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Abstract

This paper introduces Cloud9, a platform for automated test-
ing of real-world software. Our main contribution is the
scalable parallelization of symbolic execution on clusters
of commodity hardware, to help cope with path explosion.
Cloud9 provides a systematic interface for writing “sym-
bolic tests” that concisely specify entire families of inputs
and behaviors to be tested, thus improving testing produc-
tivity. Cloud9 can handle not only single-threaded programs
but also multi-threaded and distributed systems. It includes a
new symbolic environment model that is the first to support
all major aspects of the POSIX interface, such as processes,
threads, synchronization, networking, IPC, and file I/O. We
show that Cloud9 can automatically test real systems, like
memcached, Apache httpd, lighttpd, the Python interpreter,
rsync, and curl. We show how Cloud9 can use existing test
suites to generate new test cases that capture untested corner
cases (e.g., network stream fragmentation). Cloud9 can also
diagnose incomplete bug fixes by analyzing the difference
between buggy paths before and after a patch.

Categories and Subject Descriptors D.2.5 [Software En-

gineering]: Testing and Debugging—Symbolic Execution

General Terms Reliability, Verification

1. Introduction

Software testing is resource-hungry, time-consuming, labor-
intensive, and prone to human omission and error. Despite
massive investments in quality assurance, serious code de-
fects are routinely discovered after software has been re-
leased [RedHat], and fixing them at so late a stage carries
substantial cost [McConnell 2004]. It is therefore imperative
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to overcome the human-related limitations of software test-
ing by developing automated software testing techniques.

Existing automated techniques, like model checking
and symbolic execution, are highly effective [Cadar 2008,
Holzmann 2008], but their adoption in industrial general-
purpose software testing has been limited. We blame this
gap between research and practice on three challenges faced
by automated testing: scalability, applicability, and usability.

First, path explosion—the fact that the number of paths
through a program is roughly exponential in program size—
severely limits the extent to which large software can be
thoroughly tested. One must be content either with low cov-
erage for large programs, or apply automated tools only to
small programs. For example, we do not know of any sym-
bolic execution engine that can thoroughly test systems with
more than a few thousand lines of code (KLOC).

Second, real-world systems interact heavily with the en-
vironment (e.g., through system calls, library calls) and may
communicate with other parties (e.g., over sockets, IPC,
shared memory). For an automated testing tool to be used
in practice, it must be capable of handling these interactions.
Third, an important hurdle to adoption is that, in order to
productively use most current tools, a user must become as
versed in the underlying technology as the tool’s developers.

Our goal in building Cloud9 is to address these chal-
lenges: we envision Cloud9 as a testing platform that bridges
the gap between symbolic execution and the requirements of
automated testing in the real world. As will be seen later,
doing so requires solving a number of research problems.

Cloud9 helps cope with path explosion by parallelizing
symbolic execution in a way that scales well on large clusters
of cheap commodity hardware. Cloud9 scales linearly with
the number of nodes in the system, thus enabling users to
“throw hardware at the problem.” Doing so without Cloud9
is hard, because single computers with enough CPU and
memory to symbolically execute large systems either do not
exist today or are prohibitively expensive.

We built into Cloud9 features we consider necessary for
a practical testing platform: Besides single-threaded single-
node systems, Cloud9 handles also multi-threaded and dis-
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tributed software. It offers fine grain control over the be-
havior being tested, including the injection of faults and
the scheduling of threads. Cloud9 embeds a new symbolic
model of a program’s environment that supports all major
aspects of the POSIX interface, including processes, threads,
synchronization, networking, IPC, and file I/O. Cloud9 pro-
vides an easy-to-use API for writing “symbolic tests”—
developers can specify concisely families of inputs and envi-
ronment behaviors for which to test the target software, with-
out having to understand how symbolic execution works,
which program inputs need to be marked symbolic, or how
long the symbolic inputs should be. By encompassing en-
tire families of behaviors, symbolic tests cover substantially
more cases than “concrete” regular tests.

This paper makes three contributions: (1) the first cluster-
based parallel symbolic execution engine that scales linearly
with the number of nodes; (2) a testing platform for writing
symbolic tests; and (3) a quasi-complete symbolic POSIX

model that makes it possible to use symbolic execution on
real-world systems. We built a Cloud9 prototype that runs
on Amazon EC2, private clusters, and multicore machines.

In this paper we present Cloud9 and report on our experi-
ence using it for testing several parallel and distributed sys-
tems, describe some of the bugs found, and explain how we
debugged flawed bug fixes. We describe the problem (§2),
Cloud9’s design (§3-§5), our prototype (§6), we evaluate the
prototype (§7), survey related work (§8), and conclude (§9).

2. Problem Overview

Testing a program consists of exercising many different
paths through it and checking whether they “do the right
thing.” In other words, testing is a way to produce partial
evidence of correctness, and thus increase confidence in the
tested software. Yet, due to the typically poor coverage one
can get today, testing often turns into a mere hunt for bugs.

In practice, most software test harnesses consist of man-
ually written tests that are run periodically; regression test
suites provide an automated way of checking whether new
bugs have entered the code [McConnell 2004]. Such suites
tend to be tedious to write and maintain but, once in place,
they can be reused and extended. In practice, the state of the
art consists mostly of fuzzing, i.e., trying various inputs in
the hope of finding bugs and improving test coverage.

In research, the state of the art consists of model check-
ers and automated test generators based on symbolic exe-
cution [Cadar 2008, Godefroid 2005]. Instead of running a
program with regular concrete inputs (e.g., x=5), symbolic
execution consists of running a programwith “symbolic” in-
puts that can take on all values allowed by the type (e.g.,
x=λ , where λ ∈ N). Whenever a conditional branch is en-
countered that involves a predicate π that depends (directly
or indirectly) on x, state and execution are forked into two
alternatives: one following the then-branch (π) and another
following the else-branch (¬π). The two executions can now

be pursued independently. When a bug is found, test gener-
ators can compute concrete values for program inputs that
take the program to the bug location. This approach is effi-
cient because it analyzes code for entire classes of inputs at
a time, thus avoiding the redundancy inherent in fuzzing.

The first challenge for such tools is path explosion, as
mentioned earlier. One way to cope is to memoize the sym-
bolic execution of sub-paths into test summaries that can be
subsequently reused when the same sub-path is encountered
again, as done in compositional test generation [Godefroid
2007]. Alternatively, it is possible to use various heuris-
tics to prioritize the most interesting paths first, as done in
KLEE [Cadar 2008]. Another approach is to execute sym-
bolically only paths that are of interest to the test, as done in
selective symbolic execution [Chipounov 2009].

We pursue a complementary approach—parallel sym-

bolic execution—in which we symbolically execute a pro-
gram in parallel on a cluster, thus harnessing the machines
into a “distributed computer” whose aggregate CPU and
memory surpass that of an individual machine. An alterna-
tive to a cluster-based approach would be to run a classic
single-node symbolic execution engine on a Blue Gene-like
supercomputer with vast shared memory and CPUs commu-
nicating overMPI. Supercomputers, however, are expensive,
so we favor instead clusters of cheap commodity hardware.

One way to parallelize symbolic execution is by statically
dividing up the task among nodes and having them run inde-
pendently. However, when running on large programs, this
approach leads to high workload imbalance among nodes,
making the entire cluster proceed at the pace of the slow-
est node [Staats 2010]. If this node gets stuck, for instance,
while symbolically executing a loop, the testing process may
never terminate. Parallelizing symbolic execution on shared-
nothing clusters in a way that scales well is difficult.

The second challenge is mediating between a program
and its environment, i.e., symbolically executing a program
that calls into libraries and the OS, or communicates with
other systems, neither of which execute symbolically. One
possible approach is to simply allow the call to go through
into the “concrete” environment (e.g., to write a file) [Cadar
2006, Godefroid 2005]; unfortunately, this causes the envi-
ronment to be altered for all forked executions being ex-
plored in parallel, thus introducing inconsistency. Another
approach is to replace the real environment with a symbolic
model, i.e., a piece of code linked with the target program
that provides the illusion of interacting with a symbolically
executing environment. For instance, KLEE uses a symbolic
model of the file system [Cadar 2008]. Of course, real-world
programs typically interact in richer ways than just file I/O:
they fork processes, synchronize threads, etc.

