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ABSTRACT
Scaling the performance of shared-everything transaction
processing systems to highly-parallel multicore hardware re-
mains a challenge for database system designers. Recent
proposals alleviate locking and logging bottlenecks in the
system, leaving page latching as the next potential problem.
To tackle the page latching problem, we propose physiologi-
cal partitioning (PLP). The PLP design applies logical-only
partitioning, maintaining the desired properties of shared-
everything designs, and introduces a multi-rooted B+Tree
index structure (MRBTree) which enables the partitioning
of the accesses at the physical page level. Logical partition-
ing and MRBTrees together ensure that all accesses to a
given index page come from a single thread and, hence, can
be entirely latch-free; an extended design makes heap page
accesses thread-private as well. Eliminating page latching
allows us to simplify key code paths in the system such as
B+Tree operations leading to more efficient and maintain-
able code. Profiling a prototype PLP system running on
different multicore machines shows that it acquires 85% and
68% fewer contentious critical sections, respectively, than an
optimized conventional design and one based on logical-only
partitioning. PLP also improves performance up to 40% and
18%, respectively, over the existing systems.

1. INTRODUCTION
Due to concerns over power draw and heat dissipation,

processor vendors can no longer rely on rising clock frequen-
cies or increasingly aggressive micro-architectural techniques
to boost performance. Instead, they focus on parallelism
by placing many independent processing cores in each chip.
The resulting multicore designs require software to expose
enough execution parallelism in order to exploit the abun-
dant and rapidly growing hardware parallelism. However,
this is not an easy task, especially given the high degree of
hardware resource sharing common to multicore designs.

On-line transaction processing (OLTP) is a particularly
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complex data management application that needs to per-
form efficiently in modern hardware. It has been shown
that conventional shared-every-thing OLTP systems may
face significant scalability problems in highly parallel hard-
ware [13]. There is increasing evidence that one source of
scalability problems arises from the conventional transaction-
oriented assignment of work policy, which assigns each trans-
action to a thread [23]. The transaction, along with the
physical arrangement of records within the data pages, de-
termines what resources (e.g. records and pages) each thread
will access. The random nature of transaction processing
requests leads to unpredictable data accesses [24, 23] that
complicate resource sharing and concurrency control.

Such unpredictability favors pessimistic systems which clut-
ter the transaction’s execution path with many lock and
latch acquisitions to protect the consistency of the data.
These critical sections often lead to contention which lim-
its scalability [13] and in the best case imposes a significant
penalty to single-thread performance [8]. In addition, the
performance of shared-everything systems is vulnerable to
page false sharing effects where hot but unrelated records
happen to reside on the same page. Careful tuning is of-
ten needed to detect and resolve such issues, for example by
padding problematic records to spread them out.

Following a different approach, shared-nothing systems
deploy many independent database instances which collec-
tively serve the workload [25, 6]. In shared-nothing designs
the contention for shared data resources can be explicitly
tuned (the database administrator determines the number
of processors assigned to each instance), potentially leading
to superior performance as long as inter-instance commu-
nication can be minimized. The H-Store system takes this
approach to the extreme, with single-threaded database in-
stances that eliminate critical sections altogether [26]. How-
ever, shared-nothing systems physically partition the data
and deliver poor performance when the workload triggers
distributed transactions [9, 4] or when skew causes load im-
balance [4]. Repartitioning to rebalance load requires the
system to physically move and reorganize all affected data.
These weaknesses become especially problematic as parti-
tions become smaller and more numerous in response to the
multicore trend.

1.1 Multi-rooted B+Trees
To alleviate the difficulties imposed by page latching and

repartitioning, we propose a new physical access method, a
type of multi-rooted B+Tree called MRBTree. The root of
each sub-tree in this structure corresponds to a logical par-
tition of the data, and the mapping of key ranges to sub-tree
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roots forms a durable part of the index’s metadata. Parti-
tion sizes are non-uniform, making the tree robust against
skewed access patterns, and repartitioning is cheap because
it involves very little data movement.

When deployed in a conventional shared-everything sys-
tem, the MRBTree eliminates latch contention at the index
root; each partition is assigned to one thread, with partitions
sized to balance load. Partitioning also reduces the expected
tree height by at least one (partitions containing hot data
can be very small). Thanks to the tree’s fast repartitioning
capabilities, the system can respond quickly to changing ac-
cess patterns. Further, the MRBTree can also potentially
benefit systems which use shared-nothing parallelism in a
shared-memory environment (e.g. possibly H-Store [26]).

1.2 Physiological partitioning
Recent work proposes logical-only partitioning [23] to ad-

dress problems with conventional execution while avoiding
the weaknesses of shared-nothing approaches. Logical-only
partitioning assigns each partition to one thread; the latter
manages the data locally without the overheads of central-
ized locking. However, purely logical partitioning does not
prevent conflicts due to false sharing, nor does it address the
overhead and complexity of page latching protocols.

Ideally, we would like a system with the best properties of
both shared-everything and shared-nothing designs: a cen-
tralized data store which sidesteps the challenges of mov-
ing data during (re)partitioning, and a partitioning scheme
which eliminates contention and the need for page latches.

This paper presents physiological partitioning (PLP), a
transaction processing approach which partitions logically
the physical data accesses. PLP achieves its goal by using
the MRBTree access method to enhance logical-only par-
titioning and capture most types of physical data accesses
as well. Under PLP, a partition manager assigns threads
to sub-tree roots of MRBTrees and ensures that requests
distributed to each thread reference only the correspond-
ing sub-tree. As a result, threads can bypass the parti-
tion mapping and their accesses to the subtree are entirely
latch-free (similar to shared-nothing systems). At the same
time, the underlying MRBTree supports fast repartitioning
and does not require distributed transactions when requests
span partitions (like a shared-everything system). Finally,
PLP can extend the partitioning down into the heap pages
where non-clustered records are actually stored, eliminating
another class of page latching.

1.3 Contributions and organization
The contributions of this paper are four-fold. (a) We pro-

vide a simple categorization of the communication patterns
which identifies clearly latent scalability bottlenecks; (b) Us-
ing this categorization we identify page latching as a lurking
performance and scalability bottleneck in modern transac-
tion processing systems, with importance proportional to
the available hardware parallelism. Further, we identify use
cases where latching impacts shared-everything designs even
today and show that our proposed multi-rooted B+Tree
design alleviates this contention; (c) We design a shared-
everything OLTP system based on physiological partition-
ing. The design eliminates the need for page latching dur-
ing accesses to both index and heap pages. The page latch
elimination makes PLP more scalable and less vulnerable
to bad application design. (d) We evaluate a prototype im-
plementation of PLP and show that it eliminates nearly all

page latching in the system. As page latching constitutes
the majority of centralized critical sections in the system,
PLP acquires 85% and 68% fewer contentious critical sec-
tions per transaction than an optimized conventional design
and a logical-only partitioned system, respectively, improv-
ing scalability and yielding up to 38% higher performance
on multicore machines. We also identify remaining opportu-
nities to eliminate the highly complex code paths that arise
due to latching, improving performance and making code
more maintainable.

