x), t ∈ [0, T ),

and then we define implicitly

∂tu
(j)(t, x) = (−4)−1(u(j−1))4u(j) + α

(
u(j−1)

)2
, j ∈ {1, 2, . . .},

u(j)(0, x) = u0(x).
(2.5)

Our goal will be to establish the uniform estimates in the following lemma:

Lemma 2.2. ∃T > 0 as well as Di > 0 (i = 1, 2, 3), all depending on r0, (2.1) and
‖u0‖L1(R3)∩L2+(R3) such that we have the following uniform bound ∀j ≥ 0:

‖u(j)‖L∞t ([0,T );L1∩L2+(R3)) + sup
t∈(0,T ]

t
1
2 ‖χ|x|.1u

(j)‖L6(R3) < D3,

where χ|x|.1 smoothly truncates to the indicated region (|x| . 1). Further (2.2)
and (2.4) hold for u = u(j) ∀j ≥ 0 uniformly. Moreover all the u(j)(t, ·) are non-
increasing, positive, radial and we obtain the uniform derivative bounds

‖〈x〉 1
2∇αu(j)(t, ·)‖L2(R3) ≤ D4, 0 ≤ |α| ≤ 2,

where D4 depends on the same quantities as Di (i = 1, 2, 3) and it additionally
depends linearly on ‖4ũ0‖L2 .

The proof of Lemma 2.2 is the core of the paper and extends up to Section 2.5.
We proceed by induction on j. In the case j = 0, the bounds

‖et4u0‖L∞t ([0,T );L1∩L2+(R3)) ≤ ‖u0‖L1∩L2+(R3),

follow from the explicit form of the heat kernel. Further the bound

‖et4u0‖L6(R3) . t−
1
2 ‖u0‖L2(R3),

follows from the Sobolev embedding after applying ∇. Also, clearly u(0) will be
radial and positive throughout, as well as non-increasing. Furthermore the formula
(2.3) combined with a simple continuity argument as well as the Hölder inequality
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allow us to conclude that (2.2) holds for u(0)(t, x), where the constants Di depend
upon ‖u0‖L1∩L2+(R3), r0 and

∫
r−1
0 >|y|>r0

u0(y)dy > 0 for i = 1, 2.
Indeed, to obtain the lower bound, we use

(2.6)
1

4π|x|

∫
|y|≤|x|

u(0)(t, y) dy +
∫
|y|≥|x|

u(0)(t, y)
4π|y|

dy

≥ 1
8π〈x〉

(〈x〉r0)
∫
|y|<2r−1

0

u(0)(t, y) dy.

Then if χ is a non-negative smooth cutoff which equals 1 on {|y| < r−1
0 } and

localizes to |y| < 2r−1
0 , we have∣∣ d

dt

( ∫
χ(y)u(0)(t, y) dy

)∣∣ . ∫ u(0)(t, y) dy =
∫

u0 dy,

whence we obtain
∫
|y|<2r−1

0
u(0)(t, y) dy &

∫
|y|<r−1

0
u0 dy provided that

t �

∫
y<r−1

0
u0 dy∫

u0 dy
.

The bound for ‖〈x〉 1
2∇αu(0)‖L2 , |α| ≤ 2, follows also from the explicit kernel rep-

resentation for the Heat kernel et4.

The difficult part is establishing these bounds for the higher iterates u(j) with
j ≥ 1. We shall proceed by induction, assuming the properties stated in Lemma
2.2 hold for j − 1 and deducing them for j. This induction will particularly clarify
the nature of T > 0.

We shall rely in part on the functional analytic framework developed in Theorem
3.1 and Theorem 3.2 of Part 2 of Friedman [5]: let A(t) be an operator valued
function, for t ∈ [0, T ], with A(t) acting on some Banach space X (note that A(t)
need not be bounded). We suppose that the domains of A(t) are given by DA

(independent of t ∈ [0, T ]). Further consider the following Key properties:
• DA is dense in X, and each A(t) is a closed operator.
• For each t ∈ [0, T ], the resolvent R(λ;A(t)) of A(t):

R(λ;A(t)) = (A(t)− λI)−1
,

exists for all λ with Re (λ) ≤ 0.
• For each Re λ ≤ 0 we have the bound

‖R(λ;A(t))‖ .
1

|λ|+ 1
.

• For any t, τ , s ∈ [0, T ], we have a Hölder estimate for the ‖ · ‖X operator
norm

(2.7) ‖[A(t)−A(τ)]A−1(s)‖ . |t− τ |γ .

This should hold for some γ ∈ (0, 1).
The implicit constants above should all be independent of λ, t, τ , s and γ. Then
following Friedman [5, Theorem 3.1 and Theorem 3.2], there exists a unique fun-
damental solution U(t, τ) ∈ B(X); that is a strongly continuous operator valued
function such that Range(U(t, τ)) ⊂ DA ∀t, τ ∈ [0, T ], and furthermore

∂tU(t, τ) + A(t)U(t, τ) = 0, τ < t ≤ T, U(τ, τ) = I.
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In the following we will construct suitable operators A(t), then prove that they
have the requisite properties to deduce the existence of the fundamental solution.

It may appear natural to use the operator

A(j−1)(t) def= −
(
(−4)−1u(j−1)

)
4+ I,

which however is not self-adjoint. This causes difficulties in establishing the resol-
vent bounds. Instead, we introduce the slightly modified1 operator

A(t) def= gj(−4)(gj ·) + I,

gj
def=
[
(−4)−1u(j−1)

] 1
2 .

(2.8)

It is not hard to check that this is a self-adjoint operator with domain

DA
def= {ũ ∈ L2(R3) | A(t)ũ ∈ L2(R3)}.

Then it is easily verified that DA is independent of t, in light of the assumptions
on u(j−1). Note that 〈A(t)ũ, ũ〉L2(R3) ≥ ‖ũ‖2L2(R3) for ũ ∈ DA, whence we have

‖R(λ;A(t))‖ ≤ 1
1 + |λ|

, Re λ ≤ 0,

i.e. the resolvent bound among the key properties is satisfied. In particular, A(σ),
σ ∈ [0, T ] generates an analytic semigroup

e−tA(σ)

with the important bounds

‖A(σ)me−tA(σ)‖ .
1
tm

, t > 0, m = 1, 2, . . . .

In order to use the operators A(t), we need to re-formulate (2.5) as follows. Let

ũ(j) def= e−tg−1
j u(j), j ≥ 1.

Then we obtain

(2.9) ∂tũ
(j) + A(t)ũ(j) = −∂tgj

gj
ũ(j) + αet

g2
j−1

gj

(
ũ(j−1)

)2
We then treat −∂tgj

gj
ũ(j) +αet g2

j−1
gj

(
ũ(j−1)

)2 as source term, and apply a bootstrap-

ping argument to recover the L2-based bounds on ũ(j). The L1, L2+-bounds in turn
will follow directly from (2.5).

Organization of the rest of Section 2. In Section 2.1 we prove the continuity
estimate in (2.7). Then in Section 2.2 we prove the uniform bounds on u(j). After
that in Section 2.3 we will establish the monotonicity of each u(j) by induction.
Subsequently in Section 2.4 we prove the pointwise control over the elliptic oper-
ator (−4)−1u(j) as in (2.2). In the next Section 2.5 we prove uniform bounds for
the higher derivatives. Section 2.6 then proves the convergence of the u(j). Finally
Section 2.7 proves the uniqueness of the solution u(t, x).

In order to construct the fundamental solution U(t, τ) associated with A(σ), we
still need to verify the fourth of the key properties, i.e. the Holder type bound.

1Here we omit the superscript j for simplicity
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2.1. The continuity estimate. Notice that condition (2.7) is implied by

(2.10) ‖[A(t)−A(τ)]A−1(τ)‖ . |t− τ |γ , t, τ ∈ [0, T ], γ ∈ (0, 1).

This simplification is explained in Section 3 of Friedman [5].
Consider the identity[

A(t)−A(τ)
]
A−1(τ) =

[
gj(t)(−4)

(
gj(t) ·

)
− gj(τ)(−4)

(
gj(τ) ·

)]
◦Ψ ◦ Φ,

where we set

Ψ def= g−1
j (τ)(−4)−1

(
g−1

j (τ) ·
)
,

Φ def= gj(τ)(−4)
(
gj(τ) ·

)
◦
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1

.

Thus Φ is clearly L2-bounded. Then we decompose

−
[
A(t)−A(τ)

]
A−1(τ) = gj(t)4

(
[gj(t)− gj(τ)]g−1

j (τ)4−1
(
g−1

j (τ) ·
))
◦ Φ

+[gj(t)− gj(τ)]4
(
gj(τ)g−1

j (τ)4−1
(
g−1

j (τ) ·
))
◦ Φ.(2.11)

We estimate the two terms on the right separately. The second term simplifies to

(2.12) [gj(t)− gj(τ)]
(
g−1

j (τ) ·
))
◦ Φ.

We decompose the first term in (2.11) further into

gj(t)4
(
[gj(t)− gj(τ)]g−1

j (τ)4−1
(
g−1

j (τ) ·
))
◦ Φ

=
(
gj(t)[gj(t)− gj(τ)]g−2

j (τ) ·
)
◦ Φ(2.13)

+2gj(t)∇
(
[gj(t)− gj(τ)]g−1

j (τ)
)
· ∇4−1

(
g−1

j (τ) ·
)
◦ Φ(2.14)

+gj(t)4
(
[gj(t)− gj(τ)]g−1

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ.(2.15)

Thus to prove (2.10) it suffices to estimate (2.12) - (2.15).
We will now show that we can estimate (2.12) and (2.13) in a similar way. In

particular, because of the L2(R3) boundedness of Φ, it suffices to establish

‖[gj(t)− gj(τ)]g−1
j (τ)‖L∞(R3) max{1, ‖gj(t)g−1

j (τ)‖L∞} . |t− τ |γ , γ ∈ (0, 1).

Note that u(j−1) will satisfy (2.4) by the induction assumption which yields from
(2.8) that ‖gj(t)g−1

j (τ)‖L∞(R3) . 1. We thus reduce to showing that

(2.16)
∣∣〈x〉[(−4)−1u(j−1)(t, x)− (−4)−1u(j−1)(τ, x)

]∣∣ . |t− τ |γ .

Both (2.12) and (2.13) will hold in this case. Note that without loss of generality
below we can assume that |t− τ | ≤ 1 (since we are proving local existence).

Pick some β > 0. Recalling (2.3) with u = u(j−1), we can write

(−4)−1u(j−1)(t, x) =
1

4π|x|

∫
χ|t−τ |β≤|y|≤|x|u

(j−1)(t, y) dy

+
∫

χ|y|≥max{|t−τ |β ,|x|}
u(j−1)(t, y)

4π|y|
dy

+ O(〈x〉−1|t− τ |
β
2 ‖u(j−1)(t)‖L2(R3)).

where χa≤·≤b = φ( |y|a )−φ( |y|b ), and χ|y|≥a = φ( |y|a ) for φ(x) a smooth cutoff which
equals 1 for |x| ≥ 2 and vanishes identically for |x| ≤ 1. Note that the O(·) terms
result from applying Cauchy-Schwartz to the terms which were not written.