We originally viewed the building of a complete environ-
ment model as an engineering task, but our “mere engineer-
ing” attempt failed: for any functionality that, in a normal
execution, requires hardware support (such as enforcing iso-
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lation between address spaces), the core symbolic execution
engine had to be modified. The research challenge therefore
is to find the minimal set of engine primitives required to
support a rich model of a program’s environment.

The third challenge is using an automated test generator
in the context of a development organization’s quality as-
surance processes. To take full advantage of the automated
exploration of paths, a testing tool must provideways to con-
trol all aspects of the environment. For example, there needs
to be a clean API for injecting failures at the boundary be-
tween programs and their environment, there must be a way
to control thread schedules, and so on. There should be a
way to programmatically orchestrate all environment-related
events, but doing so should not require deep expertise in the
technology behind the testing tools themselves.

The work presented here aims to address these three chal-
lenges. Cluster-based parallel symbolic execution (§3) pro-
vides the illusion of running a classic symbolic execution
engine on top of a large, powerful computer. Without chang-
ing the exponential nature of the problem, parallel symbolic
execution harnesses cluster resources to make it feasible to
run automated testing on larger systems than what was pos-
sible until now. Our work complements and benefits all tools
and approaches based on symbolic execution. We describe a
way to accuratelymodel the environment (§4) with sufficient
completeness to test complex, real software, like the Apache
web server and the Python interpreter. We present the APIs
and primitives that we found necessary in developing a true
testing platform (§5). We show how using these APIs en-
ables, for instance, finding errors in bug patches by repro-
ducing environment conditions which otherwise would have
been hard or impossible to set up with regular test cases.

3. Scalable Parallel Symbolic Execution

In this section we present the design of the Cloud9 en-
gine, focusing on the algorithmic aspects: after a concep-
tual overview (§3.1), we describe how Cloud9 operates at
the worker level (§3.2) and then at the cluster level (§3.3).

3.1 Conceptual Overview

Classic Symbolic Execution Cloud9 employs symbolic
execution, an automated testing technique that has recently
shown a lot of promise [Cadar 2008, Godefroid 2005].

A symbolic execution engine (SEE) executes a program
with unconstrained symbolic inputs.When a branch involves
symbolic values, execution forks into two parallel executions
(see §2), each with a corresponding clone of the program
state. Symbolic values in the clones are constrained to make
the branch condition evaluate to false (e.g., λ ≥MAX) re-
spectively true (e.g., λ <MAX). Execution recursively splits
into sub-executions at each subsequent branch, turning an
otherwise linear execution into an execution tree (Fig. 1).

In this way, all execution paths in the program are ex-
plored. To ensure that only feasible paths are explored,

void write( int x )

{

  if (x < MAX) {

    if (x > 0) 

      ... 

    else

      ...

  } else {

    if (x > 3)

      ... 

    else

      ...

  }

}

 

x < MAX

x > 3 x > 0

TrueFalse

TrueFalse TrueFalse

False

False

False

True

True

Figure 1: Symbolic execution produces an execution tree.

the SEE uses a constraint solver to check the satisfiability
of each branch’s predicate, and it only follows satisfiable
branches. If a bug is encountered (e.g., a crash or a hang)
along one of the paths, the solution to the constraints accu-
mulated along that path yields the inputs that take the tested
program to the bug—these inputs constitute a test case.

Parallel Symbolic Execution Since the size of the exe-
cution tree is exponential in the number of branches, and
the complexity of constraints increases as the tree deepens,
state-of-the-art SEEs can quickly bottleneck on CPU and
memory even for programs with just a couple KLOC. We
therefore build a parallel SEE that runs on a commodity clus-
ter and enables “throwing hardware at the problem.”

The key design goal is to enable individual cluster nodes
to explore the execution tree independently of each other.
One way of doing this is to statically split the execution tree
and farm off subtrees to worker nodes. Alas, the contents
and shape of the execution tree are not known until the tree
is actually explored, and finding a balanced partition (i.e.,
one that will keep all workers busy) of an unexpanded exe-
cution tree is undecidable. Besides subtree size, the amount
of memory and CPU required to explore a subtree is also
undecidable, yet must be taken into account when partition-
ing the tree. Since the methods used so far in parallel model
checkers [Barnat 2007, Holzmann 2008] rely on static parti-
tioning of a finite state space, they cannot be directly applied
to the present problem. Instead, Cloud9 partitions the execu-
tion tree dynamically, as the tree is being explored.

Dynamic Distributed Exploration Cloud9 consists of wor-
ker nodes and a load balancer (LB). Workers run indepen-
dent SEEs, based on KLEE [Cadar 2008]. They explore
portions of the execution tree and send statistics on their
progress to the LB, which in turn instructs, whenever nec-
essary, pairs of workers to balance each other’s work load.
Encoding and transfer of work is handled directly between
workers, thus taking the load balancer off the critical path.

The goal is to dynamically partition the execution tree
such that the parts are disjoint (to avoid redundant work) and
together they cover the global execution tree (for exploration
to be complete). We aim to minimize the number of work
transfers and associated communication overhead. A fortu-
itous side effect of dynamic partitioning is the transparent
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handling of fluctuations in resource quality, availability, and
cost, which are inherent to large clusters in cloud settings.

Cloud9 operates roughly as follows: The first compo-
nent to come up is the load balancer. When the first worker
nodeW1 joins the Cloud9 cluster, it connects to the LB and
receives a “seed” job to explore the entire execution tree.
When the second workerW2 joins and contacts the LB, it is
instructed to balanceW1’s load, which causesW1 to break off
some of its unexplored subtrees and send them toW2 in the
form of jobs. As new workers join, the LB has them balance
the load of existing workers. The workers regularly send to
the LB status updates on their load in terms of exploration
jobs, along with current progress in terms of code coverage,
encoded as a bit vector. Based on workers’ load, the LB can
issue job transfer requests to pairs of workers in the form
〈 source worker, destination worker, # of jobs 〉. The source
node decides which particular jobs to transfer.

3.2 Worker-level Operation

A worker’s visibility is limited to the subtree it is exploring
locally. As Wi explores and reveals the content of its local
subtree, it has no knowledge of what Wj’s (i 6= j) subtree
looks like. No element in the system—not even the load
balancer—maintains a global execution tree. Disjointness
and completeness of the exploration (see Fig. 2) are ensured
by the load balancing algorithm.

W ’s view W ’s view W ’s view

Aggregate

   situation

1 2 3

fence nodes

dead nodes

candidate nodes

Figure 2: Dynamic partitioning of exploration in Cloud9.

As will be explained later, each worker has the root of the
global execution tree. The tree portion explored thus far on
a worker consists of three kinds of nodes: (1) internal nodes
that have already been explored and are thus no longer of
interest—we call them dead nodes; (2) fence nodes that de-
marcate the portion being explored, separating the domains
of different workers; and (3) candidate nodes, which are
nodes ready to be explored. A worker exclusively explores
candidate nodes; it never expands fence or dead nodes.

Candidate nodes are leaves of the local tree, and they
form the exploration frontier. The work transfer algorithm
ensures that frontiers are disjoint between workers, thus en-
suring that no worker duplicates the exploration done by an-
other worker. At the same time, the union of all frontiers in
the system corresponds to the frontier of the global execution

tree. The goal of a workerWi at every step is to choose the
next candidate node to explore and, when a bug is encoun-
tered, to compute the inputs, thread schedule, and system
call returns that would take the program to that bug.

The implementation of this conceptual model lends it-
self to many optimizations, some of which we cover in
§6. Broadly speaking, judicious use of copy-on-write and
a novel state-encoding technique ensure that actual program
state is only maintained for candidate and fence nodes.