The rest of the document is structured as follows. Sec-
tion 2 analyzes the communication patterns in OLTP sys-
tems. Section 3 presents the PLP system design and Sec-
tion 4 evaluates its performance. Finally, Section 5 presents
related work and Section 6 concludes.

2. COMMUNICATION PATTERNS
Traditional transaction processing systems excel at pro-

viding high concurrency, or the ability to interleave multiple
concurrent requests or transactions over limited hardware
resources. However, as core counts increase exponentially,
performance increasingly depends on execution parallelism,
or the ability for multiple requests to make forward progress
simultaneously in different execution contexts. Even the
smallest of serializations on the software side therefore im-
pact scalability and performance [10]. Unfortunately, recent
studies show that high concurrency in transaction processing
systems does not necessarily translate to sufficient execution
parallelism [13, 14], due to the high degree of irregular and
fine-grained communication they exhibit.

Proposals to tackle overhead and scalability bottlenecks
fall into two general categories: (1) reducing the degree
of communication and contention within shared-everything
systems, relying on efficient communication via shared caches
to keep synchronization overheads low; and (2) taking a
shared-nothing approach [25], relying on the low-latency of
multicore hardware to keep overheads manageable in spite
of the challenges which accompany distributed transactions
and load balancing.

In this section we first categorize the types of communi-
cation that can occur in an OLTP system, and from this
point of view we analyze the execution of a modern shared-
everything system. Then, we revisit the debate between the
shared-everything and shared-nothing approaches.

2.1 Types of communication
OLTP systems employ several different types of commu-

nication and synchronization. Database locking operates at
the logical (application) level to enforce isolation and atom-
icity between transactions. Page latching operates at the
physical (database page) level to enforce the consistency of
the physical data stored on disk in the face of concurrent up-
dates from multiple transactions. Finally, at the lowest lev-
els, critical sections protect various code paths which must
execute serially to protect the consistency of the system’s
internal state. Critical sections are traditionally protected
by mutex locks, atomic instructions, etc. We note that locks
and latches, which form a crucial part of the systems’ inter-
nal state, are themselves protected by critical sections; ana-
lyzing the behavior of critical sections thus captures nearly
all forms of communication in the DBMS.

Critical sections, in turn, fall into three categories depend-
ing on the nature of the contention they tend to trigger
in the system. For example, pairs of threads which form
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Figure 1: Breakdown of the critical sections when
running the TATP OLTP benchmark.

producer-consumer pairs protect their communication with
a critical section but cannot generate significant contention.
We refer to these as fixed-contention critical sections be-
cause contention is independent of the underlying hardware
and depends only on the (fixed) number of threads which
communicate. At the other extreme, unscalable critical sec-
tions have the highly undesirable tendency to affect most
threads in the system. As hardware parallelism increases
the degree of contention also increases and inevitably grows
into a bottleneck. Making these critical sections shorter or
less frequent provides a little slack but does not fundamen-
tally improve scalability. Finally, Moir et al. [21] introduce
the notion of composable critical sections; those having the
property that multiple threads can aggregate their opera-
tions. Composable critical sections are highly resistant to
contention because threads take advantage of queuing delays
to combine their requests and drop out of the queue. The
critical section is thus self-regulating: adding more threads
to the system gives more opportunity for threads to combine
rather than competing directly for the critical section.

2.2 Communication patterns in OLTP
As the previous section hints, the real key to scalabil-

ity lies in converting all unscalable communication to either
the fixed or composable type, thus removing the potential
for bottlenecks to arise. The three left-most bars of Figure 1
compare the number and types of critical sections executed
by a conventional OLTP system and two others designed to
reduce contention due to locking: Speculative Lock Inheri-
tance [12] and data-oriented execution [23] (labeled as SLI
and Logical-only, respectively). Each bar shows the number
of critical sections entered during a mix of short transac-
tions, categorized by the originating storage manager service
(see Section 4.1). Locking and latching form a significant
fraction of the total communication for the baseline system.
SLI achieves a performance boost by sidestepping the most
problematic critical sections associated with the lock man-
ager, but fails to address the remaining (still-unscalable)
communication in that category. Logical partitioning, in
contrast, eliminates nearly all types of locking, replacing
both contention and overhead of centralized communication
with efficient, fixed communication via message passing.

With locking removed, latching remains by far the largest
source of critical sections. There is no predefined limit to
the number of threads which might attempt to access a
given page simultaneously, so page latching represents an
unscalable form of communication which should be either
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eliminated or converted to a scalable type. The remaining
categories represent either fixed communication (e.g. trans-
action management), composable operations (e.g. logging
[14]), or a minor fraction of the total unscalable component.

Examining page latching more closely, Figure 2 decom-
poses the page latches acquired by three popular OLTP
benchmarks into the different types of database pages: meta-
data, index pages, and heap pages. The majority of page
latches (60%-80%) reside in index structures. Heap page
latches are another non-negligible component, accounting
for nearly all remaining page latches.

2.3 Physical vs. logical partitioning
With the preceding characterization of communication pat-

terns in mind, we now return to the question of logical
partitioning (shared-everything) versus physical partition-
ing (shared-nothing). As its name suggests, logical parti-
tioning eliminates unscalable communication at the logical
level, namely database locking. However, it has little im-
pact on the remaining communication, which arises in the
physical layers and cannot be managed cleanly from the ap-
plication level. Even when requests do not communicate at
the application level, threads must acquire page latches and
potentially perform other unscalable communication.

Shared-nothing systems [25, 6] are an appealing design,
giving the designer explicit control over the number of threads
per instance. Thus, the contention on each component of the
system can be controlled or even eliminated. However, such
designs give up too much by eliminating all communication
within the engine. Even the composable and fixed types of
critical sections, which do not threaten scalability become
problematic. For example, logging is not amenable to dis-
tribution [14], and physically-partitioned systems either use
a shared log [18] or eliminate it completely [26].

Perhaps the biggest challenge for shared-nothing systems
arises with distributed transactions, due to requests access-
ing data from multiple physically distributed database in-
stances. The scalable execution of distributed transactions
has been an active field of research for the past three decades,
with researchers from both academia and industry, persua-
sively arguing that they are fundamentally not scalable [2,
9]. Furthermore, the performance of shared-nothing systems
is very sensitive to imbalances in load arising from skew in
either data or requests while non-partition-aligned opera-
tions (such as non-clustered secondary indexes) may pose
significant barriers to physical partitioning.

