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This paper introduces a new methodology to design modular industrial ultra-high 
precision robots; it aims at significantly reducing both the complexity of their design and 
their development time. This modular concept can be considered as a robotic Lego®, 
where a finite number of building bricks is used to quickly design the robot and to easily 
change its mobility. The core of the concept is the thorough conceptual solution 
catalogue, which is independent from any mechanical design. This paper will first present 
the methodology and the techniques to establish this solution catalogue. Then, its 
application to high precision will include the formulation of hypotheses and a practical 
example of a 5-degree of freedom ultra-high precision robot design. 

1.   Motivation 

The current trend in numerous industrial domains is to miniaturize products, 
mainly microelectronic, optic and biomedical devices; the design of industrial 
robots capable of performing micromanipulation and micro-assembly tasks with 
a sub-micrometric precision is thus becoming a crucial need [1]. At the present 
time, the R&D process to design and build such ultra-high precision machines is 
still costly. Therefore, design methodologies have been developed in order to 
reduce the time-to-market, for example in [2]. However, if the industrial 
specifications of the robot are modified, requiring for instance a change in its 
mobility, the whole design process has to be restarted from the beginning. 

This paper thus presents an original concept of modular kinematics which 
allows to rapidly design a parallel robot and to modify only a small part of the 
kinematics to change its mobility. This approach can be compared to a robotic 
Lego®, where a finite number of conceptual bricks can be chosen and 
assembled within a small amount of time to create the desired structure, thanks 
to a conceptual solution catalogue [3]. In parallel with the conceptual aspects, 
the mechanical design of the building bricks is investigated, making use of 
flexure hinges: this type of joints is indeed compulsory to meet the sub-
micrometric precision requirements [4]. Consequently, the robots resulting from 
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this methodology achieve similar high performances as more traditionally 
designed machines, with a significantly shortened development time. 

This paper will first present the modular design methodology, especially the 
steps of the orderly process generating the conceptual solution catalogue. Then, 
its application to high precision robots will be detailed: hypotheses linked to the 
mechanical flexure-based design of the bricks will be introduced, and an ultra-
high precision 5-DOF (Degrees of Freedom) robot design will illustrate the 
practical use of the methodology. 

2.   Modular design methodology 

2.1.   Theoretical bases and terminology 

This methodology consists in designing a parallel robot composed of one to 
three kinematic chains, which are orthogonally arranged. This robot is 
symbolized by a cube: the chains are disposed along its faces, while the end-
effector is located on one of its corners. The design of this robot makes use of a 
finite number of conceptual building bricks, which present two states: active and 
passive. Each kinematical chain of the modular robot consists in the serial 
arrangement of an active brick with a passive one.  

As their name indicates, the role of the active bricks is to actuate from one 
to three DOF; the motions which are not actuated are blocked. As for the passive 
bricks, their function is to link the output of the active bricks to the end-effector 
of the robot, thus achieving a transmission of the motion. Their DOF are either 
passive, i.e. free to move but not actuated, or blocked. A generic notation 
uniformly represents the building bricks by symbolizing their two main features 
(see figure 1). First, it indicates their mobility: T represents a translation and R 
stands for a rotation. Uppercase letters symbolize actuated motions, whereas 
lowercase letters stand for passive ones. Then, the notation also specifies the 
directions of the DOF in relation to the face of the cube on which the brick is 
located: ٣ indicates that the motion is along an axis which is orthogonal to the 
plane of the face, whereas a motion along one of the directions of that plane is 
represented by ∥. Likewise, the subscripts 1 and 2 are used to explicitly express 
the directions of several DOF along both possible axes of that plane.  

The methodology transforms the desired mobility of the robot into an 
exhaustive list of all possible combinations of active and passive bricks fulfilling 
it, with the help of a conceptual solution catalogue. Then, the most suitable 
kinematics for the considered problem is selected depending on the robot 
specifications, as well as on mechanical design considerations. 
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precision robot highly depends on the combination of the active and passive 
bricks within the kinematic chain, all conceptual passive bricks are allowed for.  

These hypotheses first transform the complex 3D robot design problem, 
which results in scarcely modular structures, into several 2D ones, which are 
simpler and well-mastered. Then, the aforementioned dismissal of some active 
bricks allows to establish a simplified conceptual solution catalogue for high 
precision, thus dividing by two the number of kinematical possibilities. More 
details on the mechanical design of the building bricks can be found in [5]. 

4.   Application of the methodology to a 5-DOF robot 

The choice of the 5-DOF mobility is motivated by the typical industrial 
applications of high-precision robots, for instance micromanipulation tasks. 
These often require three translations (Tx, Ty, Tz) and two rotations (Rx, Ry), 
the rotation around the axis of the robot tool being blocked. This kinematics is 
complex to design and manufacture, which explains the scarcity of industrial 
prototypes. The hypotheses which are formulated for this problem are the 
following: 

1. Active bricks: all bricks presenting the same mobility with different 
orientations relatively to the face of the cube share the same design; the 
physical plane of the brick does thus not necessarily match the face of the 
cube. 

2. The robot presents a cubic arrangement of its kinematic chains. 
3. Passive bricks: the mechanical design of each brick must belong to a plane 

which is parallel to the one of the corresponding active brick. 
4. The number of different building bricks must be minimized. 
5. The robot must be easily transformable into a 4-DOF or a 6-DOF one. 

4.1.   Choice of the kinematical solution 

The use of the simplified conceptual solution catalogue results in only one 
cubic active brick arrangement for each family, as the first hypothesis causes 
solutions which are conceptually different to result in the same mechanical 
design. Then, one passive brick solution is selected for each active brick 
arrangement: its choice is based on the machinability of the selected mechanical 
designs of the passive bricks and on the third hypothesis. Figure 4 illustrates the 
four remaining kinematics: solution 4 is preferred as it minimizes the number of 
building bricks (hypothesis 4). Figure 5 illustrates the principle of the robot 
design, as well as a double-scaled mock-up which has been built with assembled 
blades. 
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5.   Conclusion 

This paper has introduced an original methodology to design high precision 
modular robots. This robotic Lego®, based on a finite number of building bricks 
and on a conceptual solution catalogue, allows to rapidly develop a robot and to 
easily modify its mobility. This paper has detailed the methods to generate the 
exhaustive conceptual catalogue, as well as possible simplifying hypotheses 
based on high precision specific requirements. These have been applied to a 
practical example consisting in the development of a 5-DOF robot, which has 
highlighted the creation of a new family of ultra-high precision parallel 
machines. The design of an industrial prototype of the Legolas 5 is currently in 
progress; its characterization will allow to prove that the performances of the 
robots resulting from this new methodology are at least similar to the ones of 
more classically designed kinematics. 
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