Worker-to-Worker Job Transfer When the global explo-
ration frontier becomes poorly balanced across workers, the
load balancer chooses a loaded workerWs and a less loaded
workerWd and instructs them to balance load by sending n

jobs fromWs to Wd . In the extreme,Wd is a new worker or
one that is done exploring its subtree and has zero jobs left.

Ws chooses n of its candidate nodes and packages them
up for transfer toWd . Since a candidate node sent to another
worker is now on the boundary between the work done by
Ws and the work done byWd , it becomes a fence node at the
sender. This conversion prevents redundant work.

A job can be sent in at least two ways: (1) serialize the
content of the chosen node and send it to Wd , or (2) send
to Wd the path from the tree root to the node, and rely on
Wd to “replay” that path and obtain the contents of the node.
Choosing one vs. the other is a trade-off between time to
encode/decode and network bandwidth: option (1) requires
little work to decode, but consumes bandwidth (the state
of a real program is typically at least several megabytes),
while encoding a job as a path requires replay on Wd . We
assume that large commodity clusters have abundant CPU
but meager bisection bandwidth, so in Cloud9 we chose
to encode jobs as the path from the root to the candidate
node. As an optimization, we exploit common path prefixes:
jobs are not encoded separately, but rather the corresponding
paths are aggregated into a job tree and sent as such.

Materialized
Dead

Candidate
Materialized Materialized

Fence

Virtual
Candidate

Exploration frontier

When the job tree arrives at Wd ,
it is imported into Wd’s own sub-
tree, and the leaves of the job tree
become part ofWd’s frontier (at the
time of arrival, these nodes may lie
“ahead” ofWd’s frontier).Wd keeps
the nodes in the incoming jobs as
virtual nodes, as opposed to mate-

rialized nodes that reside in the lo-
cal subtree, and replays paths only
lazily. A materialized node is one
that contains the corresponding pro-
gram state, whereas a virtual node is an “empty shell” with-
out corresponding program state. In the common case, the
frontier of a worker’s local subtree contains a mix of materi-
alized and virtual nodes, as shown in the diagram above.

As mentioned earlier, a worker must choose at each step
which candidate node to explore next—this choice is guided
by a strategy. Since the set of candidate nodes now contains
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both materialized and virtual nodes, it is possible for the
strategy to choose a virtual node as the next one to explore.
When this happens, the corresponding path in the job tree is
replayed (i.e., the symbolic execution engine executes that
path); at the end of this replay, all nodes along the path are
dead, except the leaf node, which has converted from virtual
to materialized and is now ready to be explored. Note that,
while exploring the chosen job path, each branch produces
child program states; any such state that is not part of the
path is marked as a fence node, because it represents a node
that is being explored elsewhere, soWd should not pursue it.

Summary A node N in Wi’s subtree has two attributes,
Nstatus ∈{materialized, virtual} and Nlife ∈{candidate, fence,
dead}. A worker’s frontier Fi is the set of all candidate nodes
on workerWi. The worker can only explore nodes in Fi, i.e.,
dead nodes are off-limits and so are fence nodes, except if a
fence node needs to be explored during the replay of a job
path. The union ∪Fi equals the frontier of the global execu-
tion tree, ensuring that the aggregation of worker-level ex-
plorations is complete. The intersection ∩Fi = /0, thus avoid-
ing redundancy by ensuring that workers explore disjoint
subtrees. Fig. 3 summarizes the life cycle of a node.

explore

encountered
during
replay

Materialized
Candidate

Virtual
Candidate

Materialized
Fence

Materialized
Dead

job J
x returns

send job Jx to destination createdduringreplay

after 
replay 

of job Jx

created  

during  

exploration

created 

by job Jx

Figure 3: Transition diagram for nodes in a worker’s subtree.

As suggested in Fig. 3, once a tree node is dead, it has
reached a terminal state; therefore, a dead node’s state can
be safely discarded from memory. This enables workers to
maintain program states only for candidate and fence nodes.

3.3 Cluster-level Operation

Load Balancing When jobs arrive at Wd , they are placed
conceptually in a queue; the length of this queue is sent to the
load balancer periodically. The LB ensures that the worker
queue lengths stay within the same order of magnitude.
The balancing algorithm takes as input the lengths li of
each worker Wi’s queue Qi. It computes the average l̄ and
standard deviation σ of the li values and then classifies
eachWi as underloaded (li < max{l̄− δ ·σ ,0}), overloaded
(li > l̄+ δ ·σ ), or OK otherwise; δ is a constant factor. The
Wi are then sorted according to their queue length li and
placed in a list. LB then matches underloaded workers from
the beginning of the list with overloaded workers from the
end of the list. For each pair 〈Wi,Wj〉, with li < l j , the load
balancer sends a job transfer request to the workers to move
(l j− li)/2 candidate nodes fromWj toWi.

Coordinating Worker-level Explorations Classic sym-
bolic execution relies on heuristics to choose which state
on the frontier to explore first, so as to efficiently reach the
chosen test goal (code coverage, finding a particular type of
bug, etc.). In a distributed setting, local heuristics must be
coordinated across workers to achieve the global goal, while
keeping communication overhead at a minimum. What we
have described so far ensures that eventually all paths in
the execution tree are explored, but it provides no aid in fo-
cusing on the paths desired by the global strategy. In this
sense, what we described above is a mechanism, while the
exploration strategies represent the policies.

Global strategies are implemented in Cloud9 using its in-
terface for building overlays on the execution tree structure.
We used this interface to implement distributed versions of
all strategies that come with KLEE [Cadar 2008]; the inter-
face is also available to Cloud9 users. Due to space limita-
tions, we do not describe the strategy interface further, but
provide below an example of how a global strategy is built.

A coverage-optimized strategy drives exploration so as
to maximize coverage [Cadar 2008]. In Cloud9, coverage
is represented as a bit vector, with one bit for every line of
code; a set bit indicates that a line is covered. Every time
a worker explores a program state, it sets the correspond-
ing bits locally. The current version of the bit vector is pig-
gybacked on the status updates sent to the load balancer.
The LB maintains the current global coverage vector and,
when it receives an updated coverage bit vector, ORs it into
the current global coverage. The result is then sent back to
the worker, which in turn ORs this global bit vector into
its own, in order to enable its local exploration strategy to
make choices consistent with the global goal. The coverage
bit vector is an example of a Cloud9 overlay data structure.

4. The POSIX Environment Model

Symbolically executing real-world software is challenging
not only because of path explosion but also because real-
world systems interact with their environment in varied and
complex ways. This section describes our experience build-
ing Cloud9’s symbolic model of a POSIX environment,
which supports most essential interfaces: threads, process
management, sockets, pipes, polling, etc. We believe the de-
scribed techniques are general enough to model other OSes
and environments as well.

4.1 Environment Model Design

The goal of a symbolic model is to simulate the behavior of a
real execution environment, while maintaining the necessary
symbolic state behind the environment interface. The sym-
bolic execution engine (SEE) can then seamlessly transition
back and forth between the program and the environment.

While writing and maintaining a model can be labori-
ous and prone to error [Chipounov 2011], there exist cases
in which models provide distinct advantages. First, sym-
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bolic execution with a model can be substantially faster than
without. For instance, in the Linux kernel, transferring a
packet between two hosts exercises the entire TCP/IP net-
working stack and the associated driver code, amounting to
over 30 KLOC. In contrast, Cloud9’s POSIX model achieves
the same functionality in about 1.5KLOC. Requirements that
complicate a real environment/OS implementation, such as
performance and extensibility, can be ignored in a symbolic
model. Second, when an interface is as stable as POSIX, in-
vesting the time to model it becomes worthwhile.

We designed a minimal yet general “symbolic system
call” interface to the Cloud9 SEE, which provides the es-
sential building blocks for thread context switching, ad-
dress space isolation, memory sharing, and sleep operations.
These are hard to provide solely through an external model.
We give more details about symbolic system calls in §4.2.

In some cases, it is practical to have the host OS handle
parts of the environment via external calls. These are imple-
mented by concretizing the symbolic parameters of a system
call before invoking it from symbolically executing code.
Unlike [Cadar 2008; 2006, Godefroid 2005], Cloud9 allows
external calls only for stateless or read-only system calls,
such as reading a system configuration file from the /etc
directory. This restriction ensures that external concrete calls
do not clobber other symbolically executing paths.