3. PHYSIOLOGICAL PARTITIONING
We have seen how both logically- and physically-partitioned

designs offer desirable properties, but also suffer from weak-



nesses which threaten their scalability. In this work we
therefore propose physiological partitioning (or PLP), a hy-
brid of the two approaches which combines the best prop-
erties of both. Like a physically-partitioned system the ma-
jority of physical data accesses occur in a single-threaded
environment which obviate the need for page latching; like
the logically-partitioned system, locking is distributed with-
out resorting to distributed transactions and load balancing
requires almost no data movement.

3.1 Design overview
Each transaction in a typical OLTP workload accesses a

very small subset of records via indexes (sequential scans
are prohibitively expensive). PLP therefore centers around
the indexing structures of the database.

Figure 4 gives a high-level overview of a physiologically-
partitioned system. We adapt the traditional B+Tree [1]
(top left of Figure 4) for PLP by splitting it into multiple
subtrees, each covering a contiguous subset of the key space
(bottom of Figure 4). A partitioning table becomes the new
root and maintains the partitioning as well as pointers to
the corresponding subtrees. We call the resulting structure a
multi-rooted B+Tree (MRBTree). The MRBTree partitions
the data but unlike a horizontally-partitioned workload (top
right of Figure 4), all subtrees belong to the same database
file and can exchange pages easily; the partitioning, though
durable, is dynamic and malleable rather than static. Im-
plementation details about MRBTrees can be found in Sec-
tion A of the Appendix.

With the MRBTree in place, the system assigns each sub-
tree to a single thread, guaranteeing exclusive access for
latch-free execution. A partition manager layer controls all
partition tables and makes assignments to threads. The
threads in PLP do not reference partition tables during nor-
mal processing, which might otherwise become a bottleneck.
Instead, the partition manager ensures that all work given to
a thread involves only data it owns. The partition manager
breaks transactions into directed graphs, passing each node
to the appropriate thread and assembling the results into
complete transactions. Repartitioning occurs at a higher
level in the partition manager and therefore can be latch-
free as well; the partition manager simply quiesces affected
threads until the process completes.

All indexes in the system –primary, secondary, clustered,
non-clustered– can be implemented as MRBTrees; data are
stored directly in clustered indexes, or in tightly integrated
heap file pages referenced by record ID (RID). When the sys-
tem can infer partitions from secondary (non-clustered) in-
dex columns, the partition’s thread manages them directly.
The remaining (non-partition aligned) secondary indexes are
accessed as in the conventional system, but each leaf entry
records the associated fields used for the partitioning so that
the result of each probe can be passed to its partition’s own-
ing thread for further processing.

3.2 Benefits of physiological partitioning
The database system must address two challenges as it

assigns work to threads and threads to data. Within a parti-
tion, multi-threaded access leads to the overheads that come
with unscalable critical sections. Between partitions, uneven
access patterns reduce performance by leaving some parti-
tions oversubscribed (with long response times) and others
underutilized (leaving hardware idle). Physiological parti-
tioning avoids both problems by assigning only one thread

Table 1: Repartitioning costs when splitting a par-
tition with 466 MB data in half (U: Updates, D:
Deletes, I: Inserts).

Records Primary Index Secondary
Moved Entries #Pages #Pointer Changes Index

Moved Read Updates Changes
PLP-Regular - 8KB - 7 - -

PLP-Leaf 8.3KB 8KB 1 7 85 U 85 U
PLP-Partition 233MB 8KB 14365 7 2.44M U 2.44M U

Shared-Nothing 233MB - 14365 - 2.44M I + 2.44M D 2.44M I + 2.44M D
PLP (Clustered) 8.3KB 5.3KB - 7 - 85 U
Shared-Nothing

233MB - - - 2.44M I + 2.44M D 2.44M I + 2.44M D
(Clustered)

to any given piece of physical data, and by allowing frequent,
lightweight repartitioning in response to changing load.

3.2.1 Load balancing and repartitioning
In database workloads, uniform data distributions and ac-

cess patterns are the exception rather than the rule. Data
values often follow long-tailed distributions, and accesses to
those data are similarly non-uniform (e.g. the slashdot ef-
fect). These asymmetries necessitate partitioning for both
capacity and load balancing reasons. Conventional horizon-
tal partitioning requires splitting a data set –usually in an
application-visible way– across multiple database files. In
this way, applications determine statically which partition
holds a given piece of data, avoiding the need to touch other
partitions. The disadvantage of such schemes is that repar-
titioning data requires moving it physically from one file to
another, with the corresponding index maintenance as well
as logging and I/O overheads. Data movement can be per-
formed lazily to move the cost partly off the critical path,
but it cannot be avoided. The high cost of repartitioning
favors a careful up-front partitioning which is updated only
when the performance loss due to non-optimal tuning out-
weighs the pain of a data reorganization [4].

In contrast, modifying a physiological partitioning is a
lightweight operation because even large adjustments up-
date only a small amount of metadata on the physically
monolithic database file. Repartitioning is also transparent
at the application level because the system can tune itself
automatically in response to the observed workload without
harming performance in the process. In addition, the hottest
data tends to reside in smaller index structures, leading to
fewer page accesses and reduced access times.

Table 1 gives an example of the repartitioning costs for
different systems (see Section 3.3 for the different PLP de-
signs) based on the cost model described in Section C of
the Appendix. In this example, a partition which contains
433MB of 100-byte data records in a heap file is to be split
in half. We assume that there is a primary index of height
3 with 170 32-byte entries on each page. The first four rows
of the table assume there is a unique non-clustered primary
index and a secondary index in the system, whereas for the
last two rows there is a unique clustered primary index and
a secondary index. The Shared-Nothing system does not
perform logging but instead maintains replicas to deal with
crashes, and the cost given on the table is just for one replica.
Finally, for the PLP designs the number of moved records
represents the worst case scenario.

The PLP variations, excepting PLP-Partition, move very
few records compared with the Shared-Nothing system, as
Table 1 shows. In the worst case, PLP-Partition moves
the same number of records as a Shared-Nothing system.
For the clustered index case, the PLP system is less costly
than the Shared-Nothing system, both in terms of record
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Figure 4: The conventional shared-everything and shared-nothing designs and the PLP variations.

movement and index maintenance. When we calculate the
corresponding costs for a larger heap file with a B+tree of
height 4, the repartitioning cost for the Shared-Nothing sys-
tem (and PLP-Partition) becomes prohibitive. We conclude
that the PLP-Regular and PLP-Leaf designs have an advan-
tage over Shared-Nothing systems during load-balancing.

In addition, agile load-balancing gradually migrates hot
records to small partitions. The subtrees will have fewer
tree levels, and cheaper probes, for those partitions.

