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On the Direct Evaluation of Surface Integral
Equation Impedance Matrix Elements

Involving Point Singularities
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Abstract—The direct evaluation method tailored to the 4-D
singular integrals over vertex adjacent triangles, arising in the
first-kind and second-kind Fredholm surface integral equation
formulations, is presented. A combination of singularity cancella-
tion, reordering of the integrations, and one analytical integration
results in 3-D integrals of sufficiently smooth functions, allowing a
straightforward computation by standard Gaussian rules. Numer-
ical results demonstrate that the uncertainty about the accuracy
of the impedance matrix elements associated to the interaction of
vertex adjacent triangles is safely removed.

Index Terms—Computational electromagnetics, method of
moments (MoM), singular integrals, singularity cancellation,
surface integral equations (SIEs).

I. INTRODUCTION

S TATE-OF-THE-ART surface integral equation (SIE)
formulations, numerically solved by means of Galerkin

method of moments (MoM), necessitate an accurate and effi-
cient computation of the associated impedance matrix elements.
In the case of disjoint supports of basis and testing functions,
the arising multidimensional integrals are regular, allowing a
straightforward numerical integration. Hence, special emphasis
is naturally laid upon the most challenging cases that appear
when those supports are overlapping or share some common
points, thus giving rise to singular integrals. More specifically,
the focal point of this work is the class of multidimensional
integrals involving point singularities. Literally, the singular
integrals that stem from MoM SIE formulations can be catego-
rized into weakly singular (improper Riemann integrable)
and strongly singular (Cauchy), provided certain restric-
tions to both basis and testing functions.

It is also true that those 4-D singular integrals have been under
scrutiny by numerous researchers over the last decades. Among
the various contributions presented so far, the singularity can-
cellation method is deemed to hold a workhorse status (inter-
ested readers could consult the seminal publications [1] and [2]
for a more detailed overview of previous work relevant to this
method). In fact, although recent advances have clearly demon-
strated that the inner (potential) 2-D integrals can be computed
to any prescribed precision [3], there are still some shortcom-
ings that need to be addressed. For instance, it is not clear if this
accuracy can be preserved for the actual impedance matrix ele-
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ments, i.e., the final 4-D singular integrals. Moreover, the vast
majority of the singularity cancellation techniques can solely
handle the weakly singular kernels. Therefore, in cases where
both first-kind and second-kind Fredholm SIE formulations are
present, the accuracy of the associated impedance matrix ele-
ments is critically contaminated.

In an attempt to overcome the reported drawbacks and meet
the requirements for an accurate and efficient computation of
the SIE impedance matrix elements, the authors have recently
extended the pioneering work of Gray et al. [4], [5]. The re-
sulting direct evaluation method tailored to the most demanding
weakly singular and strongly singular integrals (e.g., coinci-
dent and edge adjacent triangles in the case of typical triangular
discretization schemes) was presented in [6]–[8], respectively.
Based on the preliminary results presented in [7], it is clear
that the case of 4-D integrals involving point singularities (e.g.,
vertex adjacent triangles) is not to be overlooked, as a careless
straightforward treatment may introduce significant numerical
error.

This letter presents the direct evaluation method tailored to
the SIE impedance matrix elements involving point singular-
ities and linear basis/testing functions. Both weakly singular
and strongly singular kernels are treated in a systematic way.
The final algorithms clearly outperform direct integration ap-
proaches, as shown by relevant numerical experiments, and can
guarantee numerically exact results (to be defined) in very rea-
sonable run times. This letter puts a closure on the direct eval-
uation of singular integrals arising in traditional SIE formu-
lations. Further generalizations for high-order and/or singular
basis functions defined on arbitrary curvilinear elements is a
matter of future investigations.