Then we obtain

(−4)−1u(j−1)(t, x)− (−4)−1u(j−1)(τ, x) = I1 + I2 + I3.
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Here

I1 =
∫

χ|y|≥max{|t−τ |β ,|x|}
[u(j−1)(t, y)− u(j−1)(τ, y)]

4π|y|
dy,

I2 =
1

4π|x|

∫
χ|t−τ |β≤|y|≤|x|[u

(j−1)(t, y)− u(j−1)(τ, y)] dy,

I3 =O
(
〈x〉−1|t− τ |

β
2

{
‖u(j−1)(t)‖L2(R3) + ‖u(j−1)(τ)‖L2(R3)

})
.

Now we refer to the equation defining u(j−1)(t, ·) in (2.5), whence we get

u(j−1)(t, ·)−u(j−1)(τ, ·) =
∫ τ

t

[
(−4)−1u(j−2)(s, ·)4u(j−1)(s, ·)+α

(
u(j−2)(s, ·)

)2]
ds.

Thus we obtain the identity

I1 =
∫ τ

t

∫
χ|y|≥max{|t−τ |β ,|x|}

(−4)−1u(j−2)(s, y)4u(j−1)(s, y)
4π|y|

dyds

+
∫ τ

t

∫
χ|y|≥max{|t−τ |β ,|x|}

α
(
u(j−2)(s, y)

)2
4π|y|

dyds,

and similarly for I2.
We will use the following general monotonicity estimate. Suppose that u(x) ≥ 0

is any radial monotonically decreasing function. Further assume that∫ r0

0

u(r)r2dr ≤ D3.

Then by monotonicity

(2.17) u(r0) ≤
3D3

r3
0

.

We will use this estimate several times below.
With (2.17) applied to u(j−2), we have that |u(j−2)(t, x)| . |x|−3. Using this as

well as performing integrations by parts, we obtain

|I1| . |t− τ |1−4β . |t− τ |1−4β〈x〉−1,

and similarly for I2. We conclude that

(−4)−1u(j−1)(t, x)− (−4)−1u(j−1)(τ, x) = O
(
|t− τ |1−4β〈x〉−1 + 〈x〉−1|t− τ |

β
2
)
,

where the implicit constant depends on ‖u(j−1)‖X + ‖u(j−2)‖X . Picking β < 1
4 , we

obtain (2.16) with γ = min{1− 4β, β
2 }. This proves the (2.16) and hence it proves

the L2 operator bound for (2.12) and (2.13).
We prove next the L2 bound for (2.14). Decompose this term further as

2gj(t)∇
(
[gj(t)− gj(τ)]g−1

j (τ)
)
· ∇4−1

(
g−1

j (τ) ·
)
◦ Φ

= gj(t)
[
g−1

j (t)∇(−4)−1u(j−1)(t, ·)− g−1
j (τ)∇(−4)−1u(j−1)(τ, ·)

]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

− gj(t)
(
[gj(t)− gj(τ)]∇4−1u(j−1)(τ)g−3

j (τ)
)
· ∇4−1

(
g−1

j (τ) ·
)
◦ Φ
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We estimate the first term on the right, the second being more of the same. Split
it into

gj(t)
[
g−1

j (t)∇(−4)−1u(j−1)(t, ·)− g−1
j (τ)∇(−4)−1u(j−1)(τ, ·)

]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

=
[
∇(−4)−1u(j−1)(t, ·)−∇(−4)−1u(j−1)(τ, ·)

]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

+ g−1
j (τ)

[
(gj(τ)− gj(t)∇(−4)−1u(j−1)(τ, ·)

]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

(2.18)

Commence with the first term on the right: as before, the trick consists in splitting
into a region of small |x| and one of large |x|: for β > 0 to be determined, write[
∇(−4)−1u(j−1)(t, ·)−∇(−4)−1u(j−1)(τ, ·)

]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

=
x

4π|x|3

∫
|y|≤|x|

χ|y|.|t−τ |β [u(j−1)(t, y)− u(j−1)(τ, y)] dy
]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

+
x

4π|x|3

∫
|y|≤|x|

χ|y|&|t−τ |β [u(j−1)(t, y)− u(j−1)(τ, y)] dy
]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ

Then note that since∣∣(g−1
j (τ)∇4−1

(
g−1

j (τ) ·
)
◦ Φ
)
(ũ)
∣∣(x) . max{|x|− 1

2 , |x| 12 }‖ũ‖L2 ,

we get∣∣ x

4π|x|3

∫
|y|≤|x|

(
χ|y|.|t−τ |β [u(j−1)(t, y)− u(j−1)(τ, y)] dy

]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ
)
(ũ)
∣∣

. min{|x|− 5
4 , |x|− 3

2 }|t− τ |
β
4 ‖ũ‖L2

This unfortunately fails logarithmically to be in L2(R3). To remedy this, note that
for radial ũ ∈ L2(R3), we get due to Newton’s formula

χ|x|∼2k

(
g−1

j (τ)∇4−1
(
g−1

j (τ)ũ
))

(x) . 2
k
2
[∑

j≤k

2
3
2 (j−k)‖χ|x|∼2j ũ‖L2+2−

3k
2 ‖χ|x|.1ũ‖L2

]
where j, k ∈ N. Then note that

‖
∑
k≥0

|x|−2χ|x|∼2k

(
g−1

j (τ)∇4−1
(
g−1

j (τ)ũ
))
‖2L2

.
∑
k≥0

[∑
j≤k

2
3
2 (j−k)‖χ|x|∼2j ũ‖L2 + 2−

3k
2 ‖χ|x|.1ũ‖L2

]2
. ‖ũ‖2L2

We thus get

‖ x

4π|x|3

∫
|y|≤|x|

χ|y|.|t−τ |β [u(j−1)(t, y)− u(j−1)(τ, y)] dy
]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ‖

. |t− τ |
β
4
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On the other hand, for the second term above, we again use the equation satisfied
by u(j−1), which furnishes

x

4π|x|3

∫
|y|≤|x|

χ|y|&|t−τ |β [u(j−1)(t, y)− u(j−1)(τ, y)] dy
]

=
x

4π|x|3

∫ τ

t

∫
|y|≤|x|

χ|y|&|t−τ |β [(−4)−1u(j−2)(τ, ·)4u(j−1)(τ, ·) + α
(
u(j−2)(τ, ·)

)2] dyds
]
,

whence we have (with ‖.‖ denoting L2-operator norm)

‖ x

4π|x|3

∫
|y|≤|x|

χ|y|&|t−τ |β [u(j−1)(t, y)− u(j−1)(τ, y)] dy
]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ‖

. |t− τ |1−2β

In summary, we obtain

‖
[
∇(−4)−1u(j−1)(t, ·)−∇(−4)−1u(j−1)(τ, ·)

]
·g−1

j (τ)∇4−1
(
g−1

j (τ)·
)
◦Φ‖ . |t−τ |γ

with γ = min{β
4 , 1− 2β} where we take β < 1

2 .
The second term in (2.18) on the other hand can be estimated by using∣∣g−1

j (τ)[(gj(τ)− gj(t)]
∣∣ . |t− τ |γ

with γ > 0 as in the bound for (2.13), and as before

‖∇(−4)−1u(j−1)(τ, ·)
]
· g−1

j (τ)∇4−1
(
g−1

j (τ) ·
)
◦ Φ‖ . 1

This completes the L2 bound for (2.14).
Lastly we prove the L2 operator bound for (2.15). We decompose it into

gj(t)4
(
[gj(t)− gj(τ)]g−1

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

= gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−3

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

+ gj(t)
(
[gj(t)− gj(τ)]

(
∇(−4)−1u(j−1)

)2
g−5

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

+ gj(t)
(
∇[gj(t)− gj(τ)] · ∇(−4)−1u(j−1)(τ)g−3

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

+ gj(t)
(
4[gj(t)− gj(τ)]g−1

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

(2.19)

First term on right hand side of (2.19). Here we need to exploit the precise structure
of

Φ = gj(τ)(−4)
(
gj(τ) ·

)
◦
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1

Hence we get for ũ ∈ L2(R3)(
gj(t)

(
[gj(t)− gj(τ)]u(j−1)g−3

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ
)
(ũ)

= gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−2

j (τ)
)
·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

= χ|x|.1gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−2

j (τ)
)
·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

+ χ|x|&1gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−2

j (τ)
)
·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

The second term here can be immediately estimated since

‖χ|x|&1gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−2

j (τ)‖L∞x . |t− τ |γ
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for γ > 0 as in (2.13), and hence

‖χ|x|&1gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−2

j (τ)
)
·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)‖L2

. |t− τ |γ‖
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)‖L2 . |t− τ |γ‖ũ‖L2

For the first term above, denoting v = χ|x|.1

(
gj(τ)(−4)

(
gj(τ)·

)
+I
)−1(ũ), observe

that by elliptic regularity theory we have

‖v‖W 2,2 . ‖ũ‖L2 ,

whence we have

‖χ|x|.1gj(t)
(
[gj(t)− gj(τ)]u(j−1)g−2

j (τ)
)
·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)‖L2

. ‖gj(t)
(
[gj(t)− gj(τ)]g−2

j (τ)‖L∞‖u(j−1)‖L2‖ũ‖L2 . |t− τ |γ‖ũ‖L2

Second term on right hand side of (2.19). Write this, applied to ũ ∈ L2(R3), as

gj(t)
(
[gj(t)− gj(τ)]

(
∇(−4)−1u(j−1)

)2
g−4

j (τ) ·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

= χ|x|.1gj(t)
(
[gj(t)− gj(τ)]

(
∇(−4)−1u(j−1)

)2
g−4

j (τ) ·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

+ χ|x|&1gj(t)
(
[gj(t)− gj(τ)]

(
∇(−4)−1u(j−1)

)2
g−4

j (τ) ·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

For the first term on the right, we have

χ|x|.1

(
∇(−4)−1u(j−1)

)2 ∼ χ|x|.1|x|−1

in light of Newton’s formula (2.3), Holder’s inequality and the fact that u(j−1) ∈
L2(R3). Then reasoning as for the first term of (2.19), we obtain

‖χ|x|.1gj(t)
(
[gj(t)− gj(τ)]

(
∇(−4)−1u(j−1)

)2
g−4

j (τ) ·
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)‖L2

. |t− τ |γ‖
(
∇(−4)−1u(j−1)