3.2.2 Exclusive physical page accesses
Under physiological partitioning, each partition is perma-

nently locked for exclusive physical access by a single thread,
which then handles all the requests for that partition. This
allows the system to avoid several sources of overhead, as
described in the following paragraphs.

Latching contention and overhead. Though page
latching is inexpensive compared with acquiring a database
lock, the sheer number of page latches acquired imposes
some overhead and can serialize B+Tree operations as trans-
actions crab down the tree during a probe. The problem
becomes more acute when the lower levels of the tree do
not fit in memory, because a thread which fetches a tree
node from disk holds a latch on the node’s parent until the
I/O completes, preventing access to 80-100 other siblings
which may well be memory-resident. Section 4.4 evaluates
a case where latching becomes expensive for B+Tree opera-
tions and how PLP can eliminate this problem by allowing
latch-free accesses on index pages.

False sharing of heap pages. One significant source
of latch contention arises when multiple threads access un-
related records which happen to reside on the same phys-
ical database page. In a conventional system false sharing
requires padding to force problematic database records to
different pages. A PLP design that allows latch-free heap
page accesses achieves the same effect automatically (with-
out the need of expensive tuning) as it splits hot pages across
multiple partitions. Section 4.4 evaluates this case as well.

Serialization of structural modification operations
(SMOs). ARIES/KVL indexes [19] allow only one SMO
(such as a leaf split) to occur at a time, serializing all other
accesses until the SMO completes. Partitioning the tree
physically with MRBTrees eases the problem by distributing

SMOs across subtrees (whose roots are fixed) without having
to apply more complicated protocols [20, 11]. The benefits
of parallel SMOs are apparent in the case of insert-heavy
workloads which we evaluate in Section B of the Appendix.

Code complexity. Finally, with all latching eliminated,
the code paths which handle contention and failure cases can
be eliminated as well, simplifying the code significantly. For
example, a huge source of complexity in traditional B+Trees
arises due to the sophisticated protocols which maintain
consistency during SMO in spite of concurrent probes from
other threads. The simpler code not only is more efficient
but also it is easier to maintain. In this paper, we did not
attempt the code refactoring required to exploit these oppor-
tunities, and the performance results we report are therefore
conservative. We note that B+Tree probes are the most ex-
pensive remaining component of the PLP system.

3.3 Heap page accesses
In PLP a heap file scan is distributed to the partition-

owning threads and performed in parallel. Large heap file
scans reduce concurrency of OLTP applications and PLP
has little to offer. Still, heap page management opens up an
additional design option, since we can extend the partition-
ing of the accesses at the heap pages. That is, when records
reside in a heap file rather than in the MRBTree leaf pages,
PLP can ensure that accesses to pages are partitioned in the
same way as index pages. There are three options on how to
place and access records in the heap pages, depicted in Fig-
ure 4: (1) keep the existing heap page design (PLP-Regular);
(2) each heap page keeps records of only one logical parti-
tion (PLP-Partition); and (3) each heap page is pointed by
only one leaf page of the primary MRBTree (PLP-Leaf ).

PLP-Regular simply keeps the existing heap page opera-
tions. Without any modification, the heap pages still need to
be latched because they can be accessed by different threads
in parallel. This may be acceptable because heap page ac-
cesses are not the biggest fraction of the total page accesses
in OLTP (as low as 30%, according to Figure 2). Thus, there
is room for significant improvement even if we ignore them.
However, allowing heap pages to span partitions prevents
the system from responding automatically to false sharing
or other sources of heap page contention.



In PLP-Partition and PLP-Leaf the MRBTree and heap
operations are modified so that heap page accesses are par-
titioned as well. The difference between the two is that in
the former a heap page can be pointed by many leaf pages
as long as they belong to the same partition, while in the
latter a heap page is pointed by only one leaf page.

Both variations provide latch-free heap page accesses, but
they suffer some disadvantages. Forcing a heap page to con-
tain records that belong to a specific partition causes frag-
mentation. In the worst case, each leaf has room for one
more entry than fits in the heap page, resulting in nearly
double the space requirement (Section D of the Appendix
measures this cost). Further, in PLP-Leaf every leaf split
must also split one or more heap pages, increasing the over-
head of record insertion (deletions are simple because a leaf
may point to many heap pages). On the other hand, PLP-
Partition by allowing multiple leaf pages from a partition to
share a heap page, forces the system to reorganize poten-
tially significant numbers of heap pages with every reparti-
tioning. Significant reorganization costs go against the phi-
losophy of physiological partitioning, so we favor PLP-Leaf.

The two extensions impose one additional piece of com-
plexity: During record insertion, the system must identify
the correct MRBTree entry before selecting a heap page for
the record. Because, the storage management layer is com-
pletely unaware of the partitioning strategy (by design), it
must make callbacks into the upper layers of the system to
identify an appropriate heap page for each insertion.

Similarly, a partition split may split heap pages as well,
invalidating the record IDs of migrated records. The storage
manager therefore exposes another callback so the metadata
management layer can update indexes and other structures
which reference the stale RIDs. We note that when PLP-
Leaf splits leaf pages during record insertion, the same kinds
of record relocations arise and use the same callbacks.

4. EVALUATION
Our evaluation consists of four parts. First, Section 4.2

quantifies how the different designs impact page latching and
critical section frequency. Section 4.3 evaluates the perfor-
mance impact of those changes. Section 4.4 examines how
PLP reduces latch contention on index and heap pages, and
its performance impact. Finally, Section 4.5 shows the effect
of repartitioning on performance.

4.1 Experimental setup
We consider five different systems: (a) The conventional

system employs Speculative Lock Inheritance [12] to reduce
the contention in the lock manager; (b) Logical-only is a
data-oriented transaction processing prototype that applies
logical-only partitioning; (c) PLP or PLP-Regular proto-
types the basic PLP design and accesses the MRBTree in-
dex pages without latching; (d) PLP-Partition extends the
PLP system, so that one logical partition “owns” each heap
page, allowing latch-free both index and heap page accesses;
finally, (e) PLP-Leaf assigns heap pages to leaves of the pri-
mary MRBTree index, also allowing latch-free index and
heap page accesses.

To ensure reasonable comparisons, all the prototypes are
built on top of the same version of the Shore-MT storage
manager [13], incorporate the logging optimizations of [14],
and share the same driver code.

All experiments were performed on two machines: an
x86 64 box running Red Hat Linux 5 (four sockets, quad-
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Figure 5: Throughput of the GetSubscriberData

transaction in two multicore machines. PLP’s ben-
efit increases with higher throughput.

core AMD Opteron 8356 processors, 2.4GHz clock) and a
Sun UltraSPARC T5220 server running Solaris 10 (one socket,
64-core Sun Niagara II, 1.4GHz clock). The high degree of
hardware parallelism on these systems makes them good in-
dicators of the challenges all platforms will face as multi-
sockets host more and more cores per socket. Due to un-
availability of a suitably fast I/O sub-system, all the experi-
ments are with memory-resident databases, but the relative
behavior of the systems will be similar with larger databases.