Symbolic Execution
External

Environment

Modeled Components
Unaltered

C Library Code

Program Under Test

Symbolic system calls Host OS concrete syscalls

Engine
operations

Internal

Modeled API Extensions Original API implementation

Symbolic Domain

S
y

m
b

o
li

c 
C

 L
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ra
ry 1 2 34

67

5
8

Engine

Figure 4: Architecture of the Cloud9 POSIX model.

Cloud9 builds upon the KLEE symbolic execution engine,
and so it inherits from KLEE the mechanism for replacing
parts of the C Library with model code; it also inherits the
external calls mechanism. Cloud9 adds the symbolic system
call interface and replaces parts of the C Library with the
POSIX model. The resulting architecture is shown in Fig. 4.

Before symbolic execution starts, the Cloud9 system
links the program under test with a special symbolic C Li-
brary. We built this library by replacing parts of the exist-
ing uClibc library in KLEE with the POSIX model code.
Developers do not need to modify the code of to-be-tested
programs in any way to make it run on Cloud9.

In the C Library, we replaced operations related to
threads, processes, file descriptors, and network operations
with their corresponding modelÀ, and augmented the API
with Cloud9-specific extensionsÁ. A large portion of the
C Library is reused, since it works out of the boxÂ (e.g.
memory and string operations). Finally, parts of the original

Primitive Name Description

cloud9_make_shared Share object across a CoW domain

cloud9_thread_create
Create and destroy threads

cloud9_thread_terminate
cloud9_process_fork Fork and terminate the current

processcloud9_process_terminate
cloud9_get_context Get the current context (pid and tid)

cloud9_thread_preempt Preempt a thread

cloud9_thread_sleep Thread sleep on waiting queue

cloud9_thread_notify Wake threads from waiting queue
cloud9_get_wlist Create a new waiting queue

Table 1: Cloud9 primitives used to build the POSIX model.

C Library itself use the modeled codeÃ (e.g., Standard I/O
stdio relies on the modeled POSIX file descriptors).

The modeled POSIX components interface with the SEE
through symbolic system callsÄ, listed in Table 1. Occa-
sionally, the unmodified part of the C Library invokes ex-
ternal system callsÅ, and the model code itself needs sup-
port from the host OSÆ—in order to make sure the external
calls do not interfere with the symbolic engine’s own opera-
tionsÇ, such access is limited to read-only and/or stateless
operations. This avoids problems like, for instance, allowing
an external close() system call to close a network connec-
tion or log file that is actually used by the SEE itself.

4.2 Symbolic Engine Modifications

In order to support the POSIX interface, we augmented
KLEE with two major features: multiple address spaces per
state and support for scheduling threads and processes. This
functionality is accessed by model code through the sym-
bolic system call interface (Table 1). Additional models of
non-POSIX environments can be built using this interface.

Address Spaces KLEE uses copy-on-write (CoW) to en-
able memory sharing between symbolic states. We extend
this functionality in two ways. First, we enable multiple ad-
dress spaces within a single execution state, corresponding
to multiple processes encompassed in that state. Address
spaces can thus be duplicated both across states (as in classic
KLEE) and within a state, when cloud9_process_fork is
invoked, e.g., as used by the POSIX model’s fork().

Second, we organize the address spaces in an execu-
tion state as CoW domains that permit memory sharing be-
tween processes. A memory object can be marked as shared
by calling cloud9_make_shared; it is then automatically
mapped in the address spaces of the other processes within
the CoW domain. Whenever a shared object is modified in
one address space, the new version is automatically propa-
gated to the other members of the CoW domain. The shared
memory objects can then be used by the model as global
memory for inter-process communication.

Multithreading and Scheduling Threads are created in the
currently executing process by calling cloud9_thread_
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create. Cloud9’s POSIX threads (pthreads) model makes
use of this primitive in its own pthread_create() routine.

Cloud9 implements a cooperative scheduler: An enabled
thread runs uninterrupted (atomically), until either (a) the
thread goes to sleep; (b) the thread is explicitly preempted
by a cloud9_thread_preempt call; or (c) the thread is
terminated via symbolic system calls for process/thread ter-
mination. Preemption occurs at explicit points in the model
code, but it is straightforward to extend Cloud9 to automat-
ically insert preemptions calls at instruction level (as would
be necessary, for instance, when testing for race conditions).

When cloud9_thread_sleep is called, the SEE places
the current thread on a specified waiting queue, and an en-
abled thread is selected for execution. Another thread may
call cloud9_thread_notify on the waiting queue and
wake up one or all of the queued threads.

Cloud9 can be configured to schedule the next thread
deterministically, or to fork the execution state for each
possible next thread. The latter case is useful when looking
for concurrency bugs, but it can be a significant source of
path explosion, so it should be disabled when not needed.

If no thread can be scheduled when the current thread
goes to sleep, then a hang is detected, the execution state is
terminated, and a corresponding test case is generated.

Note that parallelizing symbolic execution is orthogonal
to providing the multithreading support described above. In
the former case, the execution engine is instantiated on mul-
tiple machines and each instance expands a portion of the
symbolic execution tree. In the latter case, multiple symbolic
threads are multiplexed along the same execution path in the
tree; execution is serial along each path.

4.3 POSIX Model Implementation

In this section, we describe the key design decisions involved
in building the Cloud9 POSIX model, and we illustrate the
use of the symbolic system call interface. This is of partic-
ular interest to readers who wish to build additional models
on top of the Cloud9 symbolic system call interface.

The POSIX model uses shared memory structures to keep
track of all system objects (processes, threads, sockets, etc.).
The two most important data structures are stream buffers
and block buffers, analogous to character and block device
types in UNIX. Stream buffers model half-duplex communi-
cation channels: they are generic producer-consumer queues
of bytes, with support for event notification to multiple lis-
teners. Event notifications are used, for instance, by the
polling component in the POSIX model. Block buffers are
random-access, fixed-size buffers, whose operations do not
block; they are used to implement symbolic files.

The symbolic execution engine maintains only basic in-
formation on running processes and threads: identifiers,
running status, and parent–child information. However, the
POSIX standard mandates additional information, such as
open file descriptors and permission flags. This information
is stored by the model in auxiliary data structures associ-

ated with the currently running threads and processes. The
implementations of fork() and pthread_create() are
in charge of initializing these auxiliary data structures and
making the appropriate symbolic system calls.

Modeling synchronization routines is simplified by the
cooperative scheduling policy: no locks are necessary, and
all synchronization can be done using the sleep/notify sym-
bolic system calls, together with reference counters. Fig. 5
illustrates the simplicity this engenders in the implementa-
tion of pthread mutex lock and unlock.

typedef struct { 

  wlist_id_t wlist;

  char taken;

  unsigned int owner;

  unsigned int queued; 

} mutex_data_t;

int pthread_mutex_lock(pthread_mutex_t *mutex) {

  mutex_data_t *mdata = ((mutex_data_t**)mutex);

  if (mdata->queued > 0 || mdata->taken) {

    mdata->queued++;

    cloud9_thread_sleep(mdata->wlist);

    mdata->queued--;

  }

  mdata->taken = 1;

  mdata->owner = pthread_self();

  return 0;

}

int pthread_mutex_unlock(pthread_mutex_t *mutex) {

  mutex_data_t *mdata = ((mutex_data_t**)mutex);

  if (!mdata->taken || 

      mdata->owner != pthread_self()) {

    errno = EPERM;

    return -1;

  }

  mdata->taken = 0;

  if (mdata->queued > 0)

    cloud9_thread_notify(mdata->wlist);

  return 0;

}

Figure 5: Example implementation of pthread mutex opera-
tions in Cloud9’s POSIX environment model.

Cloud9 inherits most of the semantics of the file model
from KLEE. In particular, one can either open a symbolic
file (its contents comes from a symbolic block buffer), or
a concrete file, in which case a concrete file descriptor is
associated with the symbolic one, and all operations on the
file are forwarded as external calls on the concrete descriptor.

