
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. H. Bleuler, président du jury
Prof. A. Billard, directrice de thèse

Prof. E. Burdet, rapporteur 
Prof. M.-O. Hongler, rapporteur 
Prof. S. Vijayakumar, rapporteur

Imitation Learning of Motion Coordination in Robots: 
a Dynamical System Approach

THÈSE NO 5112 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 24 février 2012

 À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'ALGORITHMES ET SYSTÈMES D'APPRENTISSAGE

PROGRAMME DOCTORAL EN SYSTÈMES DE PRODUCTION ET ROBOTIQUE

Suisse
2012

PAR

Elena Gribovskaya





Abstract

T
HE ease with which humans coordinate all their limbs is fascinating. Such a sim-

plicity is the result of a complex process of motor coordination, i.e. the ability

to resolve the biomechanical redundancy in an efficient and repeatable manner. Co-

ordination enables a wide variety of everyday human activities from filling in a glass

with water to pair figure skating. Therefore, it is highly desirable to endow robots with

similar skills.

Despite the apparent diversity of coordinated motions, all of them share a crucial

similarity: these motions are dictated by underlying constraints. The constraints shape

the formation of the coordination patterns between the different degrees of freedom.

Coordination constraints may take a spatio-temporal form; for instance, during biman-

ual object reaching or while catching a ball on the fly. They also may relate to the

dynamics of the task; for instance, when one applies a specific force profile to carry a

load.

In this thesis, we develop a framework for teaching coordination skills to robots.

Coordination may take different forms, here, we focus on teaching a robot intra-limb

and bimanual coordination, as well as coordination with a human during physical

collaborative tasks. We use tools from well-established domains of Bayesian semi-

parametric learning (Gaussian Mixture Models and Regression, Hidden Markov Mod-

els), nonlinear dynamics, and adaptive control. We take a biologically inspired ap-

proach to robot control. Specifically, we adopt an imitation learning perspective to

skill transfer, that offers a seamless and intuitive way of capturing the constraints con-

tained in natural human movements. As the robot is taught from motion data provided

by a human teacher, we exploit evidence from human motor control of the temporal

evolution of human motions that may be described by dynamical systems.

Throughout this thesis, we demonstrate that the dynamical system view on move-

ment formation facilitates coordination control in robots. We explain how our frame-

work for teaching coordination to a robot is built up, starting from intra-limb coordina-

tion and control, moving to bimanual coordination, and finally to physical interaction

with a human.

The dissertation opens with the discussion of learning discrete task-level coordi-

nation patterns, such as spatio-temporal constraints emerging between the two arms

in bimanual manipulation tasks. The encoding of bimanual constraints occurs at the

task level and proceeds through a discretization of the task as sequences of bimanual
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constraints. Once the constraints are learned, the robot utilizes them to couple the two

dynamical systems that generate kinematic trajectories for the hands. Explicit coupling

of the dynamical systems ensures accurate reproduction of the learned constraints, and

proves to be crucial for successful accomplishment of the task.

In the second part of this thesis, we consider learning one-arm control policies. We

present an approach to extracting non-linear autonomous dynamical systems from kine-

matic data of arbitrary point-to-point motions. The proposed method aims to tackle the

fundamental questions of learning robot coordination: (i) how to infer a motion repre-

sentation that captures a multivariate coordination pattern between degrees of freedom

and that generalizes this pattern to unseen contexts; (ii) whether the policy learned

directly from demonstrations can provide robustness against spatial and temporal per-

turbations.

Finally, we demonstrate that the developed dynamical system approach to coordi-

nation may go beyond kinematic motion learning. We consider physical interactions

between a robot and a human in situations where they jointly perform manipulation

tasks; in particular, the problem of collaborative carrying and positioning of a load. We

extend the approach proposed in the second part of this thesis to incorporate haptic in-

formation into the learning process. As a result, the robot adapts its kinematic motion

plan according to human intentions expressed through the haptic signals. Even after the

robot has learned the task model, the human still remains a complex contact environ-

ment. To ensure robustness of the robot behavior in the face of the variability inherent

to human movements, we wrap the learned task model in an adaptive impedance con-

troller with automatic gain tuning.

The techniques, developed in this thesis, have been applied to enable learning

of unimanual and bimanual manipulation tasks on the robotics platforms HOAP-3,

KATANA, and i-Cub, as well as to endow a pair of simulated robots with the ability to

perform a manipulation task in the physical collaboration.

KEYWORDS: PROGRAMMING BY DEMONSTRATION, MANIPULATION, DYNAMI-

CAL SYSTEMS, COORDINATION, PHYSICAL HUMAN-ROBOT INTERACTION
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Résumé

L
A facilité avec laquelle les humains coordonnent les mouvements de tous les mem-

bres de leur corps est fascinante. Une telle aisance est le résultat d’un proces-

sus complexe de coordination motrice, à savoir, la capacité à résoudre la redondance

biomécanique de manière efficace et reproductible. La coordination motrice permet

l’exécution d’une large palette d’activités humaines: de remplir un simple verre d’eau

au patinage artistique en couple. C’est pourquoi il est souhaitable de doter les robots

d’une telle capacité.

Malgré la diversité de l’ensemble des mouvements coordonnés chez l’humain,

ceux-ci partagent une similarité cruciale: ces mouvements sont régis par des contraintes

sous-jacentes, qui, par essence, déterminent des motifs de coordination entre tous les

degrés de liberté. Ces contraintes peuvent prendre une forme spatio-temporelle, comme

par exemple lors d’une manipulation bimanuelle, ou lorsque l’on attrape une balle au

vol. Elles peuvent aussi être apparentées à la dynamique d’une tâche, comme par ex-

emple lorsque l’on applique un profil de force particulier pour déplacer une charge.

Dans cette thèse, nous développons une méthodologie permettant aux robots d’apprendre

des modèles de coordination motrice. En particulier, nous nous concentrons sur l’apprentissage

de la coordination de l’ensemble des joints d’un membre (p.ex., un bras ou une jambe),

de la coordination bimanuelle, ainsi que de la coordination avec un humain lors de

tâches collaboratives. Pour se faire, nous utilisons les outils des domaines bien établis

que sont l’apprentissage semi-paramétrique Bayesien, la dynamique non-linéaire, et le

contrôle adaptatif. De plus, nous suivons une approche bio-inspirée du contrôle robo-

tique en adoptant une perspective qui considère l’apprentissage par imitation comme

une méthode facilitant le transfert des capacités motrices. En effet, cette approche of-

fre une méthode intuitive pour capturer les contraintes contenues dans les mouvements

naturels, tels que ceux exécutés par les humains. Aussi, nous exploitons une évidence

rapportée par des études en contrôle moteur, à savoir que l’évolution temporelle des

mouvements humains peut être décrite par des systèmes dynamiques.

Tout au long de cette thèse, nous démontrons qu’une approche considérant la for-

mation des mouvement par le biais de systèmes dynamiques facilite grandement le con-

trôle de la coordination chez les robots. Nous expliquons comment notre méthodologie

d’apprentissage de la coordination motrice chez un robot se construit, à travers les prob-

lèmes liés à la coordination des degrés de libertés d’un membre, puis à la coordination

bimanuelle, et enfin, à la coordination physique avec un humain.
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Cette dissertation commence par la description d’une technique destinée à l’apprentissage

de modèles de coordination discrets, tels que ceux qui sont déterminés par les con-

traintes spatio-temporelles émergeant entre deux bras lors de tâches bimanuelles. L’encodage

de ces contraintes est effectué au niveau de la tâche, et s’accompli par une discrétisa-

tion de cette dernière en une séquence de contraintes bimanuelles. Une fois que ces

contraintes sont apprises, le robot les utilise afin de coupler explicitement les deux sys-

tèmes dynamiques responsables de générer les trajectoires de chacune des deux mains.

Le succès de notre méthode à apprendre et à reproduire les tâches démontrées prouve

que ces contraintes sont un élément crucial à considérer pour une exécution réussie des

tâches bimanuelles.

Dans la seconde partie de cette thèse, nous considérons l’apprentissage du con-

trôle coordonné d’un bras robotisé. Nous présentons une méthode servant à extraire un

système dynamique autonome non-linéaire à partir de données cinématiques de mou-

vements point-à-point arbitraires. La méthode proposée vise à adresser les questions

fondamentales de l’apprentissage de la coordination motrice en robotique que sont:

(i) Comment inférer une représentation capable de capturer les motifs de coordina-

tion multivariés entre chacun des degrés de liberté d’un robot, et ensuite comment

généraliser ces motifs à des contextes inconnus. (ii) A partir uniquement de démon-

strations, comment un modèle peut-il garantir la robustesse du mouvement vis-à-vis de

perturbations spatiales et temporelles.

Enfin, nous démontrons que notre approche dynamique de la coordination motrice

peut aussi être appliquée à des problèmes qui ne sont pas purement cinématiques. Ici,

nous considérons aussi l’interaction physique entre un robot et un humain dans les situ-

ations oÃź ceux-ci exécutent ensemble des tâches de manipulation. En particulier, nous

considérons la tâche du transport collaboratif d’une charge. Nous étendons l’approche

proposée dans la deuxième partie de cette thèse en incorporant l’information haptique

dans le processus d’apprentissage. Grâce aux signaux haptiques, le robot devient ca-

pable d’adapter ses mouvements en fonction des intentions de l’humain. Cependant,

même après l’apprentissage d’un modèle de la tâche par le robot, un humain reste un

agent complexe à prédire. Afin de garantir une interaction robuste face à la variabilité

intrinsèque des mouvements humains, nous incorporons le modèle de la tâche dans un

système de contrôle en impédance contenant des gains capables de s’adapter automa-

tiquement.

Les techniques développées dans cette thèse ont été appliquées afin de permettre à

diverses plateformes robotiques (HOAP-3, KATANA et iCub) d’apprendre des tâches

de manipulation unimanuelles et bimanuelles. De plus, la capacité d’exécuter une tâche

en collaboration par le biais d’une interaction physique a été donnée à une paire de bras

robotisés en simulation.

MOTS CLÉS: APPRENTISSAGE PAR DEMONSTRATION, MANIPULATION, SYSTÈMES

DYNAMIQUES, COORDINATION MOTRICE, INTERACTION PHYSIQUE ENTRE HU-

MAIN ET ROBOT
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3.9 The cube task. (a) A robot tries to grasp a cube, but the cube is sud-
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superimposed with the workspace accessible to the robot in this task

(light grey). Note that perturbations force the robot to operate almost

on the boundary of its accessible workspace, however, the robot’s Mo-
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motion trajectories. (d) The photos of the robot at the different stages
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3.12 Task reproduction under temporal coordination constraints. The syn-

chronization in the Cube task: at t1 = 150, after the onset of the mo-

tion, the position of the cube is changed (the time of the perturbation is

highlighted by a dashed red line). (a) Simultaneously, the robot’s Mo-
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each of sampled point converges correctly to the target. . . . . . . . . 90
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origin through the addition of synthetic datapoints. This modification

guarantees asymptotic stability in the neighborhood of the attractor:

the trajectories converge to the origin (the very right graph). Bottom:

though the observed demonstrations converge to the origin (the very

left graph), the EM training does not position the last Gaussian at the

attractor automatically. Therefore, a motion generated by the learned

dynamical representation ˆf(ξ) converges to the spurious attractor (the

very right graph). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.17 Improvement in the stability of approximation with the increase in the

number of Gaussian components . . . . . . . . . . . . . . . . . . . . 93

3.18 System 1. The proposed method encodes this system with 7 Gaus-

sians; the learned system exhibits good precision in the area covered

by demonstrations, outside this area the precision is also admissible

except for a region in the direct proximity to y-axis, where actual tra-

jectories represent an excess curvature as approaching to the equilib-

rium, e.g., a trajectory starting at the bound x2 = 2. In this region, a

flat part of trajectories is reproduced well, though the steep parts that

were not demonstrated are attracted towards the region covered by the

training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xvii
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3.21 System 4. The system is strongly non-linear, 13 Gaussians are neces-

sary to achieve a good precision in the considered region. Complex

dynamics and increased number of Gaussians lead to less strong gen-

eralization abilities of the method. Indeed, trajectories started beyond

the region covered by the training set tend to depart from the real tra-

jectories generated by the dynamics, it is particularly noticeable in the

velocity space, see section III-(g). However, even in this non-trivial

case the system generates admissibly good results (the reproduced tra-

jectories follow an observed motion pattern) from few demonstrations. 99
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3.28 (a) If a trajectory in the operation space passes through non-reachable

joint positions IK may return velocity in the operation space that sends

a robot too far from original trajectory, so linear assumptions of ap-

proximation of kinematics does not satisfy and overall trajectory track-

ing will fail. (b) In the case of motion encoding with a dynamical sys-
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trajectory violating the linear approximation of kinematics, instead the

dynamical system will generate other trajectory from the point where
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3.36 Task generalization: our method vs. DMP (Hoffmann, Pastor, et al.,
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strations (in terms of the trajectory shape). The difference between
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tion from locations unobserved during demonstration; DMP tends to

generate unexpected swinging motions. . . . . . . . . . . . . . . . . 119
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Pastor, et al., 2009), learning a theoretical noise-free dynamics. Due to
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the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.39 Robustness to temporal perturbations: our method vs. DMP (Hoff-

mann, Pastor, et al., 2009). The target has been shifted so that the
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end-effector, DMP takes the shortest path to the initial position of the
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an almost straight line trajectory which potentially may violate exter-

nal constraints implicitly encoded in the demonstrations. (b) The target

shifted so as to decrease the duration of motion, in this case DMP scale

the trajectory and produce the jerky motion right after the perturbation;

in this case DMP require more time to reach the target than our system. 122
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starting the motion at the same location as that demonstrated, reproduc-
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3.41 Geometrical illustration of stability and multi-dimensional correlation

in the state-space. I. Stability problem: stability of a dynamical sys-

tem is defined by a maximum value of its Lyapunov exponent λ (in

the linear case, it coincides with eigenvalues of a control matrix). (a)

In systems with negative Lyapunov exponents volume between trajec-

tories contracts; (b) In systems with positive Lyapunov exponents two

arbitrary near trajectories diverge from each other exponentially fast. In

the linear case, one may easily find Lyapunov exponents and estimate

the global behavior of the overall system. In the non-linear case, the

system may have different Lyapunov exponents in different parts of the

state-space, moreover, non-linearities make analytical investigation of

properties particularly tedious. IV. Multi-dimensional dynamics Ana-

lyzing dynamics of vector-valued timeseries requires their encoding in

multi-dimensional state-spaces. Generally, one cannot unambiguously

decouple dynamics of each dimension. Consider a simple 2D motion

in Fig. II-(a), the phase-space of this motion in {ẋ1, x1} is in Fig.

II-(b): for each value x1 there exist two different values of velocity,

therefore, it is not possible to unambiguously encode dynamics of mo-

tion as two decoupled system ẋ1 = f1(x1), ẋ2 = f2(x2). However, if

one look at the dependency ẋ1 = f(x1, x2) depicted at Fig. II-(c) this

ambiguity can be easily eliminated. This problem is know in the liter-

ature on Dynamical Systems as a problem of searching for a minimum
embedding dimension. In this particular example, the minimum em-

bedding dimension is 4 (x1, ẋ1, x2, ẋ2). Alternatively, one may argue

that in this case we may avoid an ambiguity and separate dimensions

encoding ẍ1 = f1(x1, ẋ1), though it is possible in this particular case,

it will lead to the necessity to analyze 5 state variables (x1, ẋ1, ẍ1, x2,

ẋ2). Furthermore, to preserve a spatial correlation pattern between x1

and x2 the decoupled systems should be synchronized by an external

mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.42 Results of encoding the orientation phase of demonstrations in an ex-

periment with HOAP-3. Note, the existence of non-linear correlation

between an axis and an angle of rotation. . . . . . . . . . . . . . . . . 131

3.43 Experiments with the humanoid robot HOAP-3. Referentials display

the change in the orientation of the robot’s end-effector along the mo-

tion. Starting positions of the hand are highlighted by yellow circles. I.

Generalization abilities of the method: the robot successfully grasped

a box placed in different positions in the workspace. These configu-

rations of the box have not been observed by the robot during demon-

stration. II. Real-time adaptation to perturbations: while the robot was

moving towards the box its position was perturbed (a), both position

and orientation were perturbed (b). Control of position and orienta-

tion through dynamical systems enables the smooth adaptation to both

types of perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.44 An example of a trajectory generated with DMP and starting far from

an original demonstration. Note, that although the motion is globally

asymptotically stable, the resulting trajectory makes little sense. . . . 135

4.1 We consider a task where a human and a robot lift a rigid beam in

collaboration (Evrard et al., 2009). Training is accomplished through

teleoperation of the HRP-2 robot through a haptic device. . . . . . . . 143
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4.2 [Taken from (Calinon, Evrard, et al., 2009)] The two sets of demon-

strations are provided. In the first set, the teacher is blind-folded and

the partner initiates and terminates the motion. In the second set, the

roles are exchanged: the teacher leads the motion’s onset and the offset.

Note that the two set produce different force-velocity patterns. (a) Col-

lected data are plotted in fine lines. An average demonstration in each

set is plotted as a wide line with arrows. Right: when the human part-

ner initiates the motion, the robot perceives positive interaction force,

when the robot starts moving the force gradually decreases to zero by

the end of the movement. Left: in contrast, when the robot (guided

by the teacher) initiates the motion, the robot perceives negative force,

when the human partner starts moving the force gradually increases

to zero by the end of the movement. (b) The GMM encoding of the

training sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3 [Taken from (Evrard et al., 2009)] Dashed grey and solid blue lines

show force-velocity patterns in failed reproduction trials where a hu-

man partner tries to stop the robot abruptly. The green and pink ovals

represent Gaussian components of the learned task model and corre-

spond to the these in Fig. 4.2-(b). . . . . . . . . . . . . . . . . . . . . 145

4.4 Two planar robots lift a beam in collaboration. For successful task

completion the two robots have to coordinate and adapt their motions

so as to avoid tilting the beam. The robot-leader substitutes the human.

The desired kinematic plan xd,L, ẋd,L, ẍd,L of the robot-leader is pre-

defined. The robot-follower anticipates the motion intentions of the

robot-leader and adapts accordingly. During demonstration, the robot-

follower learns to generate a desired kinematic command xd, ẋd, ẍd in

response to the perceived force f . The two robots are controlled by

impedance control laws with desired stiffness, damping, and inertia.

During task execution, the robot-follower adapts its desired stiffness

K̃d and inertia Λ̃d, so as to ensure accurate reproduction of a learned

task model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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4.5 TWO-STAGE TRAINING PROCEDURE. To simulate real-world train-

ing, where the robot is teleoperated by a human, we adopt a two stage

training procedure. Figs. (a), (e) present the robots’ configurations dur-

ing training. Desyncronization between the partners is greatly reduced

during active observation, as expressed by the reduced tilting of the

beam. PASSIVE OBSERVATION: The stiffness of the robot-follower

is set to be low ( 5N/m) and the stiffness of the robot-leader is high

( 50N/m). This allows the robot-leader to impose its kinematic plan;

see Fig. (b). The actual velocity of the robot-follower is higher than

its reference signal and coincides with the actual and reference veloc-

ities of the robot-leader. Such a forced adaptation is achieved at the

cost of considerable energy injection; see Figs. (c)-(d). The robot-

follower perceives high positive external forces that are due to the

effort of the robot-leader. After observing the task “passively", the

robot-follower stores the kinematic information and discards the force

signals. ACTIVE OBSERVATION: The stiffness of both partners is

medium ( 15N/m). The robot-leader repeats the same reference kine-

matical profile as at the previous stage, while the robot-follower utilizes

the kinematic profile acquired during passive observation. Improved

synchronization decreases the magnitude of the forces perceived by

both partners; see Figs. (c)-(d), solid line. The final training set is com-

posed of the velocity signal recorded during passive observation, and

the external forces/applied torques recorded during active observation. 150

4.6 After acquiring a set of demonstrations D, the robot learns the task

model ξ̇ = ĥ(ξ) and a forward control signal u = u(ξ) that maps

the desired state ξ of the task model to actual motor commands.The

dynamical system representation of the task model allows the robot

to generate reference signals on-line adapting to the force applied by a

human. The robot is controlled through an impedance control law so as

to compensate for non-modeled aspects of the external dynamics. The

desired stiffness K̃d and inertia Λ̃d are adapted during task execution. 152

4.7 The task model is represented by a dynamical system ξ̇ = ĥ(ξ), ξ =
[ẋd; fd] and estimated from the training data. At each time step, the

velocity ẋd and force fd are inferred from these observed at the previ-

ous step. Their dynamical relationships follow vector fields displayed

in blue. Dark gray lines show the demonstrations. One can observe an
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Chapter 1

Introduction

1.1 MOTIVATION

A
LREADY in the eighties, we were amused by the fussy droid C-3PO from "Star

Wars" helping its master, Anakin Skywalker, with various household chores.

Beyond science fiction movies, existing robotic agents are still lacking the agility and

motion skills that we as humans take for granted. One reason for this is that the princi-

ples underlying the production of coordinated body movements in humans are largely

unknown. In this thesis, we take an engineering view of the problem, we do not aim

to uncover the biological grounds of coordination in human motion. We investigate

how, by merely observing the means and the effect of coordination in everyday human

motions, we can extract control strategies that enable coordinated movements in robots.

Coordinated unimanual and bimanual movements involving object manipulation,

either autonomously or in collaboration with peers, represent a key part of our motion

repertoire. Teaching such movements to robots constitutes the research subject of this

thesis1. The goal of a manipulation task is defined through its desired effect on the

environment. In general, a given goal can be achieved by an infinite number of dif-

ferent movements, rather than by a single pre-specified trajectory. Stated in this way,

the problem of motion learning appears to be ill-posed - it is not obvious how a sub-

ject decides on one particular motion signature (a distinctive movement pattern of an

individual). However, it is intuitively clear that the human brain somehow resolves this

redundancy in an efficient and repetitive manner. N. Bernstein, in his seminal work of

1967 (Bernstein, 1967), termed the remarkable ability to resolve motion redundancy

coordination.

To make the above idea clearer, imagine that in one hand you hold a cup and in the

other a piece of sugar. You want to sweeten your tea, therefore, the goal is to drop the

sugar into the cup. At the trajectory level, this means that the two arms should move

from a rest position to a target configuration where the sugar may be released right into

the cup. Achieving this target configuration constitutes a "hard" task constraint that,

generally speaking, can be satisfied by following trajectories quite dissimilar from each

other. (You may even throw the sugar up in the air and try to catch it with the cup.)

However, we humans exhibit a systematic motor behavior; that is, we follow regu-

1Throughout this thesis we mainly consider task space motions where generated Cartesian trajectories

are converted into joint configurations through inverse kinematics.
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lar motion profiles that may have both a practical (minimizing energy consumption or

avoiding collision with the cup) and a communicative meaning (peers understand what

we intend to do). Here, we adopt the view that such a systematic motor behavior dis-

tinguishes the coordinated motions from the uncoordinated. Therefore, a coordination

pattern can be defined as a correlation that emerges between variables describing a mo-

tion and that is consistent across trials. Such patterns are usually task dependent and,

therefore, it is difficult to conceive a unified analytical model for motion generation.

The existing analytical planning algorithms only resolve the "hard" task constraint,

i.e. how to generate a collision-free path from a rest to target configuration, and ignore

the second part of the problem where the motion itself may constitute the part of the

task (Brock & Khatib, 2002). Furthermore, motion planning algorithms have increas-

ingly large computation requirements and, therefore, are less reactive to dynamically

changing environments. Human motor control concentrates on rather simplistic, from

the robotics’s point of view, pointing movements (Bullock & Grossberg, 1988; Todorov

& Jordan, 2002) or basic types of rhythmic synchronization between the limbs (Haken

et al., 1985), and does not provide a generic approach to tackle the problem of coor-

dination in manipulation tasks. For these reasons, we exploit learning as a means for

transferring human coordination skills to robots. Learning coordinated tasks requires

solving two problems simultaneously: (1) learning to satisfy "hard" constraints that any

successful task movement must satisfy (e.g., reaching the target configuration) and (2)

learning to produce task movements that are natural looking and easy to accomplish

(e.g., following a particular path). These two problems define the main theme of this

thesis. The objective that we pursue is to develop learning algorithms that allow a robot

to resolve hard task constraints and generate continuous coordinated motions.
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1.2 APPROACH

As outlined in Section 1.1, our goal is to devise robot motion strategies from data

provided by a human. We take the Programming by Demonstration (PbD) perspective

to robot skill transfer. Originally, PbD in robotics has emerged to avoid tedious manual

development of robot software. The two major factors contributed to the success of the

PbD paradigm. At the interaction level, PbD is appealing as a human-friendly means to

endow robots with various skills. At the computational level, PbD considerably speeds

up the search for a task solution in the robot workspace as information contained in the

demonstrations constrains the search area. The particular PbD perspective followed in

this work argues that the robot’s ability to encode movements, whether at the continuous

trajectory level or at the discrete symbolic level, is the basis of skill transfer.

PbD is grounded on the concept of imitation learning that roboticists borrowed

from the developmental psychology. Furthermore, we learn encodings for motion from

data provided by a human demonstrator, i.e. we implicitly assume the existence of

regularities in the motion data. Therefore, in our research, we are bound to adopt

several biological hypotheses.

1.2.1 IMITATION LEARNING

From infancy and during the whole life, humans exhibit the ability to imitate their

peers. The deceptively naive concept of imitation plays a fundamental role in the ac-

quisition of a motion repertoire. The human Central Nervous System (CNS) will follow

a sub-optimal solution2 if it has been reinforced by positive results (Ganesh, Haruno,

et al., 2010). From trial to trial, the sub-optimal solution is locally adapted to minimize

error and effort; however, it still remains far from optimal. Consider, for instance, a

teenager exercising basketball shooting. In the absence of proper guidance, his chances

to acquire a stable shooting behavior are slim. A good shot is a unique combination of

a balanced stance, a loose but accurate grip, and a powerful delivery motion; each of

these components has a number of nuances that a novice can learn only from coach’s

guidance. This is explained by the fact that a teaching signal makes the CNS realize

a globally optimal behavior. Research suggests that imitation of experienced individu-

als helps humans converge to more optimal motion strategies (Rizzolatti & Craighero,

2004).

In robotics, the "optimal" solution obtained through imitation learning may not

necessarily be optimal in a strict mathematical sense, in contrast to solutions that would

be produced by various planning algorithms (e.g., optimal in terms of the path length).

Instead, optimality may be estimated as the extent to which a motion generated by

the robot resembles one that the human would produce herself and, therefore, that she

might expect the robot to execute in similar conditions. In this work, we adopt both the

imitation learning strategy for transferring skills to robots and the above "soft" notion

of movement optimality.

2For instance, the sub-optimality can be considered in terms of energy consumption. Even though a

task might be successfully accomplished while spending less energy, an individual can adhere to a more

energy-consuming and thus sub-optimal movement strategy if it still secures satisfactory results.
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1.2.2 A DYNAMICAL SYSTEM VIEW ON MOTION PRODUCTION

At the level of motion planning, this thesis is driven by a dynamical system3 view

on motion production in humans (Bullock & Grossberg, 1988). The dynamical sys-

tem hypothesis has emerged to oppose the more traditional planning-execution model

(Schmidt, 1975). According to the later, the role of sensory feedback during execution

is reduced to correcting deviations from the motion plan. As the execution system is

disconnected from planning, it stiffly rejects all deviations (for example, this is how a

PD controller tracks a reference trajectory). In contrast, the online corrections exhib-

ited by biological systems are goal-directed: if, while you are stretching your arm to

fetch a cup of coffee, your friend pushes the cup closer to you, you will neither stub-

bornly follow the preplanned motion, nor will you freeze to think about how to get

the cup from its new location. You might keep talking to your friend, while the arm

instantaneously adapts its movement. In this example, the arm behaves like a stable

dynamical system (with the cup as the attractor).

Dynamical system motion representation is particularly well-suited for learning co-

ordinated motions, as a dynamical system offers a generative mechanism to reproduce

systematically similar motor behavior under varying environmental conditions (e.g.,

different initial conditions or a moving target). It does so by encoding motions through

functions that capture the temporal evolution of a continuous family of task motions. In

the previous example of grabbing a cup, the hand executes a multidimensional motion,

where displacements and velocities along all dimensions are tightly correlated spatially

and temporally, so that the hand follows a typical motion profile.

A multivariate dynamical system motion encoding, that we develop in this work,

enables a robot to learn how the coordination between the variables describing the mo-

tion propagates in time. Another strength of the dynamical system view on motion

formation is the fact that the planning and execution are no longer two separated mech-

anisms when driven by a dynamical system. The motor system can instantaneously

react to unexpected sensory information and successfully reach the goal of the motion.

The dynamical system approach is naturally robust against perturbations. That is, if

we mapped the location of the cup into the attractor of the system, even under pertur-

bations, the system would smoothly rearrange the motion so as to reach the cup. This

thesis follows a dynamical system approach to learn and generate multi-dimensional

motions, both in free-space and in collaborative tasks. As neither the exact biological

principles, nor a concrete computational form for the dynamical systems, underlying

arbitrary human motions currently exists, we suggest a machine learning approach to

extract an estimate of a dynamical encoding directly from human demonstrations and

to ensure its local stability.

1.2.3 MOTION CONTROL

At the level of motion control, we follow a hypothesis from human motion studies that

the CNS combines feedforward (anticipatory) and feedback (compensatory) control of

3In this context, the term "dynamical" refers to the temporal evolution of a motion.
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motion (Tee et al., 2010). These types of control provide the human with complemen-

tary capabilities: feedforward control helps in overcoming sensory delays and enables

motion compliance, whereas feedback control can efficiently counteract instabilities.

With respect to the current state-of-the-art in robotics, the necessity to combine the

two control strategies becomes particularly apparent when we consider collaborative

execution in tasks where a human and a robot should coordinate and interact physi-

cally.

PbD suggests an overall view on skill transfer, but does not impose any concrete

methodology. The approach taken in this thesis is to bond machinery from different

well-established mathematical domains - statistical machine learning, dynamical sys-

tems, and control - into a unified framework for learning coordination. In our work, we

address an ongoing problem in robot learning; that is, learning from noisy time-series

data, where some information may be missing. We propose a novel approach to learn-

ing motion dynamics from several demonstrations. The advantages of the proposed

method include the ability to encode and generalize an extracted coordination pattern

to an unobserved context, time-independency, and robustness against the perturbations.

These advantages allow our generic method to be used as the basis for building more

specialized approaches. In this thesis, we use the dynamical system encoding to learn

bimanual coordinated tasks and to teach a robot to physically interact with a human in

collaborative tasks.

1.3 MAJOR CONTRIBUTIONS

In this thesis, we have made progress towards a generic framework for learning and

executing coordinated motions. This progress includes contributions to the following

lines of research:

• Robot Learning

Learning Motion Representations for Unimanual Coordinated Tasks

How can one infer a compact motion representation that captures a multivariate

correlation pattern which couples several degrees of freedom? Might this corre-

lation be easily generalized to unseen contexts? How can one depart from en-

codings that assume explicit timing in favor of more convenient motion strategies

that do not require non-intuitive heuristics for maintaining an internal clock? Can

a task model learned directly from demonstrations provide robustness against

spatial and temporal perturbations? We propose a novel algorithm that esti-

mates an autonomous nonlinear dynamical function underlying an arbitrary goal-

directed motion, and demonstrate how the proposed encoding addresses the re-

search questions raised above. We utilize the strengths of statistical learning to

extract the dynamical function through Gaussian Mixture Models (GMM)/ Gaus-

sian Mixture Regression (GMR), and ensure the local stability of the estimate.

To date, our work is one of few existing approaches to motion representation that
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provides actual robustness against temporal perturbations and enables multivari-

ate encoding of a motion.

The dynamical system motion representation that we develop here is generic and

can be used as a building block for more complex tasks than unimanual manip-

ulation. In this thesis, we exploit the strengths of dynamical system encoding to

couple the two arms in discrete bimanual tasks and to continuously interact with

a human during collaborative manipulation.

Learning Bimanual Coordinated Tasks

What are the constraints coupling the two arms? How can these constraints be

automatically extracted from noisy motion data? How can the controllers gov-

erning each of the two arms be coupled so as to ensure the reproduction of the

learned constraints? In our work, we try to overcome limitations in existing en-

gineering and robot learning approaches to bimanual manipulation. Namely, we

investigate the explicit learning of bimanual constraints. The proposed approach

differs from conventional motion planning algorithms where the constraints are

imposed by hand. Our method also differs from most existing robot learning

methods, that rely on implicitly capturing bimanual constraints from the train-

ing data. We take inspiration from research on coordination in human motion

science: the process of coordination is driven by discrete transitions between

the states of so-called coordination variables, i.e. parameters that couple sev-

eral degrees of freedom. We introduce a set of hypotheses regarding the form

of these variables, and demonstrate how this allows the robot to learn discrete

bimanual coordination tasks. We exploit continuous Hidden Markov Models

(HMM) for encoding the states of the coordination variables and for generating

a most probable sequence of states for reproduction. The extracted coordination

constraints are subsequently mapped to the two coupled dynamical systems that

generate Cartesian space trajectories for the two robotic arms. The suggested

model generates coordinated movements online, while handling perturbations

and satisfying the learned coordination constraints.

Learning Task Models for Physical Human-Robot Interaction

How can the robot learn to share both the goals and means of a collaborative

task? How can we use the haptic information for teaching the robot to antic-

ipate human intentions? What type of controller can encapsulate the learned

task model and compensate for unmodelled effects that inevitably emerge once

the human is included in the robot control loop? We use our dynamical system

approach to motion encoding to build out a novel method that combines Pro-

gramming by Demonstration and adaptive control to teach a robot to physically

interact with a human. Here, encoding task movements as dynamical systems

enables the learning of action-perception coupling: learning a task model allows

the robot to anticipate the partner’s intentions and adapt its motion according

to perceived forces. As the human represents a highly complex contact environ-

ment, a direct reproduction of the learned model may lead to sub-optimal results.
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To compensate for unmodelled uncertainties, we enhance the learned task model

with an adaptive control algorithm which tunes the impedance parameters, so as

to ensure accurate reproduction.

• Physical Human-Robot Interaction

The methods developed in this thesis provide a fundamental basis for address-

ing problems of continuous physical human-robot interaction. We argue that

such interaction imposes important requirements on motion encoding in robots,

that should be time-independent and that should naturally incorporate continu-

ous action-perception coupling. The dynamical system encoding that we propose

here satisfies these requirements.

• Robot Application

This thesis contributes to the state-of-the-art in robotics by addressing several

important theoretical questions related to motion planning and control. We also

contribute to robotics implementation through various real-world applications of

the proposed algorithms. We showcase that our methods can be successfully

applied to robotics platforms that differ in the number of degrees of freedom and

types of control.

1.4 CONTRIBUTIONS PER CHAPTER

The methods described in Chapters 3 and 4 have been published in peer-reviewed con-

ference proceedings and scientific journals. References to the related publications are

provided at the beginning of each of the subsection of these two chapters.

The topics addressed by each chapter and their contributions are briefly described

below.

Chapter 2: THEORETICAL BACKGROUND Chapter 2 presents an overview

of several research domains that constitute the theoretical grounding

for this work. We first provide an account of how motion planning

and control have been addressed in analytical robotics and human mo-

tion studies. We emphasize challenges existing in these fields and then

move to surveying the robot learning domain, to which our work re-

lates directly. We highlight major directions of research within the

robot learning domain and explain how learning techniques suggested

in this thesis approach the unresolved challenges of motion coordina-

tion.

Chapter 3: A DYNAMICAL SYSTEM APPROACH TO MOTION REPRE-

SENTATION AND BIMANUAL COORDINATION In Chapter 3, we start

by presenting an algorithm for learning bimanual tasks where coordi-

nation between the hands is important. Within this learning framework

we assume that the individual basic movements are generated using the

predefined VITE model of human reaching movements.
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Being described by a linear dynamical system of the second order, the

VITE model is limited in its ability to produce curved motions of an

arbitrary shape. To address this shortcomings, we further introduce

the problem of learning dynamics of arbitrary one-arm motions from

multiple demonstrations. We propose our approach to learning locally

stable dynamical systems from human demonstrations and provide an

experimental illustration and validation of the method. We emphasize

the novelty of our approach by formally comparing it with the other

state-of-the-art approaches.

The chapter concludes with the extension of the dynamical system mo-

tion representation to learning coordination between the position and

orientation components of a robot’s motion in Cartesian space. Simul-

taneous learning and reproduction of both motion components in a co-

ordinated manner offers a "pre-shape" motion strategy and endows the

robot with the capability of smooth adaptation in the case of perturba-

tions, which may affect the two motion components either separately

or simultaneously.

Chapter 4: LEARNING PHYSICAL HUMAN-ROBOT COORDINATION In

Chapter 4, we integrate learning motion dynamics and coordination, so

as to endow a robot with the ability to physically interact with humans.

We consider the problem of physical interaction between a robot and

a human in situations where they jointly perform manipulation tasks,

e.g. the collaborative carrying and positioning of a load. The novel

framework introduces the augmented state, i.e. the state that encapsu-

lates both the kinematic command and the perceived haptic input. We

show how such a formulation allows the robot to learn and generate its

velocity as a function of the incoming haptic information. The robot,

therefore, is able to adapt its motion according to the perceived human

intentions. We emphasize the novelty of our approach by comparing it

with the damping controller traditionally used for controlling a robot

during physical interaction.

Chapter 5: CONCLUSION This chapter revises the assumptions of the

proposed algorithms and discuss the main limitations of our work. Fi-

nally we summarize and discuss the principal contributions of this the-

sis.

8



Chapter 2

Theoretical Background

In this chapter, we strive to provide a multifaceted view of motion coordination and so

we analyze how this problem has been addressed within different disciplines.

Motion coordination is a rather broad subject that covers topics such as hand coor-

dination in manipulation tasks, locomotion, whole-body coordination, and other types

of systematic motor behaviors. In this manuscript, we particularly concentrate on the

coordination of robot motion in manipulation tasks in the context of unimanual and bi-

manual manipulation as well as in the context of physical interaction between a robot’s

and a human’s hands. In such tasks, the problem of coordination essentially includes

motion planning and control. Furthermore, we argue that, in coordinated tasks, plan-

ning and control are subject to spatio-temporal constraints in order to ensure the repro-

duction of coordination patterns.

The original concept by Bernstein of coordination patterns as synergies that sim-

plify task execution is abstract and gives no indication of how to identify these patterns

or how they are formed. For robotics applications we suggest that the coordination

patterns are the systematic correlations between variables describing a movement. The

correlations can be observed in the process of repeatedly executing a task under varying

environmental conditions. The correlations can be encoded in different spaces, e.g., in

the joint or Cartesian spaces or at the level of control signals. We limit our research to

correlations and coordination patterns that are formed in the task space. Such a choice

seems reasonable in the context of manipulation tasks, which we consider here, since

the goals of coordination in these tasks are effectively formulated in the Cartesian task

space.

We advocate the use of dynamical systems as a means to represent the coordination

patterns of a motion. Specifically, we assume that the motion’s trajectories can be

generated by an autonomous dynamical system that defines a systematic coordination

pattern:

ξ̇ = f(ξ) (2.1)

where ξ is the state of the robot (for instance, the position of the robot’s end-effector

in Cartesian space), and f(ξ) is the dynamic function that describes spatio-temporal

evolution of ξ.

In this section, we first provide a brief account of how planning and control of co-
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ordinated motion have been addressed in analytical robotics1 (Section 2.1) and human

motion studies (Section 2.3).

Sections 2.1 touches upon the use of dynamical systems for motion planning and

control, and this discussion will be continued further when looking at coordination in

humans 2.3. To provide necessary background on dynamical systems and their esti-

mation, we include Section 2.2 that contains a review of existing methods for system

identification and stability analysis.

While explaining which problems related to motion coordination and identification

of nonlinear dynamical systems have been resolved, we will emphasize challenges

that are difficult to address if we are bound by the problem definitions inherent to the

analytical domains (Sections 2.1.5, 2.2.3, and 2.3.4). These speculations will lead us

to Section 2.4, where we survey the robot learning domain to that our work relates

directly. We will highlight major research directions within the robot learning domain

and explain how the learning techniques suggested in this thesis address some of the

unresolved challenges of motion coordination.

We do not attempt to provide a complete analysis of what has been done within the

discussed domains; instead, we summarize relevant state of the art methods and, where

it is possible, refer an interested reader to other sources.

2.1 THE ANALYTICAL ROBOTICS VIEW ON

MANIPULATION PLANNING AND CONTROL

The production of coordinated movements relates to the processes of trajectory plan-

ning and execution (or a single intertwined process, as we develop in this thesis). These

problems (planning and execution) have generated a long-standing interest in analyt-

ical robotics. Therefore, the research conducted on motion planning is abundant; an

interested reader may refer to the seminal book by Latombe (1991) or to a more recent

book by LaValle (2006).

In this review, we particularly concentrate on two directions of motion planning

that might be directly associated with our work – kinodynamic (Section 2.1.1) and

feedback planning(Sections 2.1.2 and 2.1.3). Similar to the methods developed in this

manuscript, kinodynamic planning considers trajectory generation in the state-space

rather than in the joint or task space, as classic planning methods do. In its turn,

feedback planning raises a question that we also seek to answer: how to generate a

trajectory online while adapting to a dynamically changing environment.

The latter group of methods is further categorized into: early methods that preplan

“desired" trajectories and then update them in real-time only locally (Section 2.1.2),

and more advanced approaches that do not depend on a single desired trajectory and

allow a robot to choose a completely different path in real-time if it appears to be more

1Here and further, we will denote as analytical the approaches that rely on a thorough analysis and

understanding of a problem at hand. We contrast analytical approaches with data-driven methods that do

not aim at building an exact structured model or an algorithm, but rather aim at approximating an unknown

system with an estimate extracted from observations.
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optimal (Section 2.1.3).

Once a motion plan is generated, it needs to be converted to motor commands. This

task is performed by control algorithms. When we consider the robot coordinating with

a human, control algorithms have to accommodate important requirements of safety

and adaptability. We review existing methods of interaction control in Section 2.1.4.

2.1.1 KINODYNAMIC PLANNING

In a classical formulation, motion planning is a purely geometric problem: given the

geometry of a robot and static obstacles, compute a collision-free path between two

given configurations. The vast majority of basic path planning algorithms consider only

positional aspects of the path, while ignoring the temporal aspect and the dynamics of

the robot itself. However, robot motions are often subject to kinematic and dynamic

constraints (kinodynamic constraints) (LaValle, 2006). In the simplest form, kinody-

namic constraints can take the form of bounds on velocity or acceleration. Moreover,

the environment may contain moving obstacles that require a computed path to be pa-

rameterized by time so that the robot knows when it has to pass through a particular

state.

Kinodynamic planning has emerged as an attempt to overcome these drawbacks of

conventional planning methods (Canny et al., 1991; LaValle & Kuffner, 2001; Sahar &

Hollerbach, 1986). Kinodynamic planning extends the path planning problem beyond

the joint or task space into a state-space that includes both configuration parameters

(a cartesian position of a robot’s hand or a joint configuration) and the corresponding

velocity parameters.

Most existing kinodynamic planners are based on random sampling planners, such

as Probabilistic Road Maps (PRMs) (Kavraki et al., 1996) or Rapidly-exploring Ran-

dom Trees (RRT) (Lavalle, 1998), since the integration of kinodynamic constraints into

combinatorial planners is almost intractable computationally. Random sampling meth-

ods have been first introduced to solve geometric path planning problems for robots

with many degrees of freedom (Kavraki et al., 1996). In contrast to global planners

(Lozano-Perez, 1983), that explicitly build a representation of the environment, ran-

dom planners replace this computationally expensive procedure with a probabilistic

exploration of the environment, where collision tests are conducted at randomly picked

configurations and on the paths connecting them. Random sampling allows a consider-

able reduction in the computation cost: the cost does not grow exponentially with the

number of degrees of freedom. Reduction of the computational cost is particularly im-

portant for kinodynamic planning where the dimensionality of any problem is doubled

so as to include velocities.