4.2 Page latches and critical sections
First we measure how PLP reduces the number of page

latch acquisitions in the system. Figure 3 shows the number
and type of page latches acquired by the conventional and
logically-partitioned systems, plus two versions of the PLP
system: PLP-Regular, which does not change heap page ac-
cesses and PLP-Leaf, which allows latch-free heap accesses.
Each system executes the same number of transactions from
the TATP benchmark. PLP-Regular reduces the amount of
page latching per transaction by more than 80%; PLP-Leaf
reduces the total further to roughly 1% of the initial page
latching (the remaining latches are associated with meta-
data and free space management).

The two right bars of Figure 1 compare total critical sec-
tion entries of PLP vs. the conventional and logically-parti-
tioned systems. The two PLP variants eliminate the vast
majority of lock- and latch-related critical sections, leav-
ing only metadata and space management latching as a
small fraction of the critical sections. Transaction man-
agement, the largest remaining component, mostly employs
fixed-contention communication to serialize threads which
attempt to modify the transaction object’s state. Similarly,
the buffer pool-related critical sections are mostly due to the
communication between cleaner threads, which again do not
impact scalability. Overall, PLP-Leaf acquires 85% and 65%
fewer contentious critical sections than the conventional and
logically-partitioned systems respectively.

4.3 Scalability and performance
Having established that the PLP designs effectively reduce

the page latch acquisitions and critical sections, we next
measure their impact on performance and overall system
scalability. The two graphs of Figure 5 show the through-
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Figure 6: Time breakdown per
transaction in an insert/delete-
heavy benchmark.
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Figure 7: Time breakdown per
transaction in the TPC-B benchmark
with false sharing on heap pages.
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Figure 8: Throughput dur-
ing repartitioning.

put of the three main designs under comparison as we in-
crease hardware utilization of the two multicore machines.
The workload consists of clients that repeatedly submit the
TATP-GetSubscriberData transaction, which is read-only and
ideally should impose no contention whatsoever.

PLP shows superior scalability, as evidenced by the widen-
ing performance gap with the other two systems as utiliza-
tion increases. As we can see, logical partitioning in the
4-socket Quad x86 64 system delivers a 22% speedup over
the baseline case. PLP delivers an additional 18%, or nearly
40% over the baseline. The corresponding improvements in
the more parallel but overall slower Sun Niagara machine are
6% and 16%. A significant fraction of the speedup comes
from the MRBTree probes, which are effectively one level
shallower, since threads bypass the “root” partition table
node during normal operation.

4.4 Reducing latch contention
Since PLP designs eliminate the latch acquisitions for in-

dex and heap pages, they also eliminate the time spent wait-
ing to acquire these latches.

Figure 6 shows the impact in the transaction execution
time as PLP eliminates the contention on index page latches.
The graph gives the time breakdown per transaction for the
different designs as an increasing number of threads run an
insert/delete-heavy workload on the TATP database. In
this benchmark, each transaction makes an insertion or a
deletion to the CallFwd table, causing page splits and con-
tention for the index pages that lead to the records being
inserted/deleted. As Figure 6 shows, the conventional and
the logically-partitioned systems experience contention on
the index page latches. They both spend 15-20% of their
time waiting, while the PLP prototype eliminates the con-
tention achieving proportional performance improvements.

Figure 7 gives the time breakdown per transaction when
we run the TPC-B benchmark. In this experiment we do not
pad records to force them onto different pages. Transactions
often wait for others because the record(s) they update hap-
pen to reside on latched heap pages. The conventional, logi-
cal, and basic PLP design all suffer from this false sharing of
heap pages. At high utilization this contention wastes more
than 50% of execution time. On the other hand, PLP-Leaf
is immune, reducing response time by 13-60% and achieving
proportional performance improvement.

4.5 Tolerance to repartitioning
Finally, we evaluate how repartitioning affects the perfor-

mance of the different designs. Figure 8 shows the through-
put for the conventional, the logically-partitioned, and the
three PLP designs when we run a microbenchmark where
2 clients repeatedly submit a transaction which probes for
the account balance of a Subscriber in the TATP database.
One second into the measurement, requests change from
being uniformly distributed to having 50% of the requests
access only 10% of the database. To rebalance load, the
partitioning-based systems must move 40MB (out of 50MB)
from the hot partition to the cold one, splitting requests
evenly between the hot (10MB) and cold (90MB) partitions.

The performance of the conventional system remains mostly
unaffected because it does not partition the data. Logical-
partitioning quickly adjusts its routing tables and also main-
tains nearly the same performance. Repartitioning is more
expensive for the PLP designs because they have to perform
physical operations. In PLP-Regular, very few index entries
are updated, leading to a small dip in throughput during
repartitioning. PLP-Leaf suffers an equally small dip. PLP-
Partition suffers a much larger dip while it reorganizes a
large number of heap pages as explained in Section 3.3. We
note that differences in performance during repartitioning
will increase with partition sizes.

5. RELATED WORK
The complexity and overheads of database management

systems are well-known. For example, [8] shows that, even in
a single-threaded OLTP system, logging, locking, latching,
and bufferpool accesses contribute roughly equal overheads
and together account for the majority of machine instruc-
tions executed during a transaction. Our previous work
shows that these overheads become scalability burdens in
multicore hardware [13]. PLP eliminates entire categories
of serializations, along with the corresponding bottlenecks.

In the shared-everything arena, recent proposals for spec-
ulative lock inheritance [12] and data-oriented transaction
execution [23] minimize the need for interaction with a cen-
tralized lock manager. Where speculative lock inheritance
allows the system to spread lock operations across multiple
transactions to reduce contention, data-oriented systems re-
place the central lock manager with thread-local lock man-
agement. Reducing lock contention with data-oriented exe-
cution is also studied for data-streams’ operators [5] by mak-



ing threads delegate the work on some data to the thread
that already holds the lock for that data and move to the
next operation in their queues.

Other proposals tackle the weakness posed by the central-
ized log manager, with [14] presenting a scalable log buffer
and [3] exploiting flash technology to reduce logging laten-
cies. These proposals show even seemingly-pervasive forms
of communication can be reduced or sidestepped to great
effect. However, none of them addresses physical data ac-
cesses involving page latching and the buffer pool, the other
two major overheads in the system, which PLP eliminates.

In clustered databases, shared-cache shared-disk designs
[16] allow database instances to share their buffer pools and
avoid accesses to the shared-disk. However, they do not han-
dle the physical latch contention while accessing the pages
from the shared-cache.