)2‖L2‖
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)‖L∞

. |t− τ |γ‖ũ‖L2

For the term

χ|x|&1gj(t)
(
[gj(t)−gj(τ)]

(
∇(−4)−1u(j−1)

)2
g−4

j (τ) ·
(
gj(τ)(−4)

(
gj(τ) ·

)
+I
)−1(ũ),

simply use that
‖χ|x|&1

(
∇(−4)−1u(j−1)

)2‖L∞ . 1

Third term of right hand side of (2.19). Write it (applied to ũ ∈ L2(R3)) as

gj(t)
[
g−1

j (t)∇(−4)−1uj(t)− g−1
j (τ)∇(−4)−1uj(τ)

]
· ∇(−4)−1u(j−1)(τ)g−2

j (τ)
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

=
[
∇(−4)−1uj(t)−∇(−4)−1uj(τ)

]
· ∇(−4)−1u(j−1)(τ)g−2

j (τ)
(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

+ gj(t)[g−1
j (t)− g−1

j (τ)]∇(−4)−1uj(τ)

· ∇(−4)−1u(j−1)(τ)g−2
j (τ)

(
gj(τ)(−4)

(
gj(τ) ·

)
+ I
)−1(ũ)

For both of these one splits into the regions |x| . 1, |x| & 1, and one further
decomposes the integrals giving ∇(−4)−1uj(t) − ∇(−4)−1uj(τ) into the regions
|y| . |t− τ |β , |y| & |t− τ |β . In the region |x| . 1, one places(

gj(τ)(−4)
(
gj(τ) ·

)
+ I
)−1(ũ)
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into L∞ and the remaining product directly into L2, as in our estimates for (2.14).
In the region |x| & 1, one easily checks directly that

‖χ|x|&1

[
∇(−4)−1uj(t)−∇(−4)−1uj(τ)

]
· ∇(−4)−1u(j−1)(τ)g−2

j (τ)‖L∞ ,

. |t− τ |γ

‖χ|x|&1gj(t)[g−1
j (t)− g−1

j (τ)]∇(−4)−1uj(τ) · ∇(−4)−1u(j−1)(τ)g−2
j (τ)‖L∞ . |t− τ |γ

from which the desired estimate easily follows.
The fourth term of (2.19). We expand it into

gj(t)
(
4[gj(t)− gj(τ)]g−1

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

= [u(j−1)(t, ·)− u(j−1)(τ, ·)]]g−1
j (τ)

)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ

+ . . .

where the terms . . . can be treated like the preceding terms and are omitted. The
first term on the right appears to require a somewhat different method, as we no
longer average the difference term [u(j−1)(t, ·)− u(j−1)(τ, ·)] over x. We proceed in
a number of steps, taking advantage of frequency localization: observe that due to
the non-increasing nature of u(j−1), as well as radiality, we have (for some β1 > 0
to be chosen)

‖∇
[
χ|t−τ |−β1&|x|&|t−τ |β1 u(j−1)(τ, ·)

]
‖L1 . |t− τ |−

7β1
2 , s ∈ [0, T ]

Now let P<a, P≥b etc be standard Littlewood-Paley frequency cutoffs localizing to
frequencies . 2a, & 2b, respectively. Then we have

‖P≥−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 u(j−1)(τ, ·)

]
‖L1 . |t− τ |β2− 7β1

2

Interpolating this with the bound (using radiality and monotonicity of u(j−1))

‖P≥−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 u(j−1)(τ, ·)

]
‖L∞ . |t− τ |−

3β1
2 ,

we get

(2.20) ‖P≥−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 u(j−1)(τ, ·)

]
‖L2 . |t− τ |

β2
2 −

5β1
2

In order to use this, we decompose (here again ũ ∈ L2(R3))

(
[u(j−1)(t, ·)− u(j−1)(τ, ·)]g−1

j (τ)
)
· 4−1

(
g−1

j (τ) ·
)
◦ Φ
)
(ũ)

= χ|x|&|t−τ |−β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]
)(

gj(τ)(−4)gj(τ) + I
)−1

ũ

+ χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]
)(

gj(τ)(−4)gj(τ) + I
)−1

ũ

+ χ|x|.|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]
)(

gj(τ)(−4)gj(τ) + I
)−1

ũ

(2.21)

For the first term on the right, use

‖χ|x|&|t−τ |−β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]
)(

gj(τ)(−4)gj(τ) + I
)−1

ũ‖L2

. ‖χ|x|&|t−τ |−β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]‖L∞‖
(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L2

. |t− τ |3β1‖ũ‖L2

(2.22)
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On the other hand, for the last term above, we use Holder’s inequality and L2+-
control: We have

‖χ|x|.|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]
)(

gj(τ)(−4)gj(τ) + I
)−1

ũ‖L2

. |t− τ |νβ1‖u(j−1)(t, ·)− u(j−1)(τ, ·)‖L2+‖χ|x|.1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L∞

. |t− τ |νβ1‖u(j−1)(t, ·)− u(j−1)(τ, ·)‖L2+‖ũ‖L2 . |t− τ |νβ1‖ũ‖L2 .

We conclude that in (2.21), we have reduced to estimating the middle term on the
right hand side, for which (2.20) will come handy. Write

χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]
)(

gj(τ)(−4)gj(τ) + I
)−1

ũ

= P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
· χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ

+ P≥−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
· χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ

(2.23)

The second term on the right can be immediately estimated using (2.20), as well
as the following bound resulting from standard elliptic estimates:

‖χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L∞ . |t− τ |−2β1‖ũ‖L2

We thus obtain

‖P≥−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
· χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L2

. ‖P≥−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
‖L2

· ‖χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L∞

. |t− τ |
β2
2 −

9β
2 ‖ũ‖L2 ,

which yields the desired bound provided

9β1 < β2

We have now reduced to estimating the first term on the right hand side of (2.23),
for which we use the equation satisfied by u(j−1).
We start out by estimating

P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
for which we make the following Claim: we have the bound

‖P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
‖L∞ . |t− τ |1− 7

2 β2

To see this, we use a bit of Littlewood-Paley calculus: write

P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
= P<−β2 log2 |t−τ |

[
χ|t−τ |−β1&|x|&|t−τ |β1 P<−β2 log2 |t−τ |+10[u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
+

∑
l≥−β2 log2 |t−τ |+10

P<−β2 log2 |t−τ |
[
PIl

(
χ|t−τ |−β1&|x|&|t−τ |β1

)
Pl[u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
,
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where we let PIl

def=
∑

a∈[l−5,l+5] Pa. Thus we are led to bound the expressions

P<l[u(j−1)(t, ·)− u(j−1)(τ, ·)],
which we do by expanding

P<l[u(j−1)(t, ·)− u(j−1)(τ, ·)]

=
∫ t

τ

P<l

[
(−4)−1(u(j−2))4u(j−1) + α

(
u(j−2)

)2]
ds

But then using the fact that the operators P<l are given by smooth convolution
kernels with bounded L1-mass (independently of l), we easily infer∣∣ ∫ t

τ

P<l

[
(−4)−1(u(j−2))4u(j−1) + α

(
u(j−2)

)2]
ds
∣∣

. |t− τ |2 7
2 l[‖u(j−2)‖2L1∩L2 + ‖u(j−1)‖2L1∩L2 ] . |t− τ |2 7

2 l

Applying this above, we deduce the bound

‖P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 P<−β2 log2 |t−τ |+10[u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
‖L∞

. |t− τ |1− 7
2 β2

Furthermore, using that for 2l >> |t− τ |−β1 , we have for any N ≥ 1

‖PIl

(
χ|t−τ |−β1&|x|&|t−τ |β1

)
‖L∞ .N

[ 1
|t− τ |β12l

]N
,

we can estimate (for l ≥ −β2 log2 |t− τ |+ 10)

‖P<−β2 log2 |t−τ |
[
PIl

(
χ|t−τ |−β1&|x|&|t−τ |β1

)
Pl[u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
‖L∞

. |t− τ |
[ 1
|t− τ |β12l

]N2
7
2 l,

and summing over l ≥ −β2 log2 |t− τ |+10 results in an upper bound (better than)
|t − τ |1− 7

2 β2 , which establishes the above Claim. We can estimate the first term
on the right hand side of (2.23) by

‖P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
· χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L2

. ‖P<−β2 log2 |t−τ |
[
χ|t−τ |−β1&|x|&|t−τ |β1 ([u(j−1)(t, ·)− u(j−1)(τ, ·)]

]
‖L∞

· ‖χ̃|x|.|t−τ |−β1

(
gj(τ)(−4)gj(τ) + I

)−1
ũ‖L2

. |t− τ |1− 7
2 β2‖ũ‖L2

whence we obtain the desired bound if β2 < 2
7 . Except for estimating terms similar

to those treated further above, we have now estimated estimated the fourth term
of (2.19), which completes case (2.15).

The estimates in (2.13)-(2.15) in turn establish the desired Holder estimate (2.7)
for suitable γ > 0. In particular, we have verified all the key properties which
ensure the existence of the fundamental solution U(t, τ) associated with A(t).

Remark 2.3. We make the important observation that while the implicit constants
in this section depend on the constants Dj , one can in fact make them independent
of the Dj by choosing the time interval sufficiently small (depending on the Dj).
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To see this, it suffices to shrink the Holder exponent a bit. This has the important
consequence that all estimates flowing from Friedman’s theory for the parametrix
U(t, s) are independent of the Dj as well.

2.2. Obtaining control over u(j). We re-formulate (2.9) as an integral equation:

ũ(j)(t, x) = U(t, 0)ũ0 +
∫ t

0

U(t, s)

[
−∂sgj

gj
ũ(j)(s, x) + αes

g2
j−1

gj

(
ũ(j−1)(s, x)

)2
]

ds,

which follows from Duhamel’s formula. Here we have ũ0 =
[
(−4)−1u0

]− 1
2 u0. Note

that the right hand side depends linearly on ũ(j), and we will apply a bootstrap
argument to control this term. Alternatively, one could run a secondary iteration
to construct ũ(j). We shall prove L2-based estimates for ũ(j), and then use a direct
argument to establish the remaining L1, L2+-bounds. In the immediately following,
we shall derive an a priori bound on

(2.24) ‖ũ(j)‖Z
def= sup

t∈[0,T ]

[
‖ũ(j)(t)‖L2(R3) + t

1
2 ‖〈x〉− 1

2∇ũ(j)(t)‖L2(R3)

]
,

assuming inductively the following bound (for D5 > 0)

‖ũ(k)‖Z ≤ D5, k = 0, 1, . . . , j − 1,

in addition to the remaining bounds stated in the Lemma 2.2.
Observe that Sobolev’s embedding gives

t
1
2 ‖χ|x|.1u

(j)‖L6(R3) . ‖ũ(j)‖Z .

Now we will estimate each of the terms individually.

