
WaRR: A Tool for High-Fidelity Web Application Record and Replay

Silviu Andrica and George Candea

School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{silviu.andrica, george.candea}@epfl.ch

Abstract—We introduce WaRR, a tool that records and
replays with high fidelity the interaction between users and
modern web applications. WaRR consists of two independent
components: the WaRR Recorder and the WaRR Replayer.

The WaRR Recorder is embedded in a web browser, thus
having access to user actions, and provides a complete inter-
action trace—this confers high recording fidelity. The WaRR
Replayer uses an enhanced, developer-specific web browser that
enables realistic simulation of user interaction—this confers
high replaying fidelity.

We describe two usage scenarios for WaRR that help
developers improve the dependability of web applications:
testing web applications against realistic human errors and
generating user experience reports. WaRR helped us discover
bugs in widely-used web applications, such as Google Sites,
and offers higher recording fidelity compared to current tools.

Keywords-web applications; record & replay; testing;

I. INTRODUCTION

Web applications are becoming pervasive as users rely

increasingly more on applications that are accessed through

a web interface rather than on shrink-wrapped software. One

of the most widely used web applications is e-mail, such as

GMail [1]. With Google Docs, even application suites that

traditionally have been running on a user’s computer are

moved to the cloud and accessed through web browsers.

Testing and debugging modern web applications requires

a holistic approach, to include client-side code in addition

to server-side code. Modern web applications are distributed

across back-end servers and front-end clients, with some of

the functionality being offloaded to clients. Alas, tools that

focus on client-side code are missing from an adequate set

of tools available to web application developers.

In this paper, we present a tool that helps developers

test and debug client-side code easily and efficiently. For

server-side code, there exist several promising techniques

for testing, such as symbolic execution [2], [3] and ex-

ecution synthesis [4], and for debugging, such as output-

deterministic replay [5]. Finally, we do not focus on bugs

triggered by browser differences or network errors.

Testing and debugging a web application with realistic us-

age scenarios requires high-fidelity record and replay of the

interactions between users and the application, because users

drive its behavior. Recording fidelity quantifies recorded

interactions, and high-fidelity recording requires that all in-

teractions be recorded. Replaying fidelity quantifies correctly

played back interactions, and high-fidelity replaying requires

that all interactions be realistically simulated.

High-fidelity record and replay is challenging because the

client-side code can dynamically change the content of a

web page. Modern web applications achieve a high level

of sophistication, by using complex client-side JavaScript

code that vastly extends the range of possible interactions

between users and web applications, beyond merely clicking

on links. Nowadays, the HTML pages of a web application

are mere containers whose contents change in reaction to

user events (i.e., the HTML code of a page pointed to by a

URL can dramatically differ in time). Moreover, record and

replay tools need always be recording, without hurting user

experience, so that users can submit complete bug reports.

Current record-and-replay tools that target web applica-

tions, such as Selenium IDE [6], have low fidelity. Selenium

IDE yields incomplete user interaction traces, fails to trigger

event handlers associated to a user action, and must be

explicitly installed by users. Since users do not expect bugs,

they are unlikely to use Selenium IDE at all times, so bug-

triggering user interactions will be missed. An incomplete

trace precludes developers from reproducing and fixing the

bug and, ultimately, hurts a web application’s dependability.

We introduce WaRR, an “always-on,” high-fidelity record-

and-replay tool for interactions between users and modern

web applications. Throughout this paper, a user interaction

with a web application (or simply, a user action) denotes a

mouse click, a UI-element drag, or a keystroke performed by

a user. To the best of our knowledge, WaRR is the first tool

that can be used to record and replay interactions between

users and complex web applications, such as drag-and-drop,

writing emails in GMail, editing spreadsheets in Google

Docs, or editing web pages in Google Sites.

WaRR uses a novel architecture, with the recording func-

tionality being an integral part of a web browser. This

design decision brings five advantages. First, WaRR has

access to a user’s every click and keystroke, thus providing

high-fidelity recording. Second, WaRR’s recorder requires

no modification to web applications, being easy to employ

by developers. Third, the recorder has access to the actual

HTML code that will be rendered, after code has been

dynamically loaded. Fourth, it can easily be extended to

Appears in Proceedings of the Intl. Conf. on Dependable Systems and Networks (DSN), Hong Kong, China, June 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

record various sources of nondeterminism (e.g., timers).

Fifth, since the recorder is based on the web browser engine

WebKit [7], which is used by a plethora of browsers, it can

record user interactions across a large number of platforms.