In addition to file objects, the Cloud9 POSIX model adds
support for networking and pipes. Currently, the TCP and
UDP protocols are supported over IP and UNIX network
types. Since no actual hardware is involved in the packet
transmission, we can collapse the entire networking stack
into a simple scheme based on two stream buffers (Fig. 6).
The network is modeled as a single-IP network with multiple
available ports—this configuration is sufficient to connect
multiple processes to each other, in order to simulate and test
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Figure 6: A TCP network connection is modeled in Cloud9
using TX and RX buffers implemented as stream buffers.

distributed systems. The model also supports pipes through
the use of a single stream buffer, similar to sockets.

The Cloud9 POSIX model supports polling through the
select() interface. All the software we tested can be con-
figured to use select(), so it was not necessary to imple-
ment other polling mechanisms. The select() model re-
lies on the event notification support offered by the stream
buffers that are used in the implementation of blocking I/O
objects (currently sockets and pipes).

The constraint solver used in Cloud9 operates on bit vec-
tors; as a result, symbolic formulas refer to contiguous areas
of memory. In order to reduce the constraint solving over-
head, we aim to reduce the amount of intermixing of con-
crete and symbolic data in the same memory region. Thus,
Cloud9’s POSIX model segregates concrete from symbolic
data by using static arrays for concrete data and linked lists
(or other specialized structures) for symbolic data. We allo-
cate into separate buffers potentially-symbolic data passed
by the tested program through the POSIX interface.

In order to enable testing the systems presented in the
evaluation section (§7), we had to add support for various
other components: IPC routines, mmap() calls, time-related
functions, etc. Even though laborious, this was mostly an
engineering exercise, so we do not discuss it further.

5. Symbolic Test Suites

Software products and systems typically have large “hand-
made” test suites; writing and maintaining these suites re-
quires substantial human effort. Cloud9 aims to reduce this
burden while improving the quality of testing, by offering an
easy way to write “symbolic test suites.” First, a symbolic
test case encompassesmany similar concrete test cases into a
single symbolic one—each symbolic test a developer writes
is equivalent to many concrete ones. Second, a symbolic test
case explores conditions that are hard to produce reliably in
a concrete test case, such as the occurrence of faults, concur-
rency side effects, or network packet reordering, dropping
and delay. Furthermore, symbolic test suites can easily cover
unknown corner cases, as well as new, untested functional-
ity. In this section, we present the API for symbolic tests and
illustrate it with a use case.

Function Name Description

cloud9_make_symbolic Mark memory regions as symbolic
cloud9_fi_enable Enable/disable the injection of

faultscloud9_fi_disable
cloud9_set_max_heap Set heap size for symbolic malloc
cloud9_set_scheduler Set scheduler policy (e.g., round-robin)

Table 2: Cloud9 API for setting global behavior parameters.

Extended Ioctl Code Description

SIO_SYMBOLIC Turns this file or socket into a source
of symbolic input

SIO_PKT_FRAGMENT Enables packet fragmentation on this
socket (must be a stream socket)

SIO_FAULT_INJ Enables fault injection for operations
on this descriptor

Table 3: Cloud9 extended ioctl codes to control environ-
mental events on a per-file-descriptor basis.

5.1 Testing Platform API

The Cloud9 symbolic testing API (Tables 2 and 3) allows
tests to programmatically control events in the environment
of the program under test. A test suite needs to simply
include a cloud9.h header file and make the requisite calls.

Symbolic Data and Streams The generality of a test case
can be expanded by introducing bytes of symbolic data.
This is done by calling cloud9_make_symbolic, a wrap-
per around klee_make_symbolic, with an argument that
points to a memory region. klee_make_symbolic is a
primitive provided by KLEE to mark data symbolic. In ad-
dition to wrapping this call, we added several new primi-
tives to the testing API (Table 2). In Cloud9, symbolic data
can be written/read to/from files, can be sent/received over
the network, and can be passed via pipes. Furthermore, the
SIO_SYMBOLIC ioctl code (Table 3) turns on/off the re-
ception of symbolic bytes from individual files or sockets.

Network Conditions Delay, reordering, or dropping of
packets causes a network data stream to be fragmented.
Fragmentation can be turned on or off at the socket level us-
ing one of the Cloud9 ioctl extensions. §7 presents a case
where symbolic fragmentation enabled Cloud9 to prove that
a bug fix for the lighttpd web server was incomplete.

Fault Injection Calls in a POSIX system can return an
error code when they fail. Most programs can tolerate
such failed calls, but even high-quality production software
misses some [Marinescu 2009]. Such error return codes are
simulated by Cloud9 whenever fault injection is turned on.

Symbolic Scheduler Cloud9 provides multiple scheduling
policies that can be controlled for purposes of testing on a
per-code-region basis. Currently, Cloud9 supports a round-
robin scheduler and two schedulers specialized for bug find-
ing: a variant of the iterative context bounding scheduling
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algorithm [Musuvathi 2008] and an exhaustive exploration
of all possible scheduling decisions.

5.2 Use Case

Consider a scenario in which we want to test the support for
a new X-NewExtension HTTP header, just added to a web
server. We show how to write tests for this new feature.

A symbolic test suite typically starts off as an augmen-
tation of an existing test suite; in our scenario, we reuse
the existing boilerplate setup code and write a symbolic test
case that marks the extension header symbolic. Whenever
the code that processes the header data is executed, Cloud9
forks at all the branches that depend on the header content.
Similarly, the request payload can be marked symbolic to
test the payload-processing part of the system:

char hData[10];

cloud9_make_symbolic(hData);

strcat(req, "X-NewExtension: ");

strcat(req, hData);

The web server may receive HTTP requests fragmented
in a number of chunks, returned by individual invocations
of the read() system call—the web server should run cor-
rectly regardless of the fragmentation pattern. To test differ-
ent fragmentation patterns with Cloud9, one simply enables
symbolic packet fragmentation on the client socket:

ioctl(ssock, SIO_PKT_FRAGMENT, RD);

To test how the web server handles failures in the envi-
ronment, we can ask Cloud9 to selectively inject faults when
the server reads or sends data on a socket by placing in the
symbolic test suite calls of the form:

ioctl(ssock, SIO_FAULT_INJ, RD | WR);

Cloud9 can also enable/disable fault injection globally for
all file descriptors within a certain region of the code using
calls to cloud9_fi_enable and cloud9_fi_disable.
For simulating low-memory conditions, Cloud9 provides a
cloud9_set_max_heap primitive, which can be used to
test the web server with different maximum heap sizes.

6. Cloud9 Prototype

We developed a Cloud9 prototype that runs on private
clusters as well as cloud infrastructures like Amazon EC2
[Amazon] and Eucalyptus [Eucalyptus]. The prototype has
10 KLOC; the POSIX model accounts for half of the total
code size. Cloud9 workers embed KLEE [Cadar 2008], a
state-of-the-art single-node symbolic execution engine; the
Cloud9 fabric converts a cluster of individual engines into
one big parallel symbolic execution engine. This section
presents selected implementation decisions underlying the
prototype.More details are available at http://cloud9.epfl.ch.

Broken Replays As discussed in §3.2, when a job is trans-
ferred from one worker to another, the replay done during
materialization must successfully reconstruct the transferred

state. Along the reconstruction path, the destination must ex-
ecute the same instructions, obtain the same symbolic mem-
ory content, and get the same results during constraint solv-
ing as on the source worker. Failing to do so causes the re-
played path to be broken: it either diverges, or terminates
prematurely. In both cases, this means the state cannot be re-
constructed, and this could affect exploration completeness.

The main challenge is that the underlyingKLEE symbolic
execution engine relies on a global memory allocator to
service the tested program’s malloc() calls. The allocator
returns actual host memory addresses, and this is necessary
for executing external system calls that access program state.
Unfortunately, this also means that buffers are allocated at
addresses whose values for a given state depend on the
history of previous allocations in other states. Such cross-
state interference leads to frequent broken replays.