(ii1) Estimating the expression U(t, 0)ũ0. Observe that due to radiality and
monotonicity, as in (2.17) and (2.4), we get

‖ũ0‖L2(R3) . ‖〈x〉 1
2 u0‖L2(R3) . ‖u0‖L2(R3) + ‖u0‖L1(R3).

Further, due to the L2(R3)-boundedness of U(t, 0), we achieve

‖U(t, 0)ũ0‖L2 . ‖ũ0‖L2 . ‖u0‖L2 + ‖u0‖L1 .

According to Remark 2.3, the implied constant here may be assumed to be inde-
pendent of the Dj ( at the cost of choosing T small enough). Also, due to the
operator bound ‖A(t)U(t, 0)‖ . 1

t and an interpolation type argument, we get

‖〈x〉− 1
2∇U(t, 0)ũ0‖L2 .

1
t

1
2
‖ũ0‖L2 ,

whence ‖U(t, 0)ũ0‖Z . ‖u0‖L2(R3) + ‖u0‖L1(R3). Indeed, observe that

〈gj∇U(t, 0)ũ0, gj∇U(t, 0)ũ0〉 =〈[gj ,∇]U(t, 0)ũ0, gj∇U(t, 0)ũ0〉
+ 〈gj∇U(t, 0)ũ0, [gj ,∇]U(t, 0)ũ0〉
+ 〈[∇, gj ]U(t, 0)ũ0, [gj ,∇]U(t, 0)ũ0〉
+ 〈∇gjU(t, 0)ũ0,∇gjU(t, 0)ũ0〉,

and we easily get∣∣〈[gj ,∇]U(t, 0)ũ0, gj∇U(t, 0)ũ0〉
∣∣ ≤ ‖[gj ,∇‖L∞‖U(t, 0)ũ0‖L2‖gj∇U(t, 0)ũ0‖L2∣∣〈[∇, gj ]U(t, 0)ũ0, [gj ,∇]U(t, 0)ũ0〉

∣∣ ≤ ‖[∇, gj ]‖2L∞‖U(t, 0)ũ0‖2L2
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One concludes from the preceding that

〈gj∇U(t, 0)ũ0, gj∇U(t, 0)ũ0〉 . ‖[∇, gj ]‖2L∞‖ũ0‖2L2 + ‖A(t)U(t, 0)ũ0‖L2‖ũ0‖L2

According to remark 2.3, the implied constant in this inequality is independent of
the Dj ; furthermore, we get

‖A(t)U(t, 0)ũ0‖L2‖ũ0‖L2 . ‖ũ0‖2L2

where the implied constant may be assumed independent of the Dj . But then we
get

‖gj∇U(t, 0)ũ0‖L2 . t−
1
2 ‖ũ0‖L2 [1 + t

1
2 ‖[∇, gj ]‖L∞ ]

Finally, we have

gj &
1

〈x〉 1
2

where, using an argument as in (2.6), we may assume that the implied constant is
independent of the Dj on [0, T ] for T small enough. We infer

t
1
2 ‖〈x〉− 1

2∇U(t, 0)ũ0‖L2 . ‖ũ0‖L2 ,

with implied constant independent of the Dj .

(ii2) Estimating the term
∫ t

0
U(t, s)∂sgj

gj
ũ(j) ds. Recalling the definition of gj , we

have ∂sgj

gj
= 1

2
(−4)−1∂su(j−1)

(−4)−1u(j−1) . Then we use the equation (2.5) satisfied for u(j−1) to
see that what we need to do is estimate∫ t

0

U(t, s)

{
(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−2)

)2]
(−4)−1u(j−1)

ũ(j)

}
(s, x) ds,

where U(t, s) acts on the entire expression to its right, of course. To estimate the
integrand observe that by Newton’s formula (2.3) we obtain

(−4)−1
[
(−4)−1u(j−2)4u(j−1)

]
= − 1

4π|x|

∫
|y|≤|x|

∇(−4)−1u(j−2) · ∇u(j−1) dy

−
∫
|y|>|x|

∇
[

1
4π|y|

(−4)−1u(j−2)

]
· ∇u(j−1) dy.

Furthermore we have

‖〈x〉
|x|

∫
|y|≤|x|

∇(−4)−1u(j−2) · ∇u(j−1) dy‖L∞ . ‖∇u(j−1)‖L2 [‖u(j−2)‖L2 + ‖u(j−2)‖L1 ],

‖〈x〉min{|x| 12+, 1}
∫
|y|>|x|

∇
[ 1
|y|

(−4)−1u(j−2)
]
· ∇u(j−1) dy‖L∞

. ‖∇u(j−1)‖L2 [‖u(j−2)‖L2 + ‖u(j−2)‖L1 ],

as follows by a straightforward application of Holder’s inequality. Furthermore, we
have

‖〈x〉(−4)−1
(
u(j−2)

)2‖L∞ . ‖u(j−2)‖2L2∩L4
|x|.1

.
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Using the bounds (2.2) for u(j−1) we infer

‖
(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−2)

)2]
(−4)−1u(j−1)

ũ(j)(s, ·)‖L2

. t−
7
8−[‖ũ(j)‖L2 + t

1
2 ‖χ|x|.1ũ

(j)‖L6 ]
[
t

1
2 ‖∇u(j−1)‖L2

]
‖u(j−2)‖L2∩L1

+ t−
3
4 [‖u(j−2)‖L2 + t

1
2 ‖χ|x|.1u

(j−2)‖L6 ]2‖ũ(j)‖L2 .

We conclude that

‖
∫ t

0

U(t, s)
(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−2)

)2]
(−4)−1u(j−1)

ũ(j)(s, ·) ds‖L2

.
( ∫ t

0

s−(1−) ds
)
‖ũ(j)‖Z

[ j−1∑
k=j−2

‖ũ(k)‖2Z∩L1

]
, t ∈ [0, T ],

and further

t
1
2 ‖〈x〉− 1

2∇
∫ t

0

U(t, s)
(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−2)

)2]
(−4)−1u(j−1)

ũ(j)(s, ·) ds‖L2

.
(
t

1
2

∫ t

0

(t− s)−
1
2 s−(1−) ds

)
‖ũ(j)‖Z

[ j−1∑
k=j−2

‖ũ(k)‖2Z∩L1

]
, t ∈ [0, T ].

Choosing T small enough, we then obtain

‖
∫ t

0

U(t, s)
(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−2)

)2]
(−4)−1u(j−1)

ũ(j)(s, ·) ds‖Z � ‖ũ(j)‖Z .

This is the desired estimate for
∫ t

0
U(t, s)∂sgj

gj
ũ(j) ds.

(ii3) Estimating the term
∫ t

0
U(t, s)es g2

j−1
gj

(
ũ(j−1)

)2
ds. In this case, we split the

integrand into two parts:

es
g2

j−1

gj

(
ũ(j−1)

)2 = χ|x|.1e
s
g2

j−1

gj

(
ũ(j−1)

)2 + χ|x|&1e
s
g2

j−1

gj

(
ũ(j−1)

)2
.

Recall that from (2.4), we have es g2
j−1
gj

ũ(j−1) ≈ esgj−1ũ
(j−1) = u(j−1). Hence

recalling radiality and monotonicity, we have

‖χ|x|&1

g2
j−1

gj
e2s
(
ũ(j−1)

)2‖L2 . ‖ũ(j−1)‖L2‖u(j−1)‖L1

From here we easily obtain (here the implied constant may depend on the Dj)

‖
∫ t

0

U(t, s)χ|x|&1

g2
j−1

gj
e2s
(
ũ(j−1)

)2
ds‖Z . T [‖ũ(j−1)‖Z + ‖u(j−1)‖L1 ]2

and we can make this � D3 + D5 (as in the statement of Lemma 2.2) by picking
T small enough.

In the regime of |x| . 1, we apply the Holder inequality to achieve

‖χ|x|.1

g2
j−1

gj
e2s
(
ũ(j−1)(s, ·)

)2‖L2 . ‖χ|x|.1u
(j−1)(s, ·)‖2L4 . s−

3
4 ‖ũ(j−1)‖2Z .
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This also uses Sobolev’s embedding, whence we obtain (for T small enough, de-
pending on the Dj)

‖
∫ t

0

U(t, s)χ|x|.1

g2
j−1

gj
e2s
(
ũ(j−1)(s, ·)

)2
ds‖Z . T

1
4 ‖ũ(j−1)‖2Z , t ∈ [0, T ].

This completes the last desired estimate.
By combining the last three estimates, (ii1) - (ii3), we obtain

‖ũ(j)‖Z ≤ 1
2
‖ũ(j)‖Z + C1T

1
4 [D3 + D5]2 + C2‖u0‖L1∩L2 .

Thus if we pick D3 � D5 suitably large with respect to ‖u0‖L1∩L2 and then T
small enough, we recover the bound

‖ũ(j)‖Z < D5,

and via Sobolev’s embedding, this of course also gives

max
t∈[0,T ]

t
1
2 ‖χ|x|.1u

(j)(t, ·)‖L6 < D3.

Thus to complete the deduction of the bounds for the un-differentiated u(j), we
only need to recover the L1(R3) and L2+(R3)-bounds.

For the L1(R3) bounds we revert to the original equation for u(j) as in (2.5).
Integrating over R3 and by parts, we obtain

∂t

∫
R3

u(j) dx = −
∫

R3
u(j−1)u(j) dx + α

∫
R3

(
u(j−1)

)2
dx,

whence we have ∫
R3

u(j)(t, ·) dx ≤
∫

R3
u0 dx + αTD2

3,

from which the desired L1(R3) bound follows easily for T small enough.
Next, we study the a priori bound in L2+(R3). Writing 2+ = 2 + δ, we obtain∫
R3

∂tu
(j)
(
u(j)

)1+δ
dy =

∫
R3

(−4)−1u(j−1)∇ ·
[
∇u(j)

(
u(j)

)1+δ
]

dy

− (1 + δ)
∫

R3
(−4)−1u(j−1)|∇u(j)|2

(
u(j)

)δ
dy

+ α

∫
R3

(
u(j−1)

)2(
u(j)

)1+δ

≤ − 1
2 + δ

∫
R3
∇(−4)−1u(j−1) · ∇

(
u(j)

)2+δ
dy

+ α

∫
R3

(
u(j−1)

)2(
u(j)

)1+δ ≤ α

∫
R3

(
u(j−1)

)2(
u(j)

)1+δ
.

We have used

−
∫

R3
∇(−4)−1u(j−1) · ∇

(
u(j)

)2+δ
dy = −

∫
R3

u(j−1)
(
u(j)

)2+δ
dy ≤ 0.

We obtain∫
R3

(
u(j)

)2+δ(t, y) dy .
∫

R3
u2+δ

0 (y) dy +
∫ t

0

∫
R3

(
u(j−1)

)2(
u(j)

)1+δ
dyds.