WaRR’s replaying functionality leverages the observation

that a web browser used for web application debugging can

be less restricted than one for regular users. Thus, it is

reasonable to expect developers’ browsers to have additional

features compared to users’ browsers. For example, while

normal WebKit-based web browsers prevent setting certain

properties of JavaScript events, this restriction can be lifted

during testing and debugging. Hence, WaRR’s replayer can

correctly trigger JavaScript events (e.g., onKeyPress) and

ensure that the associated event handlers run correctly.

We illustrate how WaRR helps web application developers

improve their application’s dependability with two case

studies: human error testing and automatic generation of

user experience reports. For testing, we use known error

models to inject realistic human errors into traces gathered

by WaRR and then replay the generated traces and observe

how the web application handles the injected errors.

As a standalone tool, WaRR can reproduce bugs triggered

by a sequence of user actions, but it is more useful to

pair WaRR with server-side debugging aids, when a bug

involves nondeterminism (e.g., wrongful handling of con-

current clients’ session data). Existing server-side debugging

aids, such as [8], can complement WaRR and together

provide a solution to debug modern web applications.

We implement WaRR, evaluate its record-and-replay fi-

delity, explore its bug-finding abilities, and measure the im-

pact WaRR’s recording functionality has on user experience.

Our evaluation shows that: (1) WaRR has a higher recording

fidelity than Selenium IDE, (2) by using WaRR, we were

able to find a bug in Google Sites, and (3) WaRR’s recording

functionality induces an overhead below human perception

levels and can, therefore, be kept running continuously.

The rest of the paper is organized as follows: Section II

reviews previous approaches to record and replay, Section III

presents WaRR’s design, and Section IV details its imple-

mentation. Sections V and VI describe two usage scenarios

for WaRR. Section VII concludes the paper.

II. BACKGROUND

The field of record and replay has received a lot of

attention, both in the research community and in industry.

Below, we describe the main approaches to recording user

interaction and subsequently replaying it.

One way to record user interaction with a web application

is to log all network traffic that occurs between a web

browser and an application server, as in Fiddler [9], a proxy

that logs HTTP(S) traffic. One can then replay recorded

traffic. Alas, when analyzing recorded traffic, one cannot

distinguish between requests made in response to user inter-

action versus requests made by a web page while loading.

Disambiguating these two types of requests is difficult.

Therefore, such tools are of little help in debugging client-

side code. WaRR, on the other hand, records the user actions

that cause network traffic, not the network traffic itself.

One can use proxies to inject JavaScript code into HTML

pages to track user interaction, as in Mugshot [10] and

UsaProxy [11]. These approaches have two limitations. First,

they can instrument only HTML pages, because they cannot

identify HTML or JavaScript code in non-HTML server

responses. Second, using proxies requires breaking the end-

to-end security enforced by HTTPS, because proxies need

to intercept server responses, thus creating the possibility of

leaking private information. In contrast, WaRR has access

to the processed and decrypted HTML code of a web

application and logs user actions on the user’s machine.

By modifying the operating system, tools such as RUI [12]

and AppMonitor [13] can record a user’s every keystroke and

mouse click. Recording accurate traces requires application

support to precisely identify the UI element a user acted

upon. Removing such support can hinder replay accuracy.

Finally, such tools cannot easily be ported to various oper-

ating systems (OSes). Since WaRR is based on a browser

engine, it has enough information about a user action’s target

to provide accurate traces without OS support.

Virtual machines can be used to record and replay user

interaction. In this approach, an entire OS runs inside a

virtual machine, which captures an execution and enables

developers to replay it later [14], [8]. However, the incurred

performance overhead hurts user experience. When debug-

ging, this approach is time-consuming, because developers

must step through machine-level instructions. WaRR is dif-

ferent because it enables stepping through user-level actions.

There exist tools that run as browser plug-ins, [15], [16],

[6], [17], and can record a user’s clicks and keystrokes, but

lack fidelity or are bound to a platform. Selenium [18] is

a testing framework designed for web applications and of-

fers record-and-replay functionality, but misses user actions

when recording complex web pages [19]. WET [20] is a web

automation testing tool, bound to Internet Explorer, that uses

Watir [17] to drive browser interaction. WaRR, on the other

hand, can record the interaction between users and arbitrarily

complex web applications and run on multiple platforms.

There exist commercial solutions, like LoadRunner [21]

and SilkPerformer [22], for testing distributed systems, but

they require special software to be installed on the client’s

computer. Such tools offer recording, load generation, mon-

itoring, and diagnostics for both client-side and server-side

code. In contrast, WaRR targets client-side code only and

requires users to use a fully-functional, but custom browser.

WaRR extends the relevancy of tools like DoDOM [23].