II. PROBLEM STATEMENT

The evaluation of the MoM impedance matrix elements in
well-tested SIE, using RWG basis functions and either RWG
or testing functions [9], calls for the computation
of the following 4-D singular integrals:

(1)

(2)

(3)

which incorporate the free-space Green’s function

(4)
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Fig. 1. Orientation of the triangular elements in the vertex adjacent case.

with being the distance function and
the wavenumber. Here, and
correspond to the vertex adjacent triangular elements of the
mesh (see Fig. 1), as dictated by the “element-by-element”
approach of object-oriented programming. The above-men-
tioned integrals can be categorized into weakly singular (1) and
(2) and strongly singular (3), respectively. Moreover, one can
easily replace RWG functions with the novel Buffa–Cristiansen
functions [10] without affecting the overall mathematical com-
plexity since the latter are linear combinations of the former
on the barycentric mesh. Finally, smart usage of both functions
can lead to well-tested SIE operators, improving the overall
accuracy of SIE solvers, provided of course that the associated
impedance matrix elements are accurately computed.

III. DIRECT EVALUATION

In the case of vertex adjacent triangles, the 2-D integrals for
the observation and source elements are separately finite, the
singularity being limited to a single point in the 4-D integra-
tion. Although there is a variety of methods that can be used to
evaluate these terms, their overall accuracy cannot meet the re-
quirements for the state-of-the-art SIE formulations. Here, we
resort to the direct evaluation method and present an extension
specially tailored to weakly singular and strongly singular in-
tegrals (1)–(3), arising when observation and source triangles
share only one point.

As explained in detail in [4]–[8], the first step is to introduce
an equilateral parameter space , where

, for each one of the triangles and orient the
elements so that the singular point is and . The
singular integrals of interest in the new parametric space read as

(5)

where and is the Jacobian
of the transformation. Note also that the various integrands are
omitted throughout this manuscript due to paucity of space, but
essential information regarding their different nature is given
when needed.

Next, we introduce the following separate polar coordinate
systems for each element [see Fig. 2(a)]:

(6)

Fig. 2. Polar coordinate transformations employed in the vertex adjacent inte-
gration: (a) First transformation: ��� �� � �� � � � and �� � � � � �� � � �,
(b) Second transformation: �� � � � � �����.

This results in an integral of the form (omitting the Jacobian)

(7)

which, after a reordering of the integration, boils down to the
following:

(8)

where

(9)

It is worth mentioning at this point that the reordering is a key-
point of the direct evaluation method and is actually the feature
that differentiates it among the various singularity cancellation
schemes. Upon this change, the 4-D integral is no more a series
of 2-D integrals for the observation and source domains and the
integrand is further regularized, in addition to the singularity
cancellation.

The singularity is now located at the common vertex
, justifying the use of one further polar coordinate

transformation

(10)

After the new transformation, the distance vector function takes
the form

(11)

where

(12)

and

(13)
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As indicated in Fig. 2(b), the domain is a rectangle
and the integration must be taken in two pieces, as follows:

(14)

where

(15)

and

(16)

The combined Jacobian after the whole set of parametric trans-
formations is given by

(17)

while the singular part of the integrals can be written as

(18)

Obviously, both singularities, i.e., weakly singular and
strongly singular , are canceled by the overall Jacobian .
In fact, it is easy to prove that for both RWG and
basis/testing functions under study, the overall integrands
consist solely of terms proportional to , for

, which admit analytical solution with respect
to . Hence, the various integrands for the singular integrals
(1)–(3) are given by

(19)

where

(20)

and the coefficients can be systematically evalu-
ated with the help of a symbolic mathematical software like
Maple and exported to both MATLAB and platforms. We note
also that a possible incorporation of high-order basis/testing
functions over planar triangular elements only calls for a minor
modification of the Maple codes, while the case of curvilinear
triangles needs a more elaborate treatment as evinced by our on-
going studies. Finally, the singular integrals under investigation
are given by

(21)

where the integrands (19) are sufficiently smooth functions with
respect to all three variables of the remaining 3-D integrals, al-
lowing straightforward integration via simple Gauss–Legendre
quadrature rules readily available in the literature.