In order to estimate the second integral we split the integrand as(
u(j−1)

)2(
u(j)

)1+δ = χ|x|&1

(
u(j−1)

)2(
u(j)

)1+δ + χ|x|.1

(
u(j−1)

)2(
u(j)

)1+δ
.
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For the first term, using the monotonicity as in (2.17), and interpolation we get∫ t

0

∫
R3

χ|x|&1

(
u(j−1)

)2(
u(j)

)1+δ
dyds ≤ t‖χ|x|&1

(
u(j−1)

)2‖L∞‖u(j)‖1+δ
L1∩L2 � D3,

provided we choose T small enough. For the second term, we use Holder to obtain∫ t

0

∫
R3

χ|x|.1

(
u(j−1)

)2(
u(j)

)1+δ
dyds .

∫ t

0

‖χ|x|.1u
(j−1)‖2L3+δ‖χ|x|.1u

(j)‖1+δ
L3+δ ds.

But again by Holder, we have (where k is either j or j − 1)

‖χ|x|.1u
(k)‖L3+δ . ‖χ|x|.1u

(k)‖1−γ
L2 ‖‖χ|x|.1u

(k)‖γ
L6 , γ = 3

(
1
2
− 1

3 + δ

)
.

Then with the inductive bounds for u(j−1), as well as the established bounds for
ũ(j), we achieve∫ t

0

∫
R3

χ|x|.1

(
u(j−1)

)2(
u(j)

)1+δ
dyds .

∫ t

0

s−
3(1+δ)

4 ds � D3,

provided we choose T small enough. This establishes the L2+(R3)-bound.

2.3. Monotonicity of u(j). The maximum principle implies that u(j) > 0 since it
solves (2.5). In the rest of this section, we will prove that u(j) is non-increasing.
We apply x · ∇x = r∂r, r = |x|, to the equation (2.5) to obtain

(−4)−1u(j−1)
{

(x · ∇x)4u(j)
}

+
{

(x · ∇x)(−4)−1u(j−1)
}
4u(j) − ∂t(x · ∇x)u(j)

= −2
{

α(x · ∇x)u(j−1)
}

u(j−1).

Then we look at the commutator, [A,B] = AB −BA, as follows

4u =
1
r
∂r(r∂ru) +

1
r
∂ru,

[x · ∇x,4]u = −2
r
∂r(r∂ru)− 2

r
∂ru.

Furthermore, due to radiality of u(j−1), we have from (2.3) that

(x · ∇x)(−4)−1u(j−1) = − 1
4πr

∫
|y|≤|x|

u(j−1)(t, y)dy.

We collect these last few calculations to obtain

(−4)−1u(j−1)4
{

(x · ∇x)u(j)
}
− (−4)−1u(j−1)

{
2
r
∂r(r∂ru

(j)) +
2
r
∂ru

(j)

}
−

(
1

4πr

∫
|y|≤|x|

u(j−1)dy

){
1
r
∂r(r∂ru

(j)) +
1
r
∂ru

(j)

}
− ∂t(x · ∇x)u(j)

= −2
{

α(x · ∇x)u(j−1)
}

u(j−1).

Here the key feature is that the coefficient of z = (r∂r)u(j−1) in the above is
strictly negative, while the right hand side is non-negative by assumption. Now by
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the maximal principle, the solution of

(−4)−1u(j−1)4z − (−4)−1u(j−1)

{
2
r
∂rz +

2
r2

z

}
−
( 1
4πr

∫
|y|≤|x|

u(j−1)dy
){1

r
∂rz +

1
r2

z

}
− ∂tz

= −2α
{

(x · ∇x)u(j−1)
}

u(j−1),

on BR = {x ∈ R3 | |x| ≤ R} with initial data

z(0, x) = (r∂r)
[
χ|x|≤R

2
(φR ∗ u0)

]
,

and boundary conditions z(t, ·)|∂BR
= 0, where φR is a standard mollifier with

limR→∞ φR ∗ u0 = u0 and χ|x|≤R
2

is a smooth truncation of the indicated region,
cannot attain a positive maximum. Hence the solution ũ(j),R of the problem

∂tũ
(j),R = (−4)−1u(j−1)4ũ(j),R + α

(
u(j−1)

)2
, ũ(j),R(0, ·) = χ|x|≤R

2
(φR ∗ u0),

with vanishing boundary values on ∂BR is non-increasing.
A simple limiting argument, using analogous bounds to those obtained in the

preceding subsections, then shows that u(j), being the limit of a sequence of non-
increasing functions, is itself non-increasing.

2.4. Controlling the elliptic operator: lower bound for (−4)−1u(j). In this
section we will prove the lower bound from (2.2) for u = u(j) as in

(2.25) (−4)−1u(j) >
D2

〈x〉
.

We begin with the assumption A0
def=
∫

r0<|x|<r−1
0

u0(x) dx > 0. Now choose a
smooth cutoff function χ(r) ∈ C∞

0 (R>0) which satisfies (0 < r0 < 1):

χ(r) =
{

0, r ≤ r0
2 , or r ≥ 2r−1

0 ,
1, r ∈ [r0, r

−1
0 ].

We may furthermore suppose that χ satisfies

χ(r) =

 e
− 1

r− r0
2 , r ∈ [ r0

2 , 3
4r0],

e
− 1

2r
−1
0 −r , r ∈ [ 54r−1

0 , 2r−1
0 ].

We abuse notation to write χ(|y|) = χ(y) for y ∈ R3. Then consider the function

f(t) def=
∫

R3
χ(y) u(j)(t, y) dy =

∫
r0
2 <|y|< 2

r0

χ(y) u(j)(t, y) dy.

We compute

f ′(t) =
∫

R3
χ(y)

[
(−4)−1u(j−1)4u(j) + α

(
u(j−1)

)2]
dy

=
∫

R3
χ(y)

[
α
(
u(j−1)

)2 − u(j−1)u(j)
]
dy

+ 2
∫

R3
∇yχ(y) · ∇y(−4)−1u(j−1)u(j) dy

+
∫

R3
4yχ(y)(−4)−1u(j−1)u(j) dy.
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By our choice of χ, and the positivity of u(j−1), u(j), we have

4yχ(y)(−4)−1u(j−1)u(j) + 2∇yχ(y) · ∇y(−4)−1u(j−1)u(j) > 0,

for
∣∣|y| − r0

2

∣∣� 1,
∣∣|y| − 2

r0

∣∣� 1, while we have∣∣4yχ(y)
∣∣+ ∣∣∇yχ(y)| .r0,δ χ(y),

for |y| ∈ [ r0
2 + δ, 2

r0
− δ] for some small δ > 0.

Using the radiality and monotonicity of u(j) and u(j−1) as in (2.17), we then
conclude that

f ′(t) ≥ −C(r0, D3)f(t), f(0) ≥ A0,

whence we get
f(t) ≥ e−C(r0,D3)T A0, t ∈ [0, T ].

In particular, from (2.3) we get

(−4)−1u(j)(t, x) ≥ 1
4π|x|

e−C(r0,D3)T A0, |x| > 2r−1
0 , t ∈ [0, T ].

Also, by monotonicity of (−4)−1u(j) with respect to |x|, we get

(−4)−1u(j)(t, x) ≥ 1
4π〈x〉

r0

2
e−C(r0,D3)T A0, |x| ≤ 2r−1

0 , t ∈ [0, T ].

Note that the factor 〈x〉 in the denominator is not needed in this last lower bound.
We can thus recover the bound (2.25) provided we have

D2 <
1
4π

r0

2
e−C(r0,D3)T A0.

This concludes our proof of (2.25).

Remark 2.4. The preceding proof reveals that in fact D2 can be chosen to be depend
only on r0,

∫
r0<|x|<r−1

0
u(x) dx, T , due to the monotonicity properties of u.

2.5. Higher derivative bounds. Here we prove the bounds on ∇αu(j), 0 ≤ |α| ≤
2, claimed in Lemma 2.2. Our point of departure is again the integral identity

ũ(j) = U(t, 0)ũ0 +
∫ t

0

U(t, s)
[
− ∂sgj

gj
ũj)(s, ·) + α

g2
j−1

gj
es
(
ũ(j−1)(s, ·)

)2]
ds,

whence we get
(2.26)

4ũ(j) = 4U(t, 0)ũ0 +
∫ t

0

4U(t, s)
[
− ∂sgj

gj
ũj)(s, ·) + α

g2
j−1

gj
es
(
ũ(j−1)(s, ·)

)2]
ds,

We start with the linear term v
def= 4U(t, 0)ũ0. Note that v satisfies the equation

∂tv = 4
(
gj4gj

)
u

where we put u = U(t, 0)ũ0. Expanding this out, we obtain

∂tv = gj4(gjv) + (4gj)4(gju) + 2∇gj · ∇4(gju) + 2gj4(∇gj · ∇u) + gj4(4gju),

whence
v(t, ·) = U(t, 0)v0

+
∫ t

0

U(t, s)
[
(4gj)4gju + 2∇gj · ∇4(gju) + 2gj4(∇gj · ∇u) + gj4(4gju)

]
ds
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We shall use the above to derive an a priori bound on ‖v‖Z , where ‖.‖Z is as above
in (2.24). Note that we have a schematic identity of the form

(4gj)4(gju) + 2∇gj · ∇4(gju) + 2gj4(∇gj · ∇u) + gj4(4gju)

=
∑

|α1|≤2,|α3|≤3
P3

j=1 |αj |=4

∇α1gj∇α2gj∇α3u

These estimates are fairly tedious but essentially straightforward. We treat here
the extreme cases |α3| = 0, |α3| = 3.

|α3| = 0. We can write this case as∑
|α1|≤2, |α1|+|α2|=4

∇α1gj∇α2g2u

We treat the cases |α1| = 2 and |α1| = 0, the remaining one being analogous. In
the former, we get (another schematic identity)

∇α1gj∇α2gju =∇α1(−4)−1u(j−1)∇α2(−4)−1u(j−1)g−2
j u

+
(
∇(−4)−1u(j−1)

)2
g−3

j

(
∇(−4)−1u(j−1)

)2
g−3

j u

+ . . .

where we have again omitted similar terms. For the first term, use

‖χ|x|&1〈x〉
1
2∇α1(−4)−1u(j−1)‖L∞ . 1,

whence we get

‖χ|x|&1∇α1(−4)−1u(j−1)∇α2(−4)−1u(j−1)g−2
j u‖L2 . ‖u‖L2 ,

while we also have

‖χ|x|.1〈x〉
1
2∇α1(−4)−1u(j−1)(t, ·)‖L4 . t−

3
8 ;

indeed, recall that ‖u(j−1)‖Z ≤ D5.
Next, by Sobolev’s embedding we have

‖u‖L∞ . ‖v‖L2 + ‖u‖L2 ,

whence we get

‖χ|x|.1∇α1(−4)−1u(j−1)∇α2(−4)−1u(j−1)g−2
j u‖L2

.
∏

k=1,2

‖χ|x|.1∇αk(−4)−1u(j−1)‖2L4(‖v‖L2 + ‖u‖L2) . t−
3
4 (‖v‖L2 + ‖u‖L2)