DoDOM infers DOM (Document Object Model) invariants

and uses them in tests to detect errors, but is limited to

web applications that use HTTP. WaRR can aid DoDOM

test also HTTPS applications, because WaRR can replay the

2

interaction between a user and any type of web application.

III. WARR DESIGN

WaRR’s design goal is to record and replay interactions

between users and web applications with low overhead and

sufficient fidelity to make WaRR suitable for testing and

debugging modern web applications.

WaRR targets both developers and web application users.

Users only require recording, to submit comprehensive bug

reports, while developers use recording for testing, and

replaying for testing and debugging.

WaRR consists of two independent components: a

recorder, targeting users and developers, and a replayer,

targeting developers only. The WaRR Recorder is a modified

web browser that captures the interactions between users

and web applications. The WaRR Replayer uses a different,

custom browser and a browser interaction driver to simulate

user interaction, based on recorded traces. Figure 1 provides

an overview of WaRR’s architecture.

WaRR Commands

WaRR Replayer

Chrome browser

WaRR Recorder

Chrome browser

User

(1)

(2)

(3)

Figure 1: WaRR architecture. The WaRR Recorder captures

user actions (1), logs them as WaRR Commands (2), and

the WaRR Replayer plays back the recorded commands (3).

In the rest of this section we describe the two WaRR

components and highlight key design decisions.

A. The WaRR Recorder

The WaRR Recorder is meant to be a recording solution

that offers high fidelity, is lightweight, always-on, and does

not require user setup. High fidelity requires that all user ac-

tions be recorded, such that the interaction trace is complete.

A lightweight solution does not affect user experience. An

always-on, no setup solution ensures that, if a bug manifests,

the bug-triggering interaction is always available.

Our solution is to embed the recording logic deep inside

a web browser. Alternative designs, such as logging HTTP

traffic, are being made obsolete by increased HTTPS de-

ployment, and there even exist proposals to replace parts

of HTTP and augment it with SPDY [24]. HTML usage,

on the other hand, will likely become more widespread,

especially if we consider the increased usage of handheld

devices whose power consumption requirements impede the

use of competing technologies, such as Flash.

The WaRR Recorder extends WebKit and is embedded

into the Chrome web browser. Figure 2 shows Chrome’s

architecture for displaying web pages. As described in [25],

WebKit is the rendering engine, Renderer proxies messages

across process boundaries, Tab represents a web page, and

Browser window contains all the opened Tabs.

Browser window

Tab contents

Renderer

WebKit

Figure 2: Simplified Chrome architecture.

Even though our design requires browser changes, this

brings an important advantage. Being based on WebKit,

the WaRR Recorder can capture user interactions on more

platforms than any other web application record-and-replay

tool, because WebKit is used for desktop browsers like

Chrome and Safari, and for the default browsers of mobile

platforms such as iOS, Android, and WebOS. Thus, WaRR

enables developers to test web applications with realistic

usage scenarios, originating from varied usage contexts.

The WaRR Recorder outputs a sequence of WaRR Com-

mands, where each command is a user action. Section IV-B

further describes WaRR Commands.

B. The WaRR Replayer

The WaRR Replayer is the counterpart to the WaRR

Recorder and simulates a user interacting with a web ap-

plication as specified by WaRR Commands.

The WaRR Replayer has two main components: a browser

interaction driver and a browser. The driver reads WaRR

Commands and converts them into commands sent to the

browser. This design enables the driver to use any browser,

given a suitable API to drive interaction with that browser.

Section IV-C provides implementation details.

IV. WARR IMPLEMENTATION

This section describes the implementation of the WaRR

Recorder and Replayer, the format of WaRR Commands,

and discusses some of WaRR’s limitations. We present the

main challenges we faced and how we addressed them.

A. The WaRR Recorder

The recorder is located at Chrome’s WebKit layer, because

it provides the ideal opportunity to record user actions:

when a mouse button is clicked or a key is pressed, this

event arrives at the WebKit layer to be dispatched to the

appropriate HTML element. Figure 3 shows parts of the

stack trace when handling such events.

The WaRR Recorder captures three types of

user actions: mouse clicks, UI-element drags, and

keystrokes. We implement the WaRR Recorder by

adding calls to the recorder’s logging functions in

three methods of the WebCore::EventHandler class:

handleMousePressEvent, handleDrag, and keyEvent.

The changes amount to less than 200 lines of C++ code.

3

WebCore::EventHandler::handleMousePressEvent

WebKit::WebViewImpl::handleInputEvent

RenderView::OnMessageReceived

IPC::ChannelProxy::Context::OnDispatchMessage

DispatchToMethod

MessageLoop::Run

ChromeMain

main

Figure 3: Fragment of the stack trace generated when

performing a mouse click in Chrome.