Motion planning under kinodynamic constraints answers a question – how to find a

path through the state-space between a given initial and target state while satisfying the

kinodynamic constraints and avoiding obstacles. The kinodynamic constraints define

laws that should be satisfied during the robot’s motion. Mathematically, the kinody-

namic constraints are expressed in a form of difference equation (or in a differential
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form in case of a continuous constraint):

xt+1 = f(xt, ut) (2.2)

where xt ∈ X ⊂ R
n is the state variable at time t, X is the state-space; ut ∈ U ⊂ R

m

is the control signal, and U is the set of admissible control inputs.

The RRT-planner with imposed kinodynamic constraints proceeds as follows. Let

us assume that x0 is the robot’s initial position and the root of a trajectory tree T . At

each iteration a point xr is picked randomly and the nearest vertex of the tree xn
t is

computed according to a proximity metric ρ(xn
t , x

r). A control input ut is iteratively

chosen according to xn
t+1 = f(xn

t , ut) so that to build a branch connecting the existing

vertex xn
t with the random point xr. By construction, the obtained local trajectory

satisfies the kinodynamic constraints. If the newly computed vertex xn
t+1 passes the

collision test, it is added to the tree. Such an iterative incremental procedure rapidly

explores the state-space and produces the tree T rooted at the initial state and oriented

along the time axis towards the target state.

Despite the successes of randomized planning algorithms, they have an important

shortcoming – the sensitivity of the performance to a chosen proximity metric ρ. The

dependence on the metric becomes especially critical in kinodynamic planning, as the

Euclidian norm does not provide relevant insights regarding the actual distance between

two points in the state-space.

The ideal metric is the optimal cost-to-go, i.e., the optimal cost for a robot to move

from one state to another. The optimal cost has to consider both kinodynamic and

global constraints. A kinodynamic constraint emerges, for instance, if the robot is

moving forward and cannot turn backward immediately (i.e. making a turn requires

additional effort). In this case a metric that equally measures the distance ahead and

behind the robot would be misleading. A global constraint emerges, for instance, if

the robot should pass through a labyrinth with non-convex obstacles. Two states repre-

senting different locations inside the labyrinth might be close in terms of the Euclidean

metric, but in reality the distance between them might be considerable because of ob-

stacles – a correct global metric should take into account actual geometrical constraints

of the world.

Though many approaches use a simple weighted Euclidian proximity metric (LaValle

& Kuffner, 2001), the use of more task-oriented solutions can improve the perfor-

mance drastically (LaValle, 2006). Several approaches have been suggested that utilize

a non-holonomic metric (Laumond et al., 1998) or the optimal cost-to-go (Glassman &

Tedrake, 2010; Sundar & Shiller, 1997).

In practice, planning under kinodynamic constraints is highly a non-trivial problem.

The complexity of the problem increases even more for manipulation tasks as it is

complicated to derive kinodynamic constraints as given by Eq.2.2 for each particular

task. Therefore, for now, the existing kinodynamic planners mainly address aerospace

applications or motion planning for car-like robots (Cheng et al., 2001; Hartmann,

2005; Phillips et al., 2003).
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The applications of kinodynamic planning most closely related to our work include

the animation of virtual avatars that perform household tasks like sorting objects on a

shelf or opening drawers (Y. Koga et al., 2004; Molina-Tanco & Hilton, 2000; Popovic

et al., 2002; Yamane et al., 2004). To enhance the human-likeliness of the generated

movements, the authors of these methods suggest ways to incorporate captured human

motion information into the planning mechanism. Yet, kinodynamic planning in these

applications is not resolved in the way described in this section, i.e., simultaneously

with trajectory planning. Instead, kinodynamic contraints are imposed through a two-

step procedure that consists of path planning and path post-processing. The planning

phase generates a collision-free path; for this an expert should define "hard" constraints

such as the object’s location or grasping points on the object. In the post-processing

phase, the generated path is smoothed and converted into a trajectory by fitting to a

human velocity profile (recorded through a motion capture system) into the path.

2.1.2 FROM A PLANNING-EXECUTION SCHEME TO A UNIFIED

PARADIGM

Motion planning and control are traditionally regarded as two distinct areas of research

(Siciliano & Khatib, 2008). However, their integration can bring important advantages,

especially if a robot is supposed to operate in a dynamically changing environment. A

motion planner needs to make strong assumptions about the environment and requires

the ability to accurately predict the evolution of the robot’s state in the future given

its current and target states. If these requirements are satisfied, the planner generates

a globally optimal path that is guaranteed to converge to the target. However, global

optimality is attained at a considerable computational cost. Moreover, by the time

the generated trajectory is ready to be executed, the environment may have changed

so that the planned motion is no more relevant. Unsatisfactory robot performance

in varying conditions simulates the development of integrated approaches to motion

generation (Baginski, 1998; Barraquand & Latombe, 1991; Faverjon & Tournassoud,

1987; McLean & Cameron, 1996; Quinlan, 1994).

Early integration attempts shared an important similarity: they all operated through

local modification of a globally optimal trajectory. That is, the globally optimal trajec-

tory was first generated by a classical planner and then, during execution, was locally

modified through a mechanism that produced virtual repulsive forces. The authors of

these methods were often motivated by a scenario where a robot navigated between

moving obstacles. Within this group, the methods differed between one another in

computational requirements: whether a particular method considered obstacles in the

task space or in the joint space; and whether it generated repulsive forces, at the trajec-

tory level (Quinlan, 1994) or at the level of control signals (Brock & Khatib, 2002).

The elastic strips framework (Brock & Khatib, 1997, 2002) has gained a partic-

ular popularity in the robotics community: it integrates a planning mechanism with

the operation space control of Khatib (1987) and provides a unified framework for

obstacle avoidance in the joint and task space. The elastic strips also decouple task
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and posture control; the decoupling enables a user to impose constraints on the robot’s

posture without affecting the task performance. The elastic strip is represented by a

candidate path (generated by any available planner) and a corresponding elastic tunnel

(formed by spheres centered on the path). The elastic tunnel bounds a free part of the

workspace, where the candidate path can be safely modified to satisfy constraints or

avoid obstacles. By extending the path representation with the notion of the tunnel,

the authors eliminate expensive analysis of the validity of the modified trajectory: for

a new trajectory to be valid, it simply should be contained within the tunnel.

Despite bringing apparent advantages in comparison with the more conventional

decoupled planning-execution paradigm, the methods discussed in this section are still

limited in their ability to tackle large environmental changes. As the trajectories are

modified only locally, large-amplitude perturbations can make them irrelevant. In the

next section, we review motion planning approaches grouped under the name of feed-

back planning. Feedback planning methods incorporate information about the current

robot state into the planning process such that the robot can adapt to deviations from a

plan.

2.1.3 FEEDBACK PLANNING

In the conventional motion planning formulation, feedback is not considered. If initial

and target states are given, the solution produced by a planner is a geometric path.

The path is then transformed into a time-parameterized trajectory. Although recent

algorithms are able to produce feasible open-loop trajectories for high-dimensional

and non-convex problems (Frazzoli et al., 2002; Kuffner et al., 2001), in many cases

the feedback is fundamental and its absence might seriously deteriorate performance.

For instance, at the onset of the motion, we do not know the target state exactly or the

motion might not be predicted correctly due to disturbances or errors in the model of

the environment.

Therefore, for implementation on real robots, preplanned open-loop trajectories

are stabilized by a feedback controller (e.g., by a PD controller). Such a decoupled

approach works well for free-space motions in an environment where perturbations are

small. If, for instance, the robot has been moved far from the preplanned trajectory, the

stabilization attempt may fail or, at least, result in a sub-optimal movement, the task

can be accomplished by other, more desirable trajectories. Feedback planning algo-

rithms, that explicitly consider the feedback stabilization during the planning process,

can avoid this limitation.

Potential fields (Khatib, 1986) is one of the early approaches to feedback planning.

Under this approach a desired trajectory is generated though gradient descent along a

potential function V that has a minimum at the target:

ẋ = −∇V (x) (2.3)

where V (x) is a potential function, e.g. V = 1
2α(xtar − x)2, where xtar is the tar-

get state, α ∈ R controls the speed of convergence. According to Eq.2.3, the robot’s
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trajectory monotonously converges to the target xtar. The potential fields offer several

attractive features, for instance, they endow the robot with the ability to rapidly react

to environmental changes. In Eq. 2.3, as we map the actual target position into the

attractor xtar, all perturbations of the target position will immediately modify the po-

tential function V (x) and consequently the trajectory. Moreover, the potential function

can have a more complicated form than merely a quadratic function, e.g. it can incor-

porate not only attractors but also repellers so as to steer a robot away from obstacles.

However, the motion of the robot guided by the potential field might be subject to a

local minimum and, as a result, the robot may stop somewhere in the workspace before

reaching its target. Some methods have been proposed to generate potential fields that

do not suffer from the local minimum problem (Koditschek, 1987; Yun & Tan, 1997).

Motion planning with potential fields is still active area of research; A. Masoud (2010);

S. Masoud & Masoud (2002) extend the conventional potential fields framework so as

to ensure resolution of kinodynamic constraints of the robot’s body.

An interesting approach to simultaneously conduct feedback and kinodynamic plan-

ning is based on the concept of funnels (Burridge et al., 1999; Comer et al., 2003; Rizzi,

1998; Zefran & Burdick, 1998). A mathematical funnel brings a large set of initial con-

ditions into a smaller set of final conditions (Mason, 1985). Each funnel represents a

local area within the robot’s workspace and enables linearization of a kinodynamic

constraint in Eq. 2.2. Therefore, within a funnel, one can apply well-established tools

of linear feedback control. Combining funnels allows one to obtain a global feedback

planning policy that projects a broad set of initial robot’s states into a target state.

One of the most recent and powerful implementations of this approach is proposed

by Tedrake (2009) and Tedrake et al. (2010). Analogously to other randomized plan-

ning algorithms, the proposed method creates a tree of feasible trajectories by sampling

randomly over a bounded region of the state-space. The novelty of the method is re-

vealed once a new trajectory "branch" is added to the tree: the algorithm creates a local

feedback controller and estimates its basin of attraction. Wherever the robot is located,

if its position is within the basin of attraction, the feedback controller will generate

correct commands. The algorithm terminates when the whole region of interest (the

part of the robot’s workspace) is contained within the basin of attraction of the tree.

As a feedback controller, the authors choose the Linear Quadratic Regulator (LQR)

controller, which, in addition to trajectory stabilization, builds a quadratic cost-to-go

function. The benefit of building the cost-to-go function is two-fold: one simultane-

ously obtains a valid Lyapunov function (for estimation of the basin of attraction) and

an optimal proximity metric. According to our discussion in Section 2.1.1 the design

of a relevant proximity metric is a fundamental barrier to improving planners’ perfor-

mance and the method of Tedrake et al. (2010) suggests one way to overcome this

metric problem.

Finally, a recent attempt to integrate visual feedback with a RRT planner in the con-

text of manipulation tasks is described in (Diankov et al., 2009). The authors demon-

strate how a simulated HRP-3 and a WAM robot manipulate objects in a complex envi-

ronment with obstacles partly occluding the target. In this work, the robots do not plan
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the whole path before the movement’s onset; instead, they sample trajectories as more

visual information arrives. However, this approach suffers from two major drawbacks.

First, a robot has to perform computationally expensive space exploration. Second, as a

path is not defined beforehand, one is not able to fit a smooth velocity profile, therefore,

the motion may appear jerky and non-intuitive.

2.1.4 ROBOT CONTROL

For a robot to be able to execute a trajectory generated by a planner, the latter should be

converted into a sequence of motor commands. Algorithms that map a planned trajec-

tory or, in a broader case, a desired behavior into executable commands are investigated

in control theory (Astrom & Wittenmark, 2008; J.-J. Slotine & Li, 1991).

To enforce a robot to track a desired trajectory, one can use a proportional-derivative

(PD) controller, as it does not require any knowledge of a robot’s dynamics:

u = K(x − xd) + D(ẋ − ẋd) (2.4)

where u is a control signal (e.g., joint torques or joint angles), K,D are tunable gains,

xd, ẋd are desired kinematic signals.

The algorithms that we propose in Section 3 rely on this controller to convert a

learned kinematic behavior into commands. One drawback of the PD controller is the

lack of compliance: a robot stiffly rejects all external disturbances. Such behavior

is undesirable or even unsafe if the robot operates in a changing environment, where

objects and other agents can move in an unpredictable way.

In Section 4, we go beyond the stiff tracking and investigate learning for physical

coordination between a robot and a human. To provide a relevant background on in-

teraction control, as it is addressed in analytical robotics, we further review work on

impedance control (Section 2.1.4.1) and on application of impedance control to physi-

cal human-robot interaction (Section 2.1.4.2).

2.1.4.1 IMPEDANCE CONTROL

Manipulation tasks where a robot needs to physically interact with an environment

have been a subject of active research; most existing approaches can be attributed to

one of two fundamental control methodologies. The first approach, known as hybrid

position and force control, is suggested by Raibert & Craig (1981). In hybrid position

and force control, a task space is divided into position-controlled and force-controlled

subspaces since position and force cannot be simultaneously controlled along the same

direction. Therefore, hybrid control does not consider the dynamic coupling between a

manipulator and an environment; however, ignoring this coupling might lead to insta-

bilities (potential undesirable vibrations during contact with the environment) and to

inaccuracies in position and force tracking.

The second approach aims to address these issues: Hogan (1985) proposes impedance

control, where a mechanical impedance of a manipulator is regulated so as to match
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that of a target virtual model (typically chosen to be a spring-and-damper system).

Impedance control establishes a dependency between the kinematical parameters of an

end-effector and external force. Target system dynamics is described by the following

equation:

Λd(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd) = f , (2.5)

where Λd,Dd,Kd are the matrices of desired inertia, damping, and stiffness, f is a

vector of external forces perceived by the robot, and xd, ẋd, ẍd are the kinematic signals

to be tracked. Note that here we define a desired impedance in a task space, as we

consider it in our work (Section 4); a desired impedance can also be formulated in a

joint space.

There are two ways to implement impedance control, depending on which con-

trol input a particular robotic platform admits. These two formulations of impedance

control are referred to as impedance and admittance control.

Impedance control can be applied to force or torque controlled robots. Let us con-

sider a rigid body dynamics model of a robotic arm:

τ = JT [Λ(x)q̈ + μ(x, ẋ)ẋ + g(x)] + JT f (2.6)

where τ ∈ R
Nq is a torque command, Nq is the number of controllable degrees of

freedom; J is a Jacobian function of the arm, Λ,μ, g are the inertia matrix, the coriolis

term, and the gravitational term, respectively, all expressed in the Cartesian space. A

torque control law that satisfies the rigid-body dynamics model Eq.2.6 and implements

a desired impedance Eq. 4.5 can be written as:

τ = g + JT [Λẍd + μẋd] + JT [ΛΛ−1
d Kdex + (ΛΛ−1

d Dd + μ)ėx + (ΛΛ−1
d − I)f ].

(2.7)

Essentially, the control signal τ in Eq.2.7 consists of two parts: the feed-forward con-

trol u = g+JT [Λẍd+μẋd], which attempts to track a desired trajectory with minimum

forces, relying on the knowledge of the robot’s dynamics, and the impedance control

part, which aims to control interaction by adjusting to external forces and tracking

errors. Robotic systems controlled with impedance control exhibit a stable dynamic

interaction with a stiff environment but have a poor accuracy during free-space mo-

tions. Indeed, to ensure a stable interaction, a stiffness parameter Kd should be set to a

rather low value. At the same time, a low stiffness combined with unmodelled friction

might lead to the robot’s inability to track a trajectory.

Many robotics platform accept only positional input. In this case, admittance con-

trol can be implemented if a robot is equipped with a force sensor. An admittance

control law can be written as:

x = xd − K−1
d (f + Ddẋ). (2.8)
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In essence, admittance control is similar to the stiff tracking of a desired trajectory xd,

where interaction control is achieved through continuous adjustment of this trajectory

xd according to force measurements. In contrast to impedance, admittance control en-

sures motion accuracy in non-contact tasks but can result in instability during dynamic

interaction with stiff environments.

This difference in the behavior of the two controllers has been studied by Valency

& Zacksenhouse (2003). Ott et al. (2010) propose a unified framework, where a robot

can switch between admittance and impedance control laws depending on task require-

ments.

Though impedance control has been under consideration for several decades, there

are still a number of open questions related to its implementation on physical robots.

One of the most critical issues is the choice of the impedance parameters: a widely

accepted framework for tuning stiffness, damping, and inertia is missing (Buerger &

Hogan, 2007). In most experimental studies, the parameters are hand-tuned using task

knowledge, for instance, so as to make a robot stiffer along some, more constrained

directions (Ott et al., 2005). The other important problem is that the rigid body model

in Eq.2.6 represents only an approximation of the actual robot’s dynamics, which in

addition often contains nonlinear friction and other non-modelled effects. To compen-

sate for inaccuracies of the model in Eq.2.6, one effectively would have to increase the

stiffness – this makes an impedance controller less compliant than desirable. In Sec-

tion 2.4.4, we review how research within robot learning attempts to overcome these

limitations.

Impedance and admittance control have been applied to different manipulation

tasks. For instance, in (Ott et al., 2005), the impedance of a humanoid robot Justin

is controlled while the robot is opening a door. In (Ott et al., 2006), the same robotic

platform is used to showcase a bimanual task of manipulating a ball: during the task ex-

ecution, a human interferes by pushing and pulling the robot’s arm; the robot complies

to these perturbations, while managing to keep the ball as required by the task.

So far, we have discussed autonomous task execution. In the next section, we

discuss how impedance algorithms are applied to control a robot during physical inter-

action with a human.

2.1.4.2 IMPEDANCE CONTROL FOR PHYSICAL HUMAN-ROBOT INTERACTION

Collaborative tasks can be deemed as an energy exchange between partners. Therefore,

impedance control, which offers a means for regulating such an exchange, appears to

be a suitable ground for algorithms that enable physical collaboration between a robot

and a human.

Consider a task of bringing an object to a desired location. If a robot executes such

a task autonomously, then position tracking with a PD controller given in Eq. 2.4 is

a viable option. However, if several agents collaboratively manipulate a single object,

the stiff position tracking would work only if all partners had the same desired trajec-

tory and were perfectly synchronized. Obviously, such a situation is hardly possible,

18



especially if one of the partners is a human. Conflicting kinematic agendas may result

in significant interaction forces and eventually in a task failure. The use of impedance

control, instead of a stiff PD controller, helps to smooth out discrepancies between

motions of the partners.

In the last few decades, impedance control has been actively applied to control

robots during physical interaction with other robots (M. Koga et al., 1992; Kosuge &

Kazamura, 1996) and humans (Arai et al., 2000; Kosuge et al., 1993; Maeda et al.,

2001; Rahman et al., 2002; Tsumugiwa et al., 2001).

M. Koga et al. (1992) consider the control of interaction between two robots. Their

particular interest goes to a scenario where a manipulated object gets broken. In this

case, the interaction force, perceived by the robots, changes abruptly. Therefore, the

object’s breakage can dangerously destabilize the two robots. The proposed algorithm

ensures motion stability in this situation. Kosuge & Kazamura (1996) propose a decen-

tralized control algorithm of multiple robots handling a single object in coordination.

A motion command is given to one of the robots (referred to as a leader). The other

robots estimate the motion of the leader through the motion of the object and handle

the object based on the estimated reference. When considering physical interaction

between the robots, the researchers can assign an equal impedance to all agents and,

therefore, assume an equal load sharing, given that all robots track exactly the same

trajectory.

Many works on physical human-robot interaction assume that only a human partner

has knowledge about a task to be performed. Technically, this assumption means that

the robot has no desired trajectory; that is, in Eq.4.5: xd = ẋd = ẍd = 0. Therefore,

the robot appears as a purely dissipative element: it does not inject any energy during

the task execution. Consequently, the human partner has to apply more efforts than

if he/she performs the task individually. This problem is discussed by Corteville et

al. (2007). Yet, such control algorithms are useful in some applications, for instance,

for manipulation of heavy objects: a robot can be programmed to keep an object at a

specified altitude, while behaving as a passive element along a horizontal plane. The

human still needs to guide the robot along the horizontal plane, but this requires less

effort than an unaided manipulation.

To relieve a human partner from workload associated with guidance of a passive

robot, researchers investigate two approaches. The first approach suggests implement-

ing varying impedance parameters that should be fine-tuned so as to minimize the

damping effect whenever it is possible (Duchaine & Gosselin, 2007; Rahman et al.,

2002; Tsumugiwa et al., 2001). However, under this approach, the apparent dynamics

of the robot perceived by the human is still passive. The second approach, active fol-

lowing, goes further, and allows the robot to input energy during interaction. This is

accomplished by defining a desired motion of the robot (Corteville et al., 2007; Maeda

et al., 2001).

In (Tsumugiwa et al., 2001), a collaborative task is divided into several phases

based on a difficulty index (an onset, a moving phase, and an offset of a task). Dif-

ferent pre-defined impedance parameters are assigned to each of the phases. Willing
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to move beyond a heuristically pre-defined impedance, Duchaine & Gosselin (2007)

argues that a robotic impedance should be tuned according to human’s intentions. The

researchers suggest that the derivative of the force perceived by the robot contains per-

tinent information regarding these intentions. They propose an algorithm that tunes a

desired damping Dd of the admittance controller given by Eq. 2.8. The damping is

increased if the robot detects a human intention to decelerate: the robot hence helps the

partner to stop moving; if the robot perceives that the human intends to accelerate, Dd

is decreased so as to minimize the damping effect.

Corteville et al. (2007) advocate the second approach and assert that, if desired

kinematic signals are set to zero, then, even enhanced with a varying impedance, the

robot still does not take a proactive stance in task execution and dissipates energy in-

troduced by a human. They emphasize that active following necessitates task knowl-

edge and the ability to predict the desired motion of the human. Maeda et al. (2001)

and Corteville et al. (2007) independently propose model-based active following algo-

rithms. The authors consider a one dimensional task of moving an object and assume

that a human’s trajectory follows the minimum jerk model. During task execution,

the robot tries to identify the parameters of the minimum jerk model and then actively

tracks the identified trajectory.

Most existing approaches to controlling physical human-robot interaction do not

address explicitly the problem of stability of resulting controllers. One reason for this

is the difficulty of formulating a stability criterion in case of interaction with a human.

A general approach to ensure stability of an impedance controller during interaction

with objects is by imposing a passivity condition (Colgate & Hogan, 1988; Hirata &

Kosuge, 2000; Hirata et al., 2001). Buerger & Hogan (2007) emphasize limitations

that stringent passivity constraints impose on a robot, particularly if the latter needs

to interact with a human. Specifically, they argue that a robotic impedance might vary

within larger bounds than it is allowed by the passivity constraints. The authors propose

a less conservative stability criterion by making some hypotheses regarding impedance

characteristics of a human arm.

2.1.5 THE CURRENT CHALLENGES

Summarizing our discussion on analytical motion planning and control, we may pin-

point the following challenges related to production of coordinated movements that

have not been completely resolved as of yet and that we address in this manuscript.

• A particular path to follow is not considered to be a task by itself. In humans,

task trajectories follow some coordination patterns and, therefore, represent an

important part of a task. Even though a kinodynamic planner can generate a path

satisfying differential constraints, the existing applications of kinodynamic plan-

ning mainly consider the robot’s hardware constraints only. One reason for this is

that, historically, matters of efficiency have preoccupied analytical robotics more

than ergonomics or the comfort of a human user. Another reason is that within

the scope of analytical robotics, a coordination constraint in the form given by
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Eq. 2.2 has to be engineered by a researcher. This is the complicated and non-

intuitive process if we think of the variety of that such constraints may take in

manipulation tasks.

• State-space exploration is a computationally heavy process. Therefore, it may

happen that real-time feedback planning of a multidimensional coordinated move-

ment is practically infeasible. Additionally, the necessity of extensive state-space

exploration makes planners sensitive to the proximity metric: a wrong metric

may fail the search of a feasible path or lead to infinite computations.

• Despite recent advances in feedback planning, most planners still operate in

open-loop and therefore require a heuristic timing mechanism for resampling

a generated trajectory in the case of perturbations. Note that this problem also

concerns the hybrid methods discussed in Section 2.1.2. The complexity of such

a mechanism lies in the necessity to reestimate movement duration and reset a

current time index if a perturbation occurs.

• Potential fields currently represent the most computationally efficient feedback

planning method. Therefore, they are often applied to robotics applications.

However, for each new task a potential function should be individually designed.

As a number of task dimensions grows, rationalizing about a potential function

quickly gets non-intuitive, therefore, many existing practical implementations

consider only planar motions. Additionally, in manipulation tasks coordination

requirements might be difficult to formalize analytically.

• Research on impedance control of physical human-robot interaction investigates

two promising directions, variable impedance and active following. Existing

methods demonstrate that for being an efficient partner, a robot needs task knowl-

edge. Analytical ways of providing such knowledge, for instance by assuming

a linear motion of a human (Corteville et al., 2007) or by devising different

impedance parameters for different phases of a movement (Tsumugiwa et al.,

2001), are of a limited use, given a variety of potential interactions.

In Sections 3 and 4, we approach some of these challenges. We suggest a motion

planning method that operates in the state-space, incorporates the feedback loop, and

allows for motion adaptation in real-time. This algorithm is further extended to enable

active following during physical human-robot coordination.

2.2 IDENTIFICATION OF DYNAMICAL SYSTEMS AND

STABILITY ANALYSIS

In the previous section we discussed the methods to analytical motion planning and

control. In this section, we continue the overview of analytical approaches, but con-

centrate on providing the background on mathematical tools that relate to the adopted

dynamical system approach.
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Throughout our work, we promote the dynamical system approach as a means for

efficient and compact representations of human movements. Due to a lack of existing

computational models that explain arbitrary nonlinear motions, we suggest an approach

to extract dynamical systems underlying observed trajectories directly from these data

(Section 3.3 and 4). Our work therefore relates to methods of system identification.

In classical control theory, one often faces a problem of regulating a system whose

parameters are unknown. Before designing a control law, the unknown parameters

need to be identified. As we explain in Section 2.2.1, despite the fact that the literature

offers various approaches to estimate unknown dynamics, most progresses are achieved

toward identification of known dynamical systems with unknown parameters (Section

2.2.1.1); the estimation of completely unknown dynamics is still under active research

and no universal solution exists (Section 2.2.1.2).

Another important challenge associated with the use of dynamical systems for con-

trol or motion generation is stability analysis. We discuss major results of this field in

Section 2.2.2.

2.2.1 IDENTIFICATION

Methods of system identification aim to estimate unknown parameters of a dynami-

cal system. The problem can be formalized as follows. Let us consider a nonlinear

dynamical system in a canonical form:

ẋ = f(x,α) (2.9)

where x ∈ R
N is a state of the system, and α ∈ R

P is a vector of unknown parameters.

Let us assume further, that a state x cannot be measured directly. Instead, one observes

a value y(t) ∈ R
M :

y(t) = g(x(t)) + η, (2.10)

where g is a measurement function and η is a measurement error taken as a Gaussian

noise. It is further assumed that the system is sampled at discrete instants of time. The

sampling is uniform; that is, measurements are performed at a fixed rate t, t+Δt..t+

(T − 1)Δt.

Given a time series yti
, i = 1..T , the identification problem is to estimate the

parameters α and the states x(t)
Our review concentrates on identification of autonomous dynamical systems that

are deterministic, nonlinear, finite dimensional, and continuous in time. It is not as-

sumed that a complete system state is available for measurements.

If an analytical form of a dynamical f and measurement g functions is known and

only a set of parameters λ needs to be identified, then the problem is known as para-

metric identification. We review methods that fall into this group in Section 2.2.1.1. It

also may happen that we have no knowledge of an underlying dynamical function f.
If this is the case, one needs to assume a functional basis that is suitable for approxi-
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mating f; the unknown parameters are then the parameters of the functional basis. This

problem is investigated by methods of non-parametric identification, which we review

in Section 2.2.1.2.

2.2.1.1 PARAMETRIC METHODS

Parametric methods can be split into two broad categories. The methods of the first

category rely on a global optimization of a cost function (e.g., least square optimization

(Aguirre & Billings, 1995; Cremers & Huebler, 1987; Crutchfield & McNamara, 1987;

Hegger, 1998) and shooting methods (Baake et al., 1992; Domselaar & Hemker, 1975;

Schittkowski, 1994)). The methods of the second category perform local, recursive

estimation of the unknown parameters α; that is, the parameters are updated at each

point in time recursively, as the method proceeds through the time series (e.g., various

implementations of the Kalman Filter fall into this group):

One of the most straightforward approaches for identifying unknown parameters α

is the least square optimization (Aguirre & Billings, 1995; Cremers & Huebler, 1987;

Crutchfield & McNamara, 1987; Hegger, 1998). A least square cost function is defined

as:

L =

M∑
i=1

(g−1[yti ]− f(xti ,α))2 (2.11)

α̂ = argmin
α

L

Due to its apparent simplicity, the least square optimization has been applied to var-

ious problems including identification of chaotic systems (Crutchfield & McNamara,

1987). However, researchers pinpoint a number of issues that lead to an unsatisfactory

performance in some conditions. If a dynamical system f is of an order higher than one

(e.g., depends on a second derivative ẍ), the performance of the least square identifica-

tion crucially dependant on the ability to accurately approximate higher derivatives of

x, which might be not an easy task if measurements are noisy.

The other challenge is known as the errors-in-variables problem (Madansky, 1959)

that stems from the fact that, in the system in Eqs. 2.9-2.10, not only the dependent

variables y are corrupted by noise, but also the independent variables x. The error-

in-variables problem is inevitable if we assume a measurement noise. Indeed, in our

case, x are independent variables, but they are unobservable and need to be estimated;

however, we cannot calculate their deterministic values due to the noise factor η in

Eq.2.10. Noise therefore leads to a biased or even incorrect least-squared estimation.

The method of total least squares (TLS) (Boggs et al., 1987; Van Huffel & Vande-

walle, 1991) attempts to address the problem of errors in variables. Taking into account

the uncertainty of measurements, TLS suggests to use both measurements yt+Δt and

yt for estimating a state xt; the idea behind is to minimize an effect of noise η, which

is assumed to affect yt+Δt and yt independently. However, it has been shown that

TLS still produces suboptimal results (in the maximum likelihood sense) and signifi-

cant estimation errors. Kostelich (2001); McSharry & Smith (1999) confirm a limiting
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applicability of TLS for identification of nonlinear systems.

Regarding the numerical feasibility of the optimization problem in Eq.2.11, some

researchers have observed that both simple and total least squares, might result in a

cost function that has an excessive number of local minimums. Therefore, the opti-

mization gets too complex to be efficiently resolved with standard methods (Theiler,

1990; Theiler & Smith, 1995).

An alternative to the least square optimization is a maximum likelihood approach.

The other group of global optimization methods is represented by shooting methods

(Baake et al., 1992; Domselaar & Hemker, 1975; Schittkowski, 1994) that construct

a likelihood function of an observed sample. Additionally, the methods of this group

include an initial condition x0 into a set of parameters to be optimized. The initial value

approach (Schittkowski, 1994) considers a single initial condition and optimizes the

probability distribution p(y0..yT |x0,λ) of observed data given states and parameters:

{x̂0, λ̂} = argmax
x0,λ

p(y0..yT |x0,λ). (2.12)

It has been proved that the initial value approach theoretically renders optimal re-

sults. However, in practice, the quality of estimates depends on the accuracy of nu-

merical optimization. Horbelt et al. (2000) demonstrate that estimated state trajectories

quickly diverge. In the multiple shooting approach by Baake et al. (1992); Domselaar

& Hemker (1975), initial conditions are estimated at several time steps τ1..τK along a

sample time series. Through this amendment, an estimated trajectory is forced to stay

closer to a true one.

{x̂τ1 , .., x̂τK , λ̂} = arg max
xτ1 ,..,xτK ,λ

p(y0..yT |xτ1 , .., xτK ,λ) (2.13)

In contrast to methods discussed so far, which conduct a global optimization of pa-

rameters, the second group of identification methods reviewed in this section, prediction-

correction method, suggests to estimate underlying trajectories by proceeding recur-

sively through a data sample. A general idea behind such identification can be summa-

rized as follows:

given a state xt, (2.14)

predict a state x̃t+Δt and an observable ỹt+Δt,

correct the estimate x̃t+Δt once an actual measurement yt+Δt is available.

The Kalman filter (Kalman, 1960; Kalman & Bucy, 1960) and its different exten-

sions (Extended and Unscented Kalman Filters (Anderson & Moore, 1979; Julier et

al., 2000)) fall into this category of recursive approaches.

Let us assume that we collect observations y1..yt and estimate states x1..xt up to

time t. From these data, the Kalman filter builds an a priori state estimate x̃t+Δt

and predicts a next observation ỹt+Δt. Once we obtain an actual observation yt+Δt,

the Kalman filter re-estimates the a priori value xt+Δt by calculating an a posteriori
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estimate as:

xt+Δt = x̃t+Δt + K(yt+Δt − ỹt+Δt), (2.15)

where K is a Kalman gain matrix computed from the covariance matrices of the state

and observables:

K = ΣxyΣ
−1
yy , Σxy = E[(x − x̃)(y − ỹ)T ], Σyy = E[(y − ỹ)(y − ỹ)T ] (2.16)

The covariances Σxy and Σyy measure expected variance between the actual and a

priori estimates. At each time step, the Kalman filter updates K,Σxy,Σyy , and the

estimates xt+Δt, yt+Δt.

In the linear case, one can easily compute covariance matrices Σxy,Σyy and, con-

sequently the gain matrix K, analytically. For nonlinear systems, estimation of co-

variances gets more complicated. The Extended (EKF) and Unscented (UKF) Kalman

Filters are designed to address nonlinear identification. EKF (Anderson & Moore,

1979) suggests linearizing a system’s function f through a Taylor expansion. After

the linearization, one can use analytical expressions of the linear Kalman filter. How-

ever, the linearization produces satisfactory results only if nonlinearities in f are weak

(e.g., if f is a second-order polynomial). In contrast to EKF, UKF (Julier et al., 2000)

enables a more accurate estimation: instead of using the linearization as a means to

avoid estimation of covariances, UKF assumes that the density distribution of states x
is Gaussian. The covariances are then computed as empirical covariances of samples

from this distribution.

One should keep in mind that the approximations imposed by the UKF ignore

nonlinearity in a state distribution. Therefore, if the state x follows a multimodal

distribution, UKF might be inaccurate. The assumption of the unimodal normality

is relaxed in methods based on Monte-Carlo sampling (e.g., importance sampling

(Tanizaki, 1993), bootstrapping (Kitagawa, 1996), and particle filters (Arulampalam

et al., 2002)). Monte Carlo-based methods approximate a state density numerically,

by generating random samples and using them to estimate covariances in the Kalman

Filter. The random sampling thus appears particularly useful if a probability density of

a state x strongly deviates from a Gaussian distribution, such as, when this distribution

is multimodal.

A specific objective of Kalman Filters pertains to estimation of a state trajectory. To

simultaneously compute unknown parameters λ, one needs to consider an augmented

state: [x;λ]T (Bar-Shalom et al., 2001).

From an application point of view, recursive methods might appear to be a more

attractive solution when online identification is necessary. However, global identifica-

tion tends to produce more accurate results. Currently, there are no comparative studies

that would systematically delineate computational advantages of one group over the

other. To some extent, global and recursive identification might be considered com-

plementary. The former focuses on the estimation of unknown parameters, and state
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trajectories are estimated as a byproduct. The latter particularly aims to uncover states

trajectories, whereby the parameters can also be estimated.

2.2.1.2 NONPARAMETRIC METHODS

The previous section provides an overview of methods that allow for estimation of

unknown parameters in case when a dynamical function itself has a known form. In

many practical applications, one might have no structured knowledge about the dynam-

ical function; that is, the only available information consists of a set of observed inputs

and outputs. We refer to methods that offer a solution to such problems as methods for

nonparametric identification (Peifer et al., 2002; Timmer et al., 2000; Voss & Kurths,

1997). Nonparametric, data-driven methods consider multivariate input-output data as

instances of a dynamical system; these instances are employed to build an estimate of

an underlying unknown dynamics.

Sometimes, it is known that f spans a set of continuous known basis functions,

{φi(x)}Ni=1 (J. Slotine & Coetsee, 1986):

f(x,α) =

P∑
i=1

αiφi(x) (2.17)

where α are unknown parameters. Identification of the parameters λi can be performed

using one of the methods discussed in the previous section.

If exact basis functions φi(x) are unknown, it is still possible to estimate the func-

tion f using a set of some elementary functions. Essentially, under such a formulation,

a subspace where the function f needs to be approximated is partitioned into a number

of small cells (Sanner & Slotine, 1992) (this concept is analogous to the receptive fields

or neurons); and each cell is associated with a basis function. The unknown parameters

αi and those of basis functions are estimated through optimization. With respect to

how the information is used to update parameters, one may distinguish two groups of

methods: local methods, where only local data contribute to the calculation of the pa-

rameters of each cell and therefore updates can be done iteratively, and global methods,

where all data are taken into account for estimating the parameters of each cell, and all

parameters need to be updated simultaneously.

Local identification methods include nearest neighbor approaches (Farmer & Sidorovich,

1988; Lancaster & SalKauskas, 1986), look-up tables and cerebellar model articulation

controllers (CMAC) (Miller et al., 1987), and memory based learning (Atkeson, 1992)

(we examine this method in more details in Section 2.4.1, when we discuss regression

techniques used in robot learning). The methods of this group differ in basis functions

that they employ for approximation (e.g., binary functions (Albus, 1975), polynomials

(Atkeson, 1992; Lane et al., 1992; E. Lee, 1986), or exponential functions (Buhmann,

2003; S. Lee & Kil, 1991)).

Global nonparametric methods for identification are largely represented by neural

networks (Tomohisa et al., 2008; Travis et al., 2009; Wei & Amari, 2008) (see Hunt

et al. (1992) for a discussion on the use of neural networks in control applications).

26



Specifically, the following recurrent neural networks have been applied to approximate

dynamical systems: multilayered networks trained through back-propagation (Pineda,

1989; Werbos, 1980), radial basis networks (RBFs) (Sanner & Slotine, 1992; Tomohisa

et al., 2008), Hopfield networks (Hopfield, 1984), and echo-state networks (Jaeger et

al., 2007).

We do not go into the implementation details of particular algorithms as they are

quite heterogeneous and some are distant from the methods used in our work. In Sec-

tion 3.3, we review estimation of dynamical systems as it is addressed in robot learn-

ing. In a broad sense, these methods can also qualify as nonparametric identification

approaches.

One should keep in mind that for both, global and local nonparametric identifica-

tion algorithms, the number, location and size of cells greatly influence the accuracy of

an approximation. This observation might appear contradictory to the fact that some

networks possess the property of being universal approximators of an arbitrary non-

linear function on a compact set. For instance, J. Park & Sandberg (1991) prove this

property for radial basis networks. However, while in theory a network may have the

capacity to represent any nonlinear function, in practice, the quality of approximation

depends on the choice of network’s parameters. Consider, if in a part of a state space, a

function f is changing rapidly, then the size of cells covering this part has to be smaller

than this in a part where f varies slowly. The problem of a network architecture de-

sign is a complex one. Works that consider practical applications of neural networks

often concentrate on a particular training procedure and rarely investigate theoretical

properties of a given architecture; this observation is discussed in Hunt et al. (1992).

To compensate for a lack of principled theoretical grounds underlying a choice of

a network’s structure, some researchers attempt to quantify approximation properties

by leveraging results from sampling theory (Petersen & Middleton, 1962) and Fourier

analysis. Sanner & Slotine (1992) propose an algorithm for controlling a plant with

unknown dynamics. They start by choosing radial basis functions as a basis set. Fourier

analysis is then applied to compute a length scale of the function f from available

input-output samples. The authors use the calculated length scale to quantify an effect

of a number of RBFs and their variance on approximation error. Their quantification

motivates a formulation of analytical conditions that these parameters should admit so

as to achieve a given level of accuracy within a network. Gonzalez-Serranoa et al.

(1998) provide a similar analysis for CMAC networks.

2.2.2 STABILITY ANALYSIS

Once a dynamical function is known, the next step toward its use for control is stability

verification. In this section, we review three major approaches to stability analysis:

Lyapunov stability theory (La Salle & Lefschetz, 1961; J.-J. Slotine & Li, 1991) and

the passivity approach (Hill & Moylan, 1976), and contraction theory (Lohmiller &

Slotine, 1998).

We start by defining the basic concept of stability in the Lyapunov sense. Consider
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a nonlinear autonomous system:

ẋ = f(x), (2.18)

where x ∈ R
N is a state vector and f : RN → R

N is a continuously differentiable

function.

A state x̄ is an equilibrium of Eq. 2.18, if f(x̄) = 0 – once a state of the system 2.18

is equal to x̄ it remains equal to x̄ for all future times (J.-J. Slotine & Li, 1991).

For an equilibrium x̄ to be stable, it is necessary that, for any arbitrary R > 0,

there exists r > 0 such that if a trajectory starts within a hypersphere of a radius r,

||x(0)−x̄|| < r, it will stay within a hypesphere of a radius R, ||x(t)−x̄|| < R, t → ∞.

If it is not possible to find such r, the equilibrium x̄ is unstable. For asymptotic stability,

the theory additionally requires that ||x(t) − x̄|| → 0. Typically, to simplify analysis,

one transfers the equilibrium into the origin; we further adopt this simplification.

The seminal work by Lyapunov (1992) suggests two methods for stability analysis,

the linearization method and the direct method. The former draws conclusions about a

nonlinear system’s local stability from the stability properties of its linear approxima-

tion. The latter (direct) method aims to overcome the restrictions of local stability and

attempts to determine a scalar function (a Lyapunov function) and to assess stability by

examining the time variation of this function.

By linearizing the system 2.18 around an equilibrium, we get:

ẋ =

(
∂f
∂x

)
x=0

x +O(x), (2.19)

where O(x) are higher order terms of the expansion. According to the linearization

method, a system 2.18 is locally asymptotically stable at the origin, if a Jacobian matrix

A =
(
∂f
∂x

)
x=0 is negative definite, i.e., real parts of all the eigenvalues of A are strictly

negative.

For nonlinear systems, the linearization method is concerned with local stability

which is ensured only as far as the linear approximation is valid. The direct Lya-

punov method aims to relax the restricting requirements imposed by the linearization

approach and to provide a more generic stability criteria for a nonlinear dynamics. The

direct method is based on a physical observation: if the total energy of a system is

continuously dissipated, then the system, whether linear or nonlinear, eventually set-

tles down to an equilibrium point. Therefore, one may decide upon the stability of a

system by examining the variation of a single scalar function.

A function V (x) is said to be a Lyapunov function of the system 2.18, if V (x) is

positive definite, has continuous partial derivatives, and if its time derivatives along any

state trajectory of Eq. 2.18 is negative semi-definite: V̇ (x) ≤ 0. A dynamical system

for which it is possible to construct a Lyapunov function is stable. The link between

an existence of Lyapunov function and stability is formalized in a number of theorems

in the Lyapunov direct method. For instance, for a linear dynamical system one may

consider a quadratic Lyapunov function V (x) = xT Px, where P is a symmetric positive
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definite matrix. The stability condition then can be written as:

AT P + PA < 0 (2.20)

meaning that a matrix AT P + PA should be strictly negative definite.

Krasovskii theorem suggests an analogous formulation for nonlinear systems: if

a matrix A + AT is negative definite in a neighborhood of an equilibrium, then the

equilibrium point is asymptotically stable and a Lyapunov function of this system is

V (x) = ([f(x)]T f(x). An inequality in Eq. 2.20 is known as a Linear Matrix Inequality

(LMI) (Boyd et al., 1994); methods for solving such inequalities generate a significant

interest in optimization.