Next, for the term(
∇(−4)−1u(j−1)

)2
g−3

j

(
∇(−4)−1u(j−1)

)2
g−3

j u,

use
‖
(
∇(−4)−1u(j−1)

)2
g−3

j ‖L∞ . ‖u(j−1)‖2L4
|x|.1

∩L1 . t−
3
4

‖
(
∇(−4)−1u(j−1)

)2
g−3

j ‖L2 . ‖u(j−1)‖2L1∩L2

whence

‖
(
∇(−4)−1u(j−1)

)2
g−3

j

(
∇(−4)−1u(j−1)

)2
g−3

j u‖L2 . t−
3
4 (‖v‖L2 + ‖u‖L2)
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Next, if |α1| = 0, i.e. we have a term gj(∇α2gj)u with |α2| = 4, we can expand
schematically

∇α2gj = g−1
j ∇α2(−4)−1u(j−1) + . . . + g−7

j

(
∇(−4)−1u(j−1)

)4
where we omit ’intermediate’ terms. Then we estimate the contribution of the first
term by

‖χ|x|.1gjg
−1
j ∇α2(−4)−1u(j−1)u‖L2 . ‖χ|x|.1∇α2(−4)−1u(j−1)‖L4‖χ|x|.1u‖4

. t−
3
4 [4u(j−1)‖Z + ‖u(j−1)‖Z ]‖u‖Z

where we are invoking the bounds

‖χ|x|.1∇α2(−4)−1u(j−1)‖L4 . t−
3
8 [‖4u(j−1)‖Z + ‖u(j−1)‖Z ]

‖χ|x|&1gjg
−1
j ∇α2(−4)−1u(j−1)u‖L2 . ‖∇α2(−4)−1u(j−1)‖L2‖χ|x|&1u‖L∞

. ‖4u(j−1)‖Z + ‖u(j−1)‖Z

For the second term above, we have

χ|x|.1g
−7
j

(
∇(−4)−1u(j−1)

)4
. χ|x|.1|x|−

5
4 ‖u(j−1)‖3L2‖χ|x|.1u

(j−1)‖L4 ,

whence we obtain

‖χ|x|.1gj · g−7
j

(
∇(−4)−1u(j−1)

)4 · u‖L2 .‖χ|x|.1g
−7
j

(
∇(−4)−1u(j−1)

)4‖L2‖u‖L∞

. t−
3
8 ‖v‖L2

The contribution in the region |x| & 1 is again much simpler due to radiality. When
inserting the preceding estimates into the Duhamel formula, we can summarize
these estimates by

‖
∫ t

0

U(t, s)
[
∇α1gj∇α2gju

]
ds‖Z

.
∫ t

0

(1 + t
1
2 (t− s)−

1
2 )s−

3
4 [‖v(s, ·)‖Z + ‖4ũ(j−1)‖Z + 1] ds

. T
1
4 [‖v‖Z + ‖4ũ(j−1)‖Z + 1]

where the implied constant does not depend on ‖v‖Z or ‖4ũ(k)‖Z , k ≤ j − 1, but
only on the a priori bounds derived in Subsection 2.2.

|α3| = 3. We next treat the contribution of the expressions gj∇gj∇α3u with
|α3| = 3. This is schematically the same as ∇(−4)−1u(j−1)∇α3u. We write

∇(−4)−1u(j−1)∇α3u = χ|x|&1∇(−4)−1u(j−1)∇α3u + χ|x|.1∇(−4)−1u(j−1)∇α3u

For the first term, we can estimate

‖χ|x|&1∇(−4)−1u(j−1)∇α3u‖L2 . ‖〈x〉− 1
2∇4u‖L2 . t−

1
2 ‖v‖Z ,

while for the second term, we have

‖χ|x|.1∇(−4)−1u(j−1)∇α3u‖L2 . ‖χ|x|.1∇(−4)−1u(j−1)‖L∞‖χ|x|.1∇α3u‖L2 . t−
3
4 ‖v‖Z .
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Summarizing the preceding estimates, we have proved that

‖
∫ t

0

U(t, s)
∑

|α1|≤2,|α3|≤3
P3

j=1 |αj |=4

∇α1gj∇α2gj∇α3u ds‖Z

.
∫ t

0

(1 + t
1
2 (t− s)−

1
2 )s−

3
4 [‖v(s, ·)‖Z + ‖4ũ(j−1)‖Z + 1] ds

whence recalling the equation for Z stated further above, we get

‖v‖Z . ‖v0‖L2 + T
1
4 [‖v‖Z + ‖4ũ(j−1)‖Z + 1]

from which we get ‖v‖Z . ‖v0‖L2 + T
1
4 ‖4ũ(j−1)‖Z + 1; here the same remark

applies about the implied constant as before. In particular, recalling the equation
(2.26) for 4ũ(j), we have

‖4U(t, 0)ũ0‖Z . ‖ṽ0‖L2 + [T
1
4 ‖4ũ(j−1)‖Z + 1]‖ũ0‖L2

Next, consider the integral term in (2.26). Thanks to the immediately preceding,
we have

‖
∫ t

0

4U(t, s)
[
− ∂sgj

gj
ũj)(s, ·) + α

g2
j−1

gj
e2s
(
ũ(j−1)(s, ·)

)2]
ds‖Z

.
∫ t

0

‖4
[
− ∂sgj

gj
ũj)(s, ·) + α

g2
j−1

gj
e2s
(
ũ(j−1)(s, ·)

)2]‖L2 ds

+ [T
1
4 ‖4ũ(j−1)‖Z + 1]

∫ t

0

‖
[
− ∂sgj

gj
ũj)(s, ·) + α

g2
j−1

gj
e2s
(
ũ(j−1)(s, ·)

)2]‖L2 ds.

Here the second expression on the right is of course treated like in Subsection 2.2,
and so it suffices to consider the first expression on the right. We treat a number
of different contributions separately:

Contribution of 4
(∂sgj

gj
ũj)
)

= ∂sgj

gj
4ũ(j) +4

[∂sgj

gj

]
ũ(j) + 2∇

[∂sgj

gj

]
· ∇ũ(j). For

the first term on the right, use the estimates in case (ii2) in Subsection 2.2 to
conclude

‖∂sgj

gj
4ũ(j)(s, ·)‖L2

. t−
7
8 [‖4ũ(j)‖L2 + t

1
2 ‖χ|x|.14ũ(j)‖L6 ]

[
t

1
2 ‖∇u(j−1)‖L2

]
‖u(j−2)‖L2∩L1

+ t−
3
4 [‖u(j−2)‖L2 + t

1
2 ‖χ|x|.1u

(j−2)‖L6 ]2‖4ũ(j)‖L2

In particular, we get (for suitable ν > 0)

max
t∈[0,T ]

∫ t

0

‖∂sgj

gj
4ũ(j)(s, ·)‖L2 ds . T ν‖4ũ(j)‖Z

where the implied constant only depends on the a priori bounds on u(k), k ≤ j− 1,
derived in Subsection 2.2.
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Next, consider the contribution of4
[∂sgj

gj

]
ũ(j). This is again tedious but requires

no new ideas to estimate: decompose

4
[∂sgj

gj

]
ũ(j) =

(−4)−1u(j−2)4u(j−1) + α
(
u(j−1)

)2
(−4)−1u(j−1)

ũ(j)

+ 2
∇(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2][
(−4)−1u(j−1)

]2 · ∇(−4)−1u(j−1)ũ(j)

+ (−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]4[ 1
(−4)−1u(j−1)

]
ũ(j)

We estimate the first expression on the right, the second and third being more of
the same. For the first, write it as

(−4)−1u(j−2)4u(j−1) + α
(
u(j−1)

)2
(−4)−1u(j−1)

ũ(j)

= χ|x|.1

(−4)−1u(j−2)4u(j−1) + α
(
u(j−1)

)2
(−4)−1u(j−1)

ũ(j)

+ χ|x|&1

(−4)−1u(j−2)4u(j−1) + α
(
u(j−1)

)2
(−4)−1u(j−1)

ũ(j)

Estimate the first expression on the right via

‖χ|x|.1

(−4)−1u(j−2)4u(j−1) + α
(
u(j−1)

)2
(−4)−1u(j−1)

ũ(j)‖

. ‖4u(j−1)‖L4‖ũ(j)‖L4‖u(j−2)‖L2 + ‖u(j−1)‖L∞‖u(j−1)‖L4‖ũ(j)‖L4

. t−
3
4 ‖4u(j−1)‖Z

where the absolute constant only depends on the bounds established in Subsection
2.2. On the other hand, we can estimate

‖χ|x|&1

(−4)−1u(j−2)4u(j−1) + α
(
u(j−1)

)2
(−4)−1u(j−1)

ũ(j)‖L2

. ‖u(j−2)‖L1‖4u(j−1)‖L2‖χ|x|&1ũ
(j)‖L∞ + ‖χ|x|&1〈x〉

1
2 u(j−1)‖2L∞‖ũ(j)‖L2

. ‖4u(j−1)‖L2 + 1

Finally, we consider the contribution of the third term above, 2∇
[∂sgj

gj

]
· ∇ũ(j).

Write it as

∇(−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]
(−4)−1u(j−1)

· ∇ũ(j)

+
(−4)−1

[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2][
(−4)−1u(j−1)

]2 ∇(−4)−1u(j−1) · ∇ũ(j)
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We estimate the first term, the second being similar. Split it into

∇(−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]
(−4)−1u(j−1)

· ∇ũ(j)

= χ|x|.1

∇(−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]
(−4)−1u(j−1)

· ∇ũ(j)

+ χ|x|&1

∇(−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]
(−4)−1u(j−1)

· ∇ũ(j)

For the first term on the right, we get

‖χ|x|.1

∇(−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]
(−4)−1u(j−1)

· ∇ũ(j)‖L2

. ‖χ|x|.14u(j−1)‖L4‖u(j−2)‖L1∩L2‖∇u(j)‖L2 +
∑

α=0,2

‖4αu(j−1)‖L2‖u(j−1)‖L4 |∇u(j)‖L2

. t−
3
4
[
t

1
2 ‖〈x〉− 1

2∇4u(j−1)‖L2 + ‖4u(j−1)‖L2 + ‖u(j−1)‖L2

]
,

where the implied constant only depends on the bounds derived in Subsection 2.2.
Furthermore, we have

‖χ|x|&1

∇(−4)−1
[
(−4)−1u(j−2)4u(j−1) + α

(
u(j−1)

)2]
(−4)−1u(j−1)

· ∇ũ(j)‖L2

. ‖u(j−2)‖L1∩L2‖4u(j−1)‖L2‖∇ũ(j)‖L2

+ [‖4u(j−1)‖L2 + ‖u(j−1)‖L1 ]‖u(j−1)‖L1∩L4‖∇ũ(j)‖L2 . t−
3
4 (‖4u(j−1)‖L2 + 1)

This completes our estimation of ‖4
(∂sgj

gj
ũj)
)
‖L2 .

