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Abstract—Robustness to perturbation has been advocated as
a key element to robot control and efforts in that direction are
numerous. While in essence these approaches aim at “endowing
robots with a flexibility similar to that displayed by humans”,
few have actually looked at how humans react in the face of
fast perturbations. We recorded the kinematic data from human
subjects during grasping motions under very fast perturbations.
Results show a strong coupling between the reach and grasp
components of the task that enables rapid adaptation of the
fingers in coordination with the hand posture when the target
object is perturbed. We develop a robot controller based on
Coupled Dynamical Systems that exploits coupling between two
dynamical systems driving the hand and finger motions. This
offers a compact encoding for a variety of reach and grasp
motions that adapts on-the-fly to perturbations without the need
for any re-planning. To validate the model we control the motion
of the iCub robot when reaching for different objects.

I. I NTRODUCTION

Performing manipulation tasks interactively in real environ-
ments requires a high degree of accuracy and stability. At
the same time, except in completely determined and static
environments, machine perception of the environment may
suffer from real-time perturbation. To handle these, it requires
flexibility on the part of the robot. These considerations make
the task of reaching to grasp under fast perturbations difficult
to deal with. Planning of constrained grasping motions has
often been studied as two separate problems of grasping
[15, 3] and generating arm-motion [2, 11] i.e., decoupling
the reach and grasp components. The high dimensionality
and complexity of these problems has discouraged the use
of a single coherent framework for carrying out both the
tasks. Constrained motion planning for only the reaching
motion in high dimensional arm-hand systems is a challenging
problem itself and requires the use of predefined heuristics. In
Programming by Demonstration (PbD), these heuristics are
embedded in the demonstrations provided by a human agent
which can be used to generate a generalized task description
[4].

In previous work Gribovskaya and Billard [9] have used
PbD to encode the dynamics of a task as a Dynamical System
(DS) where the end effector of the robot moves under the
influence of an attractor positioned at the target. It has been
shown that such an approach ensures reproduction of the
learned behavior in a generalized manner while efficiently

Fig. 1. Experimental setup to record human behavior under perturbations.
Two fixed targets are accompanied by the on-screen target selector which
activates different targets by changing colors and hence create a spatial
perturbation. The subject wears motion sensors and data glove which record
the whole arm-hand kinematics at fixed time intervals. The kinematic values
are simultaneously transferred to the iCub simulator for visualization of the
task.

handling spatial and temporal perturbations. In this work,we
address the problem of having a combined encoding scheme
for both reaching and grasping behaviors capable of adapting
against realtime perturbations during task reproduction.It
is worth mentioning here that this entails more complexity
than two independent attractor based tasks. Human neuro-
physiological studies [5, 7] have shown that apart from the
parallel evolution of hand transport and preshape, there exist
convergence constraints and correlations between the two pro-
cesses. In addition to the advantage of “human-like” motion,
it is critical to maintain the coupling between hand and arm
motion while performing a task in order to ensure successful
grasp formation at the target. In addition to studying the
correlations in the unperturbed human behaviors of performing
a grasping task, we also study perturbed demonstrations of
human subjects in order to biologically inspire our approach
of handling perturbations. We present the Coupled Dynamical
System (CDS) model which ensures that the motion con-
straints mentioned above are respected and at the same time
ensures very fast adaptation under perturbations.

II. RELATED WORK

Classically, the behavior of reaching to grasp objects has
been treated as two different problems. Especially in motion
planning works, reaching to a pre-grasp pose and motion of
the hand and fingers are considered as independent processes
and are triggered sequentially [2, 10, 18]. Although both the
issues of reaching to a pre-grasp pose and formation of grasp
around arbitrary objects are intensively studied, very few[1, 8]
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have looked into combining the two so as to have a unified
reach-grasp system.