Passivity theory is often mentioned in the context of stabilization and system con-

trol. Passivity has been proven to be a useful concept for studying interconnected

systems. Let us consider a dynamical system connected to a control input:

ẋ(t) = f(x(t)) + u(t) (2.21)

y(t) = h(x(t)).

A system is said to be passive if there exists a nonnegative storage function:

S(x(t)) = −sup

ˆ t

0

yT (s)u(s)ds (2.22)

such that S(0) = 0 and

S(x)− S(x0) ≤
ˆ t

0

yT (s)u(s)ds. (2.23)

Qualitatively, the condition given in Eq. 2.23 means that a system absorbs more energy

from an external source than it outputs. The passivity is, therefore, characterized by the

existence of a computable function S(x), which can be interpreted as stored energy of

the system. Under certain conditions, an energy function is also a Lyapunov function.

It is also possible to show that, if a system has a Lyapunov function, then this system

is passive and its Lyapunov function is also its storage function.

One of the advantages of passivity is that this formulation allows for a simplified

treatment of interconnected systems, particularly, feedback systems. It has been shown

that if several passive systems are interconnected through functions that satisfy some

constraints, the resulting system remains passive. In this case, one can easily derive a

storage function of the complete system as a sum of storage functions of the individual

subsystems (Hill & Moylan, 1976; Willems, 1972).

Lyapunov stability theory and passivity analysis investigate a convergence to an

equilibrium or to a single trajectory. In contrast, contraction analysis defines incre-

mental stability between two arbitrary trajectories (Lohmiller & Slotine, 1998). Specif-

ically, a nonlinear system is called contracting if initial conditions or temporary dis-

turbances are forgotten exponentially fast so that all trajectories converge to a unique
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trajectory.

The infinitesimal squared distance between two trajectories of the system in Eq.2.18

is δxT δx; and the rate of change of this distance is:

d

dt
(δxT δx) = 2δxT δẋ = 2δx

∂f
∂x

δx (2.24)

If λmax is the largest eigenvalue of the Jacobian ∂f
∂x , then the following inequality holds

():

d

dt
(δxT δx) ≤ 2λmaxδxT δx. (2.25)

From Eq. 2.25, one may see that, if λmax is strictly negative, all trajectories of the

system Eq. 2.18 converge to a single trajectory exponentially fast.

To render a notion of an infinitesimal distance δxT δx more generic, Lohmiller &

Slotine (1998) introduce a contraction metric M(x, t), such that the distance is taken

with respect to this metric:

δxT Mδx, (2.26)

where, M(x, t) is a symmetric, positive definite and continuously differentiable matrix.

It can be shown that a system given by Eq.2.18 is contracting if a generalized Jacobian

(Ṁ+M ∂f
∂x )M

−1 is negative definite. The existence of a contraction metric M that sat-

isfies this condition ensures that an associated distance between trajectories is always

decreasing.

One of advantages of a stability treatment offered by contraction theory relates to

an analysis of nonlinear systems with uncertainty:

ẋ = f(x) + s(x), (2.27)

where s(x) is a function describing system perturbations. Assuming that one can es-

tablish the stability of a nominal system ẋ = f(x) and has very limited information

regarding s(x), the problem consists in estimating how much of uncertainty the nomi-

nal system might absorb before getting unstable.

Lyapunov and passivity analysis has been successfully applied to many problems

where parameters of a dynamical function f remain unchanged. Nonlinear systems with

uncertainty are challenging for Lyapunov-based techniques: uncertainty can modify

the location of equilibrium points and a Lyapunov function should account for this

change. Some researchers attempt to use parameter-dependent Lyapunov functions to

prove stability for a range of uncertain parameters (L. Andersson & Rantzer, 1999;

Michel & Wang, 1993). However, in many cases, it may be difficult or even impossible

to analytically obtain a parameterized expression for an equilibrium and consequently

to design a Lyapunov function.

Contraction theory overcomes some restrictions and problems of the Lyapunov ap-

proach. Aylward et al. (2008) demonstrate that if a nominal system is contracting with
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respect to a contraction metric, then, even if a perturbation s(x) changes the position

of an equilibrium (within some boundaries), a complete system Eq. 2.27 is contracting

with respect to the same metric. Therefore, it becomes possible to verify whether the

system is stable under a given amplitude of an uncertainty without explicitly tracking

how it changes the location of the equilibrium.

A computational challenge crucial to both Lyapunov methods and contraction the-

ory is designing a Lyapunov function or contraction metric for an arbitrary nonlinear

system – a nontrivial process as often an analytical solution does not exist. Similar

to the design of a Lyapunov function (see Eq. 2.20), the task of estimating a con-

traction metric might be formulated as a numerical optimization problem in terms of

LMIs. LMI-based stability formulations have been first applied to linear systems and

a special class of nonlinear systems (Boyd et al., 1994). Recently, Parillo (2003) ex-

tends the LMI framework to nonlinear systems for which a dynamical function f is a

polynomial. The author leverages the ability of sum of squares (SoS) programming

to efficiently solve LMIs systems. Recently, methods of SoS optimization have been

adopted for stability analysis of unknown (Tedrake et al., 2010; Tobenkin et al., 2010)

and uncertain (Aylward et al., 2008) systems.

2.2.3 THE CURRENT CHALLENGES

Summarizing our discussion on dynamical system identification and stability analysis,

we may pinpoint the following challenges.

• Despite a large number of different methods for nonlinear identification, research

in the field is still highly active. One reason for this is a lack of a generic frame-

work: the algorithms are often developed for specific problems and classes of

nonlinearities; therefore, their applicability to other types of nonlinearities is

not apparent. Furthermore, training of some neural network-based methods is a

computationally demanding process.

• A design of a Lyapunov function or contraction metric for stability analysis is

a technically challenging process. Newly developed tools of SoS programming

greatly simplify the design problem by transforming it into polynomial optimiza-

tion. However, for these methods to be efficient, a dynamical function should be

polynomial or allow for accurate approximation with a polynomial. Such a re-

quirement is not always possible to fulfill, in this case, SoS optimization might

render an over-conservative estimate of a Lyapunov function, which is of a lim-

ited practical use.

Taking these challenges into account, we suggest an algorithm for non-parametric

identification of a motion dynamics. The method is particularly targeted for learning

from multidimensional human motion data and able to approximate smooth non-linear

low-frequency dynamical functions. The region of attraction of the learned dynamics

is analyzed numerically. SoS-based techniques for the region of attraction analysis

have been developed in the parallel to our work; furthermore, we also observe that due
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to a particular non-polynomial parametrization that we use, the SoS methods render

conservative estimates.

2.3 THE HUMAN MOTOR CONTROL INSIGHTS INTO

MOTION COORDINATION

In Section 2.1.5, we outline some challenges of the analytical robotics related to motion

coordination in manipulation tasks. These challenges stimulated roboticists to seek in-

spiration in human motor control. Recently, mutual influence of robotics and human

motor control has increased. There are two reasons for this. First, as robots’ morphol-

ogy tends to get more anthropomorphic, our expectations regarding human-likeliness

of their movements are growing. Therefore, roboticists turn to the human motion stud-

ies, looking for important insights into computational models of human movements

that can be transferable to robots. Second, open questions in robotics stimulated some

directions in human motion studies that have not received sufficient attention before.

For instance, for long time human motion studies have been mainly devoted to prob-

lems of motor control (that is, impedance characteristics of limbs, muscle activations,

feedback mechanisms that ensure feedback tracking of preplanned trajectories), and

motion planning has been of a secondary interest (Todorov, 1998). It is argued that the

scientific community working on human motor control has started to fully appreciate

the difficulty of motion planning once the lack of satisfactory robotics solutions for

production of coordinated motion has become evident and critical.

In Section 2.3.1, we discuss two currently influential views on motion formation.

We first outline the dynamical system view on motion production. Then the dynamical

system approach is contrasted to the optimal control view on motion formation. From

this discussion, we move to reviewing work on bimanual coordination (Section 3.2)

and motion coordination during physical interaction with peers (Section 2.3.3).

2.3.1 MOTION PRODUCTION AND INTRA-LIMB COORDINATION

Similar to the analytical robotics view outlined in Section 2.1, the separation of plan-

ning and execution has been a prevalent approach to motion production in human motor

control. Recently, open-loop trajectory generation in humans has been questioned. As

a result, several generative close-loop models of motion generation have appeared.

It has been suggested that a broad class of arm movements including discrete, such

as pointing or grasping, and rhythmic movements, such as swimming or swinging, can

be thought of as being generated by an attractor dynamics. Specifically, this hypothesis

assumes that a trajectory that the arm follows is a particular instantiation of a dynamical

system:

ẋ = f(x) (2.28)

where x is a state that describes the arm configuration in the joint or task space; f :
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R
N → R

N is a continuously differentiable function. A state x̄, such that whenever a

trajectory that starts in a neighborhood of x̄, converges to x̄ and remains there infinitely,

is said to be an attractor of the system given by Eq. 2.28. For essential references

on nonlinear dynamical systems literature see Guckenheimer & Holmes (1993) and

Strogatz (1994).

To depart from the open-loop paradigm, the dynamical system approaches empha-

size the advantage of removing the explicit time dependency, so that a motion policy

becomes autonomous, i.e. time-independent. From the human motor control point of

view, explicit timing is cumbersome, as it assumes an additional level of complexity;

that is, that the CNS maintains a clocking mechanism. It is disputed whether biological

systems have access to such a clock at all (Ivry et al., 2002; Roberts & Bell, 2000). Im-

portantly, in robotics applications, removing time-indexing of trajectories through the

use of dynamical systems eliminates the need of heuristical mechanisms that scale tra-

jectories if the timing of a motion has been perturbed (e.g., if a target has been moved

closer) (Hoffmann, Pastor, et al., 2009; Pastor et al., 2009).

The power of modeling motor control with dynamical systems is further revealed

by the ability of dynamical systems to integrate perceptual information into motion

production (J. Kelso, 1995). This property is highly desirable in robotics, where it

might resolve the challenge of integrating sensory information into state-space motion

production.

Despite the obvious advantages that dynamical systems would bring into modeling

of human motor control, there are few established computational approaches for gen-

erating curved motions (Petreska & Billard, 2009). Early attempts to find dynamical

laws subserving human point-to-point movements develop computational models that

accounts only for the "quasi-linear" trajectories, "bell-shaped" velocity profile (Bullock

& Grossberg, 1988; Flash & Hogan, 1985) and 2/3rd power law (Vivani & Terzuolo,

1982). These models, however, fall short at explaining reaching motions outside the

planar space (Sternad & Schaal, 1999) and at accounting for the curvature of move-

ments reaching for arbitrary points in space (Petreska & Billard, 2009). Recent ap-

proaches take a less categorical view and no longer search for a single invariant (Berret

et al., 2008): it is ackowledged that the motion laws are task dependent (Admiraal &

Kusters, 2004; Kang et al., 2005).

However, the exact form of dynamical control in humans is still undeciphered.

Schaal et al. (2007) emphasize two reasons for that. First, modeling with nonlinear

dynamical systems is challenging mathematically – optimization approaches, which

we will discuss further, are more stereotypical and consequently more accessible to

researchers. Second, with few exceptions, see (Bullock & Grossberg, 1988; Petreska

& Billard, 2009; Schoner, 1990), dynamical systems approaches have concentrated on

periodic behaviors or assumed that a discrete behavior is a part of an aborted limit cycle.

However, in a broad perspective, optimization and dynamical system approaches to

motion production provide complementary functions and can be combined in a unified

framework: through optimization and adaptation of parameters, a single dynamical

system can be applied to a whole class of tasks, rather than to one particular task only.
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The appeal of optimality principles for human motor control consists in their abil-

ity to transform a performance criterion into predictions regarding the behavior of a

given system. The adepts of the optimal control view on motion production argue that

even though the nonlinear dynamical systems can reproduce relevant behaviors and

offer other attractive properties, they do not possess the predictive power inherent to

optimal control methods. Specifically, given a new task, one cannot predict a form of

dynamical system that governs the task and, therefore, cannot predict task trajectories.

However, if one knows an optimization criterion that corresponds to the analyzed task,

then theoretically he/she may predict motion trajectories.

For decades researchers have exploited optimality concepts to investigate phenom-

ena observed in human movements (Chow & Jacobson, 1971; Flash & Hogan, 1985;

Nelson, 1983; J. Rasmussen et al., 2001; Todorov, 2004; Todorov & Jordan, 1998,

2002). The body of related research can be categorized according to the type of the

considered control law: open-loop or closed-loop (feedback) control.

Open-loop approaches usually assume a deterministic dynamics of a motion and

environment and optimize a trajectory without taking into account the role of online

sensory feedback, and (Chow & Jacobson, 1971; Flash & Hogan, 1985; J. Rasmussen

et al., 2001). Such methods typically yield an accurate prediction of an average be-

havior. Limitations of these methods are two-fold: they reduce the whole process of

movement production to replication of a single movement and do not explain the vari-

ability typical for human movements. Still, there are motions that have been success-

fully explained from the stance of open-loop optimal control, for instance, movements

that are mainly characterized by energy minimization or motion smoothness (jerk min-

imization). Research on open-loop optimal control of human motions has accumulated

sufficient evidence that simple cost functions can illuminate the performance criteria

behind different tasks. Still, for each new task one should manually pick a suitable cost

function or a combination of these.

The other branch of optimal control methods concentrates on the closed-loop con-

trol. The methods of this group represent a more elaborated attempt to define computa-

tional grounds of human motions: they aim to directly model sensorimotor integration

(Hoff & Arbib, 1993; Loeb & Levine, 1990; Shimansky et al., 2004).

A closed-loop optimal controller maps actual states of a body or an environment

into control signals. This transformation is performed by a feedback mechanism that

constitutes an essential part of the closed-loop optimization. In contrast to the open-

loop optimization, which relies on a predefined trajectory, an optimal feedback con-

troller lets the task constraints define a motion in real-time.

Many existing optimal feedback controllers aim to optimize a long-term perfor-

mance as quantified by an optimal cost-to-go function. For every state and point in

time, the cost-to-go function estimates how much cost will be accumulated from the

current moment until the end of a movement.

As a control signal of an optimal feedback controller depends on an estimate of

the current state, the resulting control sequence is optimal only when a state estimate is

also optimal (e.g., in the maximum likelihood sense). Therefore, some algorithms build
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an internal estimate of the state. Specifically, when the sensors are noisy or delayed, a

reconstruction of an internal estimate rather than the direct use of raw sensory measure-

ments is necessary. Optimal feedback controllers with in-built optimal state estimators

are able to anticipate state changes before corresponding sensory information arrives.

For an optimal state estimation, one needs to know a model of body dynamics. Such a

model is rarely known; hence the state estimation constitutes one of the challenges in

optimal feedback control.

Todorov (2004); Todorov & Jordan (2002) develop a theory of motor coordination

using tools of stochastic optimal feedback control. The authors share the same view on

motion production as the proponents of the dynamical system view: the CNS does not

track a single preplanned trajectory and does not reject all disturbances. In (Todorov &

Jordan, 2003), they cast this view into a novel principle of minimum intervention; that

is, the CNS corrects motion deviations only when they interfere with task performance.

Advancements of feedback optimal control in explaining human movements might

be insightful to robotics. They offer an intuition regarding how to computationally

model coordinated motions that constitute a part of a task and how to incorporate feed-

back into trajectory generation. Furthermore, investigation of optimality principles and

cost functions can be considered as an attempt to analytically uncover coordination

constraints underlying the motor behavior and typical motion signatures of humans.

However, the process of choosing an optimality measure for each type of tasks is not

yet automatized and requires design effort. This problem is similar to one in analytical

motion planning: how to define a proximity metric so as to ensure the generation of a

feasible and optimal path (see Section 2.1.1).

2.3.2 A DYNAMICAL SYSTEM VIEW ON BIMANUAL

COORDINATION

Dynamical systems have been also used as a tool for modeling bimanual coordination.

During last decades, human motor control has been investigating principles underlying

the emergence and changes of coordination patterns. The synergetic approach (Haken,

1993) and a first dynamical system model of rhythmic bimanual coordination (Haken

et al., 1985) have provided grounds to address these questions.

The dynamical system view of bimanual coordination emphasizes the self-organizing

character of movement production. The dynamics of such coordination has been for-

malized in the Haken-Kelso-Bunz (HKB) model (Haken et al., 1985) – a system of two

coupled nonlinear oscillators. This approach assumes that, under certain conditions,

basic coordination patterns emerge as the result of coupling between the interacting

limbs. The coupling between the limbs can be captured by a low-dimensional order

parameter – collective variable. In (Haken et al., 1985), the collective variable chosen

as the relative phase between limbs facilitates explanation of two preferred patterns of

rhythmic coordination: the in-phase mode, i.e., the two limbs are moving symmetri-

cally in opposite directions, and the anti-phase mode, i.e. parallel movements in the

same direction.
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Analogously to the HKB model of rhythmic bimanual coordination (Haken et al.,

1985), Schoner (1990) proposes a dynamical model that captures the temporal syn-

chronization tendencies observed in discrete bimanual coordination, see (J. Kelso et

al., 1983). Synchronization consists in a mutual temporal dependency even if the spa-

tial constraints imposed to each of the limbs are different. Schoner (1990) argues that

discrete movements represent an aborted case of cyclical movements. He further con-

structs a model with two states, one for an initial and one for a target posture, that are

represented by point attractors. Once an intention to move emerges, the motor system

generates a limit cycle attractor that connects the initial and target state. The movement

starts when the initial attractor is destabilized due to the intention to move; during the

movement, the system follows the limit cycle attractor and eventually stabilizes at the

target attractor. Intentions form a crucial part of the Schoner’s model and should be

modeled explicitly. Coordination is then expressed as a common timing of different

limbs.

More recently, in (Jirsa & Kelso, 2005), the authors suggest a unified view on

the HKB and Schoner’s model. They propose an excitator model that accounts for

both discrete and rhythmic coordinated movements. The coupled excitators are used to

study bimanual movements and to explain their timing.

Besides the computational models that we have mentioned, there exists a body of

experimental research that also argues that bimanual coordination in human manipu-

lation relies on shared timing goals assigned to the two arms. That is, the motions of

the two arms are generated independently and synchronized by a single timing mech-

anism that controls emergence of significant spatial events along the motion (e.g. the

two arms simultaneously reach an object to be grasped). While assigning the principle

role in coordination to the shared timing, these works do not exclude the possibility

of coordination at the spatial, trajectory level. However, as of now, there is a lack

of computational models that would incorporate spatial coupling of arbitrary discrete

bimanual task.

2.3.3 PHYSICAL INTERACTION WITH PEERS

Physical human-human interaction may be observed when people are moving together

bulky objects, dancing, or helping each to recover balance. Physical interaction typ-

ically entails energy exchange. As we discussed in the previous sections, during au-

tonomous task execution (unless a manipulated object is very heavy), coordination can

be characterized as a systematic kinematical behavior. That is, the kinematic variables

of a coordinated motion exhibit important correlation patterns. During physical inter-

action, coordination necessarily extends to correlation between the interaction forces

(difference between the forces applied by the peers) and the kinematic or dynamic

behavior at each side.

In the literature, we can find multiple attempts to quantify unimanual and biman-

ual coordination even if the existing models are not necessarily generic. Research on

coordination during physical human-human interaction is scarce. The existing studies
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are mainly experimental and do not suggest computational models. Here, we briefly

review some experiments; our objective here is to highlight two aspects important to

our work. First, similar to bimanual coordination, motion during physical interaction

cannot be reduced to two independent unimanual movements. Second, the movements

of the two partners are coupled through haptic information.

In a study designed to understand coordination between human peers, Sallnas &

Zhai (2003) examine interaction of two persons manipulating objects in a virtual en-

vironment. The task consists in exchanging virtual objects of different sizes without

dropping them. The conducted experiments are targeted to explore effects of different

types of feedback. The two partners are requested to interact through haptic devices.

During a part of the experiments, the force feedback is switched off, so that the part-

ners can monitor each other’s actions only visually. The experiments reveal that force

feedback decreases the error rate significantly.

Gentry (2005) examines how two partners physically interact during dancing. The

author describes dancing as a finite state machine – the dancers move through a se-

quence of poses and interact through force feedback. Dancers coordinate their actions

(the motion pace and spatial details of dance postures) through external and internal

cues. The rhythm of the music is an external cue that synchronizes the motion of each

dancer’s movement. The physical interaction is an internal cue, that allows one partner

to send messages to another. Most of the communication is mediated through haptic

cues even though the dancers keep the visual contact. Gentry (2005) has also experi-

mented with professional couples dancing blindfolded and has found that they perform

well communicating solely through haptics.

Reed & Peshkin (2008); Reed et al. (2007) have conducted studies where human

partners have to accomplish a joint task (i.e., move a crank to a specified location). The

authors demonstrate that dyads perform the task faster than individuals working alone,

even though the partners consider each other to be an impediment.

2.3.4 THE CURRENT CHALLENGES

Summarizing our discussion on human motor control, we may pinpoint the following

challenges that have not been completely resolved as of yet.

• Research in human motor control has mainly concentrated on motor control,

motion planning still lacks a generic solution. Due to the diversity of manip-

ulation tasks, systematical laboratorial modeling and manual analysis of such

movements are problematic.

• Most of the existing approaches to explaining motion planning through dynami-

cal systems aim at explaining linear reaching movements and are not applicable

in a general case when a task requires curved trajectories.

• Except of very few work, there are no computational models for discrete bi-

manual coordination. Furthermore, the existing models explain only temporal
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synchronization. It is important to build generative algorithms that take into ac-

count spatial constraints and predict actual trajectories. Here, the same problem

as mentioned in the previous point also arises: the diversity of discrete bimanual

tasks makes it difficult to describe them with a single analytical model.

• Motion coordination during physical human-human interaction has not been

modeled computationally. The complexity of such modeling follows from the

fact that a model describing the motion of one partner requires a mechanism

that predicts the motion of his/her peer along the task. However, the lack of

well-developed approaches to motion planning logically implies the lack of sat-

isfactory abilities to predict the task’s movement.

2.4 ROBOT LEARNING

Motion planning in robots and human motor control discussed in the previous sections

attempt to approach the generation of task movements and the resolution of related

coordination constraints analytically. In analytical robotics such a perspective results

in mathematically rigorous algorithms, that resolve many important problems, but that

require a lot of computational resources and designing effort to define environmental

and task models. In human motor control, for which the main goal is to understand

motions rather than to devise efficient methods for executing them, the pure analytical

approach does not go beyond constrained laboratory movements.

Robot learning relaxes the strict requirement of exact analytical solutions in favor

of data-driven methods that devise motion policies π (mappings from a world state ξ

to a robot action u) from available datasets:

u(ξ, t) = π(ξ, t) : π : Rn+1 → R
k+1 (2.29)

where ξ ∈ X ⊂ R
n and u ∈ U ⊂ R

k are the chosen state and action. Note, that in

this review we are mainly concerned with continuous state and action spaces. A train-

ing dataset is a sequence of state-action pairs {ξi, ui}i=M
i=1 acquired from either task

demonstration conducted by an experienced teacher (as in methods of Programming

by Demonstration), pure self-exploration or a combination of the two (as in methods

of Reinforcement Learning). Policies derived under robot learning are most accurate

within an observed range of states; outside of the observed values, the reliability of

policies gradually decreases. Therefore, robot learning policies differ from analytical

algorithms that do not have such a limitation on the area of applicability. To extend

the area of applicability, robot learning emphasizes the importance of the generaliza-

tion ability (the ability to extrapolate knowledge to unseen states) of a method. Robot

learning also shares research questions with analytical robotics such as: developing

multi-dimensional motion policies; and including feedback into learned models so as

to facilitate adaptation to incoming sensory information.

We split this section into several parts as follows. In Section 2.4.1, we give an

overview of several regression techniques that are often used in robot learning. In
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Section 2.4.2, we describe the state of the art in Programming by Demonstration (PbD)

with a focus on learning motion constraints in unimanual and bimanual tasks and learn-

ing motion dynamics. In Section 2.4.3, we outline current advances in Reinforcement

Learning (RL). Section 2.4.4 explains how robot learning addresses robot control dur-

ing physical interaction with the environment. Throughout our discussion, we will re-

view how the challenges outlined in Sections 2.1.5 and 2.3.4 can be solved with robot

learning tools.

We do not aim to provide a comprehensive overview of the robot learning field.

Following the classification of robot learning techniques given in Argall et al. (2009),

there are the two principal stages in the learning process: data acquisition and policy

derivation. The scope of our discussion is deliberately limited to methods contributing

to the second phase of learning – policy derivation. Within this scope we concentrate

on some recent advances so as to delineate our contribution. We, therefore, exclude

from our discussion problems and methods related to the first phase – data acquisition

(e.g., we do not review demonstration techniques, correspondence problems (Nehaniv

& Dautenhahn, 2002), or methods that aim at overcoming limitations in training sets).

An interested reader may refer to more detailed reviews, e.g., by Argall et al. (2009);

Billard et al. (2008); Calinon (2009).

2.4.1 REGRESSION TECHNIQUES

Statistical regression techniques are frequently used in robot learning to represent con-

tinuous motion policies. We further overview the basic theoretical formulations of

several techniques. We will refer a reader interested in detailed information to rele-

vant books. One can also refer to Calinon, D’halluin, et al. (2010) for an experimental

comparison of several regression techniques in the context of learning robotic motions.

The generic regression problem, which we are interested in, can be summarized as

follows:

given an input x ∈ R
m and an output value y ∈ R

n (2.30)

estimate a regression function f : Rm → R
n such that: y = f(x) + η

where η ∼ N (0, σ2) is the Gaussian noise with zero mean and variance σ2. We

will distinguish two classes of regression techniques: (i) methods that learn non-linear

functions globally, i.e. by covering the input space with basis functions of a predefined

analytical form and/or of a predefined number (we will review Gaussian Mixture Re-

gression (GMR) (McLachlan & Peel, 2000) and Gaussian Process Regression (GPR)

(C. Rasmussen & Williams, 2006)), and (ii) methods that fit non-linear functions lo-

cally by using spatially localized models and that automatically adjust the number of

local models to account for unknown nonlinearities in the target function (we will re-

view Linear Weighted Regression (LWR) (Atkeson et al., 1997) and Locally Weighted

Projection Regression (LWPR) (Schaal et al., 1998; Vijayakumar et al., 2005)).
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2.4.1.1 GLOBAL REGRESSION TECHNIQUES: GAUSSIAN MIXTURE

REGRESSION AND GAUSSIAN PROCESS REGRESSION

Gaussian Mixture Models (GMM) encode the joint distribution p(x, y) of input x
and output y through a mixture of Gaussian distributions:

p(x, y) =
K∑

k=1

πkN (x, y|μk,Σk), (2.31)

where K is the number of Gaussian components in the mixture, πk are the mixing

coefficients, μk,Σk are the mean and covariance of the kth component respectively.

For approximation with GMMs, one needs to choose the number of components K and

learn the parameters μk,Σk, k = 1..K. Training is frequently accomplished through

the Expectation Maximization procedure (Dempster et al., 1977). Once the GMM in

Eq.2.31 is trained, GMR proceeds through estimating the regression function f(x) as

the expectation of the conditional distribution p(y|x,μ,Σ):

y = f(x) = E[p(y|x,μ,Σ)] (2.32)

Where in Eq.3.22, μ,Σ denote to the whole set of parameters {μk,Σk}, k = 1..K.

Gaussian Process Regression directly models the conditional distribution and aims

to represent the observed outputs y with a Gaussian Process:

y ∼ N (μ,K(X,X) + σ2I), (2.33)

where μ is the mean regression signal that is often chosen to be zero: μ = 0. X denotes

the set of all observed inputs x, I is the identity matrix, K(X,X) is the covariance

matrix computed using a given covariance function. The most popular general purpose

covariance function is the Gaussian kernel:

k(xp, xq) = σ2
s exp

(
−1

2
(xp − xq)TW (xp − xq)

)
(2.34)

where σ2
s denotes the signal variance and W represents the width of the Gaussian ker-

nel. For a more detailed analysis of GPR and other types of kernels see C. Rasmussen

& Williams (2006). To estimate the regression function on unobserved values, GPR

stores the whole training set. For each new input x∗ , the corresponding output y∗ is

computed as follows:

y∗ = f(x∗) = kT (x∗, X)(K(X,X) + σ2I)−1y (2.35)

where kT (x∗, X) is the covariance between the new datapoint x∗ and the training input

X .

Note, global regression methods require a priori a determined modeling basis,

which might pose problems if no information about the function f is available be-
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forehand. In the case of GMR one has to choose the number of components and the

proper initialization (the means and covariances of the Gaussian components), and for

GPR one needs to select the right function space (the covariance functions). The im-

portant advantage of the global regression methods is that they are well-suited for the

approximation of multi-dimensional functions and suffer less from the curse of dimen-

sionality (the sparsity of training data in multi-dimensional spaces). In comparison to

GPR, GMR is faster (the inversion of the covariance matrix in Eq. 2.35 is a computa-

tionally expensive process) and does not require storing of all the training data. In its

turn, GPR has a different attractive property: the method does not depend on the choice

of the number of mixture components. GPR also avoids over-generalization, which is

possible in GMR. Indeed, for each input datapoint, GMR attempts to predict an output

value, even if the input is far from the training dataset and no reliable inference can be

made. On the contrary, for inputs far from the training set GPR does not attempt to

generalize and returns output values close to the mean signal μ (usually chosen as zero

μ = 0; see Eq. 2.35).

2.4.1.2 LOCAL REGRESSION TECHNIQUES: LOCALLY WEIGHTED PROJECTION

REGRESSION

Local methods are applicable when knowledge about the complexity of the underly-

ing function f is limited, i.e. when it is impossible to decide beforehand how many

basis functions will be necessary for approximation or which covariance function to

choose. However, as these techniques allocate resources in a localized manner, with an

increasing number of input dimensions, they encounter an exponential explosion in the

number of local models required for accurate approximation. In contrast to global re-

gression techniques, local regression is usually better adapted for incremental learning

(i.e., if the range of observed training values is expanding during learning).

Both LWR and LWPR predict an output value by approximation with a combination

of K locally weighted linear models. The predicted output y∗ is given by:

y∗ = f(x∗) =
∑M

k=1 wkȳk(x∗)∑M
k=1 wk

(2.36)

with ȳk = x̄T
k θk, x̄k = [(x∗ − μk)

T , 1]T . Where wk is the weight of a kth model,

θk is the vector of estimated parameters for the model and μk is the center of the

kth kernel. The weights wk determine whether a data point x∗ falls within the region

of responsibility of the kth model (receptive field). The region of responsibility is

characterized by the Gaussian kernel:

wk = exp

(
−1

2
(x∗ − μk)

TWk(x∗ − μk)

)
(2.37)

where Wk is a distance matrix. During the learning process, both the distance matrices

of the receptive fields Wk and the parameters θk are adjusted to minimize error between

the observed and predicted output.

41



LWPR has an advantage over LWR as it overcomes the curse of dimensionality by

projecting high-dimensional input data into a subspace of lower dimensionality. One

of the major challenges for LWPR is thus a choice of an efficient projection that would

enable the best fitting with as few input dimensions as possible. A solution to this

problem is suggest by Hoffmann, Schaal, & Vijayakumar (2009); Schaal et al. (1998).

2.4.2 TRAJECTORY MODELING IN PROGRAMMING BY

DEMONSTRATION

As we emphasized in Section 2.4, from the whole body of work on Programming by

Demonstration, our review concentrates on methods for motion policy derivation. In

Programming by Demonstration, most approaches to trajectory modeling are built upon

a time-indexed representation, either by exploiting the concept of spline decomposition

(Aleotti & Caselli, 2006; Ude, 1993) or by explicitly encoding the time-indexed depen-

dencies (Calinon et al., 2007).

Traditional means of encoding trajectories are based on spline decomposition after

averaging across training trajectories (Aleotti et al., 2005; R. Andersson, 1989; Hwang

et al., 2003; Yamane et al., 2004). Spline decomposition remains a powerful tool for

quick trajectory formation. It is, however, heavily dependent on a heuristic for seg-

menting and aligning the trajectories. Furthermore, a spline representation, not being

statistically-based, may have difficulties in coping with data noise inherent to a robotic

application.

Non-linear regression techniques are proposed as a statistical alternative to spline-

based representation (Calinon et al., 2007; Kulic et al., 2008; Schaal & Atkeson, 1994,

1998). These methods allow the systematic treatment of uncertainty by assuming the

existence of noise in the data and, therefore, by estimating actual trajectories as a set

of random variables with learned parameters.

These modeling methods encode an explicit time-precedence across the motion

states. A motion policy takes the following form:

x = π(t), π : R → R
k (2.38)

where t denotes a time index and x is a trajectory point either in the task or joint space.

Following the generic notation of Eq.2.29, a time index t is a state of the policy ξ = t,

a trajectory x a desired action, u = x.

However, similarly to spline-based approaches, most existing regression approaches

to motion encoding consider a time-index as an input variable and virtually operate in

"open-loop" (i.e. without a mechanism to adapt trajectories to perturbations or de-

lays). The lack of positional feedback makes these methods sensitive to both temporal

and spatial perturbations. To compensate for this, one needs to introduce an external

mechanism for handling potential deviations from the desired trajectory during repro-

duction. Adaptation to deviations then relies on a heuristic to re-index the new trajec-

tory in time or extrapolate it in space. Such re-indexing or extrapolation often comes
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at the cost of significant deviations from the desired velocity and acceleration profile,

and, therefore, makes the motion look very different from the original demonstrations.

Furthermore, finding a good heuristic is highly task-dependent and becomes particu-

larly non-intuitive in multidimensional spaces (Schaal et al., 2003). Time-independent

models, such as autonomous dynamical systems, have been recently advocated as an

alternative to time-indexed approaches. Motion models based on dynamical systems

are advantageous in that they do not depend on an explicit time-indexing and thus pro-

vide a closed-loop controller, while being able to model a broad class of non-linear

behaviors.

2.4.2.1 LEARNING DYNAMICAL SYSTEMS FOR MOTION REPRESENTATIONS

Recently, the robot learning community has increased interest in exploiting dynam-

ical systems for encoding observed trajectory data. (Dixon & Khosla, 2004; Hersch et

al., 2008; Ijspeert, Nakanishi, & Schaal, 2001; Righetti et al., 2006). In Section 2.2,

we reviewed identification methods applied to different engineering problems. Robot

learning borrows some of these methods, but also strives to develop new approaches,

that are more suitable for extracting nonlinear dynamics from collected motion data.

Earlier approaches to using dynamical systems for motion encoding, for instance

(Dixon & Khosla, 2004), suggest a method that fits the parameters of a first-order linear

dynamical system to the training data. As linear dynamics are limited in their capacity

to produce curved trajectories, the authors model a curved motion as a set of linear

dynamical systems and ensure continuity at transition points. Other approaches follow

a different methodology to modeling curved motions: they modulate predefined linear

dynamics with a non-linear estimate of a trajectory (Hersch et al., 2008) or a velocity

profile (Ijspeert, Nakanishi, & Schaal, 2001; Righetti et al., 2006).

For instance, Ijspeert, Nakanishi, Shibata, & Schaal (2001) and Ijspeert et al. (2003)

suggest one way to apply dynamical systems for motion production in robotics (similar

to how dynamical systems have been applied in human motor control; see Section

2.3). The strength of their method, Dynamical Movements Primitives (DMP), is the

ability to build a motion representation from a single demonstration and to ensure the

global stability of the representation. However, even though the trajectories generated

by DMP are guaranteed to converge to the target, their shape will be considerably

deformed, as the method does not generalize accurately. This pitfall is caused by the

fact that the algorithm does not eliminate the timing mechanism completely; instead,

a phase variable s is introduced; s then controls the evolution of the movement. Their

policy takes the following form (we provide a formal comparison between the DMP

and our work in Appendix II):

ẍ = π(x, ẋ, s), ṡ = −αs (2.39)

π(x, ẋ, s) = Kv(−ẋ+Kp(xd − x)) + f(s)(x− x0)

where Kp and Kv are equivalent to the proportionate and derivative coefficients of the
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PD controller, x0, xd are the initial and target positions respectively, and f(s) is the

modulation function that is learned from task demonstration through Locally Weighted

Projection Regression (Vijayakumar et al., 2003) or Linear Weighted Regression (Atke-

son et al., 1997). The modulation function f(s) enhances the acceleration profile of a

linear PD controller, so as to match the profile of the one contained in the observed data.

Following the generic notation of Eq.2.29, a position and velocity of a robot define a

state of the policy ξ = [x, ẋ], an acceleration is a desired action, u = ẍ; additionally,

one can consider a phase variable s to be an analog of time, t = s.

The flexibility of the method is attained by controlling the phase variable through a

linear dynamical system; this way, it becomes possible to control time as any other vari-

able. The original approach of Ijspeert, Nakanishi, & Schaal (2001) contained several

drawbacks: a sharp acceleration peak at the motion’s onset and a difficulty with gen-

eralization if the onset is too spatially close to the target. These drawbacks have been

addressed in the follow-ups by Pastor et al. (2009), Hoffmann, Pastor, et al. (2009), and

D.-H. Park et al. (2008). Despite the improvements, the performance of DMP is still

limited by the presence of the internal timer. That is, DMPs do not encode an actual

closed-loop dependency between the motion variables, as it is done in autonomous dy-

namical systems. To summarize, the drawbacks of modulating the linear dynamics with

a learned regression signal are: (1) The resultant encoding is uni-variate, and therefore

it discards information about the correlation between degrees of freedom, that may be

crucial for faithful reproduction (see Fig. 3.41 for an illustration of the uni-variate en-

coding problem). (2) Coupling the output of a predefined linear dynamical system with

a regression estimate makes the overall system dependent on the temporal synchroniza-

tion between the two signals, and thus is in effect time-dependent. To handle temporal

perturbations, one would need a heuristic to maintain the synchronization. This would,

however, no longer guarantee that the overall system is globally asymptotically stable.

(3) By ensuring that the stable dynamical system takes precedence over the estimate

when coming close to the attractor or after a given time period, one can show global

stability of the complete estimate (Ijspeert et al., 2002a). In effect, the global dynam-

ics of motion is increasingly dominated by the stable linear dynamical system, hence

leading the motion to progressively depart from the learned dynamics. Alternative way

to learn a PD type controller is introduced by Calinon, D’halluin, et al. (2009),Cali-

non, D’halluin, et al. (2010), and Calinon & Billard (2009). Their method eliminates

the time-dependency of a derived policy, but essentially reduces robot’s behavior to

tracking a single learned trajectory, instead of generalizing a task and generating new

trajectories if the context has changed.

The original DMP approach is validated by teaching the humanoid robot DB-2 to

reach for a tennis ball (Ijspeert, Nakanishi, & Schaal, 2001). In this experiment, the

robot learns a one-arm coordinated movement. Recent extensions of the algorithm

address more complicated tasks, for instance in (Ude et al., 2010), the DB-2 learns to

throw a ball. Pastor et al. (2009) have the Sarcos Slave Arm pouring water into a cup

while adapting to different positions of the cup on a table.

The generic problem of learning auto-regressive dependencies from training data
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has been investigated by Ghahramani & Roweis (1999) and Roweis & Ghahramani

(2001). The authors cast the problem as follows: a hidden state evolves according

to an autonomous nonlinear dynamics corrupted by additive noise. The state is not

directly observable, but it is known that the outputs nonlinearly relate to the states. The

formulation can be formally summarized as follow:

xt+1 = f(xt) + w (2.40)

yt = g(xt) + v

where x ∈ R
m is the state, y ∈ R

n is the observable output, w and v are zero-mean

Gaussian noise, f and g are differentiable functions. Following the generic notation of

Eq.2.29, a system state x maps into a policy state ξ = xt, an observable yt might be

considered as a desired action ut = yt.

As the states x are not observable, the method first predicts the state xt from the

observation yt and then learns the actual dynamics f(xt) and the mapping g(xt). Si-

multaneous estimation of the state and two functions, f(x) and g(x), is computation-

ally expensive. Furthermore, the quality of learning crucially depends on the relevance

of the initial guess for g(x). In (Ghahramani & Roweis, 1999), the authors exploit the

fact that under some assumptions the learning problem can be resolved analytically in

closed form. The method is advantageous in applications where the dynamics is known

to lie on a sub-manifold of a lower dimensionality.

The problem statement given in Eq.2.40 has been recently investigated by Wang. et

al. (2008) andJ. Wang et al. (2006) with the objective of extracting whole-body coor-

dination patterns of walking movements. Their method, Gaussian Process Dynamical

Models (GPDM), is based on Gaussian Process Latent Variable Models (GP-LVM)

(Lawrence, 2005) (a GP-based nonlinear dimensionality reduction technique). GPDM

provides an extension to GP-LVM that enables the accurate representation of temporal

dependencies when these are projected into a sub-space and reconstructed back into

the original space. Learning whole-body motion dynamics with GPDM is showcased

on walking movements that can be reduced to limit-cycle dynamics. The authors es-

pecially emphasize that their method can compensate for missing information (e.g., if,

due to occlusion, a part of a trajectory where a human raises his leg is lost, the method

is able to predict the behavior and, therefore, to reproduce the smooth pace).

2.4.2.2 LEARNING CONSTRAINTS IN UNIMANUAL AND BIMANUAL TASKS

A time-dependent formulation for learning unimanual tasks explored in Calinon et al.

(2007), Calinon & Billard (2007a), and Hersch et al. (2008) addresses the problem of

learning from multiple demonstrations and combining constraints in the task and joint

space. The authors take the view that an actual task trajectory is not directly observable

because of sensory noise. Furthermore, to extract task constraints, the robot should be

provided with more than a single example: the variance across several demonstrations

indicates the extent to which one or another part of a motion is constrained. They

propose a generic framework that learns a task trajectory by weighting constraints in
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the task and joint spaces. The chosen statistical framework (Gaussian Mixture Models

and Regression) allows the extraction of a compact task representation, convenient for

fast reproduction. Calinon, D’halluin, et al. (2009); Calinon et al. (2007) demonstrate

how their method learns the variance across several task demonstrations, so as to teach a

humanoid robot HOAP-3 basic manipulation motions and task constraints (e.g., object-

hand dependency).

The method of (Coates et al., 2008), which similar to the work of (Calinon, D’halluin,

et al., 2009) exploits learning from multiple demonstrations, has been recently en-

hanced by Berg et al. (2010), so as to coordinate two surgery robots to perform rapid

stitching.

The work of Calinon et al., as well as other approaches, assumes that the external

constraints remain unchanged during demonstration and reproduction. For instance,

the shape of a manipulated object imposes constraints on a particular movement’s tra-

jectory. If demonstrations are performed with the same object, then the constraints con-

tained in the training set are identical. However, if we increase the complexity of the

task and, from demonstration to demonstration, vary the objects’ size, the constraints

within the training set will vary. The problem of learning from data that contains vary-

ing constraints sets a new challenge in robot learning.

In Howard et al. (2010), the authors suggest one possible way to learn from varying

constraints. They present a method that extracts an unconstrained policy from a set

of demonstrations conducted under varying external constraints. The authors explain

how learning can be implemented for potential-field based policies (Howard et al.,

2008a,b) and for generic parametric policies (Howard et al., 2009a,b). Once learned,

an unconstrained policy enables generalization: imposing suitable constraints allows

the generation of satisfactory robot behaviors in novel settings. The authors consider

hard constraints of the form:

A(x)u = 0 (2.41)

where A(x) ∈ R
n×n is a matrix describing a constraint. Given that π(x) is the un-

constrained policy, an actual action u(x) that should be chosen by the robot under the

constraint A is defined as:

u(x) = N(x)π(x), where N(x) is the null space of A (2.42)

To clarify the idea behind Eq. 2.42, consider, for instance, the task of grasping a ball in

a cluttered workspace (Howard et al., 2009a). The robot should avoid a barrier placed

between its hand and the ball. The position of the barrier is varied from demonstration

to demonstration, so that trajectories have different curvatures. In this case, averaging

the demonstrations will not produce a valid policy. Furthermore, during reproduction,

the barrier might be placed in an unobserved location. The authors suggest that, instead

of trying to combine inconsistent constraints, the robot should rather uncover a policy

π(x) that is relevant in the absence of any obstacle. Such an unconstrained policy then
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can be modified (Eq.2.42) according to the actual barrier’s position as defined by the

constraints A(x). All actions π(x) perpendicular to the hyperplane defined by N(x)

will be canceled. The authors advocate that learning unconstrained policies extends the

generalization abilities of the robot fundamentally. However, in the current formulation

of their method, the constraints are manually developed by a human user.