As discussed previously, shared-nothing [25, 6, 26] systems
have an appealing design that eliminates critical sections al-
together. However, they struggle both pro-actively to re-
duce the need to execute distributed transactions through
efficient partitioning [4] as well as re-actively to reduce over-
heads when distributed transactions cannot be avoided [15].
On the other hand, PLP, in addition to eliminating a big
portion of the unscalable critical sections, offers a less costly
way of load balancing and communication for distributed
transactions since partitions share the same memory space.

Alternatives to traditional B+Tree concurrency control
protocol are studied to allow multiple SMOs at the same
time [20, 11]. The MRBTree index structure provides an
alternative to these techniques, allowing concurrent SMOs
with less code complexity. However, these techniques could
be implemented alongside with MRBTrees to achieve con-
currency within a partition, should that be desirable for a
conventional system. Several earlier works propose B+Trees
having multiple roots to reduce contention due to locking
[22, 7], and Lee et al. [17] also propose a partitioned B+tree
design to improve the online reorganization of records in a
shared-nothing system. However, again none of these pro-
posals targets physical latch contention in the system.

6. CONCLUSIONS
Unlike conventional systems, which either embrace fully

shared-everything or shared-nothing philosophies, physio-
logical partitioning takes the best features of both to pro-
duce a hybrid system that operates nearly latch- and lock-
free, while still retaining the convenience of a common un-
derlying storage pool and log. We achieve this result with a
new multi-rooted B+tree structure and careful assignment
of threads to data, which allows easy repartitioning and nat-
urally adapts to hot-spots accelerating their accesses. As
the hardware of database servers becomes even more paral-
lel and non-uniform the benefits of PLP will only increase.
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APPENDIX
In this appendix, we first present in detail the design of
MRBTrees, which is centerpiece to the PLP design, and
show how beneficial the MRBTrees can be even for conven-
tional systems. Next, we give a cost model for the reparti-
tioning analysis and evaluate the fragmentation costs of the
three PLP variations. Finally, we discuss weaknesses of the
design and its potential in future hardware architectures.

A. MULTI-ROOTED B+TREE
At Section 3 we outlined the operation of the MRBTree at

a high level. In this section we examine the implementation
details and important design considerations, including the
layout of the partition table and the tree operations.

A.1 Partition table design
The “root” of an MRBTree is a partition table which iden-

tifies the disjoint subsets of the key range which are assigned
to each sub-tree as well as a pointer to the root of each tree.
Because the routing information is cached in memory as a
ranges map by the partition manager, the on-disk layout
favors simplicity rather than optimal access performance.
We therefore employ a standard slotted page format which
stores key/root pairs. If the partitioning information cannot
fit on a single page (for example, if the number of partitions
is large or the keys are very long) the routing page is ex-
tended as a linked list of routing pages. In our experiments
we have never encountered the need to extend the routing
page, however, as several dozen mappings fit easily in 8KB,
even assuming rather large keys.

A.2 Inserting and deleting records
Record insertion (deletion) takes place as in regular B+trees.

When the key to insert (delete) is given, the ranges map
routes it to the sub-tree that corresponds to the key range
the key belongs to and the insert (delete) operation is per-
formed as in a regular B+tree in that sub-tree. The other
sub-trees, ranges map, and the routing page do not get af-
fected by the insert (delete) operation at all.

The main difference of an MRBTree index during an in-
sert (delete) operation becomes apparent when the insert
(delete) causes a structure modification in the B+tree. For
example, a B+tree page split during an insert may result in
a new entry insertion at the root node of the tree. Due to
this, only one structure modification is allowed for a B+tree
index at a time in traditional ARIES/KVL concurrency con-
trol protocol [19]. In the MRBTree index the routing page
contains the partitioning information which does not depend
on the actual values that are in the index. Thus, it does not
get affected from a structure modification in one of the sub-
trees, which allows having multiple structure modifications
in parallel for the index.

A.3 Structural modifications
The MRBTree inherits node split/merge capability, with

a few changes, from the standard ARIES/KVL B+Tree [19].
In addition, it adds two new operations, which we call slice
and meld, which allow entire sub-trees to migrate between
partitions for repartitioning purposes.

A.3.1 Melding sub-trees
When a sub-tree is accessed less frequently than others

leading to load imbalance, it can be merged with other sub-

trees. The simplest way to achieve this is to merge a sub-
tree with the sub-tree that comes before it. In such a merge
operation, there are three cases to consider; (1) when two
sub-trees have the same height, (2) when the sub-tree with
lower key values (Tl) has a higher level than the other sub-
tree, and (3) when the sub-tree with higher key values (Th)
has a higher level than the other sub-tree.

When the two sub-trees to be merged have the same height,
the entries of Th’s root are appended at the end of the en-
tries of Tl’s root. Since the entries of the root page have
information about the pointers to the interior nodes, copy-
ing the entries of the root page is sufficient for this merge
operation. In this case the complexity of the merge opera-
tion only depends on the number of entries in the root page
of Th. If the number of entries destined to the new root
exceeds the page capacity, an SMO happens and a new root
page is created, the same way a page split happens after a
record insert.

When Tl is taller than Th, Tl is traversed down to one level
higher than the level of Th. Then an entry is inserted at the
right-most node of this level which points to Th and has the
key value equal to the starting key of the key range of Th.
Therefore, the complexity of the merge operation depends
on the height difference between the two trees in this case.

When Th is taller, the merge operation is very similar
to the second case and the complexity is the same. Th is
traversed down to one level higher than the level of Tl and
instead of the right-most node, the left-most node gets the
entry which points to Tl and has the key value equal to the
starting key of the key range of Tl.

After the delete operation, the partition table is updated
according to the new key range and its corresponding sub-
tree root page id.

A.3.2 Slicing sub-trees
A sub-tree can be split if it contains a hot key range. The

slot for the starting key of the frequently accessed key range
is searched in the sub-tree by traversing the tree pages from
root to leaves. This slot can contain the B+tree entry which
is greater than or equal to the start key. Once the slot is
found, all the entries to the right of this slot in the slot’s
page are moved to newly created B+tree pages in a bottom-
up manner like in a regular B+tree page split. The pages to
the right of the slot’s page do not need to be moved because
the entries on the new pages will have pointers to them.
Therefore, the complexity of the sub-tree split depends on
the number of entries that come after the slot on slot’s page
and the height of the B+tree.

After the sub-tree splits, a new entry to the partition table
is inserted with the new key range and the newly created
sub-tree root page id.

A.4 Page cleaning
Page cleaning cannot be performed naively in PLP de-

signs. Conventionally there is a set of page cleaning threads
in the system that are triggered when the system needs to
clean dirty pages (for example, when it needs to truncate
log entries). Those threads may access arbitrary pages in
the buffer pool, which breaks the invariant of PLP where a
single thread can access a page at each point of time.