Most manipulation planners typically plan paths in the
configuration space of the robot using graph based techniques.
Classical approaches use probabilistic roadmap and its variants
[6, 17] which assume a predefined and static environment
and are unable to handle any perturbations at the run-time.
Moreover, they require huge preprocessing steps and are not
suitable for replanning of grasping tasks online. More recently,
LaValle and Kuffner [14] proposedrapidly exploring random
trees RRTs as a faster alternative to manipulation planning
problems, provided the existence of an efficient inverse kine-
matic (IK) solver. RRT based methods [2, 18] are currently
the fastest online planners which exploit the efficient searching
ability of RRTs in order to find suitable paths between the start
and the goal configurations. Note that a major drawback of all
graph based approaches is that they lose to retain any explicit
correlations that exist between the two processes of hand
transport and preshape as naturally performed by humans.

The concept of coupling between the reach and grasp
motions is inspired by evidence in physiological studies
[5, 16]. The most frequently reported mechanism suggests a
parallel, but time-coupled evolution of the reach and grasp
motions. However, directly mimicking this behavior makes the
system time-dependent and hence unlikely to handle temporal
perturbations.

In this work, we use PbD as a means to encode the dynamics
of reach-grasp motion and the coupling information in a com-
pact way. We present the Coupled Dynamical System (CDS)
task modeling approach to coordinate the motions of hand
transport and preshape without being explicitly dependenton
the flow of time. We also show that this method efficiently
handles on-the-fly perturbations by incorporating information
from perturbed human demonstrations. We conduct experi-
ments on the iCub robot which show that this coupling is
necessary in order to successfully complete the tasks under
perturbations of different types.

III. M ETHODOLOGY

In this section, we start with a short formalism of au-
tonomous dynamical system (DS) in the context of robotic
manipulation tasks and its estimation with a Gaussian Mixture
Model (GMM). For more details on this the reader is referred
to Gribovskaya and Billard [9]. We present an extension to
this formulation and introduce the notion of coupling between
different DS by the means of a coupling function. A formal
discussion of the CDS model is presented describing the
modeling process and regression algorithm to reproduce the
task. A simple 2D example is presented to establish intuitive
understanding of the working of the CDS model.

A. Preliminaries

Consider a state vectorξ(t) ∈ R
d which can be used to

uniquely define the state of the robot while performing a task
(e.g. joint angles, position and orientation of the end-effector
etc.). Let there be N demonstrations of the task where the state

TABLE I
GAUSSIAN MIXTURE REGRESSION

Let us assume that a process is characterized by some outputξO produced by inputξI at
each time step and our aim is to have a regression model for the same inputs andoutputs.
To this end, we model the joint probability of input and output variables using Gaussian
Mixtures. The probability that a full data pointξ = [ξI ; ξO] is generated by this process
is defined by
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Gaussian Mixture Regression allows to compute for a given input variableξI and a given
componentk, the expected distribution ofξO as
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Using the linear transformation of gaussian distributions, the conditional expectation of
ξO givenξI can be re-written as a single normal distribution with the parameters
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∑

K

i=1 πiN (ξI ; θi)

is the probability thatξI was generated by componentk.

vector and its velocities are recorded at particular time inter-
vals, yielding the data set{ξtn, ξ̇

t
n}∀t ∈ [0, Tn];n ∈ [1, N ]. Tn

denotes the number of recordings in the n-th demonstration.
Without loss of generality, we assume that the dynamics of the
task can be represented by a first order autonomous Ordinary
Differential Equation (ODE):

ξ̇ = f(ξ) + ǫ (1)

wheref : Rd 7→ R
d is a continuous and continuously differen-

tiable function with a single equilibrium poinṫξ∗ = f(ξ∗) = 0
and ǫ represents white gaussian noise. It is evident from the
formulation of DS that it does not explicitly depend on time
and hence is robust towards temporal perturbations. To handle
spatial perturbations, i.e. sudden displacement of the target or
the manipulator, we considerξ in the reference frame of the
target.

By estimating the functionf, we can have a compact
mathematical description of the task as a Dynamical System.
For this purpose, we use GMM to encode the demonstrated
trajectories in a probabilistic framework. The core assumption
when representing a task as a Gaussian Mixture Model is that
each recorded pointξ(t) from the demonstrations is a sample
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Fig. 2. Task execution using CDS model. Blue region shows the three
Gaussian Mixture Models which form the full CDS model. Green region
shows the master sub-system where the cartesian position of the robot end-
effector evolves in time as a DS and is continuously fed to the robot. Magenta
region shows the slave sub-system where the finger joint angles evolve in time
as a DS, but also influenced by the state of the master system andfed to the
robot. Coupling is ensured by passing selective state information in the form
of Ψ(ξm) as shown in red.

drawn from the joint distribution:

P (ξ|θ) =
K
∑

k=1

πkN
(

ξ;θk
)

.