We therefore replaced the KLEE allocator with a per-
state deterministic memory allocator, which uses a per-state
address counter that increases with everymemory allocation.
To preserve the correctness of external calls (that require real
addresses), this allocator gives addresses in a range that is
also mapped in the SEE address space using mmap(). Thus,
before external calls are invoked, the memory content of the
state is copied into the mmap-ed region.

Constraint Caches KLEE implements a cache mechanism
for constraint-solving results; this cache can significantly
improve solver performance. In Cloud9, states are trans-
ferred between workers without the source worker’s cache.
While one might expect this to hurt performance signifi-
cantly, in practice we found that the necessary portion of the
cache is mostly reconstructed as a side effect of path replay,
as the path constraints are re-sent to the local solver.

Custom Data Structures We developed two custom data
structures for handling symbolic execution trees: Node pins
are a kind of smart pointer customized for trees. Standard
smart pointers (e.g., the ones provided by Boost libraries)
can introduce significant performance disruptionswhen used
for linked data structures: chained destructors can introduce
noticeable deallocation latency and may even overflow the
stack and crash the system. The node pin allows trees to be
treated akin to a “rubber band” data structure: as nodes get
allocated, the rubber band is stretched, and some nodes act as
pins to anchor the rubber band. When such a pin is removed,
the nodes with no incoming references are freed up to the
point where the rubber band reaches the pin next closest to
the root. Tree nodes between two pins are freed all at once,
avoiding the use of the stack for recursive destructor calls.

Another custom data structure is the tree layer. At first,
Cloud9 used a single tree to represent the entire symbolic
execution. As Cloud9 evolved, tree nodes acquired an in-
creasing number of objects: program states, imported jobs,
breakpoints, etc. This made tree searches inefficient, com-
plicated synchronization, and generally impeded our devel-
opment effort. We therefore adopted a layer-based structure
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similar to that used in CAD tools, where the actual tree is
a superposition of simpler layers. When exploring the tree,
one chooses the layer of interest; switching between lay-
ers can be done dynamically at virtually zero cost. Cloud9
currently uses separate layers for symbolic states, imported
jobs, and several other sets of internal information.

7. Evaluation

There are several questions one must ask of a parallel sym-
bolic execution platform, and we aim to answer them in this
section: Can it be used on real-world software that interacts
richly with its environment (§7.1)? Does it scale on com-
modity shared-nothing clusters (§7.2)? Is it an effective test-
ing platform, and does it help developers gain confidence
in their code (§7.3)? How do its different components con-
tribute to overall efficiency (§7.4)?

For all our experiments, we used a heterogeneous cluster
environment, with worker CPU frequencies between 2.3–2.6
GHz and with 4–6 GB of RAM available per core.

On each worker, the underlying KLEE engine used the
best searchers from [Cadar 2008], namely an interleaving
of random-path and coverage-optimized strategies. At each
step, the engine alternately selects one of these heuristics
to pick the next state to explore. Random-path traverses the
execution tree starting from the root and randomly picks the
next descendant node, until a candidate state is reached. The
coverage-optimized strategy weighs the states according to
an estimated distance to an uncovered line of code, and then
randomly selects the next state according to these weights.

To quantify coverage, we report both line coverage and
path coverage numbers. Line coveragemeasures the fraction
of program statements executed during a test run, while path
coverage reports how many execution paths were explored
during a test. Path coverage is the more relevant metric
when comparing thoroughness of testing tools. Nevertheless,
we also evaluate properties related to line coverage, since
this is still a de facto standard in software testing practice.
Intuitively, and confirmed experimentally, path coverage in
Cloud9 scales linearly with the number of workers.

7.1 Handling Real-World Software

Table 4 shows a selection of the systems we tested with
Cloud9, covering several types of software. We confirmed
that each system can be tested properly under our POSIX
model. In the rest of this section, we focus our in-depth
evaluation on several networked servers and tools, as they
are frequently used in settings where reliability matters.

Due to its comprehensive POSIX model, Cloud9 can test
many kinds of servers. One example is lighttpd, a web server
used by numerous high-profile web sites, such as YouTube,
Wikimedia, Meebo, and SourceForge. For lighttpd, Cloud9
proved that a certain bug fix was incorrect, and the bug could
still manifest even after applying the patch (§7.3.4). Cloud9
also found a bug in curl, an Internet transfer application

System Size (KLOC) Type of Software

Apache httpd 2.2.16 226.4
Web serversLighttpd 1.4.28 39.5

Ghttpd 1.4.4 0.6
Memcached 1.4.5 8.3 Distributed object cache
Python 2.6.5 388.3 Language interpreter
Curl 7.21.1 65.9

Network utilities
Rsync 3.0.7 35.6
Pbzip 2.1.1 3.6 Compression utility
Libevent 1.4.14 10.2 Event notification library
Coreutils 6.10 72.1 Suite of system utilities
Bandicoot 1.0 6.4 Lightweight DBMS

Table 4: Representative selection of testing targets that run
on Cloud9. Size was measured using the sloccount utility.

that is part of most Linux distributions and other operating
systems (§7.3.2). Cloud9 also found a hang bug in the UDP
handling code of memcached, a distributed memory object
cache system used by many Internet services, such as Flickr,
Craigslist, Twitter, and Livejournal (§7.3.3).

In addition to the testing targets mentioned above,we also
tested a benchmark consisting of a multi-threaded and multi-
process producer-consumer simulation. The benchmark ex-
ercises the entire functionality of the POSIX model: threads,
synchronization, processes, and networking.

We conclude that Cloud9 is practical and capable of test-
ing a wide range of real-world software systems.

7.2 Scaling on Commodity Shared-Nothing Clusters

We evaluate Cloud9 using two metrics:

1. The time to reach a certain goal (e.g., an exhaustive path
exploration, or a fixed coverage level)—we consider this
an external metric, which measures the performance of
the testing platform in terms of its end results.

2. The useful work performed during exploration, measured
as the number of useful (non-replay) instructions exe-
cuted symbolically. This is an internal metric that mea-
sures the efficiency of Cloud9’s internal operation.

A cluster-based symbolic execution engine scales with
the number of workers if these two metrics improve propor-
tionally with the number of workers in the cluster.

Time Scalability We show that Cloud9 scales linearly by
achieving the same testing goal proportionally faster as the
number of workers increases. We consider two scenarios.

First, we measure how fast Cloud9 can exhaustively ex-
plore a fixed number of paths in the symbolic execution
tree. For this, we use a symbolic test case that generates
all the possible paths involved in receiving and processing
two symbolic messages in the memcached server (§7.3 gives
more details about the setup). Fig. 7 shows the time required
to finish the test case with a variable number of workers: ev-
ery doubling in the number of workers roughly halves the
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time to completion. With 48 workers, the time to complete
is about 10 minutes; for 1 worker, exploration time exceeds
our 10-hour limit on the experiment.
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Figure 7: Cloud9 scalability in terms of the time it takes to
exhaustively complete a symbolic test case for memcached.

Second, we measure the time it takes Cloud9 to reach a
fixed coverage level for the printf UNIX utility. printf
performs a lot of parsing of its input (format specifiers),
which produces complex constraints when executed sym-
bolically. Fig. 8 shows that the time to achieve a coverage
target decreases proportionally with the number of added
workers. The low 50% coverage level can be easily achieved
even with a sequential SEE (1-worker Cloud9). However,
higher coverage levels require more workers, if they are
to be achieved in a reasonable amount of time; e.g., only
a 48-worker Cloud9 is able to achieve 90% coverage. The
anomaly at 4 workers for 50% coverage is due to high vari-
ance; when the number of workers is low, the average (5±4.7
minutes over 10 experiments) can be erratic due to the ran-
dom choices in the random-path search strategy.
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Figure 8: Cloud9 scalability in terms of the time it takes to
obtain a target coverage level when testing printf.