Policy learning from varying constraints (Howard et al., 2009a) is illustrated in

experiments with the humanoid robot ASIMO accomplishing two tasks: to manipulate

a ball with the two arms and to clean a panel. The authors show that robot is able to

grasp the ball despite the presence obstacles in its workspace, and to clean the panel

successfully, whose orientation may vary between cleaning attempts. However, in each

of these experiments, the authors engineer constraints by hand, which may be non-

trivial for other tasks.

2.4.3 POLICY DERIVATION IN REINFORCEMENT LEARNING

In contrast to Programming by Demonstration that relies on external demonstrations,

Reinforcement Learning emphasizes the importance of the robot’s self-exploration.

The exploration is governed by a reward function, so that during learning a robot aims

to find a control sequence that maximizes the reward. We will distinguish two direc-

tions within this domain: forward reinforcement learning that addresses the problem of

design and optimization of a given reward function, and inverse reinforcement learning

that emphasizes the importance of extracting an unknown reward function from expert

actions.

Even though the algorithms presented in this thesis relate to Programming by Demon-

stration, we include a brief review of reinforcement learning. We do so to emphasize

that the research questions addressed in this thesis (learning coordination, online adap-

tation to perturbation, sensorimotor coupling) are also challenging when considered

from the reinforcement learning perspective.

2.4.3.1 FORWARD REINFORCEMENT LEARNING

The goal of forward reinforcement learning is to maximize either an immediate reward

or a reward over time (episodic reinforcement learning). Formally, at any state xt ∈ X

an algorithm chooses an action ut ∈ U by drawing it from a stochastic parameterized

policy π(xt, t|θ) with parameters θ. As a result of the taken action, the system transits

to a new state xt+1 drawn from a state transfer distribution p(xt+1|xt, ut). After taking

the action, the system yields the reward r(ut, xt) ∈ R. The objective of learning is to

optimize the expected return:

J(θ) =

ˆ
X

γ(x)

ˆ
U

π(x, t)r(u, x)dxdu (2.43)

where γ(x) is a discount factor. We will consider two groups of forward reinforce-

ment learning: policy gradient and probabilistic policy search algorithms. The policy

gradient algorithms are local methods that optimize Eq.2.43 by gradient descent. Ac-
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cumulated work on policy gradient learning creates a solid framework for estimation of

the gradient from sampled data (Konda & Tsitsiklis, 2000; Sutton et al., 2000). How-

ever, even when applied to simple examples with rather few states, some policy gra-

dient methods often turn out to be quite inefficient (Kakade, 2002). One of the recent

advancements in policy gradient algorithms is the episodic natural actor critic (Peters

& Schaal, 2008b). In essence, the method uses the Fisher Information metric (Amari,

1998) to project the gradient into a more efficient update direction. The episodic nat-

ural actor critic demonstrates a significant performance improvements in comparison

with earlier gradient-based approaches.

Recently, probabilistic policy search has become an attractive alternative to gradient-

based reinforcement learning (Bagnell et al., 2003). Policy search algorithms converge

to a solution faster than policy gradient approaches. The performance improvements

are achieved at the cost of introducing a priori knowledge concerning the form of

the reward function. Precisely, to use policy search algorithms, one should make an

assumption regarding a class of admissible policies. Learning then consists in dis-

covering a good policy within the chosen class. In high-dimensional domains with

continuous states and actions, such as in robotics, policy search is advantageous as

it allows for the use of structured policies, integration of experts demonstrations, and

fast online learning (Bagnell et al., 2003; Ng. & Jordan, 2000; Peters & Schaal, 2007;

Toussaint & Goerick, 2007). At first, policy search algorithms are applied to optimiza-

tion of immediate reward. The later work of Kober & Peters (2010); Koeber & Peters

(2008), Policy Learning by Weighting Exploration with the Returns (PoWER), enables

episodic reinforcement learning and, therefore, is well-suited for learning motion poli-

cies.

Due to its prohibitive computational cost, till recently, RL has been rarely used in

robotics manipulation, where problems often are multidimensional. The development

of statistical policy search algorithm such as PoWER (Koeber & Peters, 2008) and ad-

vancement in gradient policies has facilitated the use of RL in robotics applications.

In (Kober & Peters, 2010; Koeber & Peters, 2008), training with the PoWER allows

the WAM arm to learn complex tasks such as ball in the cup and ping-pong. These

tasks require highly accurate motion coordination, therefore even a trained human

teacher might not be able to provide satisfactory demonstrations; while self-exploration

guided by the PoWER results in efficient motion policies. Among other applications

of PoWER, we may emphasize experiments where the WAM robot flips pancakes (Ko-

rmushev, Calinon, & Caldwell, 2010) and the iCub robot learns two arm archery skills

(Kormushev, Calinon, Saegusa, & Metta, 2010).

While the most existing approaches to probabilistic reinforcement learning are

based on Expectation Maximization, Buchli et al. (2010); Theodorou et al. (2010) use

a different mathematic machinery. Exploiting concepts from stochastic optimal control

and path integrals, the authors derive a novel method, Policy Improvements with Path

Integrals (PI2).Currently, PI2 is considered as one of the most efficient and easy ways to

implement episodic reinforcement learning algorithms. PI2 is particularly targeted for

learning compliant robot locomotion (Theodorou et al., 2010), and can be also applied
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to multidimensional problems such as manipulation.

It is important to note that the existing Reinforcement Learning approaches to mo-

tion learning employ time-indexed representations. Therefore, the resulting policies do

not necessarily suit for tackling real-time perturbations in the environment.

2.4.3.2 INVERSE REINFORCEMENT LEARNING

Forward reinforcement learning requires a user to define a reward function for each

new task manually. We have already discussed the impediments of this requirement

when reviewed work on optimal control for human motions (for instance, the necessity

to manually pick up a cost function for each manipulation task). Assuming that during

task execution a human produces a desired behavior, one may try to uncover the reward

as a function that explains best the observed behavior. Inverse Reinforcement Learning

(IRL) investigates learning of reward functions from human demonstrations.

A first attempt to extract a reward function has been undertaken in (Abbeel & Ng,

2004). This approach first defines features over the state-space and then assumes that

a reward function is a linear combination of these features. Learning is then reduced

to tuning of the mixing weights. The objective of optimization is to obtain a reward

function that leads to the same behavior as the observed one. This method has re-

solved successfully several research problems, but it still suffers from some drawbacks.

Specifically, Abbeel & Ng (2004) make strong assumptions about the process under-

lying the observed training data. For instance, in their method, the human is expected

to act nearly optimal, so as to provide demonstrations that can be defined by a single

statistical model. The IRL problem, the way it is casted in (Abbeel & Ng, 2004), is

over-constrained and ill-posed: an infinite number of reward weights make demon-

strated trajectories optimal. Ziebart et al. (2008) propose a novel principle built upon

the maximum-entropy concept that resolves this ambiguity.

Ratliff et al. (2006) suggest another approach to uncovering a reward function,

Maximum Margin Planning. Instead of relying on the stringent assumptions about the

training data, the authors introduce a loss function that measures disagreement between

a learned and desired policy. Using the loss function to learn a reward function makes

the method of (Ratliff et al., 2006) agnostic to the assumption of the optimally of the

human behavior. The later work of the same authors (Ratliff et al., 2009) provides

important extensions of the original approach; specifically, they develop a non-linear

version of the maximum margin planning algorithm that allows learning of a richer

class of tasks.

2.4.4 LEARNING FOR PHYSICAL INTERACTION

In the previous sections, we discuss the major theoretical methodologies within robot

learning. In this section, we explain how the methods of Programming by Demon-

stration and Reinforcement Learning are applied to investigate physical interaction be-

tween a robot and its environment and address challenges inherent in analytical robotics

(see Section 2.1.5). Until recently, one could find only a few works on learning for
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physical interaction. Currently, this problem is gaining attention, which can be ex-

plained by advances in both learning techniques and hardware that now permits robots

to operate alongside of humans.

In robot learning, physical interaction emerges in two, principally different, con-

texts: task demonstration (e.g., kinesthetic teaching) and task execution. Further, we

will consider physical interaction during task execution. During task execution, a robot

might enter into physical interaction with non-animated objects (e.g., object manipu-

lation or locomotion) or with humans (e.g., collaborative tasks). In this section, we

will discuss advances of learning for physical interaction along three directions: (i)

learning inverse dynamics (Burdet & Codourey, 1998; Burdet et al., 1998; Nguyen-

Tuong & Peters, 2010a; Vijayakumar et al., 2005), (ii) learning the variable impedance

(Buchli et al., 2010; Calinon, Sardellitti, & Caldwell, 2010; Ganesh, Albu-Schaffer,

et al., 2010; Mitrovic et al., 2008, 2010; B. Yang & Asada, 1996), and (iii) learning

for Human-Robot Interaction (Ikemoto et al., 2009; D. Lee et al., 2010; Takeda et al.,

2005; Z. Wang et al., 2009).

2.4.4.1 LEARNING INVERSE DYNAMICS

During free-space motions, a robot can be controlled by a high-gain PD controller.

However, if a task implies physical interaction, the robot is required to exhibit compli-

ance so as to guarantee safe interaction with the environment. Ideally, if one had an

exact dynamic model of the robot, both accurate performance and compliance would be

achieved through the inverse dynamics controller. In reality, one almost never has ac-

cess to the exact dynamic model. Robot learning suggests data-driven ways to address

this problem.

We distinguish purely data-driven approaches, which do not assume any structured

knowledge about the robot rigid body model (Peters & Schaal, 2008a; Vijayakumar et

al., 2005), and methods that employ the standard rigid body model as a baseline, which

is further improved through learning (Nguyen-Tuong & Peters, 2010a,b). Vijayakumar

et al. (2005) use the LWPR method to learn the inverse dynamics of a Sarcos arm.

Learning proceeds in real-time: the robot is tasked to execute a motion, and the model

update occurs while the robot is moving.

A more structured approach to estimating the rigid-body model has been consid-

ered in adaptive control and identification (An et al., 1988; Arimoto, 1993; Burdet &

Codourey, 1998; Burdet et al., 1998; Ganesh, Albu-Schaffer, et al., 2010; W. Li, 1990).

Specifically, the rigid-body model of a manipulator is known to be linear in the param-

eters θ (θ are the inertial, friction, and other unknown dynamic parameters):

τ = Φ(q, q̇, q̈)θ (2.44)

where τ denotes to joint torques, q, q̇, q̈ are joint angles, velocities, and accelerations

of the robot, Φ is a matrix containing nonlinear functions of joint angles, velocities, and

accelerations. In adaptive control (Burdet & Codourey, 1998; Burdet et al., 1998), the

dynamic parameters θ are continuously tuned while the robot is tracking a reference
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trajectory.

Despite the convincing performance improvements associated with the use of para-

metric adaptive controllers, such estimation requires a lot of training data. Estimated

parameters also need to be checked for physical plausibility and consistency. Further-

more, the linear approximation in Eq. 2.44 neglects more complex (e.g., nonlinear

friction) and unmodelled effects in the robot’s dynamics.

Depending on a robot and a task at hand, these characteristics can be impediment

to accurate performance. Nguyen-Tuong & Peters (2010a,b) suggest to incorporate the

analytical rigid-body model into learning inverse dynamics. The authors emphasize

improvements in the robot’s performance and generalization abilities associated with

such structured learning. Their method is based on GPR and considers two ways to

include the rigid-body model into learning: i) by using the rigid-body dynamics as

the mean (μ of a GPR representation in Eq. 2.35), in which case, learning absorbs

the errors between the rigid-body control and actual observed data; and ii) by using a

special covariance function that incorporates the basis matrix Φ. The latter is shown to

be a more generic and accurate approach.

2.4.4.2 LEARNING VARIABLE IMPEDANCE

Although an accurate inverse dynamics controller allows for both accuracy and com-

pliance, it is often necessary to modulate the compliance of a robot. For instance, if a

robot is tasked to serve water and carries a tray full of glass, stiffness is necessary to

ensure that no perturbations affect the robot’s arm. In such conditions, humans com-

bine feedforward and impedance control (Franklin et al., 2008). Similarly, control over

robot’s impedance is necessary for stable interaction with external objects and people.

B. Yang & Asada (1996) outline a Reinforcement Learning approach to adjust the

robot’s impedance during high-speed insertion. The robot is required to track a refer-

ence trajectory so as to insert a ball into a hole. However, due to uncertainty in the

model of the environment, the hole is not aligned precisely with the trajectory and the

ball often collides with a chamfer surface. Full impedance control (including stiffness,

damping, and inertia) is therefore necessary to cope with these uncertainties and to pre-

vent the robot from bouncing on the surface during high-speed execution. The authors

propose a reward function that simultaneously minimizes interaction forces and devia-

tions from the reference kinematics. To ensure the consistency of the learning process,

they suggest a progressive learning scheme: Initially, the robot starts with a low-speed

execution, where positional discrepancies are dominating. Hence, the robot updates its

estimate of the necessary stiffness. Once an optimal stiffness value is found, the robot

gradually increases its velocity and updates the damping and inertia parameters. Buchli

et al. (2010) explain how the PI2 algorithm can simultaneously optimize a robot’t tra-

jectory and adapt the impedance. The authors use a reward function that represents the

trade-off between stiffness and tracking precision.

Calinon, Sardellitti, & Caldwell (2010) adopt a more intuitive view on the problem

of variable impedance. They encode demonstrations with GMM and use the learned
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variance to specify the stiffness of a WAM robotic arm. Specifically, the authors make

an assumption that in parts of the task demonstrations that are constrained (low vari-

ance), the robot has to follow the learned trajectory while strictly rejecting disturbances

(high stiffness). On the contrary, while tracking other, less constrained parts (high vari-

ance), the robot is allowed to be compliant (low stiffness). In these, less constraint

parts, people can interfere in the task execution without danger of physical damage ei-

ther for them or for the robot. To validate their approach the authors apply their method

to an ironing task where the physical contact with a surface is important.

2.4.4.3 LEARNING FOR PHYSICAL HUMAN-ROBOT INTERACTION

Learning physical Human-Robot Interaction is largely unexplored topic in robot learn-

ing. The few existing approaches proceed through learning trajectories from demon-

strations and then replaying them on a robot either through a stiff PD controller (Ike-

moto et al., 2009; Takeda et al., 2005) or through incorporating them into a hardcoded

impedance controller (D. Lee et al., 2010; Z. Wang et al., 2009). Another way to cat-

egorize the existing methods is according to whether they use haptic information to

decide on a motion trajectory (Ikemoto et al., 2009; Takeda et al., 2005; Z. Wang et

al., 2009) or if the choice is solely governed by visual information (e.g., coming from

a vision motion capture system) (D. Lee et al., 2010).

Ikemoto et al. (2009) propose an algorithm for teaching a robot to stand up with

the help of a human. During interaction, force measurements from the skin sensors are

used to adjust the timing of the motion so as to synchronize with the human partner.

Takeda et al. (2005) present a robotic dance partner. The robot learns dancing move-

ments by observation and encodes these with an Hidden Markov Models (HMMs).

During task execution, force measurements are used to recognize motions of the hu-

man partner and choose the appropriate movement sequence for the robot.

The learning framework of D. Lee et al. (2009, 2010) is built upon the mimesis

imitation model (Inamura et al., 2004; Nakamura et al., 2005). The mimetic commu-

nication model for physical interaction is a multilayered framework: at the low level

it stores observed motion primitives (of both partners) encoded with the continuous

HMMs, at the upper level the framework stores discrete features, so-called interaction

patterns. During the task execution, the robot observes actions of the partner and visu-

ally recognizes to which motion primitive and interaction pattern his/her actions relate.

After the recognition of the interaction primitive, the robot decides on which partic-

ular motion primitive to execute. The motion primitive essentially defines a robot’s

reference trajectory. D. Lee et al. (2010) extends the mimesis communication model to

include a hardcoded impedance controller that allows the robot to handle the transition

between the non-contact and contact parts of the task. The essential characteristic of

this method is that a motion primitive is chosen based on visual information about a

partner’s motion. Therefore, the robot does not adapt its reference trajectory to incom-

ing haptic signals.

Another HMM-based approach to learning for physical HRI is proposed by Z. Wang
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et al. (2009). The authors consider a hand-shaking scenario. In this method, the au-

thors encode motion trajectories into an HMM where the hidden variables represent the

human impedance. Such an encoding requires the robot to measure human impedance

and further recognize which motion model to choose. The motion model is chosen at

the onset of the task and governs the robot through the rest of the task without adapta-

tion. In collaborative tasks, the lack of online adaptation can deteriorate performance

and prevent the human partner from relying on a robotic assistant confidently.

2.4.5 THE CURRENT CHALLENGES

Summarizing our discussion of robot learning, we may pinpoint the following chal-

lenges related to the production of coordinated movements, which have not been com-

pletely resolved as of yet and that we aim to address in this manuscript.

• Despite the acknowledged advantages of learning motions as dynamical systems,

this problem has not been fully addressed. The existing methods either lack

learning of an autoregressive dependency (and, therefore, cannot generalize mo-

tions to unseen contexts efficiently) or are computationally complex (e.g., some

methods additionally require learning of a low-dimensional sub-manifold that

embeds a dynamics) and do not ensure the stability of a learned estimate.

• The current approaches to learning bimanual tasks do not address the problem

of automatically extracting the constraints coupling the two arms . Instead, the

methods rely on an implicit encoding of the constraints (through learning exact

motion trajectories) or design the constraints manually.

• Learning control for continuous physical human-robot interaction is largely an

unexplored topic. One of the reasons is the lack of flexible algorithms to learn

and predict motion conditioned on the environment and perceived haptic infor-

mation.

2.5 CONCLUSION

In this chapter, we have provided an overview of how motion coordination has been

addressed in analytical robotics, human motor control, and, finally, in robot learning,

the domain of our particular interest.

We have outlined two challenging research directions in analytical robotics: how to

incorporate kinodynamic constraints into the path planning process, and how to make

the robot adapt to uncertainties through feedback planning. Resolution of these two

problems would advance robot motion coordination significantly. Precisely, we pro-

vided evidence that a planner that could solve kinodynamic constraints would account

not only for basic characteristics such as a path length, but for actual constraints related

either to a robot’s body or to task requirements. We discussed that feedback planning,

in its turn, explored how to generate and coordinate movement if the environmental

information was only partial or dynamically changing. It has been emphasized that the
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existing planning methods relied on human analysis and extensive path search, which

were the impediments when a robot should accomplish a variety of tasks in real-time.

In their pursuit of alternative solutions, roboticists have turned to human motor con-

trol from which they have borrowed some models and assumptions. Our work also

followed such a bio-inspired perspective.

To elucidate the origins of some hypotheses that we exploited in our work, we

reported on how motion coordination has been tackled in human motor control and re-

viewed three research direction: intra-limb motion production, bimanual coordination,

and coordination during physical interaction with peers. Our review discussed that the

existing literature contained ad-hoc computational models of coordination in motions

that were intentionally constrained within laboratory experiments. Still, the proposed

models provided important insights regarding possible ways for motion production. We

used these insights (e.g., the dynamical nature of human arm movements, sensorimo-

tor integration) to support the dynamical system approach adopted in this manuscript.

Furthermore, the lack of a common approach to modeling coordination motivated our

search for a generic framework applicable to a broad class of motions (see Chapter

3). The dynamical view on motion production provided a fruitful ground for modeling

coordination: it was advocated that dynamical systems could grasp complex forms of

coordination, such as bimanual coordination.

We suggested a robotics formulation for bimanual coordination in Section 3.3. In

Chapter 4, we extended the dynamical system view of motion coordination so as to

explore physical interaction between a robot and a human. Here, we exploited evidence

from human motor studies that force feedback governed motion coordination during

physical interaction. We integrated haptic information into a dynamical system that

generated motion for a robot. Taking into account the considerations of analytical

robotics and human motor control, we suggested an alternative, data-driven approach

to the encoding and generation of coordinated movements.

In robotics, data-driven methods have been developed in the context of robot learn-

ing. We reviewed the state of the art in robot learning, emphasized some problem

statements typical to this field, and explained why a robot learning treatment of motion

coordination could avoid some of the pitfalls of purely analytical methods. Our work

described in Chapters 3 and 4 contributes to this direction of research.

Robot learning solutions often exhibited limited generalization abilities (i.e., the

reviewed methods were not applicable to the whole workspace). However, they were

more generic than those analytical (i.e., applicable to a broad class of tasks). We

discussed the methods for improving generalization that have been suggested under

PbD and Reinforcement Learning.

It has been discussed that another challenge of learning coordinated movements re-

lated to constraint extraction. Many proposed learning techniques relied on an implicit

encoding of constraints, which could lead to poor generalization. To overcome this

limitation, in Section 3.2, we suggest a method to explicitly extract bimanual coordi-

nation constraints from training data. Finally, in comparison to other domains of robot

learning, very little has been done to learn within a field of physical Human-Robot In-
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teraction. In Chapter 4 of this manuscript, we extend the dynamical system learning

from Chapter 3.3 and propose a novel approach to teaching a robot to coordinate its

movements while physically interacting with a human.
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Chapter 3

A Dynamical System

Approach to Motion

Representation and

Coordination

3.1 OVERVIEW

L
EARNING motion coordination requires a mechanism for encoding and reproduc-

tion of coordination patterns and temporal constraints.

In this chapter, we first present our work on learning bimanual coordination. We

outline a generic framework that combines Dynamical Systems movement control and

Programming by Demonstration (PbD) to teach a robot bimanual coordination tasks.

We consider learning of spatio-temporal constraints that couple the two hands to act

synchronously. The proposed algorithm consists of two parts: a learning system that

processes demonstrated data and extracts spatio-temporal coordination constraints, and

a motor system that reproduces the movements in real-time while satisfying the learned

constraints. In this algorithm, the motor system exploits strength of the VITE model

of human reaching movements to generate trajectories. The proposed model accounts

for learning of a sufficiently broad class of manipulation tasks as demonstrated through

several robotics experiments.

However, the method for learning bimanual coordination is built upon a simplifying

assumption: robotic motions are generated by a pre-defined VITE model. We then

explain that though the use of a hard-coded computational model of human motion

(VITE) has its advantages (e.g. simplicity (only two free parameters) and applicability

in the whole workspace), the hard-coded representation confines the robot to follow

linear trajectories. From human motor control (see Section 2.2), we know that many

coordinated motions cannot be reduced to solely linear trajectories.

To address this limitation, we further define the problem of learning dynamics of

nonlinear motions in the robotic context. We propose an approach for learning locally

stable dynamical systems from multiple human demonstrations. The method allows

the representation of coordination patterns in a compact analytical form. We provide

experimental illustration and validation of the method. The chapter concludes with the

extension of the dynamical system motion representation to learning coordination be-

tween the position and orientation components of a robot’s motion in Cartesian space.

Simultaneous learning and reproduction of both motion components in a coordinated

manner offers a "pre-shape" motion strategy. Furthermore, it endows the robot with the

ability to adapt motion smoothly in the case of perturbations that affect the two motion

components either separately or simultaneously.
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This chapter is organized as follows:

Section 3.2 presents a method for learning coordination in the case of

bimanual tasks. A robot estimates parameters of bimanual constraints

using Hidden Markov Models. In this section, we start our exploration

of a dynamical system approach to motion coordination: we apply a

pre-defined linear dynamical model to generate trajectories for both

arms of a robot.

Section 3.3 extends the dynamical system approach to motion coordi-

nation followed in Section 3.2. While Section 3.2. assumes that a

motion is driven by a known linear dynamical system, in Section 3.3.

we present a method for statistical learning of nonlinear dynamical

systems and discuss its advantages for both learning and reproduction

of nonlinear coordinated motions. We also examine the ability of the

proposed algorithm to quickly adapt a motion under external perturba-

tions.

Section 3.4 applies the dynamical system approach presented in Section

3.3 to intra-limb coordination. We explain how dynamical systems can

be used for controlling the position and orientation of a robot’s hand

during manipulation tasks.

Each section contains experimental validation and a discussion of the contributions

and the limitations of each method.

58



3.2 LEARNING ONLINE MOTION GENERATION FOR

BIMANUAL TASKS

The method presented in this section has been previously
published in:

Gribovskaya E. and Billard, A. G. Combining Dynamical Systems Control and

Programming by Demonstration for Teaching Discrete Bimanual Coordination

Tasks to a Humanoid Robot. Proceedings of IEEE/ACM International Conference
on Human-Robot Interaction. 2008.

3.2.1 INTRODUCTION

For complex manipulation tasks, we, as humans, often use both arms to accomplish

a task quickly and skillfully. In robotics, investigation of methods for planning and

control of bimanual coordination is an important step towards greater autonomy and

better performance.

We have emphasized in Chapter 2.3 that, while motion learning in general has been

a subject of active research in Programming by Demonstration (PbD), bimanual co-

ordination has received little attention so far. That is, bimanual coordination has not

been treated as a constraint per se: two-arm manipulation is accomplished through the

precise imitation of either a demonstrated trajectories (Zollner et al., 2004) or given ob-

ject/hand dependencies (Calinon & Billard, 2007b). Such methods demonstrate good

performance in a static environment, but fail if we allow dynamical changes in the en-

vironment (for instance, if we allow a human user to move objects that the robot is

trying to manipulate).

We aim to address some of the limitations of the existing analytical and PbD ap-

proaches to bimanual manipulation and propose a method for learning coordination

constraints. We also suggest an algorithm for the task reproduction that enforces a

robot to adhere to the estimated coordination constraints and that yields robustness

towards perturbations.

We take inspiration from bimanual coordination as addressed in human motor con-

trol: as discussed in Chapter 2.2, researchers in this field have adopted the coordination

dynamics view on the problem. Here, we briefly reiterate some concepts of coordina-

tion dynamics that we exploit in the current section.

Coordination dynamics successfully explains and predicts the emergence of coor-

dination patterns in rhythmical movements. According to coordination dynamics, a

discrete coordination pattern corresponds to an attractor in the state-space of a collec-

tive variable (a parameter that governs the evolution of a coordinated motion). The

motion then consists in a transition from a starting position to this attractor. There-
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fore, to predict the trajectories of a coordinated task, one needs to choose a suitable

collective variable and decide on a dynamical system that governs it.

For clarification, let us consider the Haken-Kelso-Bunz model (HKB) (Haken et

al., 1985). In this model, the authors address oscillatory motions of two fingers. The

HKB model suggests that the relative angular phase between the fingers is a suitable

collective variable for this movements. A dynamical system for the relative phase is

then derived from the equations of two coupled oscillators (each oscillator represents

one finger). From the previous experimental findings of the same authors it is known

that rythmical finger motions exhibit several typical features (e.g., a tendency of the fin-

gers to synchronize, a dynamical switch of a phase between the fingers). The proposed

HKB model accords with these observations and successfully predicts trajectories of

the fingers.

Taking the stance of coordination dynamics, we demonstrate that, in the case of

discrete bimanual motions, the relative position between two hands is a plausible can-

didate for a collective variable. Stable positions (attractors) of the relative position rep-

resent stable coordinated postures (coordination patterns), which a robot should attain

sequentially to accomplish a task; this concept is illustrated in Fig. 3.1. Specifically, we

suggest that a discrete coordinated movement is described by a set of coordination pat-

terns changing each other dynamically as the motion evolves in time. The patterns are

presumably task-dependent and, hence, we propose a learning algorithm that enables a

robot to automatically extract them from task demonstrations.
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Figure 3.1: The robot is asked to sweeten tea. To do so, the robot moves its arms, so as to put a

cube of sugar into a cup, and then brings the arms back on a table (Tea task). Top: An example

of a sequence of three coordinated postures through which the robot transits when performing

the Tea task. The three postures refer to three events: keeping arms in the initial position, putting

the sugar in the cup, and keeping the arm at in the rest position. Bottom: The time series of the

relative trajectory between the two hands (along the x axis). The superimposed arrows match

stable postures (highlighted by ellipses) to the states illustrated on the top figure.
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3.2.1.1 SET-UP

The experiments reported in this section are conducted using a humanoid robot HOAP-

3 from Fujitsu with 28 degrees of freedom (DOFs), four DOFs per each arm; see Fig.

3.2. Here, we are interested in arms’ movements (8 DOFs total); all other DOFs are set

so as to keep the robot in the seated position; Fig. 3.2.

The manipulated objects are marked with color patches. During learning and re-

production, these patches are tracked by an external stereovision system.

������������
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Figure 3.2: A hardware set-up. The humanoid robot HOAP-3 that we use in the experiments on

bimanual coordination. The robot can freely manipulate objects in the space in front of its torso.

The manipulated objects are marked with color patches and tracked by an external stereovision

system.

3.2.2 METHOD OVERVIEW

The suggested model consists of two systems; see Fig.3.3: (1) a learning system that

extracts and learns task constraints and (2) a motor system that dynamically generates

movements from the learned task model.

In our experiments, demonstrations are provided through kinesthetic teaching: the

robot motors are set into a passive mode and a human teacher guides the robot’s arms

through a task. Kinesthetic teaching exempt us from a problem of finding a correspon-

dence between motions of a teacher and a robot. Furthermore, a robot cannot move its

limbs into all the configuration available to humans. When the teacher directly moves

the robot’s arms, he/she perceives the robot’s limitations, and properly adjusts the mo-

tion according to the robot’s geometry.

3.2.2.1 THE LEARNING SYSTEM

During learning a robot builds a task model by observing several demonstrations.

61



����
������	�

��


�����	�������
������
����


����
�����	�
�����
�������

���	��
��	�
��
����
���	����


������	
�����	����
���������

�����

�������
�
�
��� ������
�
��� �����
�������	�
��
�� ������������

� �� � ! �� �

Figure 3.3: A model overview. The arrows show an information flow across the system. A train-

ing set D is preprocessed by resampling and aligning the demonstrations. From a preprocessed

dataset X , we then extract a set Π of stable postures. The set Π is further encoded in a HMM.

After learning, a robot use a generalized set of spatio-temporal constraints P to reproduce a task.

The robot’s motion between and within stable postures is generated in real-time by a dynamical

system controller.

1. Training data

A training set D of each task consists of M demonstrated trajectories of a length

Nk, k = 1..M . Each trajectory is a sequence of joint angles of the right and left

arms qR,k
t , qL,k

t , t = 1..Nk, where qR,k
t , qL,k

t ∈ R
Nq (Nq is a dimensionality of

a joint space; Nq = 4 in our case. Here and further the upper indices "R" and

"L" refer to the right and the left arm respectively).

The recorded training set D is smoothed with the one-dimensional Gaussian filter

and resampled to a fixed length Nu.
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Figure 3.4: Dynamical Time Warping (DTW). Results of applying DTW to five trajectories

of the shoulder’s joint recorded during the demonstration of the Cube task. Note that, before

DTW, local minima and maxima of the recorded signals are strongly misaligned. DTW helps to

harmonize data in the time domain.

During experimentation, we observe that the demonstrations are often temporally

misaligned. This is due to variability of human movements: a human teacher

cannot ensure a stable pace across trials. Therefore, extracting constraints from

a set of such suboptimal trajectories requires a more sophisticated approach than

merely averaging constraints extracted from each raw trajectory. If not reduced

prior training, the misalignments blur temporal and spatial constraints of a task.

Here, we align raw data with Dynamic Time Warping (DTW) (Sakoe & Chiba,
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1978); see Fig. 3.4. DTW performs nonlinear transformation of the time axis of

a signal so as to align it with the time axis of a reference signal. Let us consider

two trajectories x0 and x of the same length T , assuming further that x0 is the

reference trajectory.

Next, we construct a warping path F , which matches pairs of points of the tra-

jectories x0 and x: F = {ck}, k = 1..T where ck = (ik; jk), ik and jk are

time indices of the points to be matched x0i and xj . The optimal path F is es-

timated through dynamic programming by minimizing the distance between the

trajectories I(x0, x, F ) defined as follows (Sakoe & Chiba, 1978):

I(x0, x, F ) ∼
T∑

k=1

γ(ck) (3.1)

F = argmin
F

I(x0, x, F )

where γ(ck) = ‖x0i − xj‖ is the distance between matching points. The op-

timization in Eq. 3.1 is performed under several constraints that control the

computational cost and the flexibility of the warping path F . For our data, the

slope constraint p, controlling the flexibility of the warping path, is an important

parameter: the smaller p the less flexible warping path. We set the slope con-

straint experimentally as p = 2, which in average correspond to the decrease in

the optimized function Eq. 3.1 by approximately 40 percent of its initial value.

Larger values of the slope constraint cause significant distortion of the data; see

the original reference by Sakoe & Chiba (1978) for detailed information on the

parameter setting.

After pre-processing of the training set D, the end-effectors trajectories xRt , xLt ∈
R

3 and the relative position between the two arms dt = xRt − xLt are calculated

through the direct kinematics.

2. Key postures extraction

We consider a coordinated bimanual motion as a dynamical transition across a

set of stable postures. To automatically extract these postures from the data set

X = {xR,k
t , dk

t }k=1..M
t=1..Nu

1 (Nu is a unified length of the demonstrated trajectories

after resampling), we apply the Mean Square Velocity (MSV) analysis to each

observed trajectory of the relative position {dk
t }t=1..Nu

, k = 1..M . Next, we

outline the details of our MSV analysis.

Lieberman & Breazeal (2004) suggest a method to automatically segment tra-

jectories of complex movements into episodes. The authors start from a seg-

mentation method developed by Mataric (2000), which is based on the following

observation: when humans execute a complex action, they typically change the

direction and speed of a motion between each segment of the action. To extract

motion episodes, Mataric (2000) is looking for changes in the velocity profile

1To unambiguously generate trajectories for the two arms, we need to consider, in addition to the relative

position d, a position of one of the arms. Here, we choose to use the motion data of the right arm.
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of a motion. However, in her algorithm, at least two parameters (lower and up-

per bounds for the mean square velocity variation) should be chosen manually

for each motion to be segmented. To overcome this drawback, Lieberman &

Breazeal (2004) propose a way to compute these parameters directly from mo-

tion data.

Here, we extend their algorithm so as to extract stable states from the relative

position between the hands d. (Following our hypothesis, each stable state of

the relative position d defines a coordination pattern between the two arms.) The

motion data are noisy, and therefore, the stability is considered in a loose sense

and corresponds to a state where d remains approximately constant during a

certain time interval and its velocity ḋ significantly decreases or drops to zero 2;

see Fig.3.1.

We define the Mean Square Velocity (MSV) function V for each demonstration

as follows:

Vt = ḋ
2

x,t + ḋ
2

y,t + ḋ
2

z,t, t = 1..Nu, (3.2)

And a threshold for segmentation:

V ∗ = 〈V 〉 − 0.5σV ; (3.3)

where 〈V 〉 and σV are respectively the mean and the standard deviation of V .

To find episodes’ boundaries, the algorithm proceeds as follows. For each time t,

if V k
t−1 < V ∗ and V k

t ≥ V ∗, search through the remaining times until V k
t∗ < V ∗

is found. Then the time stamp t is assigned to be the beginning of the i episode,

ti,start, and t∗ is the end of this episode,ti,end. We consider that the mean value of

d on the interval [ti,start, ti,end] describes the key posture di.

To specify the key postures of the right arm x̂R
i , we set up a correspondence

between them and the key postures of the relative position di. As a result the

key postures of the right arm take the following values: xRi,start = xRti,start
, xRi,end =

xR
ti,end

, i = 1..NΠ (NΠ is a number of extracted postures).

The dataset used for stochastic posture encoding is as follows:

Π = {di, xRi,start, ti,start, Ti, i = 1..NΠ}. (3.4)

Here Ti = ti,end − ti,start.

3. Stochastic postures encoding

We have several motivations to encode the extracted postures Π with HMMs.

These are: (1) to get rid of the spurious postures (the postures that are not relevant

for reproduction and are caused by accidental deceleration of the teacher); see

Fig.3.7 3; (2) to merge postures that are close spatially and temporally; (3) to

extract spatial and temporal characteristics of the postures.

2In practice, we usually observe the velocity ẋ decreasing below a certain threshold.
3Spurious postures are the postures that do not contribute into task execution and appear in a training
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We encode the training set Π with a continuous HMMs. The most generic

approach is to use a fully-connected HMM model. However, learning of this

model requires a large training set, which is almost never available in the con-

text of PbD. Hence, we incorporate prior knowledge about the data structure

through biased transitional probabilities. We use a left-right model, where no

self-transitions are not-allowed. Indeed, the states in our model represent tempo-

rally ordered trajectory events, thus the assumption of using the left-right model

does not bring any limitations. Each emission probability is approximated with

a single multivariate Gaussian distribution and represents a key posture di, with

its time properties ti,start, Ti, and a corresponding position of the right arm xR
i,start

.

We apply the Baum-Welsh algorithm (Rabiner, 1989), which estimates the HMMs

parameters through the local expectation maximization. Because of the local op-

timization, a proper initialization of the parameters of HMMs plays a crucial role

in convergence of training. If we initialize the parameters randomly, the algo-

rithm most likely will converge to a suboptimal solution. The K-means method

(MacQueen, 1967) is regularly used for HMMs initialization. However, this al-

gorithm assumes that a number of clusters (hidden states in HMM) is known in

advance. It appears logical to choose the number of clusters to be equal to a num-

ber of extracted stable postures NΠ. However, due to noise in training data, the

number of extracted stable postures varies from one demonstration to another.

Further, we explain a criterion that estimates a number of cluster NP . In litera-

ture, one can find different methods to validate clusters for K-means (Hubert &

Arabie, 1985). Usually, such methods are formulated as a criterion (or an index)

that characterizes how well a discovered partition explains data and how reliable

it is (e.g., whether it is sensitive to outliers). Here, we extend the Dunn index

(Bezdek & Pal, 1998) and use the extended criterion to validate the number of

clusters within training data. Our criterion aims to maximize between-cluster

distances while minimizing within-cluster distances and a number of clusters c;

see Fig. 3.5. The proposed criterion reads as follows:

Γ(U) =
max1≤i,j≤c δ(Ci, Cj)

cmax1≤l≤c Δ(Cl)
; (3.5)

where U is a current partition, consisting of a set of clusters {Ci, i = 1..c},

δ(Ci, Cj) = mins∈Ci,g∈Cj (‖s − g‖) is the between-cluster distance, Δ(Ci) =

maxs,p∈Ci(‖s − p‖) is the within-cluster distance. We analyze possible par-

titions by iteratively increasing the number of clusters c starting from c = 2.

The maximum value of the criterion in Eq.3.5 points out to the optimal partition.

After encoding of an extracted set of postures Π with HMM and generating a se-

set either due to the noise in robot sensing or due to flaws in human demonstrations. Such postures emerge

sporadically and are not represented in all demonstrations. Therefore, the probability to transit through

them is comparatively small. To prevent a robot from reproducing these postures, we fix the threshold for

the HMM transitional probabilities to be 0.2; that is, the postures with lower transition probabilities are
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Figure 3.5: Within-cluster ΔC1 and between-cluster δ(C1, C2) distances used to compute the

Dunn index in Eq.3.5

quence of the most probable postures, we obtain a learned set of spatio-temporal

constraints P :

P = {d̂i, x̂Ri,start, x̂R
i,end, t̂i,start, T̂i; i = 1..NP } (3.6)

where d̂i, x̂Ri,start, x̂Ri,end are learned values of the relative position and positions of

the right arm in the beginning and in the end of a ith stable posture; t̂i,start, T̂i are

the time of emergence and the duration of a ith posture.

3.2.2.2 THE MOTOR SYSTEM: TASK REPRODUCTION

Next, we explain how a generalized set of postures Π learned with the HMMs is used

for the task reproduction; see Fig.3.3.

1. Hybrid controller

In the previous work of ours, Hersch & Billard (2008) propose a hybrid con-

troller of reaching movements in humanoid robots. The controller is based on

the Grossberg’s model of human reaching movements – Vector Integration to

Endpoint (VITE) (Bullock & Grossberg, 1988), and follows a current trend in

human motor control. That is, movements are not planned in a single frame of

reference, but rather several frames are involved in planning. For instance, one

can think of a motion being planned in an internal referential (in a joint space)

or in an external referential, e.g., linked to a manipulated object (in the Carte-

sian space). The planning under multiple referentials introduces redundancy and

raises a question of how to combine motions generated in different referentials.

Hersch & Billard (2008) show that the redundancy can be used to efficiently

avoid joint limits. We use their controller as a basis for the proposed bimanual

motor system; see Fig. 3.6.

At each time step, the desired trajectories qRd , qLd and xRd , xLd are generated by

VITE controllers (we present only the equations for the right arm, the equations

for the left arm are identical):

q̈Rd = q̇R +αR
q (−q̇R + βR

q (qR
tar,i − qR)); (3.7)

ẍRd = ẋR +αR
x (−ẋR + βR

x (xR
tar,i − xR)); (3.8)

discarded.
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Figure 3.6: An overview of the robot’s Motor System. Each arm is controlled by a couple of

dynamical controllers given by Eq.3.7-3.8. Within each arm, the controllers are coupled through

robot’s body constraints; Eq. 3.11. The coordination between the arms is ensured by spatial and

temporal constraints; Eq.3.14, 3.17, 3.19.

where αR
x ,α

R
q , β

R
x ,βR

q are empirical constants; we will discuss a way to com-

pute them in a section on temporal constraints.

In the beginning of each motion segment i, a target Cartesian position of the right

xRtar,i and left xL
tar,i arms are set as follows: xR

tar,i = x̂R
end,i, xLi,tar = x̂Ri,end − d̂i. In

the end of the ith segment the target positions are set so as to lead a robot to a

next stable posture: xR
tar,i = x̂R

start,i+1, xLi,tar = x̂R
i+1,start − d̂i+1. The target joint

angles qR
tar,i, qLtar,i are computed from the target Cartesian positions.

Generally, a desired arm configuration qd might be incompatible with a desired

end-effector position x (violation of robot’s body constraints) or desired positions

of the two arms do not satisfy a spatial coordination constraint. We assume that

one can find positions consistent with the constraints in a neighborhood of the

desired positions.

We consider estimation of a consistent pair {x, q} as a constrained optimization

problem with a functional to be minimized:

H(qR, qL, xR, xL) = (qR − qRd )
T WR

q (q
R − qR

d ) + (xR − xRd )
T WR

x (x
R − xRd )+

(qL − qLd )
T WL

q (q
L − qLd ) + (xL − xLd )

T WL
x (x

L − xLd ); (3.9)

where WR
q ,WL

q ,WR
x ,WL

x are the positive diagonal matrices, that control the in-

fluence of each of the controllers in Eq. 3.7-3.8 4. The optimization problem

takes then the following form:

min
qR,qL,xR,xL

H(qR, qL, xR, xL) (3.10)

2. Enforcing robot’s body constraints

In this section, we explain how one can resolve the robot’s body constraints:

4"T " refers to the transpose operator.
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xd = K(qd), where K(qd) is the kinematic function of an arm.

To ensure the consistency between the Cartesian and joint trajectories, we solve

the optimization problem in Eq. 3.10 under the robot body constraints (note, we

consider the robot’s body constraints in the differential form):

ẋR = JRq̇R; ẋL = JLq̇L; (3.11)

where JR, JL are the Jacobians of the right and the left arm. The problem in

Eq.3.10-3.11 is resolved at each time step. An analytical solution can be found

using the Lagrange multipliers (see Appendix I for derivation).

After optimization, we obtain values ΔqR, ΔqL that update the joint angles

commands to be sent to the robot.

ΔqR = (WR
q + (JR)T WR

x JR)−1((JR)T JR
x (x

R
d − xR)

+ WR
q (q

R
d − qR)). (3.12)

The updated joint commands qR + ΔqR and qL + ΔqL are guaranteed to be

coherent with the robot’s geometry; these commands also bring robot’s hands in

the Cartesian position that are close to the desired values.