As detailed in Table I, this model makes it possible to perform
probabilistic regression for the value of output variableξO

given the value of input variableξI at each time instant. E.g.,
as applied in previous works [9, 12] in the special case of
learning dynamics, the desired state velocities can be queried
conditioned on the current state. Note that in this special case
which models only the dynamics of the task, the partitions
ξI andξO correspond respectively to the spatial positions and
velocities of the robot’s end-effector. Since this is not always
the case in the CDS model, we will keep this generalized for
now and define the partitions for the different components of
the coupled model in later subsections. In the next sections,
we show that the CDS model harnesses much more from the
GMM than just states and velocities by learning the coupling
information in addition to the dynamics.

B. Coupled Dynamical System

In the classical case of learning position and orientation
dynamics, one GMM each for hand and finger motions would
suffice to model the dynamics. However, to model a reach-
grasp with hand-arm coordination, it is required to have a
more complex approach. Note that Gribovskaya and Billard
[9] have used a coupling between position and orientation in
the inverse kinematics. However, the main purpose served by
this approach was to avoid unfavorable joint postures

The CDS model derives inspiration from the biological
evidences of reach-grasp coupling [7, 16]. These studies
advocate the fact that there is a parallel, but time-coupled
evolution of these sub-tasks combined with synchronized
termination constraints. E.g., if the fingers close before the
hand reaches the object, the task fails. Moreover, this order
needs to be maintained under spatial, temporal and grasp-type
perturbations. Another example of a situation where coupling
is needed is that of change in grasp type. When the required
grasp type is changed on the fly, if the change occurs from a
low-aperture grasp to a high aperture grasp, a full reopening
may be needed which is only possible if the coupling is active.

We first formally discuss the CDS model in subsections
describing the model creation and the procedure for task
execution. To establish intuitive understanding, we present a
2D example as a representative of higher dimensional grasping
tasks. Subsequently, we show that the CDS model retains the
global stability endowed in the individual GMMs bystable
estimator of dynamical systems (SEDS) Khansari-Zadeh and
Billard [12] and the fact that different GMMs are coupled
using a coupling function does not affect the overall stability
of the model.

1) Model Building: Let ξm denote the state of the master
sub-system andξs that of the slave sub-system in their
respective goal reference frames. Consider the setG of all
objects for which grasping behaviors are demonstrated. The
following three joint distributions are learned as explained in
Table. I -

1) P
(

ξm, ξ̇m|θ
g
m

)

: encoding the dynamics of the master

2) P (Ψ(ξm), ξs|θ
g
inf): encoding the inferred state of the

slave conditioned on the master (we will refer to this
quantity asξ̃)

3) P
(

ξs, ξ̇s|θ
g
dyn

)

: encoding the dynamics of the slave

∀g ∈ G. HereΨ : Rdm 7→ R denotes thecoupling function
which is a monotonic function ofξm with the constraint

lim
ξm→0

Ψ(ξm) = 0 (2)

and dm denotes the dimension of the master sub-system.
The purpose of the coupling function is to transfer relevant
information between the sub-systems so as to ensure coupling
between them. The distributions for learning dynamics (i.e.
P
(

ξm, ξ̇m|θ
g
m

)

andP
(

ξs, ξ̇s|θ
g
dyn

)

) is learned using SEDS
given by which produces globally stable model but can only
handle models with|ξI| = |ξO|. On the other hand, the
distribution P (Ψ(ξm), ξs|θ

g
inf) is learned using non-linear

programming to fit gaussians to the data under the constraint

lim
x→0

E [ξs|x] = 0. (3)