A benefit of our choice of implementation layer is that, if

necessary, other events of interest can easily be monitored,

requiring only slight modifications to the WaRR Recorder.

For example, we initially did not record drag events, but

adding support for them took one person less than one day.

As we show in Section VI, our implementation incurs

negligible overhead and does not affect user experience.

The recorder exports each interaction between a user and

a web application as a WaRR Command, described next.

B. WaRR Commands

A WaRR Command contains the type of an action (i.e.,

click, doubleclick, drag, and type), an identifier of

the HTML element that was acted upon, information specific

to the action’s type, and the time elapsed since the previous

action. Figure 4 shows a sequence of WaRR Commands that

have been slightly edited for readability.

click //div/span[@id="start"] 82,44 1

type //td/div[@id="content"] [H,72] 3

type //td/div[@id="content"] [e,69] 4

type //td/div[@id="content"] [l,76] 7

type //td/div[@id="content"] [l,76] 9

type //td/div[@id="content"] [o,79] 11

type //td/div[@id="content"] [,32] 12

type //td/div[@id="content"] [w,87] 15

type //td/div[@id="content"] [o,79] 17

type //td/div[@id="content"] [r,82] 19

type //td/div[@id="content"] [l,76] 23

type //td/div[@id="content"] [d,68] 29

type //td/div[@id="content"] [!,49] 31

click //td/div[text()="Save"] 74,51 37

Figure 4: Fragment of the sequence of WaRR Commands

recorded by WaRR while editing a Google Sites web page.

HTML elements that are the target of an action are

identified by XPath [26] expressions. XPath is a language

for locating an element in an XML/HTML document, by

specifying a set of properties of that element or by specifying

how to reach it from one of its ancestors. For example,

//td/div[@id="content"] denotes an element of type

div that is a child of an element of type td and has the

property id set to content. For a single HTML element,

there can be multiple XPath expressions, and various HTML

elements may correspond to the same XPath expression.

Click-related WaRR Commands indicate the position in

the web browser window where a click originated, as backup

element identification information. The drag command in-

dicates the difference in the dragged element’s position.

The type command provides a string representation of a

typed key and its ASCII code. When typing capital letters

using the Shift key in Chrome, the browser registers two

keystrokes: one for the Shift key and one for the printable

key. Logging the event of pressing Shift is unnecessary,

so we only log the combined effect. However, since other

control keys, such as Control, do not always lead to new

characters being typed, we log their ASCII codes.

C. The WaRR Replayer

The WaRR Replayer is based on WebDriver [27] and

ChromeDriver [28], and the Chrome browser.

High-fidelity replay is hard to achieve in browsers

based on WebKit, because they make certain properties of

JavaScript events read-only. This prevents event handlers

associated to such events from running with correct parame-

ters, thus damaging replay fidelity. Since the WaRR Replayer

is targeted at developers, its browser need not obey such re-

strictions. We modify Chrome to enable setting properties of

the KeyboardEvent JavaScript event, making such events

practically indistinguishable from those generated by users.

WebDriver is a browser interaction automation tool that

controls various browsers through a common API, while

ChromeDriver is a WebDriver implementation tailored to

Chrome. WebDriver provides functionality for clicking,

dragging, and entering text. Therefore, one should be able to

use ChromeDriver to successfully replay WaRR Commands.

Chrome is controlled through a ChromeDriver plug-in

composed of a master and multiple ChromeDriver clients,

one for each iframe in an HTML document. The master

acts as a proxy between the ChromeDriver clients and the

rest of ChromeDriver/WebDriver. Clients receive commands

and execute them on the iframe they are responsible for.

At any point in time, only one client executes commands.

When replaying WaRR Commands, the main challenge

we faced was the replay of interactions with web applica-

tions where an HTML element’s properties differ between

record time and replay time. The recorded XPath expression

became invalid, the WaRR Replayer failed to find the

required element, and the corresponding WaRR command

could not be replayed. For example, whenever GMail loaded,

it generated new id properties for HTML elements.

To mitigate this problem, the WaRR Replayer employs an

automatic, application-independent, and progressive relax-

ation of an element’s XPath expression. However, the tool

first assumes an application’s HTML structure is constant,

to provide timing-accurate interaction replay, and tries to

use the recorded XPath. If this expression is invalid, WaRR

progressively simplifies the expression to find a matching

element. This automatic simplification is guided by heuris-

tics that remove XPath attributes (e.g., id), maintain only

certain attributes (e.g., only name), or discard a prefix of an

4

XPath expression (e.g., changing //td/div[@id="id1"]

to //div[@id="id1"]).