Fig. 3. Comparison of the maximum relative error as a function of the CPU
time for the weakly singular integrals (1) and (2) over triangles T1 and T2, in-
corporating RWG basis and testing functions.

IV. NUMERICAL RESULTS

This section presents examples that demonstrate the superior
behavior of the proposed direct evaluation method and highlight
the importance of incorporating such a sophisticated approach
even for the case of SIE impedance matrix elements involving
point singularities. More specifically, we designed an elabo-
rate numerical experiment involving all singular integrals under
study. For the case of weakly singular integrals (1) and (2), we
consider RWG basis/testing functions in (2) and two vertex ad-
jacent triangles ( and ) with
the following vertices:

(22)

where , and [m] corresponds to the
wavelength. In the case of strongly singular integrals (3), we
consider both RWG and testing functions together
with RWG basis functions over two vertex adjacent triangles
lying on orthogonal planes, i.e., and

, with

(23)

We timed the proposed method against a fully numerical
scheme based on generalized Cartesian product rules. All
coupling integrals [1 for (1), 9 for (2) and (3), except the case
of strongly singular integrals with RWG basis/testing functions
where 1 out of 9 interactions vanishes identically] have been
computed 1000 times each, and the overall run times have been
averaged. The comparison was carried out using codes imple-
mented in C++ with double precision arithmetic and run on a
computer with Intel Core 2 Duo, 3 GHz (no parallelization),
Windows 7 Pro and Microsoft Visual Studio 2010.

Figs. 3 and 4 depict the maximum relative error of the real
(singular portion) parts among the associated coupling integrals
as a function of the overall CPU time [total time for the compu-
tation of all 10, 8, and 9 integrals as shown in Figs. 3, 4(a), and
(b), respectively] for the benchmark cases described above. By
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Fig. 4. Comparison of the maximum relative error as a function of the CPU
time for the strongly singular integrals (3) over triangles T1 and T3. (a) RWG
basis and testing functions. (b) RWG basis and ������ testing functions.

following [2], we assume a result to be numerically exact if its
relative error is smaller than 10 , thus, accounting for the in-
cidental presence of error propagation effects in the numerical
integrations. Moreover, the reference solutions have been ob-
tained by means of the direct evaluation method using high-pre-
cision arithmetic in all computations (g++ v.4.4.0 using long
double representation of floating point numbers, which in turn
provides machine epsilon ) together with a high number
of integration points, and they can be safely considered to be
exact for double-precision arithmetic. According to these re-
sults, the proposed method provides numerically exact values
for both weakly singular and strongly singular integrals and
converges much faster than the fully numerical scheme, which
is used traditionally (together with cancellation schemes) for
the vertex adjacent integrals. The slightly slower convergence
of the direct evaluation method for the strongly singular inte-
grals (especially with testing functions) is due to the

higher complexity of the associated integrands in the final 3-D
integration.

Additional numerical experiments undertaken by the authors
have shown that the use of symmetrical Gaussian quadratures
proposed in [11] cannot significantly improve the performance
of the fully numerical scheme. Moreover, it is hard to get sym-
metrical rules of very high order as in the case of standard
Gauss–Legendre rules. For instance, the limiting results of the
fully numerical scheme have been obtained by utilizing 64 inte-
gration points. Finally, the use of traditional singularity cancel-
lation schemes for the case of weakly singular integrals did not
seem to result in significant improvements. As for the strongly
singular integrals, to the best of our knowledge, there is no ro-
bust cancellation scheme available in the literature.

V. CONCLUSION

One of the main error sources of the surface integral equation
formulations, attributed to the evaluation of weakly singular and
strongly singular 4-D integrals over vertex adjacent triangles, is
successfully tackled by means of the direct evaluation method.
The proposed scheme results in the straightforward integration
of smooth 3-D integrals, and its overall performance in terms
of accuracy and efficiency clearly outperforms the traditional
fully numerical methods. This letter concludes our current in-
vestigations on the direct evaluation method for the evaluation
of singular integrals arising in traditional surface integral equa-
tion formulations.
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