Work Scalability We now consider the same scalability
experiments from the perspective of useful work done by
Cloud9: we measure both the total number of instructions
(from the target program) executed during the exploration
process, as well as normalize this value per worker. This
measurement indicates whether the overheads associated
with parallel symbolic execution impact the efficiency of
exploration, or are negligible. Fig. 9 shows the results for
memcached, confirming that Cloud9 scales linearly in terms
of useful work done (top graph). The average useful work
done by a worker (bottom graph) is relatively independent
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Figure 9: Cloud9 scalability in terms of useful work done for
four different running times when testing memcached.

of the total number of workers in the cluster, so adding more
workers improves proportionally Cloud9’s results.

In Fig. 10 we show the results for printf and test,
UNIX utilities that are an order of magnitude smaller than
memcached. We find that the useful work done scales in
a similar way to memcached, even though the three pro-
grams are quite different from each other (e.g., printf
does mostly parsing and formatting, while memcached does
mostly data structure manipulations and network I/O).
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Figure 10: Cloud9’s useful work on printf (top) and test
(bottom) increases roughly linearly in the size of the cluster.

In conclusion, Cloud9 scales linearly with the number of
workers, both in terms of the time to complete a symbolic
testing task and in terms of reaching a target coverage level.
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7.3 Effectiveness as a Testing Platform

In this section we present several case studies that illus-
trate how Cloud9 can explore and find new bugs, con-
firm/disprove that existing bugs have been correctly fixed,
and regression-test a program after it has been modified. In
the common case, Cloud9 users start with a concrete test
case (e.g., from an existing test suite) and generalize it by
making data symbolic and by controlling the environment.

7.3.1 Case Study #1: UNIX Utilities

KLEE is an excellent tool for testing command-line pro-
grams, in particular UNIX utilities. It does not tackle more
complex systems, like the ones in Table 4, mainly due to
path explosion (since KLEE is a single-node engine) and in-
sufficient environment support. We cannot compare Cloud9
to KLEE on parallel and distributed systems, but we can com-
pare on the Coreutils suite of UNIX utilities [Coreutils].

We run KLEE on each of the 96 utilities for 10 minutes,
and then run a 12-worker Cloud9 on each utility for 10 min-
utes. Fig. 11 reports the average coverage increase obtained
with Cloud9 over 7 trials, using KLEE’s 7-trial average re-
sults as a baseline; the experiment totals 2× 7× 96× 10=
13,440 minutes > 9 days. The increase in coverage is mea-
sured as additional lines of code covered, expressed as a per-
centage of program size (i.e., we do not report it as a percent-
age of the baseline, which would be a higher number).

Cloud9 covers up to an additional 40% of the target pro-
grams, with an average of 13% additional code covered
across all Coreutils. In general, improving coverage be-
comes exponentially harder as the base coverage increases,
and this effect is visible in the results: a 12× increase in
hardware resources does not bring about a 12× increase
in coverage. Our results show that Cloud9 allows “throw-
ing hardware” at the automated testing problem, picking up
where KLEE left off. In three cases, Cloud9 achieved 100%
coverage in 10 minutes on real-world code. This experiment
does not aim to show that Cloud9 is a “better” symbolic
execution engine than KLEE—after all, Cloud9 is based on
KLEE—but rather that Cloud9-style parallelization can make
existing symbolic execution engines more powerful.

The way we compute coverage is different from [Cadar
2008]—whereas KLEE was conceived as an automated test

generator, Cloud9 is meant to directly test software. Thus,
we measure the number of lines of code tested by Cloud9,
whereas [Cadar 2008] reports numbers obtained by run-
ning the concrete test cases generated by KLEE. Our method
yields more-conservative numbers because a test generated
by KLEE at the end of an incomplete path (e.g., that ter-
minated due to an environment failure) may execute further
than the termination point when run concretely.

7.3.2 Case Study #2: Curl

Curl is a popular data transfer tool for multiple network
protocols, includingHTTP and FTP.When testing it, Cloud9
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Figure 11: Cloud9 coverage improvements on the 96 Core-
utils (1-worker Cloud9 vs. 12-worker Cloud9).

found a new bug which causes Curl to crash when given a
URL regular expression of the form “http://site.{one,
two,three}.com{”. Cloud9 exposed a general problem in
Curl’s handling of the case when braces used for regular
expression globbing are not matched properly. The bug was
confirmed and fixed within 24 hours by the developers.

This problem had not been noticed before because the
globbing functionality in Curl was shadowed by the same
functionality in command-line interpreters (e.g., Bash). This
case study illustrates a situation that occurs often in practice:
when a piece of software is used in a way that has not been
tried before, it is likely to fail due to latent bugs.

7.3.3 Case Study #3: Memcached

Memcached is a distributed memory object cache system,
mainly used to speed up web application access to persistent
data, typically residing in a database.

Memcached comes with an extensive test suite comprised
of C and Perl code. Running it completely takes about
1 minute; it runs 6,472 different test cases and explores
83.66% of the code.While this is considered thorough by to-
day’s standards, two easy Cloud9 test cases further increased
code coverage. Table 5 contains a summary of our results,
presented in more details in the following paragraphs.

Symbolic Packets The memcached server accepts com-
mands over the network. Based on memcached’s C test suite,
we wrote a test case that sends memcached a generic, sym-
bolic binary command (i.e., command content is fully sym-
bolic), followed by a second symbolic command. This test
captures all operations that entail a pair of commands.

A 24-worker Cloud9 explored in less than 1 hour all
74,503 paths associated with this sequence of two symbolic
packets, covering an additional 1.13% of the code relative to
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Testing Method Paths Isolated Cumulated

Covered Coverage∗ Coverage∗∗

Entire test suite 6,472 83.67% —
Binary protocol
test suite

27 46.79% 84.33% (+0.67%)

Symbolic packets 74,503 35.99% 84.79% (+1.13%)
Test suite +
fault injection

312,465 47.82% 84.94% (+1.28%)

Table 5: Path and code coverage increase obtained by each
symbolic testing technique on memcached. We show total
coverage obtained with each testing method (*), as well as
total coverage obtained by augmenting the original test suite
with the indicated method (**); in parentheses, we show the
increase over the entire test suite’s coverage.

the original test suite. What we found most encouraging in
this result is that such exhaustive tests constitute first steps
toward using symbolic tests to prove properties of real-world
programs, not just to look for bugs. Symbolic tests may
provide an alternative to complex proof mechanisms that is
more intuitive for developers and thus more practical.

Symbolic Fault Injection We also tested memcached with
fault injection enabled, whereby we injected all feasible fail-
ures in memcached’s calls to the C Standard Library. After
10 minutes of testing, a 24-worker Cloud9 explored 312,465
paths, adding 1.28% over the base test suite. The fact that
line coverage increased by so little, despite having covered
almost 50×more paths, illustrates the weakness of line cov-
erage as a metric for test quality—high line coverage should
offer no high confidence in the tested code’s quality.

For the fault injection experiment, we used a special strat-
egy that sorts the execution states according to the number of
faults recorded along their paths, and favors the states with
fewer fault injection points. This led to a uniform injection
of faults: we first injected one fault in every possible fault
injection point along the original C test suite path, then in-
jected pairs of faults, and so on. We believe this is a practical
approach to using fault injection as part of regular testing.

Hang Detection We tested memcached with symbolic
UDP packets, and Cloud9 discovered a hang condition in the
packet parsing code: when a sequence of packet fragments
of a certain size arrive at the server, memcached enters an in-
finite loop, which prevents it from serving any further UDP
connections. This bug can seriously hurt the availability of
infrastructures using memcached.

We discovered the bug by limiting the maximum number
of instructions executed per path to 5×106. The paths with-
out the bug terminated after executing ∼ 3×105 instructions;
the other paths that hit the maximum pointed us to the bug.

7.3.4 Case Study #4: Lighttpd

The lighttpd web server is specifically engineered for high
request throughput, and it is quite sensitive to the rate at

Fragmentation pattern ver. 1.4.12 ver. 1.4.13

(data sizes in bytes) (pre-patch) (post-patch)

1×28 OK OK
1×26+1×2 crash + hang OK
2+5+1+5+2×1+3×2+
5+2×1

crash + hang crash + hang

Table 6: The behavior of different versions of lighttpd to
three ways of fragmenting the HTTP request "GET /in-
dex.html HTTP/1.0CRLFCRLF" (string length 28).

which new data is read from a socket. Alas, the POSIX spec-
ification offers no guarantee on the number of bytes that can
be read from a file descriptor at a time. lighttpd 1.4.12 has a
bug in the command-processing code that causes the server
to crash (and connected clients to hang indefinitely) depend-
ing on how the incoming stream of requests is fragmented.