In the context of reach to grasp tasks studied in this work, the
master sub-system corresponds to reaching motion with state
vector as the cartesian position of the end-effector. The slave
sub-system corresponds to the motion of the fingers with state
vector as the finger joint angles. Note that the same model can
be used with orientation variables (Euler angles or Axis-angle
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Fig. 3. GMMs which combine to form the CDS model for the 2D example. (a) shows the human demonstrations. Large number of data points around the
end of trajectories depict very small velocities. (b) shows the GMM encoding the velocity distribution conditioned on the position of master sub-system (ξx).
(c) shows the GMM encoding the desired value ofξf (i.e. ξ̃f ) given the current value ofξx as seen during the demonstrations. (d) shows the GMM encoding
the dynamic model for the slave-subsystem (ξf ). Legend for (d) holds for all.

representation) and hence can be used to couple orientation
control with position control by having another slave sub-
system.

2) Reproduction: While reproducing the task, the model
essentially works in three phases:Increment master → Infer
slave → Increment slave. The master sub-system evolves
in time independently and the corresponding end-effector
commands are issued to the robot. Moreover, it modulates the
commands for the slave system which also evolves in a similar
way but while sharing information with the master subsystem
due to the coupling mechanism. Fig. 3 shows this flow of
information among the sub-systems and the robot. Such a
scheme is desired since it ensures that any spatial, temporal
or grasp-type perturbations are reflected appropriately inall
the sub-systems. The process starts by generating a velocity
command for the master sub-system and thus increments the
state by one time step.Ψ(ξm) transforms the current state of
the master sub-system which is fed to the inference model that
infers the desired state of the slave sub-sytem by conditioning
the learned joint distribution on the appropriate variable. The
velocity command to drive the slave sub-system from the
current state to the inferred (desired) state is generated by
GMR conditioned on the error between the two. The slave
sub-system achieves a new state and the cycle is repeated
until convergence. Note that if at any instant, the robot is
presented with a different object for which the grasping model
is stored in the setG, we select the corresponding CDS model
and continue the same operations using master and slave
components. Algorithm 1 explains the complete reproduction
process in a pseudocode.

Note that the coupling functionΨ(ξm) also acts as a
phase variable which updates itself every time step and in
the event of a perturbation, will command the slave system
to re-adjust so as to maintain the same correlations as learned
from the demonstrations. Two other parameters governing the
coupled behavior are scalarsα, β > 0. Qualitatively speaking,
they respectively control the speed and amplitude of the
robot’s reaction under perturbations. E.g., in the experiments
presented in Section IV, they control the speed and the extent
of re-opening of fingers when the target is changed to a farther
location.

Example. Suppose we represent a reach-grasp task as two

Algorithm 1 Coupled task execution

Input: ξm(0); ξs(0); θg
m; θg

inf ; θ
g
dyn; α; β; ∆t; ǫ

Set t = 0
repeat:

if perturbation then
updateg ∈ G

end if
Increment Master: ξ̇m(t) ∼ P

(

ξ̇m|ξm;θg
m

)

ξm(t+ 1) = ξm(t) + ξ̇m(t)∆t

Infer Slave: ξ̃s(t) ∼ P
(

ξs|Ψ(ξm) ;θg
inf

)

Increment Slave: ξ̇s(t) ∼ P
(

ξ̇s|β
(

ξs − ξ̃s

)

;θg
dyn

)

ξs(t+ 1) = ξs(t) + αξ̇s(t)∆t

t← t+ 1
until: Convergence

(

‖ξ̇s(t)‖ < ǫ and ‖ξ̇m(t)‖ < ǫ
)

sub-systems controlling the motion of the end-effector and
the fingers. For simplicity, we consider 1-D cartesian position
ξx as the master variable and 1 finger joint angleξf as the
slave variable, both expressed in the goal reference frame so
that they converge to the origin. In this way, the full fledged
grasping task is just a higher dimensional version of this
case by considering 3-dimensional cartesian position instead
of ξx and all joint angles (or eigen-grasps) of the robot hand
instead ofξf . For reference with the formal description of the
CDS model we re-iterate the following equivalences in this
example:ξm ≡ ξx (master variable),ξs ≡ ξf (slave variable),
Ψ(ξx) ≡ ξx (coupling function) anddm = 1. Note that in
different tasks, depending on the nature of coupling in different
dimensions of the master variable, other coupling functions
can be used.