For WaRR, a web application’s DOM is free to extensively

change between the time of recording and that of replay.

To replay a user action on an HTML element, the WaRR

Recorder only requires some of the DOM properties in close

vicinity of that element to be preserved.

The next major challenge we faced was ChromeDriver’s

incomplete functionality.

First, ChromeDriver lacks support for double clicks. It is

important for WaRR to be able to replay double clicks, be-

cause web applications that use them, such as Google Docs,

are increasingly popular. We add double clicking support by

using JavaScript to create and trigger the necessary events.

Second, ChromeDriver does not handle text input prop-

erly. When simulating keystrokes into an HTML element,

ChromeDriver sets that element’s value property. This

property exists for input and textarea elements, but not

for other elements (e.g., div, a container-like element).

We fix this issue by setting the correct property (e.g.,

textContent for div elements) as the target of received

keystrokes and triggering the required events.

The third major replay challenge we encountered was

improper support for iframes, and it involved Chrome and

ChromeDriver. An iframe allows an HTML document to

embed another one. First, one cannot execute commands on

iframes that lack the src property, because Chrome does

not load ChromeDriver clients for them. We solve this issue

by having the ChromeDriver client of the parent HTML

document execute commands on such iframes. Second,

ChromeDriver provides no means to switch back to an

iframe. We use a custom iframe name to signal a change

to the default iframe and implement the necessary logic.

The last major challenge was ChromeDriver becoming

unresponsive, when a user changed web pages. Chrome

unloads the ChromeDriver clients corresponding to the

iframes of the old page and loads new clients for the new

page’s iframes. The ChromeDriver master keeps track of

the active client, the one executing commands, and when it

is unloaded, a new active client is selected. The selection is

based on an assumed order of loads and unloads, but Chrome

does not ensure this order, and a new active client may not

be chosen. Therefore, new commands will not be executed,

and the replay will halt. We fix this issue by ensuring that

unloads do not prevent selecting a new active client.

D. WaRR Limitations

WaRR records all keystrokes, therefore also potentially

sensitive information, such as passwords and usernames.

While this paper does not address privacy issues, we envision

a solution in which users share recorded traces with a

web application’s developers after they removed sensitive

information. If concerns still arise, one can take an approach

similar to [29] to generate anonymized user interaction traces

that lead the application along the same execution path. To

prevent traces from being used to exploit an application’s

vulnerabilities, one can encrypt them with the developers’

public key, so that only developers can access the traces.

WaRR cannot handle pop-ups because user interaction

events that happen on such widgets are not routed through to

WebKit. A solution we are considering is to insert logging

functionality in the browser code that handles pop-ups.

WaRR offers a single user’s perspective of how a bug was

triggered, but this can be insufficient for reproducing a bug

involving concurrent clients. However, if users use WaRR,

developers have access to all the actions users performed.

Alas, the traces do not contain the timing dependencies

between various users’ actions.

WaRR cannot control the environment it runs in and,

therefore, cannot ensure that event handlers triggered by user

actions finish in the same amount of time, during replay, as

they did during recording, possibly hurting replay accuracy.

For a complete debugging solution, WaRR should be

coupled with server-side debugging aids. As a standalone

tool, WaRR can help developers debug bugs that are always

triggered by a predefined sequence of user actions. To

aid debugging bugs triggered by events other than user

actions or ones that manifest only in a particular state of

the entire web application, WaRR must be complemented

by server-side aids. Such aids span from simple logs to

sophisticated techniques such as execution synthesis [4] and

output-deterministic replay [5].

V. WEBERR: TESTING WEB APPLICATIONS AGAINST

HUMAN ERRORS

After describing WaRR, we now describe two tools we

built on top of it. The first one, named WebErr, tests

web applications against realistic human errors. The second

one, called AUsER, automatically generates user experience

reports. We begin by describing WebErr.

Bugs triggered by human errors have high chances of

manifesting in production, because human error is pervasive.

Studies show users commit more than 14 errors in one web

application interaction session [30]. WebErr is a tool that

tests web applications against such human errors.

Figure 5 depicts how WebErr works: it records the inter-

action between a user and a web application as a trace (Step

1), then injects realistic human errors into this trace (Steps

2 and 3), and then uses the WaRR Replayer to test that web

application against the modified interaction traces (Step 4).

To simulate realistic human errors, we use models of how

users interact with web applications and what type of errors

they commit. We focus on two categories of user errors,

navigation errors and timing errors, that together cover a

significant part of the observed errors [30]. Navigation errors

lead to incorrect interaction sequences [31], while timing

errors occur when users interact with a web application “at

a bad time” (e.g., before the application finished loading).