Contribution of α4
[ g2

j−1
gj

e2s
(
ũ(j−1)(s, ·)

)2]. Upon expanding, this results in a

number of terms, and in particular the expression g2
j−1
gj

e2s|∇ũ(j−1)|2(s, ·), where we

omit the constant α. Here we place both factors ∇ũ(j−1) into L4, taking advantage
of Gagliardo Nirenberg:

‖〈x〉− 1
2∇ũ(j−1)‖L4 . ‖〈x〉− 1

2∇ũ(j−1)‖
1
2
L∞‖〈x〉

− 1
2∇ũ(j−1)‖

1
2
L2

. [‖〈x〉− 1
2∇ũ(j−1)‖Lp + ‖〈x〉− 1

2∇2ũ(j−1)‖Lp ]
1
2 ‖〈x〉− 1

2∇ũ(j−1)‖
1
2
L2

for some p ∈ (3, 6). Further, we have

‖〈x〉− 1
2∇ũ(j−1)‖Lp . ‖ũ(j−1)‖

1
2−
L2 ‖4ũ(j−1)‖

1
2+

L2 + ‖〈x〉− 1
2 ũ(j−1)‖Lp

‖〈x〉− 1
2∇2u(j−1)‖Lp . ‖〈x〉− 1

2∇4u(j−1)‖
5
6+

L2 ‖〈x〉−
1
2 u(j−1)‖

1
6−
L2

+ ‖4u(j−1)‖
5
6+

L2 ‖u(j−1)‖
1
6−
L2 + ‖u(j−1)‖L2

Combining these estimates, we deduce the bound

‖〈x〉− 1
2∇ũ(j−1)(t, ·)‖2L4 . t−

11
12 [‖4ũ(j−1)‖L2 + t

1
2 ‖〈x〉− 1

2∇4ũ(j−1)‖L2 + 1]

The remaining terms in the expansion of α4
[ g2

j−1
gj

e2s
(
ũ(j−1)(s, ·)

)2] are treated like
the preceding terms and omitted.
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To summarize the preceding discussion, we obtain the following bound:

‖
∫ t

0

U(t, s)4
[
− ∂sgj

gj
ũj)(s, ·) + α

g2
j−1

gj
e2s
(
ũ(j−1)(s, ·)

)2]
ds‖Z

.
∫ t

0

s−(1−)[‖4ũ(j−1)‖L2 + s
1
2 ‖〈x〉− 1

2∇4ũ(j−1)‖L2 + 1] ds + T ν‖4ũ(j)‖Z ,

and furthermore, taking the supremum over t ∈ [0, T ], we obtain the bound (recall
(2.26) and the followig estimates)

‖4ũ(j)‖Z . T ν
[
‖4ũ(j)‖Z + ‖4ũ(j−1)‖Z

]
+ ‖4ũ0‖L2 + 1

where the implicit constant only depends on the bounds derived in Subsection 2.2.
We conclude that the bound

‖4ũ(j−1)‖Z ≤ D4

is recovered, provided D4 is large enough in relation to ‖4ũ0‖L2 and the a priori
bounds derived in Subsection 2.2, and T is small enough in relation to the a priori
bounds derived in Subsection 2.2. This completes the higher derivative bounds of
the lemma for |α| = 2, and the ones for |α| = 1 follow by interpolation. The proof
of Lemma 2.2 is finally completed.

2.6. Convergence of the u(j). In order to complete the proof of Proposition 2.1,
we need to show that the iterates u(j) constructed in Lemma 2.2 actually converge
to a local-in-time solution, on some slice [0, T̃ ]×R3. Recall that the interval [0, T ]
on which we proved a priori bounds on the iterates only depends on

‖u0‖X , r0,

∫
r0<|y|<r−1

0

u0 dy.

Yet for the proposition, we may work on [0, T̃ ] where T̃ > 0 depends in addition on
‖4u0‖L2 . Now consider (2.5) for the iterates j and j − 1. Subtracting (2.5) for j
with its counterpart for j − 1 we deduce the difference equation

∂t

[
u(j) − u(j−1)

]
= (−4)−1u(j−1)4

[
u(j) − u(j−1)

]
+ B(j),[

u(j) − u(j−1)
]
(0, ·) = 0.

Here we use the definition

B(j) def= 4u(j−1)
[
(−4)−1u(j−1) − (−4)−1u(j−2)

]
+ α

[(
u(j−1)

)2 − (u(j−2)
)2]

.

Proceeding as in the derivation of (2.9), we obtain

∂tD
(j) + A(t)D(j) = −∂tgj

gj
D(j) + e−tg−1

j B(j),

where D(j) def= e−tg−1
j

(
u(j) − u(j−1)

)
and we recall the definitions from (2.8).

Now, using Duhamel, we obtain the integral equation

D(j) =
∫ t

0

U(t, s)
{
−∂sgj

gj
D(j) + e−sg−1

j B(j)

}
ds.(2.27)

We now intend to use the a priori bounds derived in Section 2.2 through Section
2.5 to estimate the source terms on the right. Here the expression

e−tg−1
j 4u(j−1)

[
(−4)−1u(j−1) − (−4)−1u(j−2)

]
,
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appears somewhat delicate and requires us to iterate once more. We will use (2.4)
implicitly several times in the following developments.

Specifically, using (2.3), we write

e−tg−1
j 4u(j−1)

{
(−4)−1u(j−1) − (−4)−1u(j−2)

}
=e−tg−1

j 4u(j−1) 1
4π|x|

∫
|y|≤|x|

(
u(j−1)(t, y)− u(j−2)(t, y)

)
dy

+ e−tg−1
j 4u(j−1)

∫
|y|>|x|

(
u(j−1)(t, y)− u(j−2)(t, y)

)
4π|y|

dy.

Note that we have

‖e−tg−1
j 4u(j−1)

[ 1
4π|x|

∫
|y|≤|x|

(
u(j−1)(t, y)− u(j−2)(t, y)

)
dy‖L2

. ‖ 〈x〉1/24u(j−1)‖L2‖D(j−1)(t)‖L2 .

(2.28)

For the second term in the expansion above we further split

e−tg−1
j 4u(j−1)

∫
|y|>|x|

(
u(j−1)(t, y)− u(j−2)(t, y)

)
4π|y|

dy

=e−tg−1
j 4u(j−1)

∫
|y|>|x|

χ|y|.〈x〉

(
u(j−1)(t, y)− u(j−2)(t, y)

)
4π|y|

dy

+ e−tg−1
j 4u(j−1)

∫
|y|>|x|

χ|y|&〈x〉

(
u(j−1)(t, y)− u(j−2)(t, y)

)
4π|y|

dy.

For the first term on the right, we again have the same estimate (2.28). For the
second integral above involving the cutoff χ|y|&〈x〉, such an estimate unfortunately
fails logarithmically. Hence we go one step deeper into the iteration and replace∫

|y|>|x|
χ|y|&〈x〉

(
u(j−1)(t, y)− u(j−2)(t, y)

)
4π|y|

dy

=
∫ t

0

ds

∫
|y|>|x|

χ|y|&〈x〉
4j−1

j−2

(
(−4)−1u(k−1)4u(k) + α

(
u(k)

)2)
4π|y|

dy

where ∆j−1
j−2 indicates the difference of the expression for k = j−2, k = j−1. Then

using integration by parts, we get

∫ t

0

ds

∫
|y|>|x|

χ|y|&〈x〉
4j−1

j−2

(
(−4)−1u(k−1)4u(k)

)
|y|

dy

= −
∫ t

0

ds

∫
|y|>|x|

∇
[χ|y|&〈x〉

|y|
(−4)−1

(
4j−2

j−3u
(k)
)]
∇u(j−1) dy

−
∫ t

0

ds

∫
|y|>|x|

∇
[χ|y|&〈x〉

|y|
(−4)−1

(
u(j−2)

)]
∇4j−1

j−2u
(k) dy



30 J. KRIEGER AND R. M. STRAIN

The first term on the right is estimated by∣∣e−t

∫ t

0

ds

∫
|y|>|x|

∇
[χ|y|&〈x〉

|y|
(−4)−1

(
4j−2

j−3u
(k)
)]
∇u(j−1) dy

∣∣
. T̃

1
2
(

max
t∈[0, eT ]

t
1
2 ‖∇u(j−1)(t)‖L2

)[
‖D(j−2)(t)‖L2

+ ‖
∫
|y|≥|x|

χ|y|&|x|
u(j−2) − u(j−3)

4π|y|
dy‖L∞x

]
.

The second term above is estimated by

e−t

∫ t

0

ds

∫
|y|>|x|

∇
[χ|y|&〈x〉

|y|
(−4)−1

(
u(j−2)

)]
∇4j−1

j−2u
(k) dy

. T̃
1
2 ‖u(j−2)‖L∞s L1

x

[
max

t∈[0, eT ]
t

1
2 ‖〈x〉− 1

2∇D(j−1)(t)‖L2

]
.

Combining the preceding estimates, we easily deduce

‖e−tg−1
j 4u(j−1)

[
(−4)−1u(j−1) − (−4)−1u(j−2)

]
‖L2

+ ‖
∫
|y|>|x|

χ|y|&〈x〉

(
u(j−1)(s, y)− u(j−2)(s, y)

)
4π|y|

dy‖L∞x

.
[
‖D(j−1)‖Z + ‖D(j−2)‖Z

+ T̃
1
2 ‖
∫
|y|>|x|

χ|y|&〈x〉

(
u(j−2)(s, y)− u(j−3)(s, y)

)
4π|y|

dy‖L∞t,x([0, eT ]×R3).

(2.29)

The remaining terms in (2.27) are much more straightforward: we have∥∥∥e−tg−1
j α

[(
u(j−1)

)2 − (u(j−2)
)2]∥∥∥

L2(R3)

. ‖D(j−1)‖L2‖u(j−1) + u(j−2)‖L∞(R3)

. ‖D(j−1)‖L2 [‖u(j−1)‖H2 + ‖u(j−2)‖H2(R3)]

. D4‖D(j−1)‖L2(R3).