Under the given setting, typical demonstrations of reach-
grasp task are as shown in Fig. 3(a), where the reaching
motion converges slightly faster than the finger curl. We
extract the velocity information at each recorded point by finite
differencing and build the following models from the resulting
data:P

(

ξx, ξ̇x |θx
)

, P (ξx, ξf |θinf ) and P
(

ξf , ξ̇f |θdyn
)

.
The resulting mixtures for each of the models is as shown
in Fig. 3. For reproducing the task, instead of the earlier
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Fig. 5. Variation of obtained trajectories withα and β. Vertical red line
shows the instant of perturbation when the target is suddenly pushed away
along positiveξx direction. Negative velocities are generated inξf in order
to track ξ̃f . Speed of retracting is proportional toα (left) and amplitude is
proportional toβ (right ).

approach presented in [9] where the system evolves under the
velocities computed asE

[

(ξ̇x; ξ̇f ) |(ξx; ξf )
]

we proceed as
in Algorithm 1. Fig. 4 shows reproduction of the task in the
(ξx, ξf ) space overlaid on the demonstrations. It clearly shows
that a perturbation inξx creates an effect inξf , viz. generating
a negative velocity the magnitude of which is tunable using
the α parameter. This change is brought due to the need of
tracking the inferredξf values i.e.ξ̃f , at all ξx. ξ̃f is nothing
but the expected value ofξf given ξx as seen during the
demonstrations. The time variation ofξf and its variation with
α andβ is shown in Fig 5.α modulates the speed with which
the reaction to perturbation occurs. On the other hand, a high
value ofβ increases the amplitude of retracting. Fig. 6 shows
the streamlines of this system in order to visualize the global
behavior of trajectories evolving under the CDS model. The
CDS model run is compared to uncoupled task execution in
Fig. 7. It shows the behavior when the same perturbation is
introduced on the abscissa in both coupled and un-coupled
executions. Clearly, the unperturbed variable (ξf in this case)
does not react when there is no coupling and also the order of
convergence is not the same as in the demonstrations where
ξx converges faster thanξf .

3) Stability and Convergence: We first define the notion
of global stability in CDS and then prove that the process
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evolving under Algorithm 1 is globally stable.

Definition. A CDS model is globally asymptotically
stable if by starting from any given initial conditions ξm(0),
ξs(0) and coupling parameters α, β ∈ R the following
conditions hold:

lim
t→∞

ξm(t) = 0 (4a)

lim
t→∞

ξs(t) = 0 (4b)

To prove that the CDS model indeed follows the conditions
4, we use the properties of its individual components. The
condition 4a holds true due to the global stability of SEDS.
To investigate the stability of the coupling, we consider

lim
t→∞

E

[

ξ̃s |Ψ(ξm)
]

= E

[

ξ̃s

∣

∣

∣
Ψ
(

lim
t→∞

ξm

)]

= E

[

ξ̃s

∣

∣

∣

∣

lim
ξm→0

Ψ(ξm)

]

(By 4a)

= E

[

ξ̃s |0
]

(By Eq. 2)

= 0 (By Eq. 3) (5)

The model which governs the evolution of the coupled
variableξs is given by

ξ̇s = E

[

ξ̇s

∣

∣

∣

(

ξs − ξ̃s

)

β
]

.

Taking the limiting values and using Eq. 5 , we get

lim
t→∞

ξ̇s = E

[

ξ̇s |βξs
]

(6)



which is again globally asymptotically stable due to SEDS and
hence will drive the stateξs asymptotically to0. However, as
seen from Algorithm 1, the multiplierα boosts the velocity
before incrementing the state. It is trivial to see that thisdoes
not affect the global asymptotic behavior of the model since
negative definiteA+AT

2 ⇒ αA+AT

2 is also negative definite for
α > 0. Why such a condition is required for global stability
is proved in detail in [12].