5

WaRR Recorder

Chrome browser

WaRR Commands

Chrome browser

WaRR Replayer

Error Injector

(1)

(2)

(3)

(4)

Figure 5: Testing web applications against human errors.

A. Testing Web Applications Against Navigation Errors

Navigation errors manifest as deviations from a correct

pattern of interaction with a web application. If we consider

a pattern of interaction to be a sequence of steps, then the

errors we are interested in are: forgetting, reordering, and

substitution of steps. Typos, clicking the wrong button or

link, and selecting another item from a drop-down list are

examples of such errors that are common in practice.

One approach to test web applications against navigation

errors is to apply all possible combinations of the above

errors to a trace and test with the resulting traces. Although

able to detect all bugs, this approach is impractical, because

of the large number of possible tests and the low probability

of discovering bugs by injecting errors into unrelated steps.

For example, from a trace of 100 WaRR Commands

corresponding to filling in two text fields, one can generate

permutations(100) = 100! new traces, considering only step-

reordering errors, yet tests that alternatively fill in letters of

each field have low bug-detection power.

We employ an approach that uses a grammar expressing

a correct pattern of interaction, confines error injection to a

reduced number of this grammar’s rules, and never performs

cross-rule error injection. We view an interaction step as a

grammar rule and simulate forgetting a step by making a rule

have no productions, step reordering by reordering a rule’s

right-hand side productions, and substitution of steps by

substituting a rule’s right-hand side productions with others.

For example, suppose that editing a web page is defined

by the grammar EditSite → Authenticate Edit, where the

right-hand side productions are expressed by other rules.

After injecting a step-reordering error into this grammar, we

obtain the erroneous grammar EditSite′ → Edit Authenticate.

After obtaining erroneous grammars, we generate erro-

neous user interaction traces, by recursively applying the

rules of these grammars, and replay these traces to test web

applications. Our approach requires an oracle to conclude

whether the application behaved correctly, a common prac-

tice in automated testing and debugging techniques [32].

We now describe how we define a user interaction gram-

mar. We follow the process of how humans solve tasks: an

initial task is split into subtasks, and these subtasks are then

performed one by one [33]. Subtasks are recursively split

into other subtasks until they can be performed directly in

a web application (e.g., click on a particular link, type a

key). Doing so yields a task tree expressible by a grammar.

Figure 6 depicts such a tree for the case of editing a website.

Since user interaction grammars do not readily exist, and

we have no semantic information for WaRR Commands, we

face the challenge of having to infer such grammars given

only a sequence of WaRR Commands. We aim to cluster

WaRR Commands in a way that reconstructs, as much as

possible, the task tree followed by the user.

We employ an algorithm to cluster WaRR Commands

based on web page similarity. The insight is that different

web pages denote different subtasks, and when consecutive

web pages differ, a subtask finished and another one started.

For each WaRR Command, the algorithm compares the web

page generated by replaying that command against web

pages generated by previous commands. The command that

generated the most similar web page becomes the parent of

the current WaRR command. Computing the similarity of

web pages is based on their DOM shape, taking into account

the type of the HTML elements and their id property.

As described so far, the algorithm generates a tree with

three levels: one for the initial WaRR Command, one for

commands that change the URL, and one for the rest of

the commands. Alas, this tree does not clearly distinguish

between unrelated subtasks, leading to the generation of tests

that have little bug-finding power. To add more depth, we

tune the algorithm to spawn new tree nodes whenever the

interaction changes from one HTML element to another one.

Since a deep task tree can still generate an impractically

large number of interaction traces, we propose two heuristics

to reduce this number. First, if a trace cannot be successfully

replayed, we remove all traces that have as prefix the

WaRR Commands replayed so far, because neither them can

be successfully replayed. Second, we focus error injection

toward only some of the grammar rules.

B. Testing Web Applications Against Timing Errors

Timing errors are caused by users who interact with

web applications while the latter are not yet ready to

handle user interaction. These errors occur because, although

applications display wait messages, users disregard them.

Hence, we consider them to be user errors. The advent of

Asynchronous JavaScript And XML (AJAX) [34], which

enables asynchronous browser-server communication, made

web applications more vulnerable to timing errors.

To simulate timing errors, we modify the delay between

replaying consecutive WaRR Commands. We stress test web

applications by replaying commands with no wait time.

Since web applications are dynamically loaded, one can

envision more sophisticated testing techniques, such as re-

playing events before and after new code has been down-

loaded. We leave such techniques to future work.