Note that the reproduction of joint trajectories calculated through Eq.3.12 does

not necessarily lead to the desired Cartesian trajectories. The optimization in

Eq.3.10 searches for a trade-off between Cartesian and joint space control. There-

fore, the resulting motion depends on the weight matrices Wq and Wx. For in-

stance, if the Cartesian weights Wx take precedence over the joint weights Wq,

the robot tracks the generated Cartesian trajectory. The choice of weights and

associated redundancy are caused by motion planning in multiple referentials.

This redundancy can be exploited to avoid joint limits (Hersch & Billard, 2008).

If the joint angle space is convex, the joint angle controller given by Eq. 3.7 will

never bring a robot to a joint boundary (unless a target lies on the boundary).

Therefore, to avoid joint limits, the robot might gradually move from Carte-

sian control to joint space control when approaching the workspace boundaries.

Such an adaptation is done by varying the weight matrices WR
q ,WL

q ,WR
x ,WL

x ;

see (Hersch & Billard, 2008). For instance, by setting WR
x to zero, one obtains

a pure joint angle controller for the right arm, while, by setting WR
q to zero, the

result is a pure end-effector position controller.

As the right arm gets closer to one of the joint limits, the corresponding ele-

ment wR
qi of the matrix WR

q gets bigger. Eventually, a ratio
wR

x

wR
qi

tends to zero,

which leads to a pure joint angle controller and therefore allows avoiding the

joint limit. To achieve this, Hersch & Billard (2008) suggest to define the ratio
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wR
x

wR
qi

as follows:

wR
x

wR
qi

= 0.5γ(1− cos(2π
qRi − qRi,min

qRi,max − qRi,min

)); (3.13)

where qRi,min and qRi,max are the joint angle boundaries, qRi is a joint angle position

at time t, and γ is a constant that defines the maximum value of
wR

x

wR
qi

. Finally,

by setting the cartesian weights WR
x , WL

x to be identity matrices, one might

compute the diagonal elements of matrices WR
q , WL

q through Eq.3.13. Inside the

robot’s workspace, the Cartesian weights Wx take much larger values than the

joint weights Wq and, therefore, the robot follows the desired Cartesian path; see

(Hersch & Billard, 2008) for a comparison of joint space and Cartesian control.

3. Enforcing spatial coordination constraints (while in a stable posture)

While transiting through a stable posture, a robot has to adhere to learned spatial

constraints. To enforce their resolution, we extend the optimization problem in

Eq.3.10-3.11 with spatial coordination constraints as follows:

ẋR − ẋL = 0 (3.14)

After solving the joint constrained optimization problem (Eq. 3.9, 3.11 and

3.14), we obtain:

ΔqR = (M1)
−1M2; (3.15)

ΔqL = [(JL)−1JR]qR

where

M1 =WR
x JR + (JR)−T WR

q + WL
x JR + (JL)−T WL

q (J
L)−1JR; (3.16)

M2 =WR
x (x

R
d − xR) + (JR)−T WR

q (q
R
d − qR)+

WL
x (q

L
d − qL) + (JL)−T WL

q (q
L
d − qL).

4. Enforcing temporal coordination constraints

For each posture, a learned task model Π defines its temporal constraints: oc-

currence time t̂i,start and duration T̂i. To ensure the synchronization between the

arms as well as the timing of a movement, we require a robot to reproduce the

learned temporal constraints. Note that, by varying the parameters α and β5 of

the VITE controller in Eq. (3.7)-(3.8), we can adjust motion duration and the

velocity of the robot along a movement. Next, we show how to compute the

parameters α and β so as to guarantee that the learned temporal constraints are

fulfilled. Being a linear dynamical system, the VITE model has a single attractor

5To simplify notation, we further omit indices R,L and x,q and refer simply to α and β while assuming

that the results are applicable to both arms, in Cartesian and joint spaces. The derivations are made for a one

dimensional case.
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that can be stable or unstable depending on the parameters α and β. Therefore,

while adjusting α and β so as to satisfy the learned temporal constraints, we need

to keep in mind the requirement of stability. For the VITE system to be stable, its

eigenvalues λ1 and λ2 should be either real negative or complex conjugate with

negative real parts. We choose the latter as the strictly negative real eigenvalues

might produce a sharply peaked velocity profile, which is undesirable for imple-

mentation on a robot: λ1 = −m+ ni, λ2 = −m− ni, where m,n ∈ R,m > 0

are the parameters to be computed, i is the imaginary unit. The parameters α, β

can be expressed through m and n as:

α = 2m;β =
4n2 + α2

4α
. (3.17)

To obtain expressions for the parameters m and n, we consider the VITE con-

troller from Eq.3.7 as a differential equation and resolve it analytically under

boundary conditions:

x(0) = x0; ẋ(0) = ẋ0; x(T ) = xend; ẋ(T ) = ẋend; (3.18)

where T is the learned motion duration, x0, ẋ0, xend, ẋend are respectively the

current robot’s position and velocity and these in the end of the movement. The

boundary conditions have to satisfy the following requirement: ||xend−xtar

x0−xtar
|| � 0,

where xtar is a target position. Additionally, according to the definition of an

attractor, the velocity in the end of the movement must satisfy: ||ẋend|| � 0.

Taking into account the boundary conditions in Eq. 3.18, we obtain the following

formulas for m,n:

n =
π

T
; m =

1

T
log

(
x0 − xtar

xend − xtar

)
. (3.19)

If, during a motion, the robot encounters an external perturbation (e.g. a manip-

ulated object is shifted or a robot’s arm is being pushed), the motor system has to

adapt the velocity of both arms accordingly: for this, the motor system recom-

putes the parameters α and β taking into account new environmental information

and a current configuration of a robot.
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Figure 3.7: The HMM encoding of Tea task. The demonstrated trajectories of the relative posi-

tion d; red dots are the starting points of stable postures extracted according to (their covariance

matrices after training the HMM parameters are represented in bold ellipses).
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Table 3.1: Postures estimated by the Learning system

Task A number of postures
extracted from the
training data

A number of postures
after encoding with
HMM

Tea task 6 4

Cube task 5 3

Tray task 7 4

3.2.3 EXPERIMENTAL RESULTS

To validate our method, we conduct three experiments in which a humanoid robot is

taught to bimanual coordinated movements: manipulating a bulky cube (Cube task),

putting a sugar into a cup (Tea task), and moving a tray (Tray task); see Fig. 3.8. Our

objective in these experiments is twofold: (i) to demonstrate that the robot can extract

coordination constraints and (ii) to illustrate that the robot’s motor system adapts under

perturbations, so as to fulfill learned task constraints.

During task reproduction, the positions of manipulated objects are tracked with an

external stereovision system that has a wider angle of view in comparison with cameras

in-built in the robot. All trajectories of the robot’s arms are calculated with respect to a

frame of reference located at the center of the robot’s waist.

• Task Learning

Fig. 3.7 shows an example of posture encoding in Tea task. The learning sys-

tem determines four stable postures along the time series of the relative position

d. Only three of these postures (first, third, and forth) are statistically relevant.

The second posture is spurious: it does not correspond to any specific movement

pattern and appears only in two demonstrations out of five. The learning algo-

rithm discovers that the probability to transit through this posture is lower than

the chosen threshold, therefore, the robot is not required to reproduce it.

Table 3.1 provides a quantitative summary of results on task learning: a number

of initially extracted stable postures and a final number after the statistical en-

coding with HMMs . Note that the segmentation procedure tends to extract more

postures than it is statistically relevant: Encoding with HMMs allows for casting

off some unnecessary postures.

• Enforcing Spatial Constraints

Fig. 3.9 - 3.11 share a same legend: each figure contains a graph with robot’s

hands trajectories (projected into the axial plane), the workspace accessible to

the robot in each task (the accessible workspace is estimated as a space where

the robot is able to maintain learned coordination constraints), and a series of

snapshots with superimposed trajectories.

Fig.3.9 presents results of the reproduction of Cube Task. To test the ability of

the motor system to adapt to external perturbations, we first change the position

of the cube while the robot is trying to grasp it, and then we change the position
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Figure 3.8: Experimental set-ups. To validate our method, we investigate its performance in

three manipulation tasks. The tea task: put a piece of sugar into a cup. The cube task: grasp a

cube, lift it, and put it on top of the pedestal. The tray task: grasp a tray with both arms, lift it,

and move the tray forward.

of the pedestal on top of which the robot has to put the cube. The second per-

turbation is applied while the robot is in a stable posture (carrying the cube) and

hence it has to maintain the relative position between its arms so as not to drop

the cube. The perturbations are applied so that all objects positions are reachable

to the robot.

Fig. 3.10 presents results of the reproduction of Tea task. In this experiment

we apply perturbations also twice, as in Cube task; in both cases we simulate a

situation where the right arm of the robot is suddenly pushed. This was achieved

by sending a perturbed command to the arm’s joints. In the first case, a jerk is

initiated while the robot is moving the arms towards each other. In the second

case, we send a jerk command, when the robot is opening its gripper to put a

piece of sugar into a cup. The sudden changes in the robot’s configuration are

detected as a discrepancy between a planned robot’s joint configuration and the

feedback from the motors. In each case, the robot readapts the position of both

arms to make sure that the sugar will not fall outside the cup.

Fig. 3.11 presents results of the reproduction of Tray task. We change the posi-

tion of the tray, while the robot is trying to grasp it. This perturbation forces the

robot to manipulate on the boundaries of its workspace. The robot successfully

adapts its motion and ensures that the coordination constraints are satisfied. The

robot carries the tray without dropping it.

• Enforcing Temporal Constraints

Fig. 3.12 illustrates the preservation of the synchronization feature of the move-

ment of the two arms of the robot during the Cube task. At time t1 while the

robot was moving the arms towards the cube, we changed the position of the

cube. Both arms adapted their trajectory simultaneously to handle this pertur-

bation and reached the target simultaneously. In the same figure we show the

velocity profiles of both arms in both Cartesian and joint-angle spaces. We see
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B

D

C

Figure 3.9: The cube task. (a) A robot tries to grasp a cube, but the cube is suddenly shifted from

the position A to the position B, the direction of the perturbation is specified by a grey arrow.

The robot adapts the trajectories of the both arms, so as to grasp the cube from the position B

(the moment of grasping is highlighted with red cross). (b) Continuation of the task: while the

robot is carrying the cube, the position of a pedestal is changed from C to D, and the robot brings

the cube to the new location. Note that from grasping the cube (red cross) until releasing it (red

circle), the robot preserves the learned relative position between the hands. (c) The positions A

and B of the cube and C and D of the pedestal are superimposed with the workspace accessible

to the robot in this task (light grey). Note that perturbations force the robot to operate almost

on the boundary of its accessible workspace, however, the robot’s Motor System successfully

resolves the learned constraints and generates motion trajectories. (d) The photos of the robot at

the different stages of the task completion. The yellow lines on photos are the trajectories of the

robot.
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C

D

Figure 3.10: The tea task. (a) A robot is bringing the two arms together so as to put a piece of

sugar into a cup. During the motion, its right arm is pushed (as a result, the cup moved from the

position A to B) so that, to accomplish the task, the robot has to quickly adapt both arms. The

direction of the perturbation is specified by a grey arrow. (b) When the robot’s is in the stable

posture (the relative position between the arms is preserved) and is about to put a sugar in a cup,

the right arm is pushes again (the cup moves from C to D). This time, however, the Motor system
preserves the posture and adapts the left arm accordingly. (c) The positions A, B, C, and D of the

cup are superimposed with the workspace accessible to the robot in this task (light grey). Note

that perturbations force the robot to operate almost on the boundary of its accessible workspace,

however, the robot’s Motor System successfully resolves the learned constraints and generates

motion trajectories. (d) The photos of the robot at the different stages of the task completion.

The yellow lines on photos are the trajectories of the robot.
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that the motor system produce smooth and bell-shaped velocity profiles similar

to these of humans.

A

B

C

Figure 3.11: The tray task. (a) After grasping a tray (red cross), a robot is suddenly pushed

(from the position A to B). The direction of the perturbation is specified by a grey arrow. This

perturbation forces the robot to manipulate on the boundaries of its workspace. The robot suc-

cessfully adapts its motion and ensures that the coordination constraints are satisfied. The robot

carries the tray without dropping it and release it in the position C (red circle). (c) The posi-

tions A, B, and C of the tray are superimposed with the workspace accessible to the robot in this

task (light grey). Note that perturbations force the robot to operate almost on the boundary of

its accessible workspace, however, the robot’s Motor System successfully resolves the learned

constraints and generates motion trajectories. (d) The photos of the robot at the different stages

of the task completion. The yellow lines on photos are the trajectories of the robot.

3.2.4 DISCUSSION

The method presented in this section aims to address some features of bimanual

coordination so that to guarantee robot’s performance in manipulation tasks. We inves-

tigate two types of constraints: spatial constraints (e.g., the two arms have to maintain

a specific spatial relation between each other) and temporal constraints (the two arms

have to synchronize). The satisfactory performance is deemed achieved if the robot

manages to transit through a set of stable postures (bimanual constraints), while ma-

nipulating objects. Note that, while forced to adhere to coordination constraints, the

robot is free to depart from the trajectories shown during demonstration.
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Figure 3.12: Task reproduction under temporal coordination constraints. The synchronization

in the Cube task: at t1 = 150, after the onset of the motion, the position of the cube is changed

(the time of the perturbation is highlighted by a dashed red line). (a) Simultaneously, the robot’s

Motor system adapts the trajectories of the two arms to reach the cube in the new location. The

velocity profiles under perturbations are smooth and close to bell-shaped, both in Cartesian (b)

and joint space (c). The time instances t2..t6 refer to the boundaries of stable postures. (d)

A schema of the HOAP-3 arm, the joints (SFE, SAA, SHR, EB) correspond to the velocities

presented in figure (c).
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During task reproduction, we generate several perturbations so as to test the robust-

ness of the proposed method. We, indeed, manage to show that within the accessible

parts of the workspace, the robot handles the perturbations well. The method is also

capable of reproducing task motions in an unobserved context. In the Cube experi-

ment, we perturb the cube’s position while the robot is reaching for it; in the second

part of the motion, the pedestal is also shifted. The experiments confirm that the robot

can cope with this novel situation. However, we should emphasize that, in the current

framework, the robot does not learn to associate positions of manipulated objects with

extracted postures; this mapping needs to be done manually.

Yet, we should also mention limitations that might affect the robot’s performance.

The trajectories generated by the motor system built upon the VITE model are quasi-

straight. Therefore, if a task requires a robot to reproduce a significantly curved motion

(e.g., to put an object into a box without bumping into it), the performance might be

unsatisfactory. We will address this limitation in the next section.

The magnitude of a perturbation should be sufficiently small and the perturbation

should be fast so that the robot can still reach the target during the allocated motion

time. Failing this, the system can potentially react with jerky movements. Therefore,

it would be desirable to develop a mechanism that (r)estimates a physically plausible

motion duration so as to ensure that both arms can satisfy imposed time constraints.

The presented algorithm concentrates on kinematic aspects of bimanual manipula-

tion tasks; the manipulated objects are designated as light and their dynamical proper-

ties are not considered. If a robot is supposed to manipulate heavy objects, then their

dynamical properties must be taken into consideration. In this case, the robot would

need to learn constraints on the interaction force between the two end-effectors, in

addition to spatial and temporal kinematic constraints.

3.2.5 CONCLUSIONS

In this section, we presented a novel approach to learning discrete bimanual coordina-

tion skills in a humanoid robot. We explained that the approach consisted of two com-

ponents: (1) a learning system accountable for automatic extraction of spatio-temporal

coordination constraints across the two end-effectors; and (2) a motor system built of

coupled dynamical systems and capable of handling online perturbations occurred dur-

ing coordinated motions.

The system was validated in three experiments where a humanoid robot has been

taught discrete bimanual coordinated tasks. We demonstrated that the system success-

fully reproduced the tasks under various external perturbations.
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3.3 LEARNING NONLINEAR DYNAMICS OF MOTION

IN ROBOTIC MANIPULATORS

The method presented in this section has been published in:

Gribovskaya E., Khansari M., and Billard, A. G.. Learning Nonlinear Mul-

tivariate Dynamics of Motion in Robotic Manipulators. International Journal of
Robotics Research, Vol. 30(1), pp. 80-117. 2011.

3.3.1 INTRODUCTION

This work was done in collaboration with Mohammad Khansari, who was also a PhD

student at the LASA laboratory when this thesis was conducted. Mr. Khansari’s input

pertains to the following a) derivation of the local stability at the origin (eq. 3.28-3.29);

b) experiments with the Katana robot.

I
N the previous section, we demonstrated how a robot could learn tasks that required

coordination between the two arms. The considered coordination constraints were

discrete, and motion trajectories were generated by a pre-defined linear dynamical sys-

tem. In this section, we suggest a more generic approach to motion representation that

does not reduce the robot’s motion repertoire to straight-line movements.

A core issue within robot control is to ensure that, if perturbed, the robot’s motion

can be rapidly recomputed, so that the robot ultimately accomplishes a task at hand.

Perturbations may force the robot either to depart from its original trajectory or to be

delayed. In the rest of this section, we will refer to the former type of perturbations as

spatial perturbations and to the latter as temporal perturbations.

We focus on a low-level continuous representation of coordinated motions (Schaal

et al., 2003; Ude et al., 2004). We investigate the problem of building encodings that

can be easily modulated to enable re-use of a skill in novel contexts. An overview of re-

quirements for an effective movement encoding are summarized in Ijspeert, Nakanishi,

& Schaal (2001). Most relevant to the presented method are the notions of reusability

of the representation (the encoding should allow a robot to reproduce a task in parts of

the workspace where no demonstrations are provided), and the notion of robustness to

perturbations (an ability of an encoding to ensure that a motion may be quickly adapted

to perturbation and changes in a dynamic environment).

The idea of having task representations, which differ from traditional time-dependent

trajectories has been challenging researchers for decades. For instance, in (P. Li &

Horowitz, 2001a,b), the authors propose the concept of passive velocity field control

(PVFC). One of the features of PVFC is that a desired behavior of a system under con-

trol is expressed as a dynamical system (according to the definition provided in (P. Li

& Horowitz, 2001a), a velocity field is a function that maps system configurations into
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desired velocities). The motivation of the PVFC’s authors is similar to ours: they ex-

plicitly emphasize that for some tasks, motion coordination and robustness should take

precedence over tracking a timed trajectory. However, the major objectives of their

work are distinct from ours: they aim to develop a control framework that would allow

a robot to be passive (i.e., not injecting energy into an environment) while following a

desired velocity field. When discussing the design of such fields, the authors state that

this process is nontrivial and highly task dependent; they illustrate their algorithm with

experiments where desired velocity fields are designed analytically. The method, which

we propose in this section, aims to deduce such velocity fields directly from motion

data. However, due to hardware constraints (the considered robotic platforms accept

positional input) and our particular research question, we rely on a simpler method, a

PD controller, to reproduce learned dynamical systems.

Recent works on feedback planning (Brock et al., 2008; Tedrake et al., 2010) also

emphasize the need to develop an encoding of robot motion that embeds the ability

to adapt or even re-generate trajectories on the fly. Though the planners are able to

generate trajectories taking into account different external and internal constraints, the

planning might require significant computation time. This is an impediment for robotic

applications that need an immediate response in the case of perturbations.

The approach of learning motions as dynamical systems that we follow here, was

suggested as an alternative to classical planning algorithms (Schaal et al., 2007). Au-

tonomous dynamical systems encode trajectories through a time-independent function

that defines the temporal evolution of a motion. The advantages of the dynamical sys-

tem motion representation as opposed to providing a robot with a single pre-planned

trajectory are three-fold. (1) The use of this representation exempts one from re-

indexing trajectories while recovering from perturbation or during adaptation to new

initial conditions (robustness to temporal perturbations). (2) Motion planning with dy-

namical systems allows for on-line adaptation to spatial perturbations, and therefore

does not require additional algorithms to replan a complete trajectory or to re-scale

an existing one. (3) The dynamical system motion representation offers a means to

generalize motions in areas of the workspace not covered during demonstration.

One of the main limitations on using dynamical systems for motion encoding is

possible instability of a learned dynamics. The primary concern is, therefore, to en-

sure stability of the estimate. Once the stability issue is resolved, dynamical systems

are able to handle more complex constraints, like the presence of obstacles or robot’s

physical limitations (e.g. joint limits (Hersch & Billard, 2008)). Existing literature that

derives a stable dynamical system does so by imposing an external stabilizer (e.g., a

linear stabilizer in Dynamical Movements Primitives (DMP) (Ijspeert, Nakanishi, &

Schaal, 2001; Pastor et al., 2009)). A disadvantage of this approach is that the external

stabilizer distorts a temporal pattern of a dynamics (see experiments in Section 3.3.4.7).

Our work concentrates on building a stable dynamical motion representation that does

not rely on an external stabilizer and, therefore, preserves a spatio-temporal pattern of

a demonstrated motion. However, as we learn a non-linear dynamical function, we can

guarantee only local stability, while DMP guarantees a global stability. Yet, we argue
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that non-linear motions are usually driven by local coordination constraints, e.g., re-

lated to a shape of a manipulated object. Therefore, reproducing a nonlinear motion far

from an originally observed context is not necessarily helpful. Furthermore, statistical

learning is local by nature; therefore, one cannot ensure that inference far from the

demonstrations is relevant in the statistical sense.

We ground our work on an assumption that human motions contain regularities that

can be represented by a dynamical system. As there is no unified approach to represent-

ing arbitrary via-point motions, we develop a method to learn them from motion data.

We do so by discovering non-linear dynamical laws that govern kinematic invariants

contained in the data.

To model the natural variability of human motions, dynamical models often include

a signal-dependent noise that is represented by a multiplicative Gaussian noise (Harris

& Wolpert, 1998). The signal-dependent noise, partly caused by muscle fatigue and

imprecision in sensor feedback, is considered as an inherent limitation of human motor

control (Shadmehr et al., 2010). Therefore, in our work, we assume that learning of

the deterministic part that accounts for motion dynamics should be sufficient for the

design of robot control.

In this section, we consider the problem of estimating a time-independent model

of motion through a set of first order non-linear multivariate dynamical systems. We

exploit the strength of parametric statistical techniques to learn correlations across the

variables of the system and show that the proposed method allows one to discover a

coarse representation (dependent on a limited number of free parameters) of the dy-

namics. We demonstrate advantages of our approach as an alternative to the time-

dependent methods, by ensuring robustness to external spatio-temporal perturbations

through on-line adaptation of the motion. Here, under robustness to perturbations we

particularly refer to the ability of the system to react to changes in the environment that

are encapsulated by motion parameters, such as a desired target position and motion

duration. Therefore, the system is able to cope with uncertainties in the position of a

manipulated object, duration of motion, and perturbations associated with robot’s body

limitation (e.g., joint velocity and torque limits).

The term perturbation has been treated rather broadly in the current robotics re-

search; however, to the best of our knowledge, no established classification of pertur-

bations can be found in the literature. We therefore suggest to classify perturbations

according to the following criteria. (1) Spatial vs. temporal; perturbations that ei-

ther affect the position of the robot in space or modify the planned motion duration.

These perturbations are often coupled, e.g. as the robot is pushed farther from the

target, both spatial and temporal perturbations occur. (2) External vs. internal (or

self-generated); whether a perturbation has been applied externally (e.g., a robot has

been pushed away while tracking a trajectory) or generated internally (e.g., if a motion

planner autonomously generates a spatial perturbation to avoid an obstacle). (3) In-

stantaneous vs. continuous; whether the perturbation has an impulse character (e.g. in

the case of a sudden push or a jerk) or the perturbation is applied continuously and thus

systematically modifies the robot’s motion (e.g. if a human applies a continuous force
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to slow down the robot’s motion). The suggested classification is not exhaustive; how-

ever, it may prove useful for a qualitative comparison of the existing motion planning

methods.

According to this classification, our method handles spatial and temporal perturba-

tions which are externally-generated6; and applied instantaneously or continuously.

This section is divided as follows. Section 3.3.2.1 starts with a formalization of the

problem at hand. This is followed by a technical description of the modeling approach:

Section 3.3.2.2 introduces our learning approach for estimating a motion dynamics;

and Section 3.3.2.3 presents an iterative algorithm to improve stability of the learned

dynamics. Finally, in Section 3.3.3, we validate our method by estimating the motion

dynamics from trajectories generated with given dynamical laws; in this way we may

systematically verify approximation qualities of the method. We, further, show how the

same framework can be used to learn the motion dynamics of manipulation tasks with

different robotic platforms. To emphasize advantages of our approach as compared to

the state-of-the-art methods in the field, we provide an experimental comparison with

Dynamic Movements Primitives (Ijspeert, Nakanishi, & Schaal, 2001; Pastor et al.,

2009). The legend used in graphs throughout the paper is summarized in Fig. 3.13.

The glossary is in Table 3.2.
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Figure 3.13: The legend used in figures in Section 3.2.

6Limited adaptation to internally-generated temporal perturbations is addressed through adaption to joint

torque limits
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3.3.2 METHOD

In Sections 2.2.1 and 3.3, we review methods for extracting a dynamical system from

observed data that are proposed within the fields of system identification and robot

learning. Many of these methods concentrate on the direct modeling of the dynamical

function. We take the other approach and suggest estimating a joint distribution of all

observed data. The dynamical function is then computed through from this distribution.

In this section, we formalize the task of learning dynamical motion representations

(Section 3.3.2.1) and explain the proposed statistical approach (Section 3.3.2.2). We

also discuss the problem of ensuring the stability of a learned system (Section 2.2.2).

3.3.2.1 PROBLEM STATEMENT

Let us assume that a state7 of a robot during a motion can be unambiguously de-

scribed by a variable ξ and that the workspace of a robot forms a sub-space X in R
N .

Consider further that the state ξ is governed by an Autonomous Dynamical System

〈X, f, T〉 (as per Definition 1-2, Table 3.2). Then, for all starting locations ξ0 ∈ X ,

the temporal evolution of a robot’s motion is uniquely determined by a state transition

map (Definition 2, Table 3.2) f(t, t0, ξ0) = ξ(t), ∀ξ0, ξ ∈ X .

Let us further assume that the state transition map f is a non-linear continuous

and continuously differentiable function and that the system is driven by a first order

differential equation8 with a single equilibrium point (attractor) ξ̄, such that:

∀t ∈ T = [t0;∞]; ξ, ξ̇ ∈ R
N (3.20)

ξ̇(t) = f(ξ(t))

˙̄ξ = f(ξ̄) = 0.

Let a set D of M N-dimensional demonstrated datapoints {ξi, ξ̇i}Mi=1 be instances

of the above motion model corrupted by a multiplicative zero-mean Gaussian noise.

The problem then is to reconstruct a noise-free estimate f̂ of f from the set of demon-

strations D. To this end, we will approximate the function in a subregion9 C ⊂ Δ ⊂ X ,

so that:

f̂ : C → C (3.21)

f̂(ξ(t)) � f(ξ(t)), ∀ξ ∈ C.

7The state of a dynamical system represents the minimum amount of information required to describe the

effect of past history on the future development of this system (Hinrichsen & Pritchard, 2000).
8Considering solely first order dynamical systems is not restrictive to learning only first order relation-

ships between trajectory and velocity, as one can always convert dynamics of an arbitrary order into a canon-

ical system of first order ODEs.
9Estimating the dynamics in the whole state-space X would be practically infeasible due to the excessive

number of demonstrations that such estimation would require.
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Table 3.2: Glossary

Definition 1: The state-space X ⊂ R
N includes all possible instantiations of ξ, such

that ξ(t) ∈ X at each time step t ∈ T = R
+ = [0;∞].

Definition 2: A dynamical system is the tuple 〈X, f, T〉, with f : t → f t a continuous

map of X onto itself.

Definition 3: A dynamical system is differentiable if ∃f : T ×X → X such that for

all t0 ∈ T, ξ0 ∈ X the problem:

ξ̇ = f(t, ξ(t)), t ≥ t0, t ∈ T

ξ(t0) = ξ0

has a unique solution.

A dynamical system governed by a time-independent transition map with f(t, ξ(t)) �
f(ξ(t)) is an Autonomous Dynamical System.

Definition 4. An equilibrium state ξ̄ ∈ X of a dynamical system is such that

f(t, t0, ξ̄) = 0.

Definition 5. An equilibrium state ξ̄ ∈ X is stable if ∃ε > 0 and δ = δ(ε) such that

∀ξ0 ∈ B(ξ̄, δ) ⇒ f(ξ0) ∈ B(ξ̄, ε),

B(ξ̄, δ) ⊂ X is a hypersphere centered at ξ̄ with radius δ. ξ̄ is an attractor of f .

Definition 5. An attractive state is an equilibrium state ξ̄ of a local flow, if there exists

ρ > 0 such that:

∀ξ0 ∈ B(ξ̄, ρ) ⇒ lim
t→∞ f(ξ0) = 0.

B(ξ̄, δ) ⊂ X is a hypersphere centered at ξ̄ with radius δ. ξ̄ is an attractor of f .

Definition 6. An equilibrium point ξ̄ is asymptotically stable if it is both stable and

attractive.

Definition 7. A set Δ ⊂ X is a Region of Attraction (or Basin of Attraction) of an

equilibrium ξ̄ if:

Δ(ξ̄) = {ξ0 ∈ X; lim
t→∞ f(ξ0) = ξ̄}

See Fig. 3.41-II for illustration.

Definition 8. A dynamical system is globally asymptotically stable at the equilibrium

ξ̄ if ξ̄ is an asymptotically stable attractor and Δ ≡ R
N .
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C is referred further to as the region of applicability of a learned dynamics.

Without loss of generality, we can transfer the attractor to the origin10, so that

ξ̄ = 0 ∈ C ⊂ X is now the equilibrium point of f and by extension of its estimate

f̂ , i.e. f̂(0) = f(0) = 0. If C is contained within the region of attraction Δ of ξ̄ (see

Definition 7, Table 3.2), then the estimate f̂ is asymptotically stable at ξ̄ in C and any

motion initiated from ξ(t0) ∈ C will asymptotically converge to the target ξ̄.

3.3.2.2 LEARNING A DYNAMICAL MOTION REPRESENTATION WITH GAUSSIAN

MIXTURE REGRESSION

We learn a dynamical motion representation in two step. Firstly, we estimate a joint

distribution a training set D. The dynamical function is then constructed from this

distribution at the second step.

One way to obtain the joint distribution p(ξ, ξ̇) is to encode the training data D
with Gaussian Mixture Models (GMMs). GMMs define a joint distribution function

p(ξi, ξ̇i) as a mixture of a finite set of K Gaussian distributions G1..GK (with μk,

Σk, and πk being respectively the mean value, the covariance matrix, and the prior

probability of a kth Gaussian Gk):

p(ξi, ξ̇i) =
1

K

K∑
k=1

πkG
k(ξi, ξ̇i;μk,Σk) (3.24)

and

μk = [μk
ξ ; μk

ξ̇
] and Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(3.25)

Where each Gaussian probability distribution Gk is given by:

Gk(ξit, ξ̇
i
t;μ

k,Σk) = (3.26)

1√
(2π)2N |Σk|e

− 1
2 (([ξ

i
t;ξ̇

i
t]−μk)T (Σk)−1([ξi

t;ξ̇
i
t]−μk)).

The parameters μk and Σk, k = 1..K are initialized using the K-means clustering

algorithm starting from a uniform mesh and trained iteratively through Expectation-

Maximization (EM) (Dempster et al., 1977); we will discuss training in more details in

Section 3.3.2.4.

Once we obtain the joint distribution p(ξ, ξ̇), we can use it to infer the derivative

ξ̇ for each observed state ξ. According to the Bayes theorem, this inference is done

through taking the expectation of the conditional distribution p(ξ̇|ξ):

p(ξ̇|ξ) ∼ p(ξ̇, ξ)

p(ξ)
, ξ̇ = E[p(ξ̇|ξ)] (3.27)

10To simplify the notation, we keep the same notation for the domains C and X after translation at the

origin.
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Table 3.3: Gaussian Mixture Regression

Let us assume that, we have pairs of matched input ξI and output ξO datapoints. The

joint probability of these data can be modeled using Gaussian Mixtures Models. A

probability that a datapoint η = [ξO; ξI] belongs to a particular GMM is defined by

p(η) =
K∑

k=1

πk N (η;μk,Σk) =

=
K∑

k=1

πk
1√

(2π)D|Σk|
e−

1
2 ((η−μk)

TΣ−1
k (η−μk))

where πk are prior probabilities and N (μk,Σk) are Gaussian distributions defined by

means μk and covariance matrices Σk:

μk =

[
μI
k

μO
k

]
, Σk =

[
ΣI

k ΣIO
k

ΣOI
k ΣO

k

]
.

For a given input ξI and a given mixture component k. Gaussian Mixture Regression

computes the distribution of ξO as:

p(ξO|ξI, k) =

K∑
k=1

hkN (η̂k, Σ̂k),where

η̂k = μO
k +ΣOI

k (ΣI
k)

−1(ξI − μI
k),

Σ̂k = ΣO
k − ΣOI

k (ΣI
k)

−1ΣIO
k .

(3.22)

where hk = p(k|ξI) is the probability of the component k to be responsible for the

observed input ξI

hk =
πkp(ξ

I|k)∑K
i=1 πip(ξI|i)

=
πk N (ξI;μI

k,Σ
I
k)∑K

i=1 πi N (ξI;μI
i ,Σ

I
i )
. (3.23)

Alternatively, by using the linear transformation property of Gaussian distributions,

the conditional expectation of ξO given ξI can be approximately defined by a single

normal distribution with the parameters:

p(ξO|ξI, k) ∼ N (η̂, Σ̂),where

μ̂ =
∑K

k=1 hkμ̂k

Σ̂ =
∑K

k=1 h2
k Σ̂k.
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Comparing Eq.3.27 and Eq.3.20, we observe that the following holds:

ξ̇ = f̂(ξ) = E[p(ξ̇|ξ)]. (3.28)

The process of estimating the expectation of the conditional distribution in Eq.3.28

is called Gaussian Mixture Regression (GMR); see Table 3.3 for details. Taking the

expectation of the conditional distribution in Eq. 3.22, we can write down the estimate

f̂ as follows:

˙̂
ξ = f̂(ξ) =

K∑
k=1

hk(ξ)(Akξ + Bk), (3.29)

where Ak = Σk
ξ̇ξ
(Σk

ξ)
−1, Bk = μk

ξ̇
− Akμ

k
ξ , hk(ξ) =

p(ξ;μk
ξ ,Σ

k
ξ)∑K

k=1 p(ξ;μk
ξ ,Σ

k
ξ)

, hk(ξ) > 0,

and
∑K

k=1 hk(ξ) = 1.

The representation in Eq.3.29 defines the approximation f̂ is a mixture on linear

dynamics weighted with coefficients hk(ξ). Note that these coefficients are nonlinear

functions of the state ξ, therefore, the function f̂ is also nonlinear. Its stability is

examined in Section 2.2.2.

A geometric illustration of the GMR inference in the case of single Gaussian is

presented in Fig. 3.14 and the GMR procedure is summarized in Table 3.3. Fig. 3.15

further illustrates the encoding process from GMM to GMR for a non-linear dynamical

system with a single attractor.

We emphasize that, in our framework, the goal of a movement is mapped into the

attractor of a dynamical system. So far we have assumed that the attractor ξ̄ of a

system in Eq. 3.29 coincides with the origin. To explain the behavior of the system

under perturbations, we need to take into account an offset ξoffset. The offest defines

the location of an object with respect to a frame of reference associated with its initial

location (i.e., without perturbations ξoffset = 0). Therefore, in a general case, the system

in Eq. 3.29 takes the form:

˙̂
ξ = f̂(ξ − ξoffset). (3.30)

At the onset of a motion ξoffset is set to zero. Each time a manipulated object is per-

turbed, the value ξoffset is calculated as the difference between the initial and the new

location of the goal. Essentially, a perturbation affects the calculation of a velocity

signal
˙̂
ξ (and hence might lead to a nonsmooth velocity profile); the smoothness of the

motion trajectory ξ̂ however is preserved. A recent work of ours also explores tempo-

ral scaling of a learned dynamics (Kim et al., 2010), so as to provide a robot with the

ability to generate faster or slower movements depending on task requirements.

Several methods for identification of unknown dynamical functions, which we dis-

cuss in Sections 2.2.1 and 3.3, directly estimate a dependency between the state and

its derivatives, for instance, through the least-square optimization. From this point of

view, learning the joint distribution p(ξ̇, ξ) might appear as a too complicated solution.
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One however should note that such a formulation assumes uncertainty in the observed

states ξ and, therefore, helps to mitigate the noise in the training values ξ (which effect

is similar to this of error-in-variables; see Section 2.2.1). Specifically, the estimate in

Eq.3.29 takes into account the covariance (noise) of the state Σk
ξ .

We further discuss the approximation properties of the estimator in Eq. 3.29. One

can interpret Eq. 3.29 either as a nonlinear mixture of linear dynamical systems or as

a linear mixture of the scalar basis functions hk(ξ) weighted with linear coefficients

Akξ + Bk. Taking the latter view, it is possible to discover some similarities with the

nonparametric identification methods discussed in Section 2.2.1.2, particularly, with

RBFs networks. Indeed, hk(ξ) are normalized Gaussian functions. However, there are

a number of important differences between our method and RBFs networks. One of

them is that the coefficients Akξ + Bk accept the multivariate input ξ. Therefore, the

approximation accounts for correlation between the dimensions of the state ξ. Addi-

tionally, our method estimates the parameters in Eq. 3.29 by optimizing the expected

log-likelihood. This should lead, at least theoretically, to an optimal solution (in the

maximum likelihood sense).

However, the quality of approximation depends on whether the number of com-

ponents K in the mixture is sufficient to represent an actual underlying function f .

We would prefer to have as few components as possible so as to tune less parameters.

Hence, our algorithm starts with a small number of Gaussians and gradually increases

them until a stable and accurate estimate is found. The details are further discussed in

Section 3.3.2.4.

The scope of our work does not encompass a formal investigation of what frequency

of f the method can accommodate. Nevertheless, after examining the collected motion

data, we can conclude that they do not display high-frequency changes. Therefore,

we assume that the frequency of data sampling and filtering is much higher than the

frequency of the underlying dynamical function. Therefore, the demonstrated data are

representative of the dynamics. Given the class of considered applications, we perceive

this assumption as reasonable. Yet, we do not claim that our method is uniformly

applicable for learning any type of dynamics.

Note that here we learn multivariate functions, and hence the complexity of learning

expands with the number of considered task dimensions. As this number grows, one

needs a large amount of training data to estimate a motion representation accurately.

This problem affects many statistical learning approaches, we discuss it in more details

in Section 3.5.1.

EM estimation of GMMs requires inversion of the covariance matrices Σk, which

is not possible when these matrices are singular. These singularities might be caused,

for instance, by severe data over-fitting, e.g. when one of the Gaussian components

collapses into a single datapoint and the log-likelihood function of EM goes to infin-

ity. Whether or not the singularities occur during training depends on the quality of

training data and on the number of mixture components. In the experiments reported

in the paper, this problem does not arise due to 1) the nature of trajectory data, which

are sampled at a high frequency (therefore, EM has a sufficient amount of data to esti-
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mate the parameters); 2) a coarse encoding with a low number of mixture components.

Alternatively, one may choose a variational treatment of GMMs (Attias, 1999) that as-

sumes prior distributions over unknown parameters. Instead of estimating crisp values

of covariances, as this is implemented in the standard formulation of GMMs, the vari-

ational approach learns a statistical distribution that simultaneously defines a family

of covariances. After training a single covariance can be chosen as the expectation of

the learned distribution. The variation learning therefore does not run into numerical

instabilities.

Figure 3.14: The geometric interpretation of inference in GMR (see also Table 3.3). GMR

approximates a dynamical system through a non-linear weighted sum of local linear models.

Each regression matrix Ak = ΣOI
k (ΣI

k)
−1 defines a local linear dynamics. Here, we illustrate

inference with a single Gaussian and a pair of input ξI and output ξO . In the planar case, the

regression defines a line with a slope given by the matrix Ak (ξO = Akξ
I ). For each input

ξI , GMR defines a conditional distribution p(ξO|ξI), with the mean ξO and the conditional

covariance Σ̂. The conditional covariance Σ̂ defines an error envelope around the regression

output ξO (the expected error on the output predicted by the regression).

3.3.2.3 STABILITY ANALYSIS

Reviewing methods for stability analysis in Section 2.2, we observe that though sev-

eral theories have been developed (e.g., Lyapunov, passivity, and contraction theories),

existing practical solutions are often suitable for a particular class of nonlinearities.

In particular, for examining the stability in the Lyapunov sense, one needs to design

a Lyapunov function, and for examining the stability as defined in contraction theory,

one needs a contraction function. Manual design of these function is tedious and often

unfeasible. Efficient numerical solutions, such as Sum of Square Programming (SoS)

(see Section 2.2), are applicable to polynomial dynamical systems.

In our case, learned dynamical functions are not polynomial. Therefore, we do not

use SoS methodsand, instead, conduct stability analysis in two steps as follows: (1) a
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Figure 3.15: I. Illustration of a GMM/GMR encoding of an arbitrary dynamics. Top left: Two-

dimensional projection of the data with superimposed the Gaussian Mixture envelope. Top right:

All trajectories regenerated using Gaussian mixture regression when starting from 20 different

locations in space converge correctly to the the origin, the attractor of the system. Bottom left
and right: in blue (light grey in a black-and-white version), the region of applicability C that

embeds all demonstrated trajectories. To empirically determine if C is a region of attraction, C
is sampled equally and one measures if all trajectories originating from each of sampled point

converges correctly to the target.
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system is linearized in a neighborhood of an attractor and the asymptotic stability of

the attractor; (2) the region of attraction of a particular attractor is estimated.

In the general case of multivariate non-linear systems, theoretical estimation of the

region of attraction is still an open problem. In practice, to evaluate whether a region of

interest is contained within a region of attraction, one relies on numerical procedures.

We suggest an algorithm for estimating a region of attraction in Section 3.3.2.4.

To verify that a learned dynamical function f̂(ξ) is stable around an attractor, we

start from the observation that GMR approximates f̂(ξ) as a non-linear weighted sum

of linear dynamical systems; see Eq. 3.29. Stability of the system f̂(ξ) depends on the

learned parameters (the matrices Ak, Bk and mixing coefficients hk). We demonstrate

how to modify the GMMs procedure so as to ensure that f̂(ξ) is locally stable around

the attractor (and consequently around the target).

Local stability at the attractor

Let us assume that, in the neighborhood of the attractor, the system f̂(ξ) is gov-

erned solely by the last Kth Gaussian 11. In other words, let us assume that there exists

a neighborhood of the attractor, where for all points ξ the mixing coefficients hk(ξ) ex-

cept for the Kth one are zeros: ∃B(ε)such that ∀ξ ∈ B(ε) hk(ξ) � 0, k = 1..K − 1,

where B(ε) is a hypersphere of radius ε. In this region, the system governed by Eq.3.29

reduces to:

ξ̇ = Aξ + B (3.31)

with A = ΣK,ξ̇ξΣ
−1
K,ξ and B = μK,ξ̇ − AμK,ξ.

The system driven by Eq. 3.31 is asymptotically stable if the eigenvalues of the

symmetric matrix Ã = (A + AT )/2 are all strictly negative. For a m×m-dimensional

matrix to be negative definite, all its i-th order leading principal minors should be

negative if i is odd and positive if i is even. Stability, therefore, is guaranteed when the

following set of constraints is satisfied:

‖Ã[1:i,1:i]‖(−1)i < 0 ∀i = 1, ...,m that is satisfied if (3.32)

(1) ãii < 0 and (2) ãij � ãii ∀ i, j = 1, ...,m and i �= j,

where Ã = {ãij}Ni,j=1.