We wrote a symbolic test case to exercise different stream
fragmentation patterns and see how different lighttpd ver-
sions behave. We constructed a simple HTTP request, which
was then sent over the network to lighttpd. We activated net-
work packet fragmentation via the symbolic ioctl() API
explained in §5. We confirmed that certain fragmentation
patterns cause lighttpd to crash (prior to the bug fix). How-
ever, we also tested the server right after the fix and discov-
ered that the bug fix was incomplete, as some fragmentation
patterns still cause a crash and hang the client (Table 6).

This case study shows that Cloud9 can find bugs caused
by specific interactions with the environment which are hard
to test with a concrete test suite. It also shows how Cloud9
can be used to write effective regression test suites—had a
stream-fragmentation symbolic test been run after the fix,
the lighttpd developers would have promptly discovered the
incompleteness of their fix.

7.3.5 Case Study #5: Bandicoot DBMS

Bandicoot is a lightweight DBMS that can be accessed over
an HTTP interface. We exhaustively explored all paths han-
dling the GET commands and found a bug in which Bandi-
coot reads from outside its allocated memory. The particular
test we ran fortuitously did not result in a crash, as Bandicoot
ended up reading from the libc memory allocator’s metadata
preceding the allocated block of memory. However, besides
the read data being wrong, this bug could cause a crash de-
pending on where the memory block was allocated.

To discover and diagnose this bug without Cloud9 is dif-
ficult. First, a concrete test case has little chance of trigger-
ing the bug. Second, searching for the bug with a sequential
symbolic execution tool seems impractical: the exhaustive
exploration took 9 hours with a 4-worker Cloud9 (and less
than 1 hour with a 24-worker cluster).

7.3.6 Discussion

Cloud9 inherits KLEE’s capabilities, being able to recognize
memory errors and failed assertions. We did not add much
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in terms of bug detection, only two mechanisms for detect-
ing hangs: check if all symbolic threads are sleeping (dead-
lock) and set a threshold for the maximum number of in-
structions executed per path (infinite loop or livelock). Even
so, Cloud9 can find bugs beyond KLEE’s abilities because
the POSIX model allows Cloud9 to reach more paths and
explore deeper portions of the tested program’s code—this
exposes additional potentially buggy situations. Cloud9 also
has more total memory and CPU available, due to its dis-
tributed nature, so it can afford to explore more paths than
KLEE. As we have shown above, it is feasible to offer proofs
for certain program properties: despite the exponential na-
ture of exhaustively exploring paths, one can build small but
useful symbolic test cases that can be exhaustively executed.

7.4 Utility of Load Balancing

In this section we explore the utility of dynamic load balanc-
ing. Consider the example of exhaustively exploring paths
with two symbolic packets in memcached, using 48 work-
ers, but this time from a load balancing perspective. Fig. 12
shows that load balancing events occur frequently, with
3–6% of all states in the system being transferred between
workers in almost every 10-second time interval.
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Figure 12: The fraction of total states (candidate nodes)
transferred between workers during symbolic execution.

To illustrate the benefits of load balancing, we disable it
at various moments in time and then analyze the evolution
of total useful work done. Fig. 13 shows that the elimina-
tion of load balancing at any moment during the execution
significantly affects the subsequent performance of explo-
ration due to the ensuing imbalance. This demonstrates the
necessity of taking a dynamic approach to parallel symbolic
execution, instead of doing mere static partitioning of the
execution tree.
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Figure 13: Instruction throughput of Cloud9 with load bal-
ancing disabled at various points during the exhaustive test.

8. Related Work

To our knowledge, parallel symbolic execution was first
described in [Ciortea 2009]. Cloud9 builds upon those ideas.

Recently, [Staats 2010] described an extension to Java
Pathfinder (JPF) that parallelizes symbolic execution by us-
ing parallel random searches on a static partition of the ex-
ecution tree. JPF pre-computes a set of disjoint constraints
that, when used as preconditions on a worker’s exploration
of the execution tree, steer each worker to explore a subset
of paths disjoint from all other workers. In this approach,
using constraints as preconditions imposes, at every branch
in the program, a solving overhead relative to exploration
without preconditions. The complexity of these precondi-
tions increases with the number of workers, as the precon-
ditions need to be more selective. Thus, per-worker solving
overhead increases as more workers are added to the cluster.
This limits scalability: the largest evaluated program had 447
lines of code and did not interact with its environment. Due
to the static partitioning of the execution tree, total running
time is determined by the worker with the largest subtree
(as explained in §2). As a result, increasing the number of
workers can even increase total test time instead of reducing
it [Staats 2010]. Cloud9 mitigates these drawbacks.

Several sequential symbolic execution engines [Cadar
2008, Godefroid 2005; 2008, Majumdar 2007] have had
great success in automated testing. These state-of-the-art
tools exhaust available memory and CPU fairly quickly (as
explained in §2). Cloud9 can help such tools scale beyond
their current limits, making symbolic execution a viable test-
ing methodology for a wider spectrum of software systems.

To our knowledge, we are the first to scalably parallelize
symbolic execution to shared-nothing clusters. There has
been work, however, on parallel model checking [Barnat
2007, Grumberg 2006, Kumar 2004, Lerda 1999, Stern
1997]. The SPIN model checker has been parallelized two-
way for dual-coremachines [Holzmann 2007]. Nevertheless,
there are currently no model checkers that can scale to many
loosely connected computers, mainly due to the overhead of
coordinating the search across multiple machines and trans-
ferring explicit states. Cloud9 uses an encoding of states that
is compact and enables better scaling.

Swarm verification [Holzmann 2008] generates series of
parallel verification runs with user-defined bounds on time
and memory. Parallelism is used to execute different search
strategies independently. The degree of parallelism is limited
to the number of distinct search strategies. Cloud9 is not
limited in this way: due to the use of dynamic load balancing,
Cloud9 affords arbitrary degrees of parallelism.

Korat [Misailovic 2007] is a parallel testing system that
demonstrated ∼ 500× speedup when using 1024 nodes. Ko-
rat is designed for cases when all program inputs—within a
certain bound—can be generated offline. In contrast, Cloud9
handles arbitrarily complex inputs, even if enumeration is in-
feasible, and can handle system calls and thread schedules.
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VeriSoft [Godefroid 1997] introduced stateless search for
model checkers, in which a list of state transitions is used to
reconstruct an execution state whenever needed. We extend
this idea in the Cloud9 job model, which is in essence a
form of stateless search. However, jobs are replayed from
nodes on the frontier of the execution tree, instead of being
replayed from the root. This is an important optimization:
in practice, most programs have either a long linear path in
the beginning (i.e., initialization code that does not depend
on the symbolic input), or long linear executions between
two consecutive state forks. Replaying from the root would
represent a significant waste of resources for large programs.

Other techniques can be used to improve the scalability
of symbolic execution. For example, compositional test gen-
eration [Boonstoppel 2008, Godefroid 2007] automatically
computes summaries that condense the result of exploration
inside commonly used functions. S2E [Chipounov 2011] im-
proves the scalability of symbolic execution by selectively
executing symbolically only those parts of a system that are
of interest to the tests. Cloud9 is complementary to these
techniques and could be used to scale them further.

9. Conclusion

This paper presented Cloud9, an automated testing platform
that employs parallelization to scale symbolic execution by
harnessing the resources of commodity clusters. Cloud9 can
automatically test real systems, such as memcached, that
interact in complex ways with their environment. It includes
a new symbolic environment that supports all major aspects
of the POSIX interface, and provides a systematic interface
to writing symbolic tests. Further information on Cloud9 can
be found at http://cloud9.epfl.ch.
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