(2.30)

Finally, as in (ii2) of Subsection 2.2, we get

(2.31) ‖∂sgj

gj
D(j)‖L2 . s−(1−)

[
‖D(j)‖L2 + s

1
2 ‖〈x〉− 1

2∇D(j)‖L2

]
,

with implied constant only depending on the bounds derived in Subsection 2.2.
By using (2.29), (2.30), (2.31) in (2.27), similar estimates to control the second
component of ‖D(j)‖Z , and choosing T̃ small enough in relation to D1, D2, D3, D4,
we deduce

‖D(j)‖Z + ‖
∫
|y|>|x|

χ|y|&〈x〉

(
u(j−1)(s, y)− u(j−2)(s, y)

)
4π|y|

dy‖L∞s,x([0, eT ]×R3)

<
1
2
[ j−1∑

k=j−2

‖D(k)‖Z + ‖
∫
|y|>|x|

χ|y|&〈x〉

(
u(j−2) − u(j−3)

)
4π|y|

dy‖L∞s,x([0, eT ]×R3).

Here we recall ‖ · ‖Z from (2.24). It follows that the {u(j)}j≥1 converge to a limit
u on [0, T̃ ] satisfying the desired estimates.
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2.7. Uniqueness. Let u1 and u2 be two solutions to (1.1) with the same initial
data, and satisfying all the properties in Proposition 2.1.

Then one gets the differential equation

∂t

[
u1 − u2

]
=(−4)−1u1 4

[
u1 − u2

]
+4u2

[
(−4)−1u1 − (−4)−1u2

]
+ α

[
u2

1 − u2
2

]
,
[
u1 − u2

]
(0, ·) = 0.

But then choosing

T̃
def= T̃

(
max
i=1,2

‖ui‖X , r0,

∫
r0<|y|<r−1

0

u1 dy, max
i=1,2

‖4ũi‖L2

)
,

and replicating the immediately preceding estimates, we infer that

u1(t, ·) = u2(t, ·), ∀t ∈ [0, T̃ ].

Repeating this argument, observe that the set where u1 and u2 agree is open and
closed and the two solutions co-incide. This completes the proof of Proposition 2.1.

In the next section, we prove using some monotonicity formula that our local
solutions must in fact exist globally in time.

3. Global existence theory

In this last section, we finally prove Theorems 1.1 and then 1.3.

Proof of Theorem 1.1. Given data u0 as in the theorem, by the local existence
theory we can find Tmax > 0 such that there exists a unique solution u(t, ·) of (1.1)
for t ∈ [0, Tmax). We first show Tmax = ∞. Suppose this is false.

We immediately obtain the following monotonicity from (1.1):

0 ≤
∫

R3
u(t, x) dx ≤

∫
R3

u0(x) dx.

The assumption α < 1
2 also implies a bound on ‖u‖L2+δ for δ > 0 small enough as

follows; using integration by parts we obtain∫
R3

∂tuu1+δ dx =
∫

R3
(−4)−1u∇[∇uu1+δ] dx− (1 + δ)

∫
R3

(−4)−1u|∇u|2uδ] dx

+ α

∫
R3

u3+δ dx

≤
(

α− 1
2 + δ

)∫
R3

u3+δ dx ≤ 0,

whence ∫
R3

u2+δ(t, ·) dx ≤
∫

R3
u2+δ

0 dx, t ≥ 0.

Next, pick r0 > 0 such that (2.1) holds. The computation in Section 2.4 shows
that we have the bound (2.2) holding for all t ∈ [0, Tmax], where the constant
D2 = D2(u0, r0, Tmax) > 0.

Indeed, from Section 2.4 we get a uniform positive lower bound on∫
r0<|x|<r−1

0

u(t, x) dx, t ∈ [0, Tmax].
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Now pick

T = T

(
‖u0‖X , r0, inf

t∈[0,Tmax)

∫
r0<|x|<r−1

0

u(t, x) dx

)
> 0,

as in Lemma 2.2 and write I = [0, Tmax) =
⋃l

j=1 Ij with intervals Ij satisfying
|Ij | = T . Using the assumption 4ũ0 ∈ L2 and applying Lemma 2.2 successively to
each Ij , we obtain

sup
t∈I

‖4ũ(t, ·)‖L2 ≤ C

(
‖u0‖X , r0,

∫
r0<|x|<r−1

0

u0(x) dx, Tmax

)
‖4ũ0‖L2 .

But then Proposition 2.1 grants

T̃ = T̃

(
‖u0‖X + ‖4ũ0‖L2 , r0,

∫
r0<|x|<r−1

0

u0(x) dx, Tmax

)
> 0,

such that the solution u(t, ·) extends to [0, Tmax + T̃ ), which contradicts Tmax < ∞.
Decay at infinity. Note that for t1 > t2 a solution to (1.1) satisfies∫

R3
u(t1, ·) dx−

∫
R3

u(t2, ·) dx = (α− 1)
∫ t2

t1

∫
R3

u2(s, x) dxds,

whence we have

lim
T→∞

∫ ∞

T

∫
R3

u2(s, x) dxds = 0.

This follows because we have an a priori bound on
∫

u(ti, ·)dx for i = 1, 2, and the
quantity below is non-negative. This implies that

(1− α)
∫ t2

t1

∫
R3

u2(s, x)dxds

is bounded uniformly with respect to t1, t2 and of course increasing with respect
to t2. Hence the limit as t2 →∞ exists and is given by

(1− α)
∫ ∞

t1

∫
R3

u2(s, x)dxds.

This function is non-increasing with respect to t1 so that the assertion follows.
In particular, there exists a sequence tn →∞ with∫

R3
u2(tn, x) dx → 0,

and by (2.17), the L1-a priori bound, and Holder’s inequality, we get

‖u(tn)‖Lq(R3) → 0, 1 < q ≤ 2.

But the monotonicity established above for ‖u(t, ·)‖Lq(R3), 1 ≤ q ≤ 2 implies

lim
T→∞

∫ ∞

T

∫
R3

utu
q−1 dxdt = 0.

It follows that
lim

T→∞
‖u(T, ·)‖Lq(R3) = 0, q ∈ (1, 2].

This completes the proof of Theorem 1.1. �
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Based on many of the computations in Theorem 1.1 we will now prove Theorem
1.3 after deducing additional a priori bounds on ‖u(t, ·)‖L2+(R3) when α ∈ [0, 2/3):

Proof of Theorem 1.3. Let u(t, ·) be a solution of (1.1). We show that for some
small δ > 0, and any T > 0 such that u(t, ·) is defined on [0, T )× R3 we have

lim sup
t→T

‖u(t)‖L2+δ(R3) < ∞.

Once this is known, the theorem follows as in the last proof. Using the assumption
α < 2

3 , we easily infer as in the preceding that

lim sup
t→T

‖u(t, ·)‖
L

3
2 +γ < ∞,

for γ > 0 sufficiently small. Consider∫
R3

∂tuu1+δ dx =
∫

R3

[
(−4)−1u4u + αu2

]
u1+δ dx

=
(

α− 1
2 + δ

)∫
R3

u3+δ dx− (1 + δ)
∫

R3
(−4)−1u|∇u|2uδ dx.

Then perform an integration by parts to obtain (with κ > 0 to be chosen)∫
R3

u3+δ dx = (2 + δ)
∫ ∞

0

(1
r

∫ r

0

u(s)s2 ds
)
u1+δ∂ru 4πr dr

= (2 + δ)
∫ ∞

0

(1
r

∫ r

0

u(s)s2 ds
)
χr.κ

u1+ δ
2

r
∂ru u

δ
2 4πr2 dr(3.1)

+ (2 + δ)
∫ ∞

0

(1
r

∫ r

0

u(s)s2 ds
)
χr&κ

u1+ δ
2

r
∂ru u

δ
2 4πr2 dr.(3.2)

To estimate (3.2), we use Cauchy’s inequality with γ0 > 0 to write

(2 + δ)
∫ ∞

0

(1
r

∫ r

0

u(s)s2 ds
)
χr&κ

u1+ δ
2

r
∂ru u

δ
2 4πr2 dr

≤ (
2 + δ

2
)
∫ ∞

0

(1
r

∫ r

0

u(s)s2 ds
)
χr&κ

[ 〈r〉
γ0

u2+δ

r2
+

γ0

〈r〉
|∂ru|2 uδ

]
4πr2 dr

≤ γ0

r0
C(‖u0‖

L
3
2 +γ∩L1

)
∫

R3

1
〈r〉

|∂ru|2 uδ dx + C1(‖u0‖
L

3
2 +γ∩L1

, γ0, r0).

To estimate (3.1), first use Cauchy-Schwarz as

(2 + δ)
∫ ∞

0

(1
r

∫ r

0

u(s)s2 ds
)
χr.κ

u1+ δ
2

r
∂ru u

δ
2 4πr2 dr

. κν
( ∫

R3
χ2

r.κ

u2+δ

r2
dx
) 1

2
( ∫

R3
χ̃r.κ(∂ru)2uδ dx

) 1
2 ,

where we use 1
r

∫ r

0
u(s)s2 ds . rν

0 for suitable ν = 3
q − 1 > 0 where q = 3+γ

1+γ < 3.



34 J. KRIEGER AND R. M. STRAIN

Further using Hardy’s inequality we obtain

κν
( ∫

R3
χ2

r.κ

u2+δ

r2
dx
) 1

2
( ∫

R3
χ̃r.κ(∂ru)2uδ dx

) 1
2

. κν
( ∫

R3
(χr.κ∂ru + χ′r.κ

u

r
)2uδ dx

) 1
2
( ∫

R3
χ̃r.r0

(∂ru)2uδ dx
) 1

2

. κν
[ ∫

R3
χ̃r.κ(∂ru)2uδ dx +

∫
R3

(
χ′r.κ

u

r

)2
uδ dx

]
.

In the preceding, we have chosen the cutoff χ̃r.κ such that χ̃r.κχr.κ = χr.κ.
Also, the implied absolute constant only depends on ‖u‖

L
3
2 +γ . Combining the

above estimates for (3.1) and (3.2), we infer that∫
R3

∂tuu1+δ dx

≤ (γ0 + κν)C2(‖u0‖
L

3
2 +γ∩L1

)
∫

R3

1
〈r〉

|∂ru|2uδ dx + C3(‖u0‖
L

3
2 +γ∩L1

, γ0, κ)

− (1 + δ)
∫

R3
(−4)−1u|∇u|2uδ dx ≤ C3(‖u0‖

L
3
2 +γ∩L1

, γ0, κ),

provided we choose κ and then γ0 small enough such that

(γ0 + κν)C2(‖u0‖
L

3
2 +γ∩L1

) ≤ D2,

where D2 is as in Lemma 2.2, recall Remark 2.4. We then obtain the a priori bound

sup
0≤t<T

‖u(t, ·)‖2+δ
L2+δ ≤ ‖u0‖2+δ

L2+δ + TC3(‖u0‖
L

3
2 +γ∩L1

, γ0, κ).

In light of Proposition 2.1, the solution extends globally in time. The remaining
assertions in Theorem 1.3 follow by the arguments in the proof of Theorem 1.1. �
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