Fig. 3.16 provides a geometrical illustration of how the stability conditions in

Eq.3.32 affect the shape of the Kth Gaussian distribution in the mixture. When pro-

jected on the {ξ, ξ̇} plane, a Gaussian distribution corresponds to an ellipse, whose

principal axis forms a negative slope. This results in a flow of motion toward the attrac-

tor along all dimensions. For the EM training to result in such an elongated Gaussian,

training data must homogeneously cover the space around the target. This means that

one should demonstrate the robot how to approach the target by starting from locations

all around the target. In practice, as the training set is finite and gives only a partial

11In practice, as we seek to avoid the over-fitting, the Gaussians are set apart sufficiently, therefore at the

origin the influence of all other Gaussians except for the last one becomes zero (up to numerical precision).

91



coverage of the state space, an estimate f̂(ξ) will be imprecise: it will exhibit both an

undesired rotation of the principal axis and a shift of the attractor’s location, see Fig.

3.16. Additional measures, thus, should be taken to guarantee the asymptotic conver-

gence to the target. In the next section, we describe the practical implementation of

such measures.

3.3.2.4 A PRACTICAL APPROACH TO ENSURE AND ANALYZE STABILITY

1. Ensure local stability empirically.

To compensate for the lack of data around the origin, we suggest to generate an

additional synthetic data set by rotating a subset of training data selected within a

small neighborhood of the attractor 12. We also set the center of the last Gaussian

of the GMM at the attractor (μK,ξ = μK,ξ̇ = 0), and do not update this center

during training. This procedure is illustrated in Fig. 3.16.
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Figure 3.16: Accurate positioning of the Gaussian distribution at the attractor affects stability

of the learned ˆf(ξ). Top: the last Gaussian is positioned at the origin through the addition of

synthetic datapoints. This modification guarantees asymptotic stability in the neighborhood of

the attractor: the trajectories converge to the origin (the very right graph). Bottom: though the

observed demonstrations converge to the origin (the very left graph), the EM training does not

position the last Gaussian at the attractor automatically. Therefore, a motion generated by the

learned dynamical representation ˆf(ξ) converges to the spurious attractor (the very right graph).

A function ˆf(ξ) generated through this procedure is ensured to be asymptotically

stable within a neighborhood around the origin. Next, we describe a procedure

to empirically estimate the boundaries of the region of attraction C.

2. Empirical estimation of the region of attraction.

As mentioned in Section 3.3.2.1, estimating dynamics in the whole state-space X

is impractical. Instead, we will estimate stability locally within a subset C ⊂ X .

12If a dimensionality of a state ξ makes a design of a rotation function prohibitively complex, one can

sample additional data from the last Gaussian distribution and include these data into the training set. Indeed,

sampling in this case is equivalent to rotating data around the origin
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C includes training data points and lies inside the robot’s workspace. Initializa-

tion of C is data-driven: size of the initial C along each dimension is defined by

the amplitude of the training dataset along this dimension.

After training, the initial guess regarding the boundaries of C needs to be ad-

justed so as to ensure that C is the region of attraction and that it does not include

any other attractors. We follow a numerical procedure in which we integrate tra-

jectories forward starting from a uniform mesh defined on the boundaries, and

verify that all the trajectories converge towards the attractor.

To do this, we construct a mesh M covering boundaries of C: M(τ1..τN ) =

{(ξ1i1 ..ξNiN ) = (i1τ1..iNτN ), i1 = 1..n1, ..., iN = 1..nN}, where τ1 = c1/n1..τN =

cN/nN , c1 .. cN – size of each of dimensions of C; n1.. nN – size of the mesh

along each of dimensions in R
N (see Fig. 3.15-II). We integrate trajectories start-
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Figure 3.17: Improvement in the stability of approximation with the increase in the number of

Gaussian components

ing from each node (ξ1i1 ..ξ
N
iN
) on the mesh M and verify that the velocity is zero

only at the attractor, therefore it is ensured that the region of attraction C con-

tains a single attractor. If this condition is satisfied all trajectories starting inside

C will not leave the boundaries, due to the properties of differential equations.

To improve accuracy and extend the region of attraction, we increment the num-

ber of Gaussians K and re-estimate the system using EM; see Fig. 3.17. As

instabilities often result in the motions that exit the desired trajectory (e.g. if

there are sharp turns in the trajectory that have been poorly approximated by the

mixture), increasing the granularity of the encoding ensures that the system will

be better guided along the various non-linearities of the trajectory.

Table 3.4 summarizes the steps of the complete procedure by which we iter-

atively test and re-estimate the dynamical function ˆf(ξ) so as to improve and

ensure its local stability within the domain C.

3.3.3 EXPERIMENTAL RESULTS
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Table 3.4: Model Training

1 Collect a dataset of demonstrations and initialize C.

2 Add synthetic data around the target

3 Choose an initial number of GMM components K
(K = 2 in the experiments reported here)

4 LOOP until stable approximation is found

5 Train the joint probability p(ξ, ξ̇) with Expectation Maximization (Dempster et al.,

1977):

6 Verify local stability at the origin Eq. (3.32)

7 IF (the origin is not asymptotically stable)

THEN increase the number of GMM components K = K + 1

8 ELSEIF (estimate of C does not include all training trajectories) OR
(∃ spurious attractors inside the region C)

THEN add training data AND retrain

9 END

10 END
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To validate the performance of the proposed method without blurring the results

with noise inherent to human demonstrations, we first test the ability of our method

to reconstruct known theoretical dynamical systems. With a known system we may

generate a noise-free training set, learn an approximation of the dynamics, and com-

pare how well the learned dynamics approximate the real one. Further, we verify the

applicability of the method in robotics by teaching three different robots manipulation

tasks. We report on each of these next.

3.3.3.1 LEARNING THEORETICAL DYNAMICS

The method is validated to estimate four two-dimensional dynamical systems (Sys-

tems 1-4) and one three-dimensional dynamical system (System 5), each of them con-

tains different number of attractors and exhibits different stability properties. In each

case, we generate six trajectories using the theoretical dynamics and use these for train-

ing the GMM. When the dynamical system has more than one asymptotically stable

attractor, trajectories are generated only in the subpart of the state space around one of

them.

Note, the legend for Figures 3.18 - 3.22 is described in Fig. 3.13. Each of the figures

encompasses, in the first row, plots giving a general view of the original dynamics with

vector fields (a) and three-dimensional phase plots (b-c), in the second row, a view of

the GMM superimposed to the training data, and in the 3rd row, vector field (a) and

phase plots (b-g) of the the estimated dynamics superimposed on the original dynamics.

System 1.

ẋ1 = −x1 + 2x2
1x2; (3.33)

ẋ2 = −x2.

The system has a single locally asymptotically stable equilibrium point at the ori-

gin. We approximate the dynamics of this system in a region [−4; 0] × [0; 2], where it

is locally asymptotically stable. Results are presented in the Fig. 3.18.

System 2

ẋ1 = 700− 2x1 + 200x2e
25x1−104

x1 ; (3.34)

ẋ2 = 1− x2 − x2e
25x1−104

x1 ;

The system has two equilibrium points – one asymptotically stable (x1 = 335;x2 =

0.089) and one unstable (x1 = 489; x2 = 0.5). We approximate the dynamics in the

region [0; 400]×[−2; 2], where it is locally asymptotically stable. Results are presented

in Fig. 3.19.
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Figure 3.18: System 1. The proposed method encodes this system with 7 Gaussians; the learned

system exhibits good precision in the area covered by demonstrations, outside this area the pre-

cision is also admissible except for a region in the direct proximity to y-axis, where actual trajec-

tories represent an excess curvature as approaching to the equilibrium, e.g., a trajectory starting

at the bound x2 = 2. In this region, a flat part of trajectories is reproduced well, though the steep

parts that were not demonstrated are attracted towards the region covered by the training set.
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Figure 3.19: System 2. As the behavior of the system in the considered area is relatively simple,

2 Gaussians are sufficient to achieve the good performance, even in areas unseen during demon-

stration. Interestingly, the learned dynamics is extrapolated very well beyond the area covered

by the training set.
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Figure 3.20: System 3. Despite strong non-linearities in the observed trajectories, the dynamics

is successfully approximated with 6 Gaussians. Note, even unseen, circular shape trajectories

(starting around x2 ≈ 0) are reproduced correctly in both position and velocities spaces.
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Figure 3.21: System 4. The system is strongly non-linear, 13 Gaussians are necessary to achieve

a good precision in the considered region. Complex dynamics and increased number of Gaus-

sians lead to less strong generalization abilities of the method. Indeed, trajectories started beyond

the region covered by the training set tend to depart from the real trajectories generated by the

dynamics, it is particularly noticeable in the velocity space, see section III-(g). However, even

in this non-trivial case the system generates admissibly good results (the reproduced trajectories

follow an observed motion pattern) from few demonstrations.
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System 3

ẋ1 = −x2; (3.35)

ẋ2 = x1 − x3
1 − x2;

The system has three equilibrium points - two unstable (x1 = −1;x2 = 0 and

x1 = 1;x2 = 0) and one asymptotically stable x1 = 0;x2 = 0. We approximate

the dynamics of this system in a region [−1.5; 1] × [−1.5; 0.5], where it is locally

asymptotically stable. Results are presented in Fig. 3.20.

System 4

ẋ1 = −x1; (3.36)

ẋ2 = −x1 cosx1 − x2;

The system exhibits strong nonlinearity due to the cosine term; the system is globally

asymptotically stable and converges asymptotically to the origin. We approximate the

dynamics of this system in a region [−20; 0] × [−4; 4]. Results are presented in Fig.

3.21.

System 5

ẋ1 = −x1 − x2 + x2
3; (3.37)

ẋ2 = x1 + 10 cosx2x2 − x2
3;

ẋ3 = x1 + 2x2 − x3;

Locally asymptotically stable three-dimensional dynamics with a single attractor at

[12.98;−7.75;−2.5213]. We approximate the dynamics of this system in a region

[−20; 30]× [−11;−5]× [−10; 2]. Results of the learning process are presented in the

Fig. 3.22.

1. Quantification and discussion of results

Quantification of results achieved on both theoretical systems and actual robotic

motions are presented in Table 3.6; quantitative measures, that have been ap-

plied, are defined in Table 3.5. As it can be seen all systems result in a coarse

representation of motion dynamics through a relatively small number of Gaus-

sians (the NbGaussians column in Table 3.6). Moreover such a sparse represen-

tation achieves the good precision for both positional and velocity profiles when

reproducing the actual dynamics.

As shown in Fig. 3.18-3.22, the system can generalize (reproduce a learned

pattern on unobserved states) outside the training domain (inside the stability

domain as discussed below). This property is particularly useful for practical

applications as it enables the prediction of the system behavior outside the region

covered during training, hence reducing the amount of training data required. In

the examples covered here, only 6 training trajectories were required in each
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Figure 3.22: System 5. A strongly non-linear three-dimensional dynamical system. In this

case, a slight increase in a number of demonstrations allows for the accurate approximation and

generalization.
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Figure 3.23: Learning motion with two attractors. 3-dimensional trajectories are generated by

System 5 that displays a periodic behavior. Trajectories were demonstrated in the neighborhood

of two asymptotically stable attractors. During the reproduction, the system managed to accu-

rately reproduce dynamics around both attractors.
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case.

Note that, since the dynamics is learned from data covering only a subpart of

the domain, it does not necessarily have the same attractor landscape and the

region of attraction across the complete domain as the original system, even if

it accurately approximates the original system locally. For example, in System

3, the original dynamical system has three equilibrium points, while its approx-

imation has a unique asymptotically stable equilibrium. To overcome this, one

may provide additional demonstrations covering dynamics in the neighborhood

of the other equilibriums: Fig. 3.23 presents results of learning the dynamics

around the two different attractors of System 5. The demonstrations are provided

in the neighborhood of the two asymptotically stable attractors; during learning,

positions of two Gaussians are fixed on the attractors, and the algorithm runs to

verify local asymptotical stability of both attractors. The regions of approxima-

tion C is analyzed separately for each attractors. The learned system manages to

grasp the complex dynamics accurately; furthermore, it separates the two flows

of trajectories based on where in the workspace the motion starts. In addition to

C�� C8 �
C��

C
�

C��

�

��

��

� 


Figure 3.24: A numerically estimated region of applicability of the System 4 (the red/black(in a

black-and-white version) frame). An actual and spurious attractors are highlighted with circles.

Note, the numerical method estimated a lower bound that goes along a trajectory with a good

precision. Other bounds were left unchanged, i.e., in the other directions the considered region

does not cross boundaries of the region of applicability.

stability of reproduction (see Fig.3.24), one should keep in mind that the consid-

ered region of applicability should not exceed a region where the likelihood of

the input position allows for the confident inference of the velocity. In Fig. 3.25

we depict how the likelihood changes beyond the region covered by the training
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Figure 3.25: Extrapolation properties of the GMMs encoding (better see in color). A color

map reflects changes in values of the the likelihood (3.38) of datapoints, the dark-red (dark

grey in the center) area represents an area of the most reliable inference regarding the velocity.

For reconstructed trajectories starting outside this area, the deviation from the actual dynamics

may be considerable. Interestingly, in the region of attraction of the origin, trajectories are

strongly attracted towards a region covered by the training set. It is a useful property for practical

applications as it enables the prediction of the system behavior outside the region covered during

training, hence reducing the amount of training data required.
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set. Likelihood was computed as follows:

L(ξ) = log [max
i

hi(ξ)]. (3.38)
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Figure 3.26: Robustness to perturbations. The target is shifted several times (to positions 2, 3,

4) after the onset of motion.

L gives a measure of the maximum probability of a point ξ to belong to any of

the K Gaussians. The region where L exceeds a given threshold13 represents

the region where the system can still make a confident probabilistic inference.

Note that all the trajectories that start in areas where L is too small significantly

depart from the observed dynamics. This is due to the nonlinear weights hi

and their effect on a velocity direction: nearby the demonstrations, the influence

of the closest Gaussian dominates that of all Gaussians, hence guiding closely

the motion. However, far away from the demonstrations, the influence of all

Gaussians becomes comparable and the resulting direction of velocity may point

away from the signal.

13We took an empirically chosen threshold of −10.
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Table 3.5: Quantification of results

Notation: R is a number of generated test trajectories (R = 20), each trajectory ξj = {ξi
j}Mj

i=1

contains Mj datapoints; �j is the length of a jth trajectory: �j =
∑Mj

i=2 |ξi
j − ξi

j−1|. Here and

further we distinguish between ξ̂j and ξj , which denote to a learned and a theoretical trajectory

respectively.

[1] To estimate the accuracy of the proposed method in the presence of noise, we add a signal-

dependent noise to a theoretical dynamics (see Fig. 3.27): ξ̇ = f(ξ) + η(ξ), where η(ξ) is a

linear function: η(ξ) = σ2γξ, where σ2 is a variance of signal-dependent noise (σ2 = 20 in

our case), γ is a normal random variable with a zero mean and a unit variance.

[2] MPP, minimum positional precision: MPP=
max

i=1..Mj
j=1..R

‖ξ̂i
j−ξi

j‖
∑

R
j=1 �j/R

measures the maximum

point-wise deviation of a reproduced trajectory from its exact theoretical value; MPP is normal-

ized by the average trajectory’s length. For instance, if the average length of the test trajectories

is 20 cm, MPP of 0.1 means that the at each time step the deviation of a reproduced trajectory

from its exact value does not exceed 2cm.

[3] APP, average positional precision: APP=
1
R

∑i=1..Mj
j=1..R

‖ξ̂i
j−ξi

j‖/Mj
∑

R
j=1 �j/R

. APP is normalized by

the average length of the test trajectories R and by a number of datapoints in the considered

trajectories. APP measures the average point-wise deviation of a reproduced trajectory from its

exact value. For instance, if the average length of the test trajectories is 20 cm, APP of 0.01

means that the at each time step the deviation of a reproduced trajectory from its exact value is

about 2mm.

[4] MVP, minimum velocity precision: MVP=
max

i=1..Mj
j=1..R

‖ ˙̂
ξi
j−ξ̇i

j‖
∑

R
j=1 �j/R

measures the maximum

deviation of a reproduced velocity from its exact value. MVP is normalized by the average

length of velocity trajectories.

[5] AVP, an average velocity precision: AVP =
1
R

∑i=1..Mj
j=1..R

‖ ˙̂
ξi
j−ξ̇i

j‖/Mj
∑

R
j=1 �j/R

. AVP is normalized

by the average length of all considered velocity trajectories and by the number of datapoints in

the considered trajectories.
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Figure 3.27: (a) Training trajectories of System 4 are corrupted with a signal-dependent noise of

variance σ2 = 20. (b) The trajectories generated with the learned dynamics are superimposed

with the training data. (c) The trajectories generated with the learned dynamics are superimposed

with the trajectories of the actual dynamical system. Note, that the proposed method manages to

accurately disentangle the motion dynamics from noise.
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Table 3.6: Quantification of results (Continuation)

System NbGaussiansMPP
2

MPP2

noise1

APP 3 APP3

noise1

MVP4 MVP4

noise

APV
5

AVP5

noise1

System
1

7 0.08 0.60 0.006 0.08 0.69 1.10 0.003 0.019

System
2

2 0.01 0.09 0.008 0.03 0.02 0.08 0.001 0.003

System
3

6 0.03 0.11 0.007 0.03 0.17 0.22 0.008 0.01

System
4

13 0.01 0.22 0.004 0.01 0.06 0.21 0.003 0.007

System
5

12 0.07 0.12 0.01 0.10 0.21 0.31 0.006 0.013

KATANA

exper-

iment

4 0.34 - 0.21 - 0.17 - 0.10

HOAP

exper-

iment

5 - 0.42 - 0.33 - 0.21 - 0.18
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As mentioned in the introduction, an inherent property of stable dynamical sys-

tems is their robustness to spatial and temporal perturbations. Fig. 3.26 illus-

trates this aspect for one of the learned dynamical system, when the target is

moved after the onset of the motion. As we see, the trajectories adapt smoothly

to the change. Note, however, that the velocity profile may change abruptly

when the perturbation occurs. To overcome this drawback it would be necessary

to consider second-order dynamics.

As discussed previously, the GMMs encoding may result in spurious attractors

outside the empirical stability domain C and in regions with low likelihood; see,

e.g., Fig. 3.25.

There are several reasons for the emergence of spurious attractors: first, the train-

ing set gives only a partial and noisy representation of the dynamics. Providing

additional data in the regions around spurious attractors usually improves greatly

performance. Second, the shape of the signal influence greatly stability. For in-

stance, if the curvature of the trajectories changes smoothly, the spurious attrac-

tors, if any, will usually lie outside of the region of the confident inference; see

Fig. 3.25. However, if the system trajectories experience sharp changes in the

curvature, as e.g., System 1; see Fig. 3.18, the likelihood of having spurious at-

tractors in the considered region increases. By adding more Gaussians around the

point with a sharp curvature one increases the guidance provided by the GMM

and thus decreases the chances. By considering these practical shortcomings,

one may improve a particular encoding to achieve the admissible performance.

3.3.4 APPLICATION TO ROBOT CONTROL

Further, we validate the method to learn the dynamics of motion of a robot endef-

fector when trained through human guidance. Here, the dynamics of motion becomes

the control law that iteratively moves the robot’s arm along a trajectory.

3.3.4.1 ENCODING MOTION IN THE OPERATIONAL SPACE

Since the framework we defined above does not make any assumption as to the type

of variables to be used for training, we are unconstrained in our choice of variables for

controlling a robot. Here, we choose to describe motions according to the following

variables: the translation component of motion of the end-effector is described by a

vector of Cartesian coordinates x ∈ R
3.

Each demonstrated trajectory is, thus, represented by the following dataset: D =

{xt, ẋt}Mt=1, where M is the number of datapoints in a trajectory. To reproduce a task,

we first learn an estimate of the dynamical system using the method described in Sec-

tion 3.3.2.1 and then use the Moore-Penrouse pseudo-inverse to compute the corre-

sponding joint angles. Table 3.8 summarizes the steps of the reproduction algorithm.
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Figure 3.28: (a) If a trajectory in the operation space passes through non-reachable joint po-

sitions IK may return velocity in the operation space that sends a robot too far from original

trajectory, so linear assumptions of approximation of kinematics does not satisfy and overall

trajectory tracking will fail. (b) In the case of motion encoding with a dynamical system, after

perturbation the robot will not try to return to the previous trajectory violating the linear approxi-

mation of kinematics, instead the dynamical system will generate other trajectory from the point

where the robot occurs.

�����

��	�	�	�

��
�
�
�

Figure 3.29: We encode tasks in a referential located at the target and moving with it{x∗y∗z∗};

this referential is expressed in the fixed global referential {xyz}(usually we choose one attached

to static parts of a robot). Actually, the motion of the robot end-effector is expressed as moving

a referential associated with the end-effector {x′y′z′}.
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Table 3.7: On-line task reproduction

1 Assume that a controller f̂x has been learned,

the robot is thus ready to reproduce a task

2 Detect a target position in the global referential {xyz}; see Fig. 3.29: x∗

3 Recompute the current position of an end-effector in

the target referential {x∗y∗z∗}: x0

4 LOOP until the target position is reached

5 infer the velocity for the next iteration t through GMR Eq.3.29: ˙̂xt
˙̂xt =

∑K
k=1 hk,x(μk,ẋ +Σk,ẋxΣ

−1
k,x(x − μk,x))

6 solve the Inverse Kinematics problem to find: ẋt, q̇t

7 compute a new position xt, qt

8 END

3.3.4.2 SET-UP

We validated the above method in three practical tasks; see Fig. 3.30, 3.35. We also

implemented the theoretical 3-dimensional System 5, as a motion generation policy

for the robot. To highlight the generic character of the approach we ran experiments

with three different robotic platforms: a 6 degree of freedom industrial-like KATANA

arm from Neuronics, a 4 degree of freedom robot arm of the humanoid robot HOAP-3

from Fujitsu, and a 7 degree of freedom humanoid platform i-Cub which 7 degree of

freedom of the right arm have been used; see Fig. 3.35-(a).

For KATANA and Hoap demonstration is accomplished through kinesthetic teach-

ing. In the case of iCub, as the motors are not back-drivable, demonstration is ac-

complished via teleoperation of the robot arm by a human teacher. The simultaneous

control of all 7 degrees of freedom is conducted through a joint recording system placed

on the human. A mapping from human to robot arm allows the human to directly con-

trol the motion of the robot arm. Measurements from the motion sensors are mapped

in real-time into the robot joint commands, therefore, the human teacher is getting im-

mediate visual feedback regarding accuracy of demonstrations he/she provided. While

moving the robot records observations, taken from its own sensors. In detail, sens-

ing units from commercial XSens joint recording system are placed on the upper and

lower arm, and back of the palm, of the human; see Fig. 3.35. During the reproduction

i-Cub was controlled in real-time at the frequency of 50Hz. An external color-blob

tracking vision system was used to detect the position of the ping-pong ball.

3.3.4.3 EXPERIMENTS WITH KATANA
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The first experiment consists in the KATANA putting an object into a container.

Here, the KATANA arm was taught to put a rectangular wooden brick into a rectangular

container; see Fig.3.30-left.

In the second experiment, the KATANA was controlled with System 5 with the

origin of the system positioned on an arbitrary object. This experiment meant to test

the ability of the learned system to generalize to context unseen during training and to

quickly adapt to perturbations.

This experiment meant to show that the theoretical dynamical system could be of

practical use to guide robot motions for a simple reaching task. It also demonstrate

that, as shown in simulation, the system is stable and follows the trained (and known)

dynamics of motion.

3.3.4.4 EXPERIMENTS WITH HOAP-3

The clench of the HOAP-3 is rather small, therefore it can grasp only thin objects. In

this task the robot had to grasp a box which is thin along one dimension, so the robot

should follow a specific path to properly position its hand; see Fig.3.30-right.

During training, the robots were shown the tasks 5 times by a human user guiding

their arms. Values of the robots joints were recorded during this passive motion and

used for reconstructing the position of the end-effector.

3.3.4.5 EXPERIMENTS WITH ICUB

The experiments with iCub aim to demonstrate the abilities of our proposed approach

to (1) generalize a motion to unseen conditions (e.g., if the ball is placed at locations

different than these seen during training), and (2) adapt to temporal perturbations (the

varying duration of a motion). To emphasize the importance of time-independency and

of the state-space representation of motions, we compare the robot performance when

its trajectories are learned with our proposed approach and when these are encoded

by Dynamic Movement Primitives (Hoffmann, Pastor, et al., 2009; Ijspeert, Nakanishi,

& Schaal, 2001; Pastor et al., 2009). We choose Dynamic Movement Primitives for

comparison, as it appears to be the closest Robot Learning method that exploits the

dynamical system view on the motion production. It is also the only approach that is

proved to be asymptotically stable at the target.

An iCub robot learns how to reach a ping pong ball with a forehand motion and to

stop at the target. The experiment deliberately replicates the task of reaching for a ball

with a tennis racket from the original paper of Ijspeert, Nakanishi, & Schaal (2001)

(where the velocity at the target is also zero).

3.3.4.6 RESULTS OF LEARNING DYNAMICS FROM MOTION DATA

After training, the robots is requested to reproduce the tasks under different spatial

conditions. The results of the experiments are summarized in Fig. 3.32-3.31. To test

the generalization abilities and the robustness to perturbations, we conduct experiments
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Figure 3.30: Set-up of the experiments. Left: KATANA puts a wooden brick into the container,

to achieve the task the robot should lift the brick and move it following an elevating trajectory.

Right: HOAP-3 grasps a box, to accomplish this task HOAP should approach the box with a

specific orientation and than lower its arm, as the clench is small, see small figure in the corner.

Figure 3.31: The results of reproduction of dynamically generated trajectories on the robots. To

check the generalization abilities of the learned dynamics the trajectories were reproduced from

different initial positions.
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starting from different initial positions of the robots. Also, the locations of the the con-

tainer (for the KATANA’s experiment) and of the box (for the HOAP-3’s experiment)

have been modified. Results are presented in Fig. 3.31; in both experiments learning of

position control is successful: the robots reach the targets accurately and accomplish

the tasks. For the second experiment, where KATANA reproduces System 5, results

of generalizing the task to the unseen context are presented in Fig. 3.33 - II. The area

where demonstrations are provided is in red. Our method further reproduces the mo-

tion starting from anywhere in the sub-space highlighted in gray. Note, that even when

learned from a few demonstrations, the algorithm enables the good generalization. The

ability to generate a trajectory from an arbitrary initial position with a relevant veloc-

ity profile is an advantage of encoding motions with dynamical systems. Furthermore

such a state-space encoding provides online adaptation to the target perturbations. Fig.

3.33-I presents the results of tracking a marked object, which position is mapped into

the attractor of the learned task model. Even after the target has been shifted several

times, the robot still reaches the object, and this while following a demonstrated spatial

and velocity profile.

3.3.4.7 COMPARISON WITH DYNAMIC MOVEMENT PRIMITIVES

In addition to the theoretical comparison in Appendix II, we experimentally com-

pare the performance of our method with that of Dynamic Movement Primitives (DMP).

The strength of DMP and of its recent modifications (Hoffmann, Pastor, et al., 2009;

Pastor et al., 2009) consists in the ability of the method to learn a motion representa-

tion from a single demonstration. A considerable deformation of the motion, if it starts

from an unobserved location, is one of the pitfalls. DMP proceeds by modulating a

linear stable dynamical system with a learned acceleration profile. The modulation

function is dependent on the internal clock (the canonical variable s; see Appendix II

for details). This implicit time dependency makes the system sensitive to perturbation

as we demonstrate here. Note that improvements offered on the method by Pastor et al.

(2009) and Hoffmann, Pastor, et al. (2009) do not resolve the time-dependency issue

that we tackle in our approach.

Before proceeding with our discussion, we shall emphasize theoretical differences

between our method and DMP, so as to motivate our choice of qualitative criteria for

comparison.

In DMP, a modulation function f̂(s) is learned either using LWR (Atkeson et al.,

1997) or LWPR (Vijayakumar & Schaal, 2000) from a single demonstration. In con-

trast, our approach learns a task model from several demonstrations, encoding these

in the state-space. Learning in the state-space is particularly an important difference

between the two methods. Being controlled with a state-space task model, a robot re-

ceives a feedback signal that enables it to continuously adapt the velocity depending

on the current position.

Another difference relates to how the methods process the training set. In DMP,
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Figure 3.32: KATANA experiment 1: Results of encoding and reproduction of the experiment

where KATANA had to put a brick into a container.
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Figure 3.33: KATANA experiment 2: I. Real-time adaptation to perturbations. The target is

shifted several times from the position 1 to the position 4. First row: trajectory of the robot’s

end-effector; second row: velocity profile. II. Generalization to the unseen context. (a) The

approximate workspace of KATANA is highlighted by the blue box (light grey in a black-and-

white version), the reproduction is systematically tested starting the robot from positions on the

starting plane (yellow/darker grey). (b) The robot is required to reproduce the motion from points

monotonically covering the yellow/light-grey sub-part. For comparison, the part of space where

the demonstrations are provided is in pink/dark-grey. Note, the demonstrations are sparse, but

the system manages to generalize to other parts of the workspace.
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Figure 3.34: HOAP-3 experiment: Results of encoding and reproduction of the experiment

where HOAP-3 had to grasp a box.
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(a)(a) (b)

(c)

Figure 3.35: (a) The humanoid robot iCub used in the experiments. We encode tasks in the

frame of reference located at and moving with the target; this frame of reference is expressed

in the fixed global frame of reference (we choose the one attached to static parts of a robot).

(b) A human teacher demonstrates a ping-pong motion to the robot. (c) Three XSens motion

capture sensors are attached to the hand, forearm, and upper arm of the demonstrator and allow

the reconstruction of the motion of each joint.
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task models are learned from a single demonstration, if the data contain noise the task

model can fit noise as a part of the true signal. In contrast, our method combines several

demonstrations to build a more accurate estimate of an actual underlying dynamics

(Coates et al., 2008). This does not necessarily lead to exact trajectory fitting if the

data are noisy.

Therefore, next, we compare the two methods in terms of their qualitative perfor-

mance in the case of (1) changing of an initial position (generalization to the unseen

context); (2) spatial perturbations (changes in a target position after the onset of a

motion); (3) temporal perturbations (changes in the target position that considerably

change the time of reaching the target).

Recently, the discussion on generalization abilities of DMP has been relaunched

by Bitzer & Vijayakumar (2009). The proposed approach is theoretically sound and

demonstrates appealing results. We do not include this method into our comparison,

but outline its main idea for the completeness of our discussion. Bitzer & Vijayakumar

(2009) suggest that modulation problems of DMP are partially related to the choice of a

space where the DMP is applied. Specifically, their hypothesis suggests that there exists

a latent space such that if trajectories, generated by DMP in this space, are projected

back to the original space, they closely follow actual demonstrations. The considered

experiments include, for instance, full-body punching motions recorded in the joint

space. A training set consists of several demonstrations, only one of which is used

for training a DMP. The remaining part of the training set is applied to learn a latent

space. Learning of the latent space is implemented as an extension of Gaussian Process

Latent Variable Models (GPLVM) (Lawrence, 2005). The method is illustrated with

two experiments and it will be highly interesting to further investigate whether such a

latent space can be estimated for an arbitrary task.

We follow the most recent formulation of DMP by Pastor et al. (2009); see Ap-

pendix II. The proportionate and derivative coefficients Kp and Kv are chosen so as

to guarantee the critical damping. Note that we have implemented DMP as defined in

Pastor et al. (2009); that is, without a heuristic to re-index the canonical variable s so

as to handle perturbations14.

For illustrative purposes, we first compare how well the two methods learn a the-

oretical two-dimensional dynamics. We then move to the performance comparison in

the ping-pong task.

1. Comparison of generalization abilities

In the considered experiments, DMP exhibits limited capacities to generalize:

when trajectories are to be reproduced when starting from unseen parts of the

workspace the algorithm generates only scaled versions of a demonstrated trajec-

tory. In the case depicted in 3.37-(b) we see an example of the task reproduction

when the motion onset is located in the middle of the demonstrated trajectory.

Instead of following the remainder of the motion, DMP forces the robot to re-

14The authors suggest that this formulation is sufficient for adaptation of robot’s trajectories to a moving

target g
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Figure 3.36: Task generalization: our method vs. DMP (Hoffmann, Pastor, et al., 2009) in the

ping-pong experiments. Here, due to the noise in the training data, our system tries to extract

a generic pattern and, therefore, the reproduced trajectories do not follow the demonstrations

exactly. However, in comparison with DMP generated trajectories, the trajectories produced

by our method exhibit more similarity with demonstrations (in terms of the trajectory shape).

The difference between the two method is particularly obvious when the robot starts its motion

from locations unobserved during demonstration; DMP tends to generate unexpected swinging

motions.
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produce the whole trajectory, scaled so as to fit into the distance to the target. In

contrast, our system guides the robot along the remaining segment of the motion.

The scaling is even more evident in the three-dimensional case of the ping-pong

task; see Fig. 3.38.

The sole scaling of trajectories, instead of regenerating a new motion that follows

a coordination pattern, can fail the reproduction. One of the reasons why human

movements are often curved consists in their intention to satisfy coordination

constraints caused, for instance, by the geometrical constraints of manipulated

objects. The demonstrations provided by a human teacher are implicitly encode

these constraints in the form of a specific curvature (Petreska & Billard, 2009).

A motion representation should be able to encode these coordination constraints

and allow their accurate reproduction. Note, the demonstrated trajectories in Fig.

3.37-3.39 are strongly curved around the target, this can be, for instance, due to

the presence of an obstacle that should be avoided or such a path might be dic-

tated by the particular shape of a manipulated object. Therefore, it is crucial

for the robot to coordinate its motion so as to satisfy the constraint. The tra-

jectories generated by our system follow the demonstrated approach direction,

while DMP runs considerable risk of violating the constraints and bumping into

obstacles.
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Figure 3.37: Robustness to spatial perturbations: our method vs. DMP (Hoffmann, Pastor, et

al., 2009), learning a theoretical noise-free dynamics. Due to scaling that DMP performs for

adapting a learned acceleration profile to the conditions after perturbation, a generated motion

may have an unexpectedly excessive curvature (a) or can overshoot the target (b).

2. Robustness to Spatial Perturbations

We compare the robustness to spatial perturbations; that is, to displacements of

a manipulated object or of a robot’s arm that occur after the motion onset. Here,

we consider perturbations that do not necessarily cause considerable variation of

the motion duration. As both, our method and DMP, ensure that a robot reaches
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Figure 3.38: Robustness to spatio-temporal perturbations: our method vs. DMP (Hoffmann,

Pastor, et al., 2009) in the ping-pong experiment. The ball is moved up (from position (1) to

position (2)) after the onset of the motion, DMP trajectories produce strong swings and tend to

overshoot the target.

a target (due to asymptotic stability of the learned task models), we concentrate

solely on qualitative aspects of the robustness. Precisely, we look at whether both

systems can reproduce key characteristics of the motion, such as the curvature.

We compare performance both in the noise-free case and in the real -world ping-

pong task; see Fig. 3.37 and 3.38 respectively. DMP does not adapt the shape

of the trajectory when moved to an arbitrary location in the workspace. The

lack of adaptation can bring about the excessive curvature of the trajectories and

overshoot at the target.

3. Robustness to Temporal Perturbations

We consider spatial perturbations happened after the motion onset that result in

significant variation of the motion duration. Results are shown in Figures 3.38,

3.39. In Fig. 3.39-(a) the target is moved from position (1) to position (2),

farther from the robot’s end-effector, DMP takes the shortest path to the initial

position of the target and stretches it to reach the shifted target position. This

results in an almost straight line trajectory which may violate external constraints

implicitly encoded in the demonstrations. The deformation of a motion pattern

also occurs in the case of the ping-pong experiment when the ball is moved away

from the robot; see Fig. 3.38. DMP fail to reproduce the demonstrated slope of

trajectories; see particularly Fig. 3.38-(b).

In Fig. 3.39-(b) the target is moved from position (1) to position (2), closer

to the robot’s end-effector. DMP tries to fit the learned trajectory into the new

spatial interval and produces jerky motion. Our algorithm, in contrast, drives the

trajectory directly to the target, so that the robot reaches the target faster than if

controller with DMP.
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Figure 3.39: Robustness to temporal perturbations: our method vs. DMP (Hoffmann, Pastor, et

al., 2009). The target has been shifted so that the duration of motion has been increased (a) or

decreased (b). (a) The target is moved from position (1) to position (2), farther from the robot’s

end-effector, DMP takes the shortest path to the initial position of the target and stretches it to

reach the shifted target position, this results in an almost straight line trajectory which potentially

may violate external constraints implicitly encoded in the demonstrations. (b) The target shifted

so as to decrease the duration of motion, in this case DMP scale the trajectory and produce the

jerky motion right after the perturbation; in this case DMP require more time to reach the target

than our system.
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4. Conclusion

DMP provides an efficient tool for learning a stable estimate of a motion dynam-

ics from a single demonstration. It allows for adaptive scaling of the demon-

strated acceleration profile and ensures global convergence to the target. DMP,

hence, is particularly useful if the robot is expected to operate in a vicinity of the

demonstration, and if the robot is required to replicate the demonstrated motion

exactly; see Fig. 3.40.

However, this solution comes with its drawbacks: depending on the starting posi-

tion and perturbations along a motion, a resultant trajectory might not satisfy co-

ordination constraints encoded in the demonstrations. As DMP does not address

learning state-space dependencies, the temporal robustness cannot be guaranteed

as demonstrated in the comparison. Note that this implicit time-dependency re-

mains even in the recent reformulation of DMP suggested by Hoffmann, Pastor,

et al. (2009); D.-H. Park et al. (2008); Pastor et al. (2009). The time depen-

dency is implemented using a canonical variable s, that acts as a clock for the

system15. To adapt to changes in the motion’s duration associated with differ-

ent initial positions or significant spatial perturbations, one must use a heuristic

to re-set the canonical variable. Failing this, the canonical variable forces the

modulation term f(s) to reproduce the same acceleration profile irrespective of

where in the workspace the robot’s arm locates. Furthermore, once the canonical

variable s decays to zero, it ultimately cancels the modulation terms f(s). When

it happens, the system is left to be driven solely by a linear dynamical system.

We should note that these undesirable responses of the system are avoidable if

one can find a means to rescale the phase variable. It is, however, not easy to

engineer such a heuristic, especially, if the motion duration is unknown, e.g.,

after perturbations. In our method, the time dependency is removed entirely,

hence eliminating the requirement of searching for the heuristic. To conclude,

DMP represents a major step towards introducing dynamical systems as a means

for flexible and robust robot motion learning. Additionally, the reformulation

proposed by Hoffmann, Pastor, et al. (2009), Pastor et al. (2009), and D.-H. Park

et al. (2008) offers a means to perform obstacle avoidance, a problem to which

we do not offer a solution here.

As discussed above, the method, which we present in this Section, ensures local

asymptotic stability at the attractor within the region of attraction(as per Defi-

nitions 6 and 7 of Table 3.2). However, a secondary mechanism should be em-

ployed to bring the robot back in to the region of attraction, if a perturbation

sends it outside of this region. For instance, one can assume that the motion out-

side of the region of attraction is driven, is driven by the linear, globally stable,

dynamics defined by the last Gaussian. Note that, in our experiments, the re-

gion of attraction is sufficiently large; see Fig. 3.32-3.34. From a practical point

15Specifically, this is the variable θ in Equation 11 of (D.-H. Park et al., 2008), which is equivalent to the

variable s in the original DMP formulation (Ijspeert, Nakanishi, & Schaal, 2001) and its another reformula-

tion (Hoffmann, Pastor, et al., 2009), see also Appendix II of this manuscript.

123



of view, ensuring only local stability in many cases is not so restrictive. Non-

linear motions are often driven by local coordination constraints, e.g., caused

by the shape of a manipulated object. Therefore, it might make little sense if a

robot reproduces these constraints in an arbitrary part of its workspace. Statisti-

cal learning is local by nature; hence, one cannot ensure that inference far from

the demonstrations will be relevant in a statistical sense (as the likelihood of the

input data is negligible). Though DMP ensures the global stability, the method

cannot guarantee the generation of meaningful or even feasible trajectories far

from demonstrations; see Fig. 3.44.

We note that DMP is directly extendable to learning periodic movements (Ijspeert

et al., 2002b; Schaal et al., 2007). Our approach also can be applied to learning

rhythmic motions, however, the problem of ensuring stability of a learned dy-

namics needs to be addressed. As we concentrate on coordinated goal-directed

movements, we do not compare performance of our method and DMP when

applied to learning periodic motions.
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Figure 3.40: (a) Illustration of the high accuracy of DMP at reproducing trajectories that start

in a small neighborhood of a demonstrated trajectory. When starting the motion at the same

location as that demonstrated, reproduction fits the original signal very accurately. (b) When

reproducing the noisy training data from the ping-pong task. DMP accurately fits each demon-

stration separately. This leads to over-fitting as each trajectory contain noise inherent to the

physical world.

3.3.5 CONCLUSION

In this Section, we proposed a method for learning a non-linear multi-dimensional

dynamics of motion through statistically encoding demonstrated data with Gaussian

Mixtures. Further, we addressed the problem of ensuring stability of a resultant con-

trol law: first, we formulated conditions that parameters of GMMs should satisfy to

guarantee local asymptotical stability of an attractor, then we proposed a numerical
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procedure to verify boundaries of the region of applicability where the control law can

be securely applied.

To test the method, we conducted two types of experiments: 1) learning theoret-

ical dynamics with known mathematical forms to estimate the accuracy of approxi-

mation and 2) learning dynamics of manipulation tasks recorded with two different

robotic platforms to assess the applicability of the approach to the noisy data. In all

experiments the system demonstrated good results in terms of the high accuracy during

reproduction, ability to generalize motions to unseen contexts, and ability to adapt on-

the-fly to spatio-temporal perturbations. We also showed how the system could encode

more than a single attractor and could successfully reproduce each of the dynamics

around a corresponding attractor.

3.4 LEARNING ONLINE MOTION GENERATION FOR

INTRA-LIMB COORDINATION IN

MANIPULATION TASKS

The method presented in this section has been published in:

Gribovskaya E. and Billard, A. G.. Learning Nonlinear Multi-Variate Motion

Dynamics for Real- Time Position and Orientation Control of Robotic Manipula-

tors. Proceedings of IEEE International Conference on Humanoid Robots. 2008.

3.4.1 INTRODUCTION

In this section, we extend the dynamical system approach proposed in Section 3.3 to

consider intra-limb coordination between the position and orientation of a robot’s hand.

The motion of a human hand during a manipulation task consists of two phases:

a transport phase followed by a grasping phase (Jeannerod, 1981; Smeets & Brenner,

1999). The interconnection between these phases has been actively debated. Early

works (Jeannerod, 1981) suggest that the two phases are controlled separately, while

more recent works (Haggard & A., 1997; Smeets & Brenner, 1999) provide evidence

that they are intertwined in the sense that the grip’s aperture can be dependent on the

position of the hand. It is however agreed that the two phases are tightly interconnected

at least through an approach vector (a vector that defines the motion direction prior to

grasping) (Brenner & Smeets, 1995). That is, already during the transport phase, the

hand’s orientation is being adjusted so as to get aligned with the approach vector.

We further adopt this assumption and suggest an algorithm to endow a robot with

the similar coordination skill. For this, we extend our dynamical system framework so

as to account for learning of the complete transport phase. That is, the robot encodes
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Figure 3.41: Geometrical illustration of stability and multi-dimensional correlation in the state-

space. I. Stability problem: stability of a dynamical system is defined by a maximum value of its

Lyapunov exponent λ (in the linear case, it coincides with eigenvalues of a control matrix). (a)

In systems with negative Lyapunov exponents volume between trajectories contracts; (b) In sys-

tems with positive Lyapunov exponents two arbitrary near trajectories diverge from each other

exponentially fast. In the linear case, one may easily find Lyapunov exponents and estimate the

global behavior of the overall system. In the non-linear case, the system may have different

Lyapunov exponents in different parts of the state-space, moreover, non-linearities make analyt-

ical investigation of properties particularly tedious. IV. Multi-dimensional dynamics Analyzing

dynamics of vector-valued timeseries requires their encoding in multi-dimensional state-spaces.