C. WebErr In Practice

We applied WebErr to two usage scenarios: First, we

tested how well web search engines detect and fix typos

6

EditSite

Figure 6: A task tree for editing a website.

present in search queries. Second, we injected timing errors

while editing a website using Google Sites.

Web search engines are widely used web applications that

must tolerate one of the most common user errors, typos in

search queries. We want to test how well three web search

engines, Google, Bing, and Yahoo!, handle such typos, so

we choose 186 frequent queries, from New York Times’s top

search keywords and Google Trends’s list of top searches.

Next, we inject a typo into each search query, perform the

searches, and measure the number of errors detected by each

search application. Table I presents the results.

Search engine Google Bing Yahoo!

Percentage 100% 59.1% 84.4%

Table I: The percentage of query typos detected and fixed

by the Google, Bing, and Yahoo! web search engines.

We tested Google Sites, a web hosting solution that

enables users to edit web sites using a rich web application,

against timing errors and found a bug. When editing a

Google Sites website, one has to wait for the editing func-

tionality to load. In our experiment, we simulated impatient

users who do not wait long enough and perform their

changes right away. In doing so, we caused Google Sites

to use an uninitialized JavaScript variable, an obvious bug.

VI. AUSER: AUTOMATIC USER EXPERIENCE REPORTS

AUsER is a tool that automatically generates user ex-

perience reports. If a user experiences a bug while using

a web application, she presses a button in AUsER, and

the developers of that application receive the sequence of

WaRR Commands she performed. Being based on WaRR,

AUsER offers high-fidelity recording and replaying, thereby

reducing developer effort when reproducing the problem.

Since most bugs are hard to detect automatically [35],

AUsER allows users to provide a textual description of the

bug and a snapshot of the final web page in which the bug

manifests. AUsER allows users to send developers only a

part of the snapshot, such as the button that has the wrong

name, leaving out private details displayed on the web page.

In order to be practical, AUsER must not hinder a user’s

interaction with web applications. The runtime overhead

introduced by the WaRR Recorder must be below the 100

ms human perception threshold [36]. We run an experiment,

consisting of writing an email in GMail, to compute the time

required by the WaRR Recorder to log each user action.

The average required time is on the order of hundreds of

microseconds and does not hinder user experience.

High-fidelity recording is critical for AUsER, so we want

to compare the recording fidelity of the WaRR Recorder and

Selenium IDE. For our experiment, we focus on four widely

used web applications: Google Sites, GMail, the Yahoo!

web portal, and Google Docs. We choose these applications

because they are representative of modern web applications.

Results are presented in Table II and show that the WaRR

Recorder offers higher fidelity than Selenium IDE.

Application Scenario WaRR

Recorder

Selenium

IDE

Google Sites Edit site C P

GMail Compose email C P

Yahoo Authenticate C C

Google Docs Edit spreadsheet C P

Table II: The completeness of recording user actions using

the WaRR Recorder and Selenium IDE. In this table, C

stands for Complete, and P stands for partial.

VII. CONCLUSIONS

We presented WaRR, an “always-on” tool that records and

replays with high fidelity the interactions between a user and

a modern web application. WaRR achieves high recording

7

fidelity due to the interaction-recording functionality being

deeply embedded in the web browser, thus having direct

access to user keystrokes and clicks.

We envision two usage scenarios for WaRR: testing web

applications against realistic human errors and generating

user experience reports. We expect WaRR to help developers

overcome the challenges associated with writing dependable

modern web applications.

Our evaluation shows that WaRR incurs low runtime

overhead during recording, offers higher fidelity than similar

tools, and can find bugs in real modern web applications.

REFERENCES

[1] “Top ranking applications (Wakoopa),” http://www.
favbrowser.com/top-ranking-applications-wakoopa/, 2009.

[2] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Symp. on Operating Systems Design
and Implementation, 2008.

[3] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel
symbolic execution for automated real-world software test-
ing,” in ACM SIGOPS/EuroSys European Conf. on Computer
Systems, 2011.

[4] C. Zamfir and G. Candea, “Execution synthesis: A technique
for automated debugging,” in ACM SIGOPS/EuroSys Euro-
pean Conf. on Computer Systems, 2010.

[5] G. Altekar and I. Stoica, “ODR: Output-deterministic replay
for multicore programs,” in Symp. on Operating Systems
Principles, 2009.

[6] “Selenium IDE,” http://seleniumhq.org/projects/ide.

[7] “WebKit,” http://www.webkit.org/.

[8] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fetterman,
“Execution replay on multiprocessor virtual machines,” in
Intl. Conf. on Virtual Execution Environments, 2008.

[9] “Fiddler,” http://www.fiddler2.com/fiddler2/.