To handle the problem of page cleaning in PLP each thread
does the page cleaning for its logical partition. Each logical
partition has an additional input queue which is for system
requests, and the page cleaning requests go to that queue.
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The system queue has higher priority than the queue of com-
pleted actions. Their execution won’t be delayed by more
than the execution time of one action (typically very short).
In addition, because page cleaning is a read-only operation,
the thread can continue to work (and even re-dirty pages)
during the write-back I/O.

B. MRBTREES IN CONVENTIONAL OLTP
The MRBTree can improve performance even in the case

of conventional systems in two ways. First, since it effec-
tively reduces the height of the index by one level, each
index probe accesses one fewer node and hence it is faster.
In addition, any possible delay due to contention on the root
index page is also reduced roughly proportionally with the
number of sub-trees. Figure 9 highlights the difference in
the peak performance of the conventional and the logically-
partitioned system when they run with and without MRB-
Trees available. The workload is the TATP benchmark. The
improvement in performance is in the order of 10%.

Second, each subtree can have a structure modification
operation (SMO) in flight, whereas a traditional B+Tree
can have one SMO in flight at any time. Hence, in work-
loads with high entry insertion (deletion) rates the MRB-
Tree improves performance by parallelizing the SMOs. Fig-
ure 10 shows the time breakdown of the conventional system
with and without MRBTrees as we run a microbenchmark
which consists of either a record probe or insert, and we in-
crease the percentage of inserts. Without the MRBTree, as
the insertion rate increases the system spends an increas-
ing amount of time blocked waiting for SMOs to complete,
which is not the case when MRBTrees are used. In this case
using MRBTrees improves performance by up to 25%.

C. REPARTITIONING ANALYSIS
In this section we model the cost of repartitioning for a

Shared-Nothing system and the different PLP designs. The
model calculates the number of records and index entries
that have to be moved, the number of update/insert/delete
operations on the indexes, the number of pointer updates
on index pages and the routing page, and the remaining
number of read operations that have to be performed.

For a subtree to be partitioned we define; h as the level of
the tree, n as the number of entries in a B+tree node, mi as

the number of entries to be moved from the B+tree at level
i, and M as the number of records that has to be moved.
The read operations during a key value search in the B+tree
is omitted since it is the same for all the systems (a binary
search at each level from root to leaf).

C.1 Non-Clustered Indexes
In this section we assume that we have a unique non-

clustered primary and a secondary index for a table and the
data are partitioned based on the primary index key values.

In PLP-Regular, only some index entries have to be moved.
Let’s say there are m1 entries that are greater than or equal
to the starting key of the new partition on the leaf page that
the slot for this starting key is found. All needs to be done
is to move these m1 entries on that leaf page to a newly
created B+tree page and this procedure has to be repeated
as the tree is traversed from this leaf page to the root. It is
not necessary to move any entry from the pages that keep
the key values greater than the ones in the leaf page con-
taining the starting key. Setting the previous/next pointers
of the pages at the boundaries of the old and new partitions
is sufficient. Finally, a new entry to the routing page should
be added for the new partition. The overall cost is given in
the first row of Table 2.

The cost model in Table 2 for PLP-Regular describes the
worst case scenario for the system. If the starting key of the
new partition is in one of the interior tree pages, there is
no need to move any entries from the pages that are below
this page because the moved entries from the interior page
already have pointers to their corresponding child pages;
resulting in fewer reads, updates, and moved entries.

In PLP-Leaf, the index structure related modification cost
is the same as the one in the PLP-Regular case, but we also
have to move the records that belong to the new partition
now. The records that belong to the new partition are the
records that are pointed by the m1 leaf page entries that
has to be moved to the new partition’s subtree. Thus, in
the worst case m1 records have to be moved. Since this is
a non-clustered index, we have to scan these m1 entries to
get the RIDs of the records to be moved so that we can spot
which heap pages they reside. In the end, the new RIDs
for the moved records have to be updated in the secondary
index. Based on these, the cost for the PLP-Leaf design is
given in the second row of Table 2.



Table 2: Repartitioning cost model.

System #Records Moved (M)
Primary Index Secondary Index

#Entries Moved #Reads #Pages Read #Pointer Updates Changes Changes

PLP-Regular -
Ph

k=1 mk - - 2× h + 1 - -

PLP-Leaf m1

Ph
k=1 mk M 1 2× h + 1 M updates M updates

PLP-Partition m1 +
h−2P
l=0

(nh−l−1 × (mh−l − 1))
Ph

k=1 mk M 1 + M−m1
n

2× h + 1 M updates M updates

Shared-Nothing m1 +
h−2P
l=0

(nh−l−1 × (mh−l − 1)) - M 1 + M−m1
n

-
M inserts M inserts
M deletes M deletes

PLP (Clustered) m1

Ph
k=2 mk - - 2× h + 1 - M updates

Shared Nothing
m1 +

h−2P
l=0

(nh−l−1 × (mh−l − 1)) - - - -
M inserts M inserts

(Clustered) M deletes M deletes

The cost model for PLP-Leaf, again, illustrates the worst
case scenario. If the starting key of the new partition is
found in one of the interior nodes, no record movement has
to be done since there will be no leaf page splits and the
constraint of having all heap pages pointed by only one leaf
page is preserved. Moreover, even if the key is found on the
leaf page, we might not have to move all the records that
are specified by the model above. If the records on a heap
page is only pointed by the new partition now, then these
records can stay on that heap page.

One disadvantage of PLP-Leaf is that during a B+tree leaf
split some records might have to be moved. This also adds
the additional cost described for the PLP-Leaf repartitioning
to a regular B+tree leaf split.

In PLP-Partition, the index structure related modifica-
tion cost is the same as the one in the PLP-Regular case.
However, there is a risk of moving many records because in
the worst case we have to move all the records that belong
to the new partition. This number is equal to the number of
entries that are on the leaf pages of the new B+tree. These
entries have to be scanned to get the RIDs of the records to
be moved as in PLP-Leaf case, and the new RIDs have to be
updated in the secondary index after the record movement.
The cost model for PLP-Partition is given in the third row
of Table 2.

In a Shared-Nothing system, the cost for the record move-
ment takes place as in the worst case of the PLP-Partition
design. In addition, instead of entry movements from the
B+tree, for each record to be moved an insert (for the new
partition) and a delete (for the old partition) operation have
to be performed in both primary and secondary index struc-
tures. Moreover, this procedure has to be repeated for all
the replicas of a partition. Therefore, the repartitioning cost
for one replica in a Shared-Nothing system is given as in the
fourth row of Table 2.

C.2 Clustered Indexes
Let’s consider the case where we have a unique clustered

primary index and a secondary index, and the data parti-
tioning is done using the primary index key columns. In this
setup, no heap file exists and the primary index keeps the
actual data records rather than RIDs. Thus, the three PLP
designs are equivalent.