Generally, one cannot unambiguously decouple dynamics of each dimension. Consider a simple

2D motion in Fig. II-(a), the phase-space of this motion in {ẋ1, x1} is in Fig. II-(b): for each

value x1 there exist two different values of velocity, therefore, it is not possible to unambiguously

encode dynamics of motion as two decoupled system ẋ1 = f1(x1), ẋ2 = f2(x2). However,

if one look at the dependency ẋ1 = f(x1, x2) depicted at Fig. II-(c) this ambiguity can be

easily eliminated. This problem is know in the literature on Dynamical Systems as a problem

of searching for a minimum embedding dimension. In this particular example, the minimum em-

bedding dimension is 4 (x1, ẋ1, x2, ẋ2). Alternatively, one may argue that in this case we may

avoid an ambiguity and separate dimensions encoding ẍ1 = f1(x1, ẋ1), though it is possible in

this particular case, it will lead to the necessity to analyze 5 state variables (x1, ẋ1, ẍ1, x2, ẋ2).

Furthermore, to preserve a spatial correlation pattern between x1 and x2 the decoupled systems

should be synchronized by an external mechanism.
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and reproduces the position and orientation components of the motion, replicating a

coordination pattern. The conducted experiments demonstrate that the proposed algo-

rithm allows the robot to recover from spatio-temporal perturbations affecting both the

position and orientation of a manipulated object.

From the review of the literature on motion planning for manipulation tasks (Sec-

tion 2.2), one can conclude that there is a variety of methods for generating task trajec-

tories. Indeed, traditional planners offer a powerful means for motion generation if all

information about an environment is known and modeled prior to the onset of a motion.

However, the planners may fail to accomplish a task if the environment changes rapidly

and/or unpredictably (as when interacting with humans). Under perturbations, a mo-

tion has to be replanned, and this process may be too slow to be computed in real time

if perturbations are frequent. Furthermore, some approaches to path generation also

assume that a wrist axis is aligned with the direction of a motion, while the alignment

with a desired approach vector is performed once the arm is already in the vicinity of

an object. As an alternative to the use of planners for adjusting a hand configuration

before grasping, methods for automatic grasping (Buss & Hashimoto, 1994; Ekvall &

Kragic, 2007; Tegin et al., 2009) address a problem of control of wrist orientation and

fingers closure. Once a hand is brought into a proximity of an object to be manipu-

lated, such methods generate a motion that aligns the wrist’s axis with an approach

vector and arrange fingers into a grasping posture. The two-step process increases a to-

tal motion; it also makes the adaptation to perturbations cumbersome, requiring finely

tuned heuristics.

The coupled generation of trajectories for position and orientation through dynam-

ical systems, as we propose in this section, helps to overcome some of these problems.

The robot’s motions look smoother and might be more predictable for humans working

with it.

3.4.1.1 LEARNING POSITION AND ORIENTATION CONTROL

To construct f̂ from the set of demonstrated trajectories, we follow a learning approach

described in Section 3.2 and define f̂ using Gaussian Mixture Models (GMM). The

presented method (Section 3.2) makes no assumptions regarding a type of variables to

be used for training, thus we are unconstrained in our choice of variables for motion

learning. Here, we choose that: 1) a translational motion of a hand is described by a

vector of Cartesian coordinates x ∈ R
3; 2) an orientation of the hand is described by a

pair of variables {s, φ} (an axis and an angle of rotation (Altmann, 1986)). According

to the representation {s, φ}, an orientation of a moving referential x′y′z′ with respect

to a fixed referential xyz (see Fig. 3.29) is described by a rotational axis s ∈ R
3 and

an angle φ ∈ [0; 2π]. This representation is similar to the quaternionic representation

and can be easily converted into the latter. But for the use with our algorithm for learn-

ing motion dynamics, the axis/angle representation is more convenient, as it does not

require renormalization at each time step, in contrast, for instance, to the quaternionic

representation, and has a more compact form than rotational matrices.
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Table 3.8: On-line Task Reproduction: Control over Position and Orientation

1 Learn the estimates f̂x, f̂o of the dynamics underlying the position

and orientation of the end-effector’s motion:

2 Detect a target position in the global referential {xyz},

see Fig. 3.29: {x∗, s∗, φ∗}

3 Recompute the current position of the end-effector in

the target referential {x∗y∗z∗}: {x0, s0, φ0}

4 LOOP from t = 0 until the target position is reached

6 Infer the velocity at the next time step through GMR (Eq. 3.29):
˙̂xt =

∑K
k=1 h

k
x (μ

k
ẋ +Σk

ẋx(Σ
k
x )

−1(xt−1 − μk
x ))

[˙̂st; ˙̂φt] =
∑K

k=1 h
k
st,φ(μ

k
˙s,φ+

+Σk
ṡ,φ̇,s,φ(Σ

k
s,φ)

−1([st−1;φt−1]− μk
st−1,φt−1

))

8 Solve the Inverse Kinematics problem (Eq. 3.41) to find: q̇t

9 Send command qt to a robot and get motors feedback

10 Compute the actual position and orientation of the end-effector xt, st, φt

10 END

A robot learns the following functions from demonstrations:

ẋ = f̂x(x), [ṡ; φ̇] = f̂o(s, φ); (3.39)

where Cx ⊂ R
3, Co ⊂ R

3 × [0; 2π].

3.4.1.2 OPTIMIZED INVERSE KINEMATICS

Traditional methods for inverse kinematics that focus on trajectory following might

lead to unfavorable joint postures and poor performance near singularities. A number

of recent works propose to reformulate the inverse kinematics as an optimization prob-

lem (Hersch et al., 2008; Peters et al., 2005). We follow the same approach and we aim

to 1) follow a generated trajectory as closely as possible (given by the learned dynam-

ical systems); and 2) find a joint space solution closest to the center of the joint space

q0. To avoid the joint limit problem, we additionally impose hard boundary constraints

on our optimization problem.

In the previous work of ours (Billard et al., 2006), we define a metric of imitation

H(q̇t) : RNj → R (Nj is a number of degrees of freedom (DOFs) in a manipulator)

that now control the trade-off between trajectory following and reproducing a desired
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orientation:

H(q̇t) = (Jxq̇t − ˙̂xt)T (Σ̂x)
−1(Jxq̇t − ˙̂xt) (3.40)

+ (Jω q̇t − ω̂t)
T (Σ̂ω)

−1(Jω q̇t − ω̂t)

+ (q̇t − (q0 − qt−1))
TΣ−1

q (q̇t − (q0 − qt−1));

where ˙̂xt and ω̂t are the translational and rotational velocities generated by the learned

dynamical system f̂x(x), f̂s(s), f̂φ(φ); Σ̂−1
ẋ , Σ̂−1

ω = Σ̂−1

φ̇
Σ̂−1

ṡ are the estimated vari-

ance at a point { ˙̂xt, ω̂t}; Σ−1
q is a weight matrix that is built so as to have maximum

on the joint boundaries and to rapidly decrease as the robot approaches to the center of

its workspace; Jx, Jω are respectively position and orientation Jacobian matrices of a

robot’s arm.

Discretizing in time and assuming a local linear approximation of the derivative

at each time step: ẋt = xt − xt−1, we then minimize H on a set [qmin; qmax], where

qmin, qmax are the lower and upper joint limits.

A solution of the minimization problem in Eq.(3.40) has the following form:

q̇ = (J̃x + J̃ω +Σ−1
q )−1(J̃x ˙̂xt ++J̃ωω̂t +Σ−1

q (q0 − qt−1)) (3.41)

where J̃x = (JT
x Σ̂

−1
x Jx), J̃ω = JT

ωΣ̂
−1
ω Jω .

If the IK problem is not over-constrained (the rank of a Jacobian is not less than

a number of controlled dimensions in the operational space) and if the robot operates

within the workspace, far from singularities, the optimization problem will produce

a solution that coincides with the desired values generated by the dynamical systems.

However, when controlling an under-constrained manipulator or if it is in the proximity

of singularities, the generalized IK presented above may be considered as a source of

intrinsic perturbations on the dynamical system generating the motion. The dynamical

system will be still able to generate a trajectory and will enable a robot to reach a target,

given that a final position and orientation are reachable by the robot (the IK solution

exists).

Table 3.8 summarizes the steps the robot follows during the task reproduction.

3.4.2 EXPERIMENTAL RESULTS AND DISCUSSION

3.4.2.1 SET-UP

We validate the above method in two experiments; see Fig. 3.30, using a four degree of

freedom arm of a humanoid robot HOAP-3 and a six degree of freedom industrial-type

KATANA arm from Neuronics.

The KATANA arm is taught to put a rectangular wooden brick into a container

slightly bigger than the brick; see Fig. 3.30-top. Before releasing the brick, the robot
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has to accurately adapt its orientation and position with respect to the container.

The clench of the HOAP-3 is small, therefore, it can grasp only thin objects. In

this task the robot has to grasp a box that is thin only along one dimension; see Fig.

3.30-bottom.

The tasks were chosen as (1) the objects are asymmetrical, and, hence, for the

objects to be grasped, both tasks require a particular orientation of the robot’s hand, (2)

robot’s trajectories in each task can be described by a dynamical system with a single

attractor, and (3) robot’s success or failure can be easily estimated.

In both experiments, we demonstrate the tasks to the robots four times by guiding

their arms. The position and orientation of the manipulated objects are tracked with a

stereovision system that uses Augmented Reality Toolkit (ARToolKit) markers.

3.4.2.2 RESULTS

After training, we test our algorithm by letting the robots to manipulate the objects at

different locations in their workspaces (to demonstrate generalization capacities of the

learned dynamics) and by producing spatial perturbations (to demonstrate the ability

of our method to recover from perturbations in both position and orientation).

The results of the experiments are summarized in Fig. 3.31, 3.42-3.43.

The dynamical dependencies between encoded variables and their derivatives ex-

hibit strong non-linearities; see Fig.3.42; however, our method manages to encode them

accurately with relatively few GMM components. Therefore, the memory requirements

for storing motion models are much less in comparison with these of memory-based

approaches. Furthermore, the correlations between the positional and orientational

variables x, {s, φ} are strong, therefore, learning and reproduction of these correlations

leads to more accurate and faithful motions.

To test the generalization abilities and the robustness to perturbations we performed

experiments in different conditions: we vary starting positions of the robots and shift

the objects to be grasped while the robots are moving. The results are presented in Fig.

3.31, 3.26. From multiple starting locations, the robots accurately reach the desired

objects and grasp them with a correct orientation

The KATANA arm is a 6DOF manipulator. Hence, when both the location and

orientation of an end-effector are specified, the arm’s jacobian has a full rank. However,

due to a particular geometry of the KATANA’s workspace, the robot tends to bump into

joint limits. The use of the inverse kinematics controller that brings the arm closer to the

center of the workspace enables the robot to avoid unfavorable configurations. Indeed,

if one just simply assigns a joint value to its limit each time the robot tries to leave an

admissible interval, this joint most likely will stick to the limit for the rest of a motion,

which is undesirable.

In contrast, for the HOAP-3 robot, the inverse kinematics problem is under-defined.

Therefore, one cannot ensure that a precise solution will be found and this will produce

a desired learned dynamics along a motion. In this case, the proposed optimization

algorithm balances between the constraints on position and orientation, while taking
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Figure 3.42: Results of encoding the orientation phase of demonstrations in an experiment with

HOAP-3. Note, the existence of non-linear correlation between an axis and an angle of rotation.
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Figure 3.43: Experiments with the humanoid robot HOAP-3. Referentials display the change in

the orientation of the robot’s end-effector along the motion. Starting positions of the hand are

highlighted by yellow circles. I. Generalization abilities of the method: the robot successfully

grasped a box placed in different positions in the workspace. These configurations of the box

have not been observed by the robot during demonstration. II. Real-time adaptation to perturba-

tions: while the robot was moving towards the box its position was perturbed (a), both position

and orientation were perturbed (b). Control of position and orientation through dynamical sys-

tems enables the smooth adaptation to both types of perturbations.
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into account the variance across the demonstrations. Such a trade-off helps to find a

solution and leads to the successful task accomplishment.

3.4.2.3 DISCUSSION AND CONCLUSION

In this section, we presented a motion generation system that is based on the dynamical

system representation. The method allows a robot to successfully accomplish manip-

ulation tasks even in contexts unvisited during demonstration. Learning of the coor-

dination between the position and orientation of a hand offered a "pre-shape" control

strategy similarly to a way humans approach objects (i.e. by adjusting a hand ori-

entation along a motion (Christel & Billard, 2001)). As the orientation was getting

aligned with the desired approaching vector already during the motion, the tasks were

accomplished faster than they would be in the case of subsequent translational and

rotational positioning. Encoding orientation and position in two separate dynamical

systems (while coupling them through the generalized IK) endowed the robot with an

ability to adapt to perturbations that might affect either of these two constraints, sep-

arately or simultaneously. If a manipulated object was only shifted from its original

location, the robot’s hand did not change its orientation and remained aligned with the

desired approach vector.

In future work, we consider to investigate alternative types of coupling between

position and orientation control (e.g., by learning them as a single dynamical system

or by introducing a hierarchy, where the orientation is position-dependent, but not the

other way around).

3.5 DISCUSSION

For scientific completeness, we now revisit each of the hypotheses underlying our ap-

proach and suggest alternatives solutions.

3.5.1 MULTI-DIMENSIONAL SYSTEMS, FIRST ORDER DYNAMICS

The method proposed here allows for learning of non-linear multivariate dynamics

where the correlation between the variables is important. Other works on learning con-

trol with dynamical systems consider each degree of freedom separately, and, hence,

discard an information pertaining to the correlation across the joints. While storing

correlations across the joints is computationally expensive, it is advantageous as corre-

lations contain important motion features.

For instance, in bimanual coordination tasks, left and right arms might follow dif-

ferent motions while doing so in coordination. Embedding correlation between the

arms motion into a representation ensures a correct synchronization between the arms.

Furthermore, learning of a correlation decreases a number of Gaussians required for an

accurate approximation.

Despite these advantages, the complexity of learning grows with the number of

degrees of freedom. Building an accurate model of a multi-body motion requires a

133



considerable amount of training data. This problem is fundamental and affects many

statistical approaches. McLachlan & Peel (2000) argues that global learning meth-

ods (e.g., GMR), utilize all available information for building an output prediction

for a given input. In contrast, local non-parametric methods (e.g., LWR), use only

data points close to an input stateLocal learning methods are less suitable for tack-

ling multi-dimensional problems, where distances between the training data points are

large and where an input state may not have close neighbors. . LWPR offers an ap-

pealing solution. Keeping a flexibility of a local method, LWPR deals with the "curse

of dimensionality" by learning data not in an original space but in a subspace of lower

dimensionality. We should note that though GMR is a global learning method it still

faces computational difficulties when applied to highly multi-dimensional data. One

needs to either increase an amount of training data or use dimensionality reduction

techniques prior to learning.

An alternative approach, which is frequently pursued in motion learning, is to en-

code a trajectory of each dimension as a function of a time index and hence learn them

independently. Such univariate learning has a strong advantage: it poses fewer re-

quirements on an amount of training data. Dynamical Movement Primitives (DMP),

against which we compare our method in Section 3.3.4.7, follows this approach. How-

ever, independent learning of trajectories along each dimension significantly increases

a number of free parameters. Furthermore, information about a correlation pattern

across dimensions is being discarded, which leads to a distortion of an original motion

pattern during reproduction.

It is likely that nature has taken ways to resolve the problem of multi-body con-

trol. One can cite two important observations from human motor control. Firstly, the

human motor system tends to decouple control of multiple degree of freedom so as

to coordinate only subsets of these (d’Avella et al., 2003; d’Avella & Tresch, 2002).

For instance, depending on the type of task, a researcher might decide to separate task

control of upper and lower parts of a robot’s body. Secondly, (Giszter et al., 1993;

J. A. S. Kelso, 1995) observe that even within such a subset, degrees of freedom are

not controlled independently, but rather in a synergy, which again decreases the num-

ber of actual control parameters. For instance, (Wang. et al., 2008) explore this concept

in robotics and suggest to learn whole-body swinging motions by projecting trajecto-

ries into a subspace of lower dimensionality. Similarly, (Bitzer & Vijayakumar, 2009)

follows a similar path to overcome some limitations of the DMP approach.

While we start with the hypothesis that a motion is governed by a first order dynam-

ics, the method proposed here might be extended so as to learn higher-order dynamical

systems (higher-order systems can always be expressed in the canonical form, i.e., as

a set of first-order systems). This ability is particularly relevant in applications where

the acceleration profile needs to be controlled.

3.5.2 TIME INDEPENDENCY vs TIME DEPENDENCY
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Figure 3.44: An example of a trajectory generated with DMP and starting far from an original

demonstration. Note, that although the motion is globally asymptotically stable, the resulting

trajectory makes little sense.

In this chapter, we advocate that time-independent encodings in the state-space

offer the more robust representation as compared with time-dependent encodings. The

presented results confirm that the state-space representation is, indeed, highly robust to

spatial and temporal perturbations.

Yet, some motions, such as those that require synchronization with an external

dynamics (e.g., catching motion, where a robot has to synchronize with a ball to be

caught), should be encoded using a time-dependent representation or, if the external

dynamics is known, using an explicit parametrical coupling of two time-independent

dynamics, for instance, as it is done by Ijspeert, Nakanishi, & Schaal (2001). Another

limitation of the time-independent representation is the impossibility to encode com-

pound motions: once the robot reaches a target (the attractor of a dynamical system),

its velocity drops to zero and it stops. To learn compound motions, we suggest to seg-

ment the motion into a set of primitives, each of which is governed by a single attractor.

Each primitive motion then can be represented by a dynamical system. The transition

between these primitives can be controlled by an external algorithm that switches be-

tween the primitives. Note, that we already discussed a related problem in Section

3.2: the transition between the primitives is learned and controlled through a Hidden

Markov Model.

3.5.3 KINEMATIC CONTROLLER

In the experiments reported here, control of the robot is purely kinematical: we

encode the desired kinematic trajectories, but do not take into consideration the dy-

namical properties (actual torques) of the robot arms. An additional control step is

necessary to convert positions into motor commands by means of the inverse dynamics

or a PID controller.
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We should emphasize that the proposed method can be coupled with operation

space control (Hsu et al., 1989; Khatib, 1987; Nakanishi et al., 2005): one of objectives

of operational space control is to execute desired trajectories defined in the task space

of an end-effector. Our algorithm provides an input for the operation space control by

generating the desired kinematic trajectory in real-time.

Learning the inverse dynamics and operational space control (Peters & Schaal,

2008a), while a highly valuable topic in itself, is beyond the scope of the present paper.

Further, considering that many of the current robotic platforms are controlled in joint

position or velocities, the proposed approach combined with the inverse kinematics is

thus valid for a large set of applications.

The proposed approach essentially compensates for the robot’s hardware limita-

tions (joint velocity and torque limits) that can lead to deviations from original com-

mands: e.g, if a robot is not able to reach a particular position in a given time span due

to angular velocity limits, the system at each time step will recompute the next motor

command based on an actual position of the robot. Therefore, while the hardware lim-

its can slow down the motion, but the real-time dynamical controller still allows the

robot to follow a desired path.

A problem of the overall stability of a system that consists of a low- and a high-level

controllers may arise if the low-level controller does not support a control frequency

necessary for the high-level controller to be stable: if the frequency of the low-level

controller is too low, the dynamical planner at the high-level will tend to overshoot a

target and may fail to converge. However, the state-of-the art robotic platforms operate

at a frequency that is sufficiently high to generate stable trajectories given a stable

dynamical controller at the high-level.

3.5.4 CHOICE OF STATISTICAL FRAMEWORK

Being a global statistical techniques16, GMMs is a proven mean for estimating func-

tions from sparse demonstrations, which are typical of PbD applications. However,

neither GMMs nor LWPR or GPR ensure stability of a learned dynamical function.

Here, we propose an algorithm that ensures local asymptotical stability and gradually

improves the quality of the approximation. Potentially, the same procedure may be

adopted for other statistical frameworks. However, the accuracy of the approximation

may vary significantly depending on a particular choice.

One should note that EM is more computationally expensive than LWPR: the num-

ber of iteration steps for training GMM is of order O(K · M · N) in comparison to

of O(N) for LWPR. Both of these numbers, however, remain small in comparison to

GPR. Similarly to LWPR and in contrast to the GPR-based methods, GMR’s compu-

tational costs for the retrieval procedure are low and increase only linearly with the

number of parameters. Importantly, GMM-based models usually contain much less

parameters due to the coarse representation.

A part of computational complexity of the proposed method comes from the itera-

16in contrast to local non-parametric methods such as LWPR, GPR
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tive estimation of the region of applicability, which requires n1 · .. · nN · M iteration

steps (n1..nN are the respective sizes of the mesh along the N dimensions, M is the

number of data points). In our experiments, estimation of the region of applicability

has not exceeded 100-120sec. As learning can be performed offline and because, once

learned, the model allows the task reproduction without heavy computations. Hence,

the computational complexity of training is counter-balanced by the low computational

cost during the retrieval.

3.5.5 REAL-TIME ADAPTATION TO PERTURBATIONS

One of the strengths of the proposed approach is its ability to cope with perturbations

in real-time. Under a perturbation we mean an unexpected change in the positions of

a manipulate object or a robot’s arm during motion. We demonstrate that a learned

motion dynamics with the position of an object mapped into the attractor allows the

robot to successfully track the object even in case of perturbations. This adaptability,

combined with the guarantee of ultimately reaching the object, is one of important

advantages of the proposed method over analytical planners that we discuss in Section

2.1.

The planners are definitely powerful tools for trajectory generation as they also

provide mechanisms for obstacle avoidance. However, for planner require accurate

information about a robot’s environment, which is not always available. In contrast,

our method allows the robot to accomplish tasks if the environmental information is

limited or inaccurate.

3.5.6 SINGLE vs SEVERAL ATTRACTORS

A further hypothesis pertaining to the work presented here is the idea that a dy-

namical system to be discovered has a single or several known fixed point attractors.

This can be considered as a limitation, as a dynamics may be governed by the exis-

tence of more complex orbits than merely fixed points. For example, a dancing motion

may have a curve as an attractor. The applicability of the proposed method in this case

will mostly depend on the quality of training data; further no stability can be guaran-

tee. Procedures for ensuring stability of complex orbits may substantially widen the

class of motion under consideration, covering dancing or sport motions that are usually

characterized by the existence of certain curves to which all trajectories converge.

3.5.7 TRAINING DATA

The generalization properties of dynamical controllers directly depend on the quality

of training data; the aspect common to all statistical learning methods. To improve

the quality of the training, one can: 1) provide an exhaustive set of accurate demon-

strations; 2) permit a robot to explore on its own (Reinforcement Learning (Guenter

et al., 2007)); 3) provide more variability in between demonstrations (the problem has
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been discussed in (Calinon & Billard, 2007c)). The first option does not agree with

the requirement of user-friendliness of teaching interfaces: a number of demonstra-

tions should be kept bearable for a user. The computation time of the second approach

is sometime impediment, if a robot should quickly react to perturbations. Further-

more, all existing RL approaches are time-dependent. Therefore, we concentrate on

improving quality of demonstrations by introducing more variability into a small set of

demonstrations.

3.5.8 KINESTHETIC TEACHING

For task demonstration we use the kinesthetic teaching approach: a robot is observing

a task through its own body (the motors are set in the passive mode). One of the

advantages of kinesthetic teaching is that the human can perceive limitations of the

robot’s architecture. Therefore, he/she can adapt the intuition about an optimal or

efficient motions accordingly. Although we actively exploit the kinesthetic teaching

paradigm, other approaches such as vision-based learning can be equally applied. That

is, the proposed algorithm that can be applied to the motion data obtained through

different modalities.

3.5.9 PRACTICAL CONSIDERATIONS

From the practical point of view, mapping the position of a manipulated object into

an attractor of a dynamical system improves motion precision at the target and, there-

fore, enables learning of prehensile tasks. This is a important improvement, as many

existing programming by demonstration algorithms are applied for teaching large-scale

motions.

We show that our approach is generic in that it does not make assumptions re-

garding variables to be learned nor nor regarding a robot’s arm geometry. Indeed, the

method can be applied for controlling robotic arms of different geometries and for

learning dynamics of different motion variables.

3.6 CONCLUSION

This chapter outlined our approach to learning motion coordination through a dynam-

ical system representation. From the stance of motion production, two approaches

were presented. The first method was built upon an existing dynamical model of hu-

man reaching movements. As we demonstrated in Section 3.2, among its advantages

were robustness against perturbations, precision, and global stability. It was discussed

that the linear form of the model facilitated coupling of several systems. In the pro-

posed algorithm, the coupling was used to coordinate the two arms of a robot. That

is, the coupling ensured reproduction of the learned bimanual constraints. However,

we emphasized that, due to a simple linear form of dynamics, the method fell short if

manipulation required curved motions. Therefore, we further suggested a more generic
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approach to motion learning. The second method, proposed in Section 3.3, made only

a broad assumption about the type of dynamics underlying demonstrated trajectories

(i.e., that it was an autonomous dynamics) and, therefore, flexibly accounted for a

multitude of coordinated motions. We developed a method that essentially learned

a dynamical motion representation of arbitrary nonlinear motions from training data

provided by a human. The experiments further demonstrated that the robot could re-

produce sophisticated motion patterns and was adaptable to external environment. To

emphasize strengths of our work, we experimentally compared our method with an-

other state-of-the-art approach.

From the stance of robot learning, we addressed the problem of coordination at

the low (trajectory) level and at high (task) level. In literature review in Chapter 2, we

provided the evidence that learning coordination at the low trajectory level was funda-

mental for developing robot’s manipulation skills. The algorithms proposed in Section

3.3 and 3.4 enabled a robot to acquire task models with nonlinear correlation between

parameters. Encoding and reproduction of nonlinear correlation was demonstrated to

be the crucial condition for successful task accomplishment. Particularly, in Section

3.3.4.7, we compared our method with Dynamic Movement Primitives (DMPs). As

we explained: DMPs were essentially an uni-variate model, that did not consider co-

ordination between the variables explaining the motion. The results of comparison

clearly highlighted the importance of coordination, especially, under perturbations in

the environment.

Bimanual tasks that we considered in Section 3.2 were compound tasks (i.e., con-

sisted of several subtasks); learning, hence, occurred at the high level. The robot

learned underlying discrete spatio-temporal constraints that characterized a subpart of

a trajectory. We applied Hidden Markov Models to uncover a generic sequence of the

constraints and to learn transitions within this sequence. We suggested that combining

the two levels of representation, i.e., using the proposed dynamical motion represen-

tations (Section 3.3) within the bimanual framework (Section 3.2), would enhance the

performance: the robot would be capable of learning nonlinear continuous motion pat-

terns and ensure resolution of discrete task-level constraints. We assumed such an

extension as a part of future work.

In the next chapter, we will discuss learning for physical human-robot interaction.

Teaching motion coordination to a robot so that it can physically interact with humans

is a unique challenge for robot learning. Indeed, physical interaction requires to resolve

a number of issues that have not been explored sufficiently neither in analytical robotics

nor in robot learning. Between these issues are online trajectory regeneration, strong

action-perception coupling (to make the robot responsive to force applied by a human),

and efficient generalization of task models (human partners vary the pace as well other

parameters of the motion). We will demonstrate how the use of the dynamical motion

representation developed in Section 3.3 facilitates the learning of physical human-robot

interaction and to achieve good performance.
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Chapter 4

Learning Physical

Human-Robot Coordination

The method presented in this section has been previously
published in:

Gribovskaya E., Kheddar A., and Billard, A.. Motion Learning and Adaptive

Impedance for Robot Control during Physical Interaction with Humans. Proceed-
ings of IEEE International Conference on Robotics and Automation. 2011.

4.1 OVERVIEW

O
NE key component of physical coordination between humans is haptic commu-

nication – an information exchange through force signals. In this chapter, we

demonstrate how to combine learning of dynamical motion representations (presented

in Section 3.3) and impedance control to teach a robot physical collaboration.

In some works on control of physical interaction (see Section 2.4.4), external forces

are considered as random disturbances and therefore the control objective is to compli-

antly reject them so that a robot can proceed with trajectory tracking. This objective

is suitable for autonomous manipulation tasks, however, if a robot needs to coordinate

with a human, the control requirements should be reconsidered. Here, we address a

problem that goes beyond that of a robot reacting to random disturbances and focus on

a continuous prediction and adaptation to the dynamics of the partner.

To motivate our approach, we start by discussing preliminary experiments 1 where

a robot HRP-2 collaborates with a human in a lifting task (Section 4.2). In these exper-

iments, the robot learns how to execute the task by observing it through teleoperation

and then uses a learned task model to infer suitable actions while collaborating with

the human autonomously. We revisit the results of these experiments and highlight

open issues that we further address in our method (Sections 4.3 to 4.8). Specifically,

in the preliminary experiments, the robot’s performance would be poor if, during re-

production, the human partner is moving at a pace different from a demonstrated one.

Moreover, if the human attempts to stop abruptly or bring the object to a different lo-

1The experiments are preliminary with respect to the work presented in the manuscript.
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cation, the robot is unable to infer a suitable action from the learned task model. In this

case, the robot behaves unsafely by counteracting the human motion.

While analyzing the results of these experiments, we also observe that it is difficult

to assess the algorithm’s performance while the robot is interacting with a human. Un-

aided manipulation tasks often allow for an intuitive performance criterion: a task is

deemed to be accomplished successfully if an overall objective is achieved (e.g., if the

object is brought to a desired location). Assessing performance in collaborative tasks

is more intricate; force distribution between partners should be taken into account.

To check whether the robot adapts to the human partner, one way would be to some-

how "freeze" the behavior on the human side and verify whether the task still can be

accomplished. Controlling a human’s behavior in real-world experiments is difficult,

therefore, we propose a simulation set-up for testing our algorithm.

In Sections 4.3 to 4.8, we describe our approach to learning physical interaction

and validate it in simulation. We demonstrate that learning a dynamical task model

allows the robot to anticipate the partner’s intentions and adapt its motion according to

perceived forces. In comparison to the preliminary experiments with the HRP-2 robot

discussed in Section 4.2, the use of our algorithm helps to improve performance in

situations where the partner changes a motion pace. To compensate for unmodelled

uncertainties, in addition to learning, we propose an adaptive control algorithm that

tunes the impedance parameters, so as to ensure accurate reproduction.

4.2 PRELIMINARY EXPERIMENTS WITH A HRP-2
ROBOT

In this section, we briefly summarize experiments that have been conducted on a hu-

manoid robot HRP-2. The work presented below is a result of collaboration with Prof.

A. Kheddar, Dr. S. Calinon, and Dr. P. Evrard and appears in the following publica-

tions.

• Evrard P., Gribovskaya E., Calinon S., Billard A., and Kheddar, A. Teaching

Physical Collaborative Tasks: Object-Lifting Case Study with a Humanoid. In

Proceedings of IEEE International Conference on Humanoid Robots, 2009.

• Calinon S., Evrard P., Gribovskaya E., Billard A., and Kheddar A. Learning

collaborative manipulation tasks by demonstration using a haptic interface. In

Proceedings of the International Conference on Advanced Robotics, 2009.

E. Gribovskaya’s contribution in the above mentioned works consists in participation in

the data collection experiments discussed in (Calinon, Evrard, et al., 2009) and (Evrard

et al., 2009), in conducting simulation experiments (Calinon, Evrard, et al., 2009),

and in preparing task models and developing software for testing the algorithm on the

HRP-2 robot (Evrard et al., 2009).

The algorithm described in this section and its experimental validation provide a

background important for motivating our method that is discussed further in this chap-
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ter. The current section is organized as follows: Section 4.2.1 describes the hardware

set-up and the data acquisition process, Section 4.2.2 outlines the proposed learning al-

gorithm, and Section 4.2.3 discusses the reproduction set-up and experimental results.

4.2.1 HARDWARE SET-UP

In (Calinon, Evrard, et al., 2009; Evrard et al., 2009), a collaborative lifting task is

demonstrated to a full-sized humanoid robot HRP-2. Fig. 4.1 presents the experimen-

Figure 4.1: We consider a task where a human and a robot lift a rigid beam in collaboration

(Evrard et al., 2009). Training is accomplished through teleoperation of the HRP-2 robot through

a haptic device.

tal setup used for demonstration. A human operator (teacher) teleoperates the robot

through a six degree of freedom haptic device. The teacher perceives a complete inter-

action wrench measured by a force sensor mounted on the robot’s wrist. The second

operator (human partner) lifts a beam together with the teleoperated robot.

The robot performs the task in the upright standing position using solely its right

arm. The robot’s wrist is constrained to move along the vertical direction. The position

and velocity of the robot’s gripper and the force measured by the sensor are recorded

at the frequency of 200Hz.

The robot is provided with two sets of demonstrations. In the first set, the teacher

is blind-folded 2 and the partner initiates and terminates the motion. In the second

set, the roles are exchanged: the teacher leads the motion’s onset and the offset. The

data recorded during demonstration are depicted in Fig.4.2. Note that the two sets of

demonstrations contain different force-velocity patterns.

2Being blind-folded helps a human to rely on his/her haptic perception rather than on visual cues.
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4.2.2 ALGORITHM

Demonstrated data are collected into a training set D, which consists of M demon-

strated trajectories of a length Nk, k = 1..M . Each trajectory is a sequence of wrist

positions xk
t , velocities ẋkt , and force measurements fkt : D = {xk

t , ẋkt , fkt }k=1..M
t=1..Nk =

{x, ẋ, f}. The joint probability of the data D is encoded with Gaussian Mixture Models:

p(x, ẋ, f) =
K∑

k=1

πkNk(x, ẋ, f), (4.1)

where K is the number of Gaussian components in the mixture, Nk is a Gaussian

distributions with the mean value and the covariance matrix μk and Σk, k = 1..K.
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Figure 4.2: [Taken from (Calinon, Evrard, et al., 2009)] The two sets of demonstrations are

provided. In the first set, the teacher is blind-folded and the partner initiates and terminates the

motion. In the second set, the roles are exchanged: the teacher leads the motion’s onset and

the offset. Note that the two set produce different force-velocity patterns. (a) Collected data are

plotted in fine lines. An average demonstration in each set is plotted as a wide line with arrows.

Right: when the human partner initiates the motion, the robot perceives positive interaction force,

when the robot starts moving the force gradually decreases to zero by the end of the movement.

Left: in contrast, when the robot (guided by the teacher) initiates the motion, the robot perceives

negative force, when the human partner starts moving the force gradually increases to zero by

the end of the movement. (b) The GMM encoding of the training sets.

Once learned, the task model given by Eq.4.1 is used for generating a kinematic

command for the robot’s wrist. At each time step, the robot infers both desired position

and desired velocity from the position, velocity, and force measured at a previous time

step. The desired acceleration is then calculated using a PD-type controller:

ẋd = E [ p(ẋ|x, f) ], xd = E [ p(x|ẋ, f) ] (4.2)

ẍd = (ẋd − ẋ)κν + (xd − x)κp,

where xd, ẋd are robot’s position and velocity estimated from the learned model using

Gaussian Mixture Regression (see Chapter 3.2); x, ẋ are the actual position and veloc-

ity. The gains κν and κp are analogous to the gains of a PD controller (see Section 2.1);

an approach suggested in (Calinon, Evrard, et al., 2009) sets these parameters propor-
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tional to the likelihood of the current position and velocity of the robot’s wrist. The

desired acceleration ẍd is numerically integrated to the positional command, which is

sent to the robot.

The controller given in Eq. 4.2 exploits the GMMs’ ability to infer the expected

value of any variable encoded into a joint distribution p(x, ẋ, f) conditioned on other

known variables. Note that the perceived force f enters into the task model in Eq. 4.1

as a control input.

4.2.3 REPRODUCTION RESULTS

During reproduction, the robot is no longer teleoperated, but acts autonomously. The

desired velocity and position for the robot’s wrist are computed at each control iteration

by integrating the acceleration given in Eq. 4.2.

Several human subjects are asked to lift a rigid beam together with the robot. They

are explained how to execute the task, but otherwise are not given any specific in-

structions, whether to adapt to robot’s motion or impose their own pace. In many
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Figure 4.3: [Taken from (Evrard et al., 2009)] Dashed grey and solid blue lines show force-

velocity patterns in failed reproduction trials where a human partner tries to stop the robot

abruptly. The green and pink ovals represent Gaussian components of the learned task model

and correspond to the these in Fig. 4.2-(b).

reproduction trials, the object is lifted, but the demonstrated dynamics is not followed.

In Fig.4.3, one can see that the force-velocity pattern is stretched along the force di-

mension. Such a deformation can be explained by the increase in the perceived force

(e.g., a human tries to move faster) to which the robot does not react (does not change

its velocity accordingly). Evrard et al. (2009) emphasize that the overall behavior of

the system is qualitatively similar to the demonstrated one in the sense that the force-
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velocity correlation is still present. Therefore, the authors advocate that one way to

improve robot performance during interaction is to rescale observed force-velocity pat-

terns. However, one may argue that the scaling is a heuristic solution. Furthermore,

finding suitable scaling factors is highly nontrivial. Instead, in this work, we propose

an encoding which allow the robot to accommodate to force profiles different from the

observed ones.

Evrard et al. (2009) also test the algorithm in unobserved situations by asking the

human partner to depart from the original task motion, for instance, by stopping the

motion abruptly or by trying to bring the object to a different location. These experi-

ments provide useful insights into limitations of this learning approach. In particular,

while the human is trying to stop the motion, the robot keeps moving upwards. This

behavior is due to the properties of the chosen encoding: once the perceived force

deviates from the observed values, its influence on the estimated velocity gets small

and the velocity tends to be driven by the position signal (see Eq. 4.1). As a result, the

robot keeps following the demonstrated trajectory and ignoring the partner’s intentions.

Some participants also report that they perceive the robot trying to accelerate upwards

as they push the beam down.

To prevent such an undesirable behavior, it would be necessary to endow the robot

with the ability to adapt to the partner’s motion by generalizing learned interaction

forces. In the next section, we propose an algorithm that addresses this problem and

allow a robot to adapt to the pace of its partner.

4.3 MODEL INTRODUCTION AND A SIMULATION

SET-UP

We further outline a method that combines task learning and impedance control so

as to enhance robot’s adaptive skills. We suggest that the ability to generalize and

anticipate the perceived forces is highly important for generating an appropriate kine-

matic/dynamic response. Furthermore, as generalization and prediction may not ac-

count for all perturbations, for instance, for those induced by changes in human be-

havior (sudden deviations from the motion plan or varying arm impedance), additional

mechanisms are required to mitigate such non-modeled effects.

When reviewing methods control of physical interaction in Section 2.1.4.2, we ob-

serve two major research directions: active following, where a robot is provided with

task knowledge, and variable impedance, where the robot’s impedance is adjusted so

as to decrease efforts on the human side. In our approach, we pursue both directions;

the proposed algorithm consists of two parts.

First, we learn a task model from demonstrations. The learned task model is used to

generate a reference kinematic and feedforward control signals in response to perceived

forces. The learned task model also allows the robot-follower to predict the perceived

forces. This ability to anticipate incoming forces helps to adapt its motion on-line.

Second, we propose an adaptive impedance controller that compensates for non-
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Figure 4.4: Two planar robots lift a beam in collaboration. For successful task completion the

two robots have to coordinate and adapt their motions so as to avoid tilting the beam. The robot-

leader substitutes the human. The desired kinematic plan xd,L, ẋd,L, ẍd,L of the robot-leader is

pre-defined. The robot-follower anticipates the motion intentions of the robot-leader and adapts

accordingly. During demonstration, the robot-follower learns to generate a desired kinematic

command xd, ẋd, ẍd in response to the perceived force f . The two robots are controlled by

impedance control laws with desired stiffness, damping, and inertia. During task execution, the

robot-follower adapts its desired stiffness K̃d and inertia Λ̃d, so as to ensure accurate reproduc-

tion of a learned task model.

modeled effects. We extend the method proposed by Ganesh, Albu-Schaffer, et al.

(2010) so as to encapsulate the force feedback error into the adaptation laws. We con-

sider a full impedance with stiffness, damping, and inertia. Some studies on human

motor control report qualitative analogy between hand stiffness and viscosity (damp-

ing) (Tsuji et al., 1995, 2004). Therefore, we additionally assume that the damping is

correlated with the stiffness and develop adaptation laws for the stiffness and inertia.

We evaluate the performance of the proposed algorithm in controlled situations

using a physical simulation of a pair of planar robots; see Fig. 4.4. The robot-leader

mimics the role played by the human in the real-world experiments from Section 4.2,

the robot-follower mimics the HRP-2 robot.

In our simulation set-up, both robots, the leader and the follower, are controlled by

an impedance control law, which implementation is discussed in more detail in Section

4.4. The leader is to impose its kinematic behavior to the follower. Therefore, its

stiffness is set to be much higher than that of the follower.

We introduce delays, signal-dependent noise, as well as change in the impedance

of the controller of the follower.

The remainder of this section is organized as follows. Section 4.4 formulates an

impedance control law that we use to control both simulated robots during data ac-

quisition (Section 4.5) and task reproduction. Section 4.6 provides an overview of the

control algorithm for the robot-follower (the robot-leader is controlled by a predefined

impedance control law with fixed impedance parameters). Sections 4.6.1 and 4.6.2

discuss methods for learning task models and feedforward control respectively. Sec-

tion 4.6.3 presents an adaptive algorithm for tuning impedance parameters. Section 4.7

illustrates the control algorithm through several experiments.
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4.4 IMPEDANCE CONTROL

The goal of impedance control is to implement a desired dynamical relationship be-

tween the robot motion and the external forces/torques (Hogan, 1985). We consider the

impedance of contact points defined in the Cartesian space, specifically, at the robot’s

end-effector.

We write the rigid body dynamics in the task coordinates (Khatib, 87)3 as:

Λ(x, ẋ)ẍ + μ(x, ẋ)ẋ + J−T g(x) = J−T τ + f (4.3)

Where the matrices Λ(x) and μ(x, ẋ) are given by:

Λ(x) = J−T MJ−1 μ(x, ẋ) = J−1(C − MJ−1J̇)J−1, (4.4)

where M = M(q) is the inertia matrix (q ∈ R
Nq is the vector of joint angles), C =

C(q, q̇) is the Coriolis/centrifugal matrix, g = g(q) is the vector of gravity torques, f is

the vector of external forces, τ are the applied joint torques, and J is the Jacobian.

Impedance control in the task space sets the following control objective (Hogan,

1985):

Λdëx + Ddėx + Kdex = ef (4.5)

where ex = x − xd and ef = f − fd.

where ex is the position error between the actual position x and the reference position

xd; ef = f − fd measures how much the actual perceived force f deviates from the

reference force fd. Λd, Dd, and Kd are the symmetric positive definite matrices of

desired inertia, damping, and stiffness, respectively. The external forces defined in the

Cartesian space are projected onto the joint torques according to: τext = JT f .

Substituting ẍ from Eq. 4.5 into Eq. 4.3, we can implement the Cartesian impedance

controller via the joint torques τ as follows:

τ = u + JT K̃ex + JT D̃ėx + JT Λ̃def, (4.6)

where u = g + JT (Λẍd + μẋd) (4.7)

K̃d = ΛΛ−1
d Kd, D̃d = ΛΛ−1

d Dd + μ, Λ̃d = ΛΛ−1
d − I.

Eq. 4.6 can be rewritten as a sum of the feedforward and feedback components. The

feedback signal can be decomposed into the kinematic feedback vx and the force feed-

back vf .

τ = u + v, v = vx + vf (4.8)

vx = JT (K̃dex + D̃dėx), vf = JT Λ̃def.

3The notation −T refers to pseudo-inverse of a transposed matrix. The notation −1 refers to pseudoin-

verse if a matrix is noninvertible.
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We will use this decomposition on kinematic and force feedback when discussing

adaptive impedance in Section 4.6.3.