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experiments for recording
human demonstrations under random perturbations. We show
that the CDS model is indeed qualitatively equivalent to the
demonstrated human behavior of grasping under perturbations
and it is suited to handle fast perturbations which typically
need re-planning and are difficult to handle online. From the
experimental data, we identify relationships to infer the free
parameters of the CDS model. Unlike the example presented
in Section III, we used the coupling functionΨ(.) = ||.||
for all the task runs on the robot. We divide the discussion
into subsections describing the experimental setup, quantitative
results/inferences from the experimental data and task repro-
ductions on the iCub simulator as well as the real robot to
validate the model1.

A. Experiments

The experimental setup to record human demonstrations and
create sudden perturbations is shown in Fig. 1. It consists of
two stationary targets and the on-screen target selector which
prompts the human subject to reach and grasp one of the
objects depending on the color shown on the screen. The iCub
simulator runs simultaneously while the human is performing
demonstrations in order to establish correspondence for the
human subject. To start the experiment, one of the targets
is switched on and the subject starts to reach towards the
corresponding object aiming for a particular grasp depending
on the object. In random trials (without the knowledge of the
subject), perturbations are introduced by abruptly switching
the on-screen target selector. Reacting to this change, the
subject starts to adjust the motion of hand and fingers in order
to reach the other target. The subject forms a grasp around the
final target which marks the end of the trial. All the motion
data i.e. hand position, orientation and finger joint anglesis
recorded throughout the trial at a frequency of 50 Hz. After
each trial, the subject is asked to go to a rest posture where
a 5 sec. calibration procedure is done for the motion sensors
and data-glove. Trials are run until at least 10 unperturbedand
10 perturbed trials are obtained. Learning from perturbations
enables the estimation of parametersα andβ so that they can
be predicted prior to the instant of perturbation at the timeof
task reproduction. In addition to this, we also learn the CDS
model for pinch grasp and populate the set of graspsG. Note
that arbitrarily many grasps can be learned and added to this
set.

1Videos are available at http://www.youtube.com/user/TheRoboticsVideos
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Fig. 8. A qualitative comparison of CDS model predictions of the inferred
finger joint angles and the actual recorded human behavior. Note the coupling
of joint angles with the distance from the target. A change intarget location
triggers a discontinuous shift in the value of‖x − xgoal‖ and at the same
time, starts reopening of the fingers.
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Fig. 9. (a) shows the linear correlation found between mean hand velocity
prior to perturbation andβ. Tp refers to the time at which perturbation is
introduced. (b) shows the linear correlation found betweenα andβ.

After all the data is collected, we learn the CDS model from
the data recorded in the unperturbed trials. This serves as the
base model which qualitatively mimics human behavior under
perturbations. Fig. 8 shows typical human responses of the
finger joint angles (only index finger proximal joint is shown)
under perturbation of the target. The vertical red line marks
the onset of perturbation and the subsequent dip in the joint
angles is due to the re-opening of the fingers when the target is
suddenly moved away. Note that in all the trials, the fingers re-
opened irrespective of the fact that the aperture of the fingers
at the time of perturbation was large enough to accommodate
the object. This behavior was found common to all subjects.
It is evident from Fig. 8 that the finger joint angle inferred by
CDS at each time instant is similar to what is exhibited by
humans within the variance of demonstrations.

B. Calculation of model parameters

As illustrated in section III-B, the parametersα and β

represent respectively the speed and amplitude of the reaction
(in this case, reopening of fingers) to perturbation. Increased
α causes the finger trajectories to follow the inferred (desired)
values more strictly, hence, a sharp decrease in the joint vari-
ables is observed. On the other hand,β modulates the inferred
value itself. Hence, a manually tuned combination of the twois
sufficient to generate any given behavior after the perturbation.
However, as shown in Fig. 9, it was found that there exist
correlations which make it possible to predict their valuesfor

http://www.youtube.com/user/TheRoboticsVideos


(a) Coupled (b) Uncoupled

Fig. 10. Reach-grasp task executions with and without coupling. In the
coupled execution (a), fingers maintain the correlations seen during the
demonstrations which prevents premature finger closure. The uncoupled
execution (b), fingers close early and the grasp fails.