[10] J. Mickens, J. Elson, and J. Howell, “Mugshot: Deterministic
capture and replay for JavaScript applications,” in Symp. on
Networked Systems Design and Implementation, 2010.

[11] R. Atterer, M. Wnuk, and A. Schmidt, “Knowing the user’s
every move - user activity tracking for website usability
evaluation and implicit interaction,” in Intl. World Wide Web
Conference, 2006.

[12] U. Kukreja, W. Stevenson, and F. Ritter, “RUI: Recording
user input from interfaces under Windows and Mac OS X,”
in Behavior Research Methods, 2006.

[13] J. Alexander, A. Cockburn, and R. Lobb, “AppMonitor:
A tool for recording user actions in unmodified windows
applications,” in Behavior Research Methods, 2008.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.
Chen, “ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay,” in Symp. on Operating Systems
Design and Implementation, 2002.

[15] “iMacros,” www.iopus.com/iMacros/.

[16] “Test4Gen,” https://addons.mozilla.org/en-US/firefox/addon/
testgen4web/.

[17] “Watir,” http://watir.com.

[18] “Selenium,” http://seleniumhq.org/.

[19] “Selenium FAQ,” http://web.archive.org/web/
20080822230502/http://wiki.openqa.org/display/SIDE/
FAQ.

[20] “WET,” http://www.wet.qantom.org/.

[21] “HP LoadRunner,” http://learnloadrunner.com/.

[22] “SilkPerformer,” http://www.borland.com/us/products/silk/
silkperformer/.

[23] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM
invariants for Web 2.0 application reliability,” Microsoft Re-
search, Tech. Rep. MSR-TR-2009-176, 2009.

[24] “SPDY,” http://www.chromium.org/spdy.

[25] “Chrome’s rendering architecture,” http://www.
chromium.org/developers/design-documents/
displaying-a-web-page-in-chrome.

[26] “XML path language (XPath),” http://w3.org/TR/xpath.

[27] “WebDriver,” http://google-opensource.blogspot.com/2009/
05/introducing-webdriver.html.

[28] “ChromeDriver,” http://code.google.com/p/selenium/wiki/
ChromeDriver.

[29] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting
with better privacy,” in Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2008.

[30] S. D. Wood and D. E. Kieras, “Modeling human error
for experimentation, training, and error-tolerant design,” in
The Interservice/Industry Training, Simulation & Education
Conference, 2002.

[31] S. Hallé, T. Ettema, C. Bunch, and T. Bultan, “Eliminating
navigation errors in web applications via model checking and
runtime enforcement of navigation state machines,” in Intl.
Conf. on Automated Software Engineering, 2010.

[32] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software En-
gineering, 2002.

[33] S. K. Card, T. P. Moran, and A. Newell, The psychology of
human-computer interaction. Lawrence Erlbaum Associates,
1983.

[34] “AJAX,” http://www.w3schools.com/ajax/.

[35] P. Godefroid and N. Nagappan, “Concurrency at Microsoft
– An exploratory survey,” in CAV Workshop on Exploiting
Concurrency Efficiently and Correctly, 2008.

[36] J. V. Forrester, The eye: basic sciences in practice. Elsevier
Health Sciences, 2002.

8

http://www.favbrowser.com/top-ranking-applications-wakoopa/
http://www.favbrowser.com/top-ranking-applications-wakoopa/
http://seleniumhq.org/projects/ide
http://www.webkit.org/
http://www.fiddler2.com/fiddler2/
www.iopus.com/iMacros/
https://addons.mozilla.org/en-US/firefox/addon/testgen4web/
https://addons.mozilla.org/en-US/firefox/addon/testgen4web/
http://watir.com
http://seleniumhq.org/
http://web.archive.org/web/20080822230502/http://wiki.openqa.org/display/SIDE/FAQ
http://web.archive.org/web/20080822230502/http://wiki.openqa.org/display/SIDE/FAQ
http://web.archive.org/web/20080822230502/http://wiki.openqa.org/display/SIDE/FAQ
http://www.wet.qantom.org/
http://learnloadrunner.com/
http://www.borland.com/us/products/silk/silkperformer/
http://www.borland.com/us/products/silk/silkperformer/
http://www.chromium.org/spdy
http://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
http://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
http://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
http://w3.org/TR/xpath
http://google-opensource.blogspot.com/2009/05/introducing-webdriver.html
http://google-opensource.blogspot.com/2009/05/introducing-webdriver.html
http://code.google.com/p/selenium/wiki/ChromeDriver
http://code.google.com/p/selenium/wiki/ChromeDriver
http://www.w3schools.com/ajax/