Finally, in our experiments, most variation occurs along the vertical axis. Therefore

only the impedance parameters along the vertical axis are taken into account. Follow-

ing common practice, we further set D̃j = λ
√
K̃j ; here we set λ = 2.

4.5 TWO-STAGE TRAINING PROCEDURE

As we test our algorithm in simulation, we need a special procedure to obtain a train-

ing set. We suggest to generate training data through a two-stage training procedure:

in each demonstration, the robot-follower alternates between “passive" and “active"

stages. This procedure relates to the way humans incrementally learn to synchronize

with each other. During the passive observation, the follower is not aware of intentions

of the leader and tracks its own kinematic plan, however, with low stiffness. The leader

therefore can correct the follower, but needs to apply efforts. During the active observa-

tions, the leader repeats the same motion, while the follower tracks the kinematic plan

recorded during the passive observation. Such “proactive” adaptation on the follower’s

side allows for better alignment of both kinematic and force profiles between the two

robots.

Before discussing these two stages in more detail, we first outline several assump-

tions built-in into the simulation set-up.

During training the robots are controlled with the impedance control law according

to Eq. 4.6 with the pre-defined impedance parameters and the zero reference force fd.

The choice of desired impedance parameters for the leader and the follower is discussed

further in this section. The robots’s inertia Λ(q), the Coriolis matrix C(q, q̇), and the

gravity torques g(q) are computed analytically.

For both robots, the reference kinematics are generated by a dynamical system pa-

rameterized with a multiplicative parameter. Specifically, we use the VITE dynamical

model of human reaching motions discussed in Section 3.2: ẍd = α(−ẋd+4(xtar−xd)),
where α is the multiplicative parameter, xtar is the given target location.

To provide examples of adaptation to different velocities, the parameter α of the

leader is varied from one demonstration to another, so as to generate motions with

a maximum desired velocity of 0.2-0.5m/s and a duration of 0.4-0.8s. The α of the

follower is fixed so to generate the reference motion of 0.8s with the maximum velocity

0.2m/s. In total, 15 demonstrations at different velocities are acquired.

The dynamical system produces the same task space trajectories but with different

velocity profiles4. Hence, the reference kinematics profiles share the same goal (i.e.

bring the beam in a specified location), but have dissimilar timing (due to different

reference velocity profiles and sensory delays).

We simulate two types of sensorimotor limitations of the human motor system: a

signal-dependent noise and sensory delay. A reaction delay (a time span between the

4A model parameterized with α = 10 produces the same trajectories in the state-space {x1;x2} as a

model parameterized with α = 20, however the latter converges to the target twice as fast.
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Figure 4.5: TWO-STAGE TRAINING PROCEDURE. To simulate real-world training, where

the robot is teleoperated by a human, we adopt a two stage training procedure. Figs. (a), (e)

present the robots’ configurations during training. Desyncronization between the partners is

greatly reduced during active observation, as expressed by the reduced tilting of the beam. PAS-
SIVE OBSERVATION: The stiffness of the robot-follower is set to be low ( 5N/m) and the

stiffness of the robot-leader is high ( 50N/m). This allows the robot-leader to impose its kine-

matic plan; see Fig. (b). The actual velocity of the robot-follower is higher than its reference

signal and coincides with the actual and reference velocities of the robot-leader. Such a forced

adaptation is achieved at the cost of considerable energy injection; see Figs. (c)-(d). The robot-

follower perceives high positive external forces that are due to the effort of the robot-leader. After

observing the task “passively", the robot-follower stores the kinematic information and discards

the force signals. ACTIVE OBSERVATION: The stiffness of both partners is medium ( 15N/m).

The robot-leader repeats the same reference kinematical profile as at the previous stage, while

the robot-follower utilizes the kinematic profile acquired during passive observation. Improved

synchronization decreases the magnitude of the forces perceived by both partners; see Figs. (c)-

(d), solid line. The final training set is composed of the velocity signal recorded during passive

observation, and the external forces/applied torques recorded during active observation.

moments when the follower starts perceiving that the force is changing and when it

actually starts moving) is assigned to be 150ms; the perception delay along the motion

(delay between perception of a force and reaction) is 3ms.

4.5.1 PASSIVE OBSERVATION

The two robots are controlled to track their reference kinematic profiles generated with

the VITE system as discussed above. The stiffness of the robot-follower is set to be

low (5N/m) and the stiffness of the robot-leader is high (50N/m). The robot-leader

imposes its motion plan to the partner; see Fig. 4.5-(b). This requires the leader to

inject a considerable amount of energy; see Fig. 4.5-(c),(d), dashed line. Therefore,
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even though the follower tracks the motion of the leader (the actual velocity of the

follower is close to that of the leader), the perceived forces are different from those that

would be observed if the follower reproduced a correct velocity profile intentionally.

To observe these forces, the follower reproduces the observed kinematics in the next

training step.

4.5.2 ACTIVE OBSERVATION

The robot-leader tracks the same reference trajectory as during the passive stage. The

robot-follower utilizes as the reference signal the actual kinematics x, ẋ, ẍ recorded

during passive observation (as it better matches the reference kinematics of the leader;

see Fig. 4.5-(b)).

By deliberately reproducing this imposed kinematic profile, the follower generates

forces that are better aligned with those of the leader. The leader injects less energy

and, therefore, the forces perceived by the follower are smaller than those measured

during passive observation; see Fig. 4.5-(c),(d), solid line. Fig. 4.5-(a),(e) highlights

improvements in synchronization across the two stages5. The collected data (actual

velocity, forces, and the feedforward commands of the follower) are further used to

learn the task model ĥ and the feedforward control u.

4.6 APPROACH

In this section, we discuss how a task model is learned from a set of demonstrations, and

present the adaptive impedance control law that accounts for compensation of effects

not captured by the learned model. Fig. 4.6 shows the control flow of our model. After

acquiring a set of demonstrations D, the robot learns the task model ξ̇ = ĥ(ξ) and

a forward control signal u = u(ξ) that maps the desired state ξ of the task model

to actual motor commands. The dynamical system representation of the task model

allows the robot to generate reference signals on-line adapting to the force applied by a

human. The robot is controlled through an impedance control law so as to compensate

for non-modeled aspects of the external dynamics. The desired stiffness K̃d and inertia

Λ̃d are adapted during task execution.

4.6.1 LEARNING A TASK MODEL

A training set D consists of M demonstrated trajectories of length Nk, for k = 1..M .

Each trajectory is a sequence of states, ξkt , state derivatives ξ̇kt , and control inputs

uk
t , t = 1..Nk. The control input uk

t is the vector of joint torques. The task state is

an augmented state ξ = [ẋd, fd]T that consists of the reference velocity ẋd, and the

reference force fd, to be measured by the force sensor mounted at the robot’s wrist.

5During active observation the decrease in the perceived forces is mainly caused by an improved syn-

chronization. But the lowered stiffness of the robot-leader also contributes to this decrease. Indeed, the

robot-leader does not forcefully guide the robot-follower.
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Figure 4.7: The task model is represented by a dynamical system ξ̇ = ĥ(ξ), ξ = [ẋd; fd] and

estimated from the training data. At each time step, the velocity ẋd and force fd are inferred from

these observed at the previous step. Their dynamical relationships follow vector fields displayed

in blue. Dark gray lines show the demonstrations. One can observe an accurate fit between

the inferred and demonstrated dynamics. Statistical inference extends prediction of the force-

velocity pattern to ranges of these variables not observed during training. This offers a greater

robustness during adaptation to a new human partner.

Following the method proposed in Section 3.3, we assume that the task model is

governed by an autonomous (time-independent) dynamical system, where the acceler-

ation of the robot’s end-effector is a function of its velocity and the perceived force:

ξ̇ = h(ξ) + η(ξ) ∼ ĥ(ξ) = E[ p(ξ̇|ξ) ] (4.9)

where h(ξ) is the dynamic function governing the temporal evolution of the motion,

and η(ξ) ∼ N(0,Ση(ξ)) is the signal-dependent noise.

Given a training set D (see Section 4.5 for a description of the data acquisition pro-
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cedure), we learn the task model ĥ(ξ) by estimating the joint density p(ξ, ξ̇) through

Gaussian Mixture Models; given the joint density, we compute the conditional expec-

tation from Eq. 4.9. We apply the incremental EM procedure that we developed in

Section 3.3 to ensure that the estimate of the velocity is asymptotically stable at the

origin of the system. In this context, the stability ensures that when the force perceived

at the end-effector is null, the robot stops moving, as shown in Fig. 4.7.

Note that we introduce the augmented state ξ that encapsulates both the kinematic

command ẋ and the haptic input f . In contrast to the formulation in Eq.4.2 where the

interaction force is considered only as a control input, Eq. 4.9 includes the force as

a state variable. Including the force as a state variable allows learned task models to

account for a richer class of velocity-force correlations. Specifically, data acquired

during experiments with the HRP-2 robot shows that the dependency between velocity

and perceived force is non- functional: a single value of force corresponds to different

velocities; see Fig. 4.2. Therefore, assuming the one-to-one function dependency, as

it is done in Eq.4.2, distorts an actual coordination pattern and leads to undesirable

behaviors discussed in Section 4.2.3.

Learning a task model as a dynamical function of the augmented state captures

a temporal evolution of the reference velocity correlated with the perceived external

force. An advantage of this formulation is that the robot can switch across different

reference velocity profiles in response to a change in the partner’s intentions (i.e. dif-

ferent interaction forces).

Another advantage of this encoding is that the task model can be used to mitigate

sensory delays by predicting the perceived force. Specifically, to generate a reference

kinematics, the robot does not need to get actual value of the force at each time step, it

can predict the perceived force from the task model. Later, once it gets the actual value

of the force, the robot may offset its prediction so as to switch to a different velocity

profile if necessary.

4.6.2 LEARNING FEEDFORWARD CONTROL

Note that the analytical computation of a feedforward control u from Eq. 4.7 requires

an accurate model the robot’s dynamics. For the planar robots that we use in our sim-

ulation, the dynamical model can be computed analytically, however for real robots

such a model is rarely available. As we discuss in Section 2.4.4, there exist different

algorithms for approximating the feedforward control, here we learn u from demon-

strations.

The feedforward control input u is generally a function of the robot’s desired and

actual states. Given a task model ĥ(ξ) that defines the nonlinear dependency between

these parameters, u becomes a function of the task state ξ. Following Ganesh, Albu-

Schaffer, et al. (2010), we learn an estimate of the feedforward command u in the linear

form:

u = [Φ(ξ)TΘ]T , (4.10)
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where Φ ∈ R
K(Nx+Nf ) is a vector of G basis functions and Θ ∈ R

K(Nx+Nf )×Nq

is a matrix of the tunable parameters (each column θi, i = 1..Nq , of the matrix Θ

corresponds to one degree of freedom in the joint space). Nx, Nf , Nq refer to the di-

mensionality of the Cartesian space of the robot’s end-effector, perceived force, and

the joint space, respectively. Linear control parametrization given in Eq. 4.10 is com-

monly used in the adaptive control literature (Astrom & Wittenmark, 1989; Burdet &

Codourey, 1998). The basis Φ(ξ) consists of G Gaussian functions:

Φj = Φ(ξ)j =
πj(ξ) ξ∑G
g=1 πg(ξ)

, j = 1..G (4.11)

where πj(ξ) = exp
(−0.5(ξ − μξ,j)

TΣ−1
j (ξ − μξ,j)

)
with μξ,j , Σj are the mean and the diagonal covariance of a jth Gaussian kernel.

Given the training set D, we learn the parameterization in Eq.4.10-4.11 through Linear

Weighted Regression (Atkeson et al., 1997).

4.6.3 ADAPTIVE IMPEDANCE

In this section we describe an adaptive control algorithm for tuning the impedance

parameters and feedforward control; the algorithm is an extension of a bio-mimetic

approach for tuning the stiffness (Ganesh, Albu-Schaffer, et al., 2010) (see summary

in Appendix III). We write an adaptation law for the feedforward parameters θi (∀i =
1..Nq) from Eq. 4.10 as follows:

Δθi =
β

2
((1− χ)Φεi + (1 + χ)Φ|εi|)− γ1 (4.12)

where ε is the error function, that will be defined later and β, χ, and γ are empirical

constants. Ganesh, Albu-Schaffer, et al. (2010) use a purely kinematic error function,

we extend the definition to include the force error.

We introduce two feedback terms, ef and em in addition to the original formulation

by Ganesh, Albu-Schaffer, et al. (2010). These terms denote an error between the

predicted and the actual perceived force ef and a kinematic error em, which is caused

by the discrepancies in the learned feedforward control u(ξ):

ε = JT (em + ρ3ef) (4.13)

em = �min(fT ėx, 0)(ρ1ex + ρ2ėx)

where � = ‖fT ėx‖−1 is the normalization factor. The parameters ρ1, ρ2, ρ3 ∈ R weight

the importance given to errors in the trajectory, the velocity, and the force.

Kinematic Error
During free-space motions, the main cause of kinematic errors ex and ėx is in-

accuracies in the feedforward control. In contrast, during physical coordination, the

kinematic errors might be also due to adaptation to partner’s intentions. For instance,

when the robot-follower departs from a learned task model to accommodate changes
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in a partner’s motion. If the errors are due to inaccuracies in feedforward control, the

kinematic errors should be corrected by increasing stiffness and adjusting u(ξ). If

the kinematic errors are due to adaptation, we suggest that the stiffness should not be

increased or the robot would be forced to counteract the partner.

We use a simplified geometrical reasoning to write down the kinematic error in Eq.

4.13. We assume that only the part of the actual kinematic error that is collinear and op-

positely directed to the perceived force f should be used for the adaptation of stiffness

and the feedforward control. If the kinematic error is co-directed with the interaction

force (the kinematic error is assumed to be caused by adaptation), the stiffness is not

increased.

Adaptation law

Next, we use the definition of the feedback error ε to infer adaptation rules for

impedance and feedforward parameters. Substituting Eq.4.13 into Eq. 4.12, we can

rewrite:

Δθi =
β

2
(1− χ1)ΦJT em +

β

2
(1 + χ1)Φ|JT em|+ (4.14)

β

2
(1− χ2)ΦJT ef +

β

2
(1 + χ2)Φ|JT ef| − γ1.

Next, we discuss the components in Eq. 4.14 and propose the algorithm for adaptation

of the impedance parameters during physical coordination with a human.

In Eq. 4.14, the terms β
2 (1 − χ1)Φεim and β

2 (1 − χ2)Φεif correspond to the reg-

ular feedback adaptation terms. Specifically, β
2 (1 − χ1)Φεim generates a force in the

direction opposite to the kinematic error em, and updates the feedforward signal u.
β
2 (1 − χ2)Φεif compensates for the deviation of the external force from its reference

value and contributes to the adaptation of the desired inertia.

The terms dependent on the absolute values of the errors aim at tuning the stiffness.
β
2 (1+χ1)Φ|εim| increases stability in response to kinematic perturbation, while β

2 (1+

χ2)Φ|εif | decreases the stiffness if the deviation of the external force is increasing.

Indeed, a sudden increase in the force error ef means that the human is attempting to

impose a different motion plan, and hence the robot should decrease the stiffness so as

to maintain stable interaction.

Analogous to the method of Ganesh, Albu-Schaffer, et al. (2010), the update mech-

anism emulates automatic relaxation through the term γ1. This is similar to a motor be-

havior observed in humans who, in the absence of motion errors, tend to relax muscles

so as to minimize energy consumption (Franklin et al., 2008). Ganesh, Albu-Schaffer,

et al. (2010) advocate that the components involving absolute values of the errors are

responsible for muscle “co-activation" and should affect adaptation of impedance in

robots. Following this reasoning, we rearrange the terms in Eq. 4.14; the update pro-

cedure for the forward signal and the impedance parameters then can be written as
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follows:

Δθi = κxΦ(JTem)i − γθ, κx > 0, i = 1..Nq (4.15)

ΔK̃
j

d = βx|ejm| − βf |ejf | − γK̃, βx, βf , γ > 0, (4.16)

ΔΛ̃j
d = κfe

j
f − γΛ̃, j = 1..Nx κf > 0. (4.17)

Eq. 4.6 together with Eq. 4.10,4.15-4.17 represent the control algorithm that enables

the simultaneous on-line adaptation of the feedforward signal, the desired stiffness, and

the inertia. Note, to avoid instabilities, we consider adaptation only within predefined

boundaries: 2 < Kj
d < 100.

In our experiments we choose βx in Eq. 4.16 to be smaller than βf : the robot’s

stiffness increases slowly with an increasing kinematic error and drops fast as the force

error grows. The proposed treatment of the kinematic error prevents the robot from

increasing stiffness while it adapts to the partner. However, the stiffness is still affected

by the force error and cannot grow much. This is a consequence of the proposed

adaptation rules in Eq.4.15-4.17.

4.7 RESULTS

We assess our method in simulations where the robot-follower interacts with the robot-

leader, see Fig. 4.4. To highlight different types of adaptation handled by our algorithm,

we simulate different conditions that may arise during execution of the collaborative

tasks, and that would require on-the-fly adaptation of the robot’s control law.

4.7.1 LEARNING A TASK MODEL

The acquired training data are depicted in Fig. 4.8-(a),(b). Note that the data exhibit a

force-velocity correlation, which is similar to the one observed in real-world data ac-

quired with the HRP-2 robot (see (Evrard et al., 2009)). Importantly, the force-velocity

dependency defines a task model: how to generate a motion that is consistent with

perceived force; i.e. for a given value of the perceived force, the robot estimates the

relevant velocity. After data acquisition, the robot learns the task model ξ̇ = ĥ(ξ) and

the forward control model u = u(ξ). During reproduction, the learned models are fed

into the control law in Eq. 4.6. The results of the task execution are depicted in green

in Fig. 4.8. The robot-follower successfully adapts its velocity and synchronizes with

the robot-leader. Note that because of a non-functional dependency between velocity

and force, the algorithm by Evrard et al. (2009) would not accommodate to such a task.

4.7.2 ADAPTATION TO PERTURBATIONS

We tested the ability of the learned model to adapt to changing intentions of the leader

during task execution. We simulated uncertainties about the motion objectives by vary-

ing the target position xtar in the motion plan of the leader. Three cases are considered

where the leader changes the motion plan during task execution. It decides to move the
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Figure 4.8: TASK LEARNING AND REPRODUCTION. In this experiment, the robot-follower

learns the lifting task by observing demonstrations performed with different velocity profiles

imposed by the leader. During reproduction, the robot-leader varies its kinematics plan from one

attempt to another; it does so by changing motion duration and maximum velocity. The robot-

follower, governed by the learned task and control model, adapts its motion and successfully

accomplishes the task. (a) The state-space view of the data used for training a task model (gray

line) and the reproduction attempts (green line). (b) The forward control signal generated by

the follower during demonstration (gray line) and reproduction (green line). The two datasets

correspond to the two joints of the planar robot-follower. (c)-(d) The time-series of the Cartesian

velocity and trajectory of the robot-follower during reproduction. The follower (green line)

adjusts its kinematics and synchronize with the leader (dashed blue line).
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Figure 4.9: ADAPTATION TO PERTURBATIONS. Three cases are analyzed: the robot-leader

changes the motion plan on-line and move the beam (1) higher than initially planned, (2) lower,

but higher than the actual position of the beam at the moment the change decision is taken, and

(3) stops at a position lower than the actual position at the decision-taking moment. In case (1),

the robot-follower manages to re-accelerate (see the two peaks in the velocity profile). In cases

(2) the robot-follower pro-actively decelerates. In case (3), the robot also manages to smoothly

drop velocity below zero and lower the beam.
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beam (1) higher than it has planned initially, (2) lower, but still higher than the actual

position of the robots at the moment of taking the decision, and (3) lower than both

the original target position and the actual position. Fig. 4.9 shows that the follower
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Figure 4.10: COMPARISON WITH A DAMPING CONTROLLER. We compare our system

versus the damping controller. (a), (c) The planar robots performing lifting; the follower is con-

trolled by our controller (a), and the damping controller (c). One may notice the improvements

in coordination between the partners when the robot-follower adapts its kinematic profile (a):

the beam is kept horizontal all along the motion. It is persistently tilted when the follower is

controlled with the damping (c). (b) θ characterizes deviation of the beam from the horizontal

orientation. (d) The leader has to apply considerably higher forces to make the system move.

succeeds in bringing the beam to the new desired location in each case. Such an adap-

tation is possible because the learned model generalizes the force and velocity patterns

to values not observed during training (as illustrated in Fig. 4.7).

4.7.3 COMPARISON WITH A DAMPING CONTROLLER

To highlight the advantages of the proposed approach for controlling a robot during

collaborative manipulation tasks, we also implemented a damping controller according

to (Maeda et al., 2001). This easy to implement and computationally cheap method is

often used to control robots during physical collaboration with people. The only free

parameter in this controller is the damping coefficient; the reference kinematics and all

other impedance parameters are set to zero. The damping control has been proven to

be useful and efficient in many applications; however, it puts additional workload on

the human and is not adequate to control for fast motions.

We compare our system versus the damping controller in Fig. 4.10. The forces

perceived by the robot are much higher than those observed with our learned system

(Fig. 4.10-(d)). This is due to the higher forces that the leader has to apply to maintain
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the interaction. The beam undergoes stronger rotation (Fig. 4.10-(b)) due to the im-

balanced forces on its two sides. This will be highly undesirable if the beam is loaded

with unfixed objects that may slip down. However, we should emphasize, that our con-

troller possesses local knowledge and far from the demonstrated data, its prediction is

irrelevant. In this case, we suggest switching to a damping controller to ensure safety.

4.7.4 IMPEDANCE ADAPTATION

In the previous experiments we reused the impedance parameters that the two robots

had during training. However, in general the impedance parameters of the robot-

follower are unknown, e.g., if the demonstrations are provided through teleoperation

as discussed in Section 4.2. We now assume that the robot-follower has no informa-

tion about the impedance it should apply at the end-effector; hence it should adapt the

impedance parameters on-line, during task reproduction.

As discussed in Section 4.6.3, we consider adaptation of stiffness K̃d and inertia

Λ̃d, while assuming that the damping is correlated with the stiffness. If the stiffness K̃d

of the follower is too high, the robot would reject discrepancies in coordination with the

leader. If, in response, the parter is sufficiently stiff, the interaction would be unstable.

The effect of unadjusted inertia Λ̃d is less intuitive. To motivate further discussion, we

illustrate the impact of unadjusted inertia parameters. Fig.4.11 compares three cases,

where the follower executed the task with: 1) the same impedance parameters as used

during demonstration; 2) the desired inertia Λ̃d is set higher than during demonstra-

tion; and 3) the desired inertia Λ̃d is set lower than during demonstration. Note that the

changes in the inertia affects the perceived force and prediction of the desired veloc-

ity: the unadjusted inertia leads to either the underestimation or overestimation of the

velocity in comparison to this followed by the leader (green line).
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Figure 4.11: AN IMPACT OF DESIRED INERTIA. We demonstrate three cases, where the

follower executes the task with: 1) same impedance parameters as used during demonstration;

2) the desired inertia Λ̃d is set higher than during demonstration; and 3) the desired inertia Λ̃d is

set lower than during demonstration. Note that changes in the inertia affects the perceived force

and prediction of the desired velocity.

In the next experiment, we change both desired stiffness K̃d and inertia Λ̃d. The

experiment starts with the follower’s stiffness and inertia set to mid-range values of

K̃d = 35N/m and Λ̃d = 0 respectively (in contrast, during demonstration the two
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parameters were K̃d = 10N/m and Λ̃d = 0.7). This is an important difference in the

parameter values. One can see in Fig. 4.12-(a), dashed line, that reproduction without

adaptation of the impedance parameters leads to an overestimated reference velocity

and difficulties to stop at the target (oscillations in the velocity profile). Adaptation
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Figure 4.12: ADAPTATION OF UNKNOWN IMPEDANCE. In general, the impedance pa-

rameters that would be optimal for the task are unknown. Therefore, the follower should tune

its stiffness and inertia during task execution. Arbitrary impedance parameters may cause un-

desirable effects, e.g. overestimated reference kinematics and contact instabilities (blue dashed

line). Our algorithm provides an adaptation law, to tune the parameters and to ensure accurate

reproduction (green lines in (a)-(b) show the results with impedance adaptation).

allows for tuning of the parameters so as to ensure stable interaction; see Fig. 4.12-(a),

green line. After slightly growing in the beginning of the motion, to enable for smooth

acceleration, the stiffness gradually decreases due to the relaxation term and errors in

tracking the desired force profile; see Fig. 4.12-(d). The inertia, in turn, decreases in

the beginning, to ensure the stable onset of the motion. It further increases to endow

the robot-follower with greater reactivity to the partner’s intentions; see Fig. 4.12-(c).

4.8 DISCUSSION

Next we revisit some assumptions taken in the proposed algorithm.

Active Following
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In robot learning, the few existing works consider a single learned trajectory as

a reference signal for a hard-coded impedance controller. In (D. Lee et al., 2010), a

robot is taught to clap hands with a human. The robot utilizes Hidden Markov Models

(HMM) to recognize the human behavior from motion data and generate a reference

trajectory. This trajectory is further incorporated into a hard-coded impedance con-

troller to compensate for a potential physical impact. The considered scenario does not

require continuous interaction and haptic signals do not effect the reference kinematics.

A hand-shaking robot is presented by Z. Wang et al. (2009). The authors encode motion

trajectories with an HMM, where the hidden variables represent the human impedance.

Such encoding requires the robot to measure human impedance and to recognize which

motion model to use. Recognition happens at the onset of the motion and governs the

robot through the rest of the task without adaptation.

It might be argued that interaction with a human requires continuous proactive

adaptation. We demonstrate how the use of dynamical systems for encoding task mod-

els can enhance coordination skills of a robot. Specifically, incorporating the perceived

force as one of state variables of the dynamical system allows for action-perception

coupling. A side effect of such formulation is the requirement that a robot should be

equipped with a force sensor, which is not always available.

Variable Impedance
As discussed in Section 4.4, recent attempts to implement physical human-robot

interaction introduced the notions of variable impedance. For instance in work of

Duchaine & Gosselin (2007) a robot adjusts its damping depending on the perceived

force. Although the validity of the approach is confirmed by successful experimen-

tal results, so far no generic framework for tackling both task learning and the variable

impedance during physical interaction with a human has been reported in the literature.

Recent work by C. Yang et al. (2011) presents a biomimetic learning controller

able to adapt to unknown dynamic environments. The algorithm combines between-

trial trajectory learning and adaptive impedance. The algorithm endows a robot with

the capacity to increase impedance if operating in an unstable environment and to act

compliantly otherwise. The authors develop a rigorous adaptation mechanism that

ensures stability of the control law. However, in the reported experiments, a human

is considered as a source of external perturbations, rather than a partner.

Our work suggests one step towards implementing the variable impedance for col-

laboration with a human. We hypothesize that during collaboration impedance might

adapt differently than in situations when the robot is required to counteract all external

forces. This assumption would need to be further investigated.

Stability
To ensure safety during interaction, we incorporate security mechanisms that bound

robot impedance and generated forces. The presence of a human in the control loop

makes a formal stability analysis particularly challenging. The proof of stability would

have to demonstrate that the errors ex, ėx, and ef converge to zero with time. How-

ever, the human brings uncertainty into errors and, therefore, it is difficult to show

convergence unless one adopts hypotheses about human behavior.
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4.9 CONCLUSION

In this Chapter, we presented an approach to learning robot control during physical

interaction with humans. The method addressed the problem of controlling a robot so

that it could coordinate its motions with that of a human in collaborative tasks, and

this while relying solely on haptic and proprioceptive feedback (no vision or verbal

commands was involved).

We demonstrated that, in contrast to other works on physical human-robot interac-

tion, our method allowed the adaptation within an execution trial, and not only from

trial to trial. It was argued that due to the presence of a human in the loop, this charac-

teristic was essential. We could not ensure that at the next trial the person would repeat

the task identically and provide the robot with time to tune its controller.

Here, we considered non-redundant robots; however, the method would be also

applicable to redundant set-ups; for instance, one could follow a projection based ap-

proach (Ott, 2008) to assign a null-space impedance matrices.

To conclude, the proposed system endowed the robot with two fundamental fea-

tures of human motor control that emerged during physical interaction: learning haptic

communication in a natural manner, and continuous adaptation to incoming forces dur-

ing task execution. Additionally, the simulator developed to validate our approach pro-

vided an efficient means to study physical interactions between two agents for which

we had yet very few models. Simulation offered a framework for systematical assess-

ment and performance comparison of different algorithms for control of human-robot

interaction.
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Chapter 5

Conclusion

I
N this chapter, we revisit the contributions of the thesis and assess major limitations

of the proposed algorithms (Section 5.1), as well as identify promising directions

of future work (Section 5.2).

5.1 MAIN CONTRIBUTIONS AND LIMITATIONS

In the Introduction, we announced the major contributions of this manuscript. Next,

while discussing the theoretical background of our work in Chapter 2, we emphasized

current challenges for the state of the art in robotics. Here, we consolidate this infor-

mation so as to provide a global outlook of our work and conclude the advancements

done in this thesis.

Learning Bimanual Tasks
As we learned from the review on human motor control provided in Section 2.3:

in humans, the two arms were not independent in bimanual tasks. It has been shown

that the arms were coupled through spatial and temporal constraints. These constraints

were argued to carry a practical function of facilitating manipulation. In robots, as in

humans, the coordination constraints could improve the motion dexterity. However,

these constraints were revealed to be task-dependent. For analytical approaches, the

task-dependency of the constraints meant that for each particular task, a robotic con-

troller should have been handcrafted. We explained this difficulty in Sections 2.1.5

and 2.3.4. Another concern was also raised: even if one knew the constraints, how to

ensure that the robot would adhere to them, especially, if it was perturbed (e.g., pushed

away) while moving.

We stated in the Introduction that our work would contribute to the resolution of

these difficulties. In Section 3.2, we further showed that by adopting the coordination

dynamics view of the problem (namely, the hypothesis that the constraints between the

two arms could be expressed through a collective variable), we were able to suggest

a method to explicitly learn constraints from training data. Next, a dynamical system

view of motion production allowed us to propose an algorithm that maintained the

learned constraints in a changing environment.

However, it was important to note that, by choosing the collective variable to be

the relative position between the two arms, we were not able to explain all the diversity

of bimanual constraints that may arise in manipulation tasks. Therefore, we suggested

that for some tasks coupling between the hands necessarily took a nonlinear form (the
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collective variable could be a nonlinear function of the handsŠ motions). Our model,

hence, should be extended to befit such tasks.

Learning a Motion Representation for Coordinated Tasks
Across all the disciplines that we reviewed – analytical robotics (Section 2.1), hu-

man motor control (Section 2.3), and robot learning (Section 2.4) – the challenge of ex-

plaining and generating trajectories of coordinated motions was fundamental. Several

factors caused the complexity of the problem: the redundancy in the ways that a task

might be accomplished (hence, the prerequisite to assume a heuristic to pick up a sin-

gle strategy), the multi-dimensionality of a motion space (the increased computational

costs), and continuous coordination constraints (difficult to engineer by hand or learn

from data). Finally, the coordination constraints were also task-dependent. In Section

2.4, we described how some of these issues had been tackled within robot learning.

For instance, redundancy and learning constraints were partly resolved through imita-

tion of a human teacher (Programming by Demonstration) or through optimization of

a reward function (Reinforcement Learning). Yet, a number of issues were left unad-

dressed, to name a few: learning generative representations for coordinated motions,

encoding multivariate correlations within a motion, and robustness of the learned mo-

tions to perturbations.

We investigated these problems in Section 3.3. Again, a dynamical system view

of motion generation was adopted, however, instead of fitting a pre-defined dynam-

ical model as was typically done in related works, we suggested a method to learn

dynamical motion policies directly from several demonstrations. The dynamical sys-

tem formulation allowed us to build generative motion policies: trajectories could be

produced in parts of a robot’s workspace unobserved during training. Furthermore,

the generated trajectories satisfied a continuous coordination constraint defined by a

learned dynamical system.

Our method was built upon an assumption that a motion could be represented by

an autonomous dynamical system. Though we showed that this assumption was rele-

vant for many manipulation tasks, for some tasks the time-independency did not hold;

for instance, if a robot had to synchronize with external objects (e.g., consider a robot

playing tennis). Therefore, we clarified that the performance of our method was not

guaranteed in such tasks and the method should be extended with a time-keeping mech-

anism.

Learning Task Models for Physical Human-Robot Interaction
In this thesis, we argued that motion coordination during direct physical interac-

tion between two peers added another level of complexity to robot control as compared

to motion coordination during autonomous task execution. Several reasons could ex-

plain this complexity. We particularly pinpointed the following reasons: motion control

required continuous adaptation to sensory (haptic) information, and, in addition to con-

trolling its own motion, the robot needed to predict the behavior of the partner. In the

review of human motor control in Section 2.2, we discussed that one of the advantages

of dynamical systems for motion representation was the technical ease with which such

such a representation incorporated the sensorimotor integration. In Sections 3.2, 3.3,
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and 3.4 of this thesis, we explored sensorimotor integration of visual information – we

mapped a target position provided by a vision system into a dynamical motion repre-

sentation (a target position is mapped to the attractor of the dynamical system).

In Chapter 4, we extended the learning method from Section 3.3 so as to be able

to integrate continuous haptic information. Moreover, due to the generative abilities

of the learned dynamical representation, the robot was able to predict the kinematic

profile of its partner and, therefore, to synchronize with him, while conditioning its

actions solely on the incoming haptic information.

From the learning point of view, we observed several difficulties related to the

acquisition of training data for teaching physical Human-Robot Interaction. We ex-

plored two types of teaching modalities: teleoperation through a haptic device and

direct demonstration by a more Ťknowledgable" partner (as we used in simulation).

Teleoperation seemed to be a more natural way for teaching physical interaction, how-

ever, it required complex hardware and software. Also we noted that the workspace

of haptic devices was limited and, hence, unsuitable for the demonstration of large

motions. Direct demonstration worked well for symmetric tasks but did not not sup-

port tasks where the robot should have behaved differently from its partner. Therefore,

we stressed that the demonstration of physical interactions proved to be an important

problem from both a technical and algorithmic point of view.

5.2 DIRECTIONS FOR FUTURE WORK

We can identify the following promising research directions that stem from the work

conducted in this thesis.

Combining Continuous and Discrete Task Representations
The method for learning bimanual coordination that we present in Chapter 3.2 en-

coded a task at the discrete level. At the continuous level, the trajectories are gener-

ated through a pre-defined dynamical system. Though the use of predefined dynamics

has been proven to be efficient for some tasks, extending the method, to also learn

the task trajectories, would improve the method performance in more complex move-

ments. One way to do so is to combine the task level learning with learning motion

dynamics as presented later in Chapter 3.3. To address the problem of linking the task

level learning of the bimanual constraints and the trajectory level learning, one might

use Hidden Markov Models (HMMs) of a special structure that encapsulates both lev-

els of abstraction. Namely, coupled HHMs are specifically designed to model several

interacting processes that operate at different time scales. This method, therefore, is

relevant for the integrated learning of high-level and low-level features.

Developing a Reinforcement Learning Approach for Training Dynamical Sys-
tem Motion Representations

In the current version of our algorithm (as described in Chapter 3.3), dynamical mo-

tion representations are learned from demonstrations. However, it often appears that

self-practice is essential, and, therefore, the refinement of a dynamical system represen-

tation through reinforcement learning is desirable. As we review in Section 2.3.3, one
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recent trend in reinforcement learning is probabilistic policy search. The methods of

this group support learning structured policies (e.g., our dynamical system motion rep-

resentation can be seen as a structured policy: a parameterized mixture of dynamics).

However, for now, to the best of our knowledge, none of the existing reinforcement

learning algorithms permits learning of time-independent policies.

We believe that further investigations on how one can use Reinforcement Learning

to train policies represented as autonomous dynamical systems is a necessary step to

further improve robot coordination skills. To support our statement, we emphasize that,

throughout this thesis, the dynamical system motion representation has been shown to

deliver several advantages. Time-independent policies and particularly indispensable

to control robot motion during interaction with the human, as, in this case, a robot is

relieved from a necessity to continuously reestimate motion duration.

Learning to combine interaction and task constraints: moving a dynamically
changing load

In the experiments on collaborative manipulation presented in this thesis, a robot

and a human are moving a single solid object with fixed dynamical properties (e.g.,

the center of mass, the moment of inertia). When the dynamical parameters are fixed,

the robot concentrates solely on learning and reproduction of interaction constraints,

e.g. synchronization with the human. However, one often seeks partnerŠs help to

move a table or tray; often in such cases, there are other objects piled on top the table

of the tray. Consider for instance a scenario, where the human and the robot should

move a plate with a ball rolling on top. The ball rolls on the plate (or the piled objects

slip on the table) and can fall down eventually if the partners do not respect the task

constraints. We might envisage two ways to learn such tasks: (1) directly encode data

observed while the constraints were varying or (2) learn a task under static constraints

and then impose the constraints on rolling the objects analytically.
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Chapter 6

Appendices
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Table 6.1: Appendix I: Derivation of constraint-consistent velocities for bimanual coordination

We start by defining a metric of imitation (a functional that measures

how accurately a robot reproduces a learned behavior)

(A-I-1) H(qR, qL, xR, xL) = (qR − qR
d )

TWR
q (qR − qR

d ) + (xR − xRd )T

WR
x (xR−xR

d )+(qL−qL
d )

TWL
q (qL−qL

d )+(xL−xL
d )

TWL
x (xL−

xLd ),

The constraint optimization of the metric of imitation H under spa-

tial coordination and robot-body constraints:

(A-I-2) minHqR,qL

u.c.

(A-I-3) ẋR − JRq̇R = 0

(A-I-4) ẋL − JLq̇L = 0

(A-I-5) ẋR − ẋL = 0

Let us redefine error terms from Eq. (A-I-1), (qR−qR
d ), (xR

t −xR
d,t),

as follows (note that here we use time indices to express errors at

time t through the velocity at time t and the robot’s position at time

t− 1 ):

(A-I-6) qR
t − qR

d = q̇R + qR
(t−1) − qRd

t = q̇R
t − c1;

(A-I-7) qL
t − qL

d,t = q̇L
t + qL

(t−1) − qL
d,t = q̇L

t − c2;

(A-I-8) xRt − xRd,t = ẋRt + xR(t−1) − xRd,t = ẋRt − c3;

(A-I-9) xLt − xLd,t = ẋLt + xL(t−1) − xLd,t = ẋL
t − c4.

For the constrained optimization of Eq.(A-I-1)-(A-I-5), we define

the Lagrangian L:

(A-I-10) L(q̇R, q̇L, ẋR, ẋL, λ1, λ2, λ3) = H+ λT
1 (ẋ

R − JRq̇R) + λT
2 (ẋ

L −
JLq̇L) + λT

3 (ẋ
R − ẋL).
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Table 6.2: Appendix I: Derivation of the constraint-consistent velocities for bimanual coordi-

nation (continuation)

To find an analytical solution of the optimization problem Eq.(A-

I-1)-(A-I-5), we differentiate the Lagrangian L with respect to all

variables:

(A-I-11)
∂L

∂ẋR
= 2WR

x (ẋR − c3) + λ1 + λ3 = 0;

(A-I-12)
∂L

∂q̇R
= 2WR

q (q̇R − c1)− (JR)Tλ1 = 0;

(A-I-13)
∂L

∂ẋL
= 2WL

x (ẋL − c4) + λ2 − λ3 = 0;

(A-I-14)
∂L

∂q̇L
= 2WL

q (q̇L − c2)− (JL)Tλ2 = 0;

(A-I-15)
∂L

∂λ1
= ẋR − JRq̇R = 0;

(A-I-16)
∂L

∂λ2
= ẋL − JLq̇L = 0;

(A-I-17)
∂L

∂λ3
= ẋR − ẋL = 0

Substituting Eq.(A-I-11), (A-I-13)-(A-I-17) into Eq.(A-I-12):

(A-I-18) WR
x (JRq̇R

t − c2) + (JR)−TWR
q (q̇R

t − c1) +WL
x (JRq̇R

t − c4) +

(JL)−TWL
q ((JL)−1JRq̇R

t − c3) = 0;

After arranging in the left part the terms that contain q̇R, we obtain:

q̇R = (M1)
−1M2;

q̇L = [(JL)−1JR]q̇R;

M1 = WR
x JR + (JR)−TWR

q +WL
x JR + (JL)−TWL

q (JL)−1JR

M2 = WR
x c3 + (JR)−TWR

q c1 +WL
x c4 + (JL)−TWL

q c2
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Table 6.3: Appendix II: Comparison of the proposed method with Dynamical Movement Prim-

itives, as defined in Hoffmann, Pastor, et al. (2009)

The method proposed in this paper:

a single multidimensional system is running to control several DOFs

(A-II-1) ẋ = f̂(x)
(A-II-2) f̂(x) =

∑K
k=1 hk(x)(μk,ẋ +Σk,ẋxΣ

−1
k,x(x − μk,x))

where x ∈ R
N ; Σk,ẋx, Σk,x ∈ R

N×N are estimated matrices

μk,ẋ, μk,x ∈ R
N are estimated vectors

Dynamic Movement Primitives:

the acceleration along each DOF ẋ is defined by according to:

(A-II-3) τ ẍ = −Kvẋ+Kp(g − x)−Kp(g − x0)s+Kpf̂(s)

(A-II-4) f̂(s) =
∑K

k=1 sΨk(s)ωk∑K
k=1 Ψk(s)

where x, s,∈ R

Ψk(s) = exp
(s−ck)

2

2σ2
k

, ωk ∈ R.

The canonical variable s is governed by a dynamical system:

(A-II-5) τ ṡ = −αss, s ∈ [0..1]; s(0) = 1

where g, αs, Kp, Kv ∈ R are the known proportionate and derivative coefficients

Comparison between f̂(x) from our approach and f̂(s) from DMP:

The function f(x) aims at encoding an actual dependency between position and

velocity of along a motion; it therefore simultaneously provides the feedback

loop for motion adaptation. On the other hand, the function f̂(s) encodes

a particular acceleration profile as a function of the internal counter s.

The variable s is not linked with positional information and, hence,

f̂(s) does not provide the necessary feedback to adapt the motion.

Due to such a choice of learning variables, DMP perform the scaling

of a demonstrated trajectory, but do not provide the actual robust adaptation

to perturbations that can be generated by our system.
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Table 6.4: Appendix III: Bio-mimetic adaptive impedance (Ganesh, Albu-Schaffer, et al., 2010)

We summarize the major steps of the bio-mimetic adaptive algo-

rithm presented in Ganesh, Albu-Schaffer, et al. (2010). Let us con-

sider the following cost function that penalizes a feedback cost (vi)2

and a cost of activation of the feedforward command
∑K

k=1 θ
i
k:

(A-III-1) minθi Ri(θi) = 0.5β (vi)2 + γ
∑K

k=1 θ
i
k, ∀ i = 1 · · ·Nq.

where β > 0, γ > 0 are empirical constants controlling the influ-

ence of the feedback and feedforward components. To derive an

adaptation policy, Ganesh, Albu-Schaffer, et al. (2010) suggest to

use a special form of the feedback signal vi:

(A-III-2) vi = 0.5[(1− χ)εi + (1 + χ)|εi|], εi = ρ1e
i + ρ2ė

i.

Here, ei is the deviation of the controlled signal from its desired

value, χ, ρ1, ρ2 > 0 are empirical constants. To compensate for

the feedback error, one can adjust the parameters of the feedforward

control Θ in Eq.4.10 by optimizing the cost function Ri using the

gradient descent:

(A-III-3) Δθi
t = − dRi

dθi = −β( ∂vi

∂θi
k

)T vi − γ1,

The control τ , feedforward u, and feedback signal v are linked: τ =
u + v; see Eq.4.8. τ represents the environment being learned and

is assumed to be independent of Θ, therefore the adaptation law in

Eq.(A-III-3) can be rewritten as:

(A-III-4) Δθi = β( ∂u
i

∂θi
k

)T vi − γ1 = βΦvi − γ1.
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