Fig. 11. Closeup of hand motion post perturbation in coupled (left) and
uncoupled (right ) executions. Note the re-opening of fingers leading to a
successful grasp in the coupled case.

a human just by observing the motion of the hand prior to
the perturbation. Fig. 9(a) shows there is a linear relationship
between the velocity of the hand prior to perturbation and the
parameterβ. It shows that the faster a subject moves towards
the target, the less they reopen the fingers upon perturbation.
Fig. 9(b) shows the linear correlation between the parameters
α and β. It shows that a faster reopening of the fingers is
accompanied by a larger amount of reopening. Consequently,
both the parametersα and β can be predicted based on the
motion of the hand prior to perturbation. Hence, they no longer
need to be specified manually in Algorithm 1.

C. Validation

We validate the CDS model by executing the learned grasp-
ing strategies on the iCub robot. First we show that grasping
under perturbations using the uncoupled approach fails due
to lack of knowledge of the correlations between the reach
and grasp sub-systems. Fig. 10 shows such comparison. The
robot starts moving towards a fixed target which is suddenly
shifted to the right just before the completion of the task. In the
uncoupled case (Fig. 10(b) ), the fingers close too early and the
task fails. In the coupled case (Fig. 10(a)), the finger motion
is delayed due to the coupling and the fingers close according
to the correlations learned during the demonstrations. Fig. 11
clearly shows the re-opening of fingers.

Next, we show that the presented scheme also enables online
adaptation against fast perturbations of grasp-type. We learn
power grasps in palm-up and palm-down configurations of
the hand from unperturbed demonstrations and populate the
set of graspsG with them. In the reproduction phase, the
robot starts moving towards the target aiming for the palm-
down configuration grasp. After a certain period, the objectis
made to reappear at another location, however not supported
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Fig. 13. Motion of one finger joint angle under grasp-type perturbation.
Demonstrated models for the two grasps recorded during the unperturbed
demonstrations are shown. The CDS model switches smoothly between the
models when the perturbation occurs.

against gravity so that it starts falling. This requires a fast
adaptation from palm-down to palm-up grasp, while the target
keeps on moving. Note that we use the approach presented in
previous work on ball catching by Kim et al. [13] to ensure
that the robot intercepts the falling object in its workspace.
Here the contribution of the CDS model is to re-adjust the
hand orientation and finger curl online so that the grasp is
completed successfully on the falling object. The task being
performed by the iCub in simulation is shown in Fig. 12. Note
that the fingers close proportionately as the distance between
the falling ball and the robot hand decreases, maintaining the
correlations seen during the demonstrations. The time elapsed
is indicated on the figure in seconds.

We perform another task showing the ability of the CDS
model to adapt between pinch and power grasps. We learn
pinch and power grasps from demonstrations as shown previ-
ously and change the target object while the robot goes for the
pinch grasp. Fig. 13 shows the motion of robot’s index finger
proximal joint. It is evident that the hand aperture decreases
quickly when the robot aims for the pinch grasp but after
the switch, the robot smoothly switches from following the
pinch-grasp model requiring smaller hand aperture (i.e. larger
joint value) to the power grasp model which requires a larger
aperture (smaller joint value). The model can also be seen to
be robustly handling different instants of perturbation.

V. CONCLUSION

In this paper we presented a model for encoding and repro-
ducing grasping strategies which is capable of handling fast
real-time perturbations. Biological inspiration was taken by
observing the correlations between arm and finger motion dur-
ing human experiments of reach-to-grasp tasks under sudden
unpredicted perturbations. We showed that once the grasping
strategies are taught offline by a human demonstrations, the
model is able to reliably switch between those under very fast
perturbations. Re-opening of fingers under perturbation has
been found to be present in all human trials and is shown to be
critical to the success of reach-grasp tasks. Our model ensures
this behavior even in the presence of arbitrary perturbations.



Fig. 12. Fast adaptation under perturbation from palm-down to palm-up power grasp. Torso is included in the inverse kinematics to increase the workspace
of the robot so as to highlight the effectiveness of the model in adapting the grasping motion under very fast perturbations.
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