In that case, the B+tree leaf page entry movement for
PLP is the record movement, and the B+tree entry move-
ment is only going to be from the B+tree levels greater than
1. The cost model is given in the fifth row of Table 2.

The cost model for the Shared-Nothing system is going to
be similar to the non-clustered case. The only difference is
that there is no need to scan the leaf page entries to get the
RIDs of the records to be moved since the leaf pages have

the actual records. Therefore, the cost model for a replica
is given as it is in the last row of Table 2.

C.3 Moving fewer records
With some additional information we can actually move

fewer data during a repartitioning operation with the in-
creased cost of number of reads. For example, in PLP-
Partition design instead of directly moving all the records
that belongs to a new partition, we can scan all the B+tree
leaf pages that is going to be split and collect information
on all the records. With the information we collected on
the records, we can compute whether a heap page has more
records that belong to the old partition or the new parti-
tion. If the heap page has more records that belong to the
new partition, moving the records that belong to the old
partition might be more convenient in this case.

The number of reads during the scan of the leaf pages can
easily become a bottleneck due to the number of I/O oper-
ations that has to be performed in a disk resident database.
However, in an in-memory database or a system that uses
flash storage devices, this bottleneck can be prevented [3]
and the above mentioned technique can reduce the number
of data that has to be moved during repartitioning. For
a Shared-Nothing system, this technique cannot be applied
because either the records that belong to the new partition
or the old one has to be moved to somewhere else all together
since the partitions do not share the same storage space. In
our experiments, since we used an in-memory database, we
performed the repartitioning with this technique.

D. FRAGMENTATION COST
The last two PLP variations, PLP-Partition and PLP-

Leaf, create some fragmentation on the heap file since they
change the regular heap file structure (Section 3.3). This
section evaluates their fragmentation cost based on two things;
the number of heap pages each design uses and the amount
of time required to scan the whole heap pages.

Figure 11 shows how the ratio between the number of
pages used in a PLP design and in the conventional system
changes as we increase the database size. The x-axis shows
the total size of the database when each record is 100B (left
side of the graph) and 1000B (right side of the graph). The
y-axis is the ratio between the number of pages used in each
design and the conventional system. The conventional sys-
tem has one partition where the PLP variations have 100
and 10 partitions for the cases where record size is 100B
and 1000B, respectively. The heap page size is 8KB.

As expected, PLP-Regular does not create any fragmen-
tation since it maintains the regular heap file format. For
PLP-Partition, the amount of fragmentation becomes negli-
gible as the database size increases for small records. How-
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Figure 12: Overhead of PLP variations in file scan.

ever, PLP-Leaf uses up to 80% more heap pages than a
Conventional system for the same case creating a visible
fragmentation on the heap file. On the other hand, as we
increase the record size, the fragmentation cost decreases
because since each heap page is able to keep fewer records
in this case the amount of empty space left on each heap
page is reduced.

Figure 12 shows the time to scan the heap file for each
PLP variation compared to the conventional system as we
increase the size of the database. The setup is same as
in Figure 11 when the record size is 100B. The size of the
buffer pool is 4GB for each measurement. From Figure 12,
the fragmentation cost of PLP-Leaf does not significantly
increase the file scan time when there are no I/O operations
performed (from 1MB to 1GB) because the total number of
records that are scanned is the same. However, in the larger
database case (10GB), PLP-Leaf increases the heap file scan
time by 60% since there are more I/O requests.

Overall, among the PLP variations, only the PLP-Leaf de-
sign can introduce some significant fragmentation cost when
a heap page can keep many database records. However, as
the number of records a heap page can keep decreases, this
cost becomes less significant.

E. WEAKNESSES
While we cannot find weaknesses in the MRBTree access

method, the PLP design has some, most of them coming
from its ancestor, data-oriented execution [23].

First of all, this system is designed for high performance
transaction processing which imposes great pressure on the
internal of the database storage layer. Thus, certain classes
of applications may not benefit from it, or even get penal-
ized. For example, for our evaluation we use the specialized
TATP and TPC-B benchmarks instead of the more popular
TPC-C. The reason for that is that our baseline systems (con-
ventional and logically-partitioned) did not encounter any of
the issues we try to address in TPC-C and there was very lit-
tle room for improvement. Another example, are business
intelligence applications with large file scans or joins. In
such workloads PLP may penalize performance since it may
require the transfer of large volumes of data between the
participating threads. It is common practice, however, to
employ dedicated database engines (usually column-stores)
for processing such workloads.

Since PLP is using some kind of partitioning it is amenable
to problems due to skew on the requests or data. As we
have already argued, those problems are less troublesome
compared with the case of shared-nothing systems since the

MRBTrees provide the machinery for quick repartitioning.
However, the fact remains that some threads may be as-
signed more work than they can handle becoming bottle-
necks. We currently investigate techniques to rapidly detect
and efficiently handle problems due to load imbalance.

PLP partitions each table using range-based partitioning
to the keys of a specific subset of the columns of the ta-
ble. The DBA, however, may have decided to build indexes
(usually non-clustered secondary indexes) that do not con-
tain the columns which PLP uses for the partitioning. We
refer to such indexes as non-partitioning aligned indexes and
they may become performance bottlenecks. In data-oriented
execution and PLP we handle such accesses by appending
each index leaf entry with the fields of the record that are
needed for identifying the partition-owning thread. The
non-partitioning aligned index is accessed as a conventional
index, without avoiding any locking or latching, in order to
retrieve the id of the record to be accessed in the heap file
and then the access is passed to the appropriate thread. As a
proactive measure, we have implemented tools that help the
application developer and the DBA to avoid having work-
loads with very frequent such index accesses [30].

F. PLP AND FUTURE HARDWARE
Conventional OLTP is ill-suited to modern and upcoming

hardware for at least three reasons; (a) The code of OLTP
system is full of unscalable critical sections [13], (b) The
access patterns are unpredictable [24] that even the most
advanced prefetchers fail to detect [31], (c) The majority of
the accesses are shared read-write and hence they under-
perform on caches with non-uniform access latency [27, 28].

As we have seen, PLP, combined with previous advances
in logging, eliminates all three problems. The majority of
unscalable critical sections are completely eliminated, ac-
cess patterns are regularized by the thread assignments, and
threads no longer share data to communicate, eliminating
the shared R/W problem.

This regularity will become increasingly important as hard-
ware continues to make more and more demands of the
software. For example, it is almost inevitable that proces-
sor cache access latencies will be non-uniform [27, 29, 28].
Unfortunately, OLTP will only be able to utilize effectively
these new architectures if it can eliminate the majority of
accesses which are shared among multiple processors.

In short, by eliminating a large class of communication,
PLP leaves OLTP engines much better-poised to take advan-
tage of upcoming hardware, whatever form it may take.
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