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Abstract. We propose a robust method to estimate the number of audio sources
and the mixing matrix in a linear instantaneous mixture, even with more sources
than sensors. Our method is based on a multiscale Short Time Fourier Trans-
form (STFT), and relies on the assumption that in the neighborhood of some
(unknown) scales and time-frequency points, only one source contributes to the
mixture. Such time-frequency regions provide local estimates of the correspond-
ing columns of the mixing matrix. Our main contribution is a new clustering al-
gorithm called DEMIX to estimate the number of sources and the mixing matrix
based on such local estimates. In contrast to DUET or other similar sparsity-based
algorithms, which rely on a global scatter plot, our algorithm exploits a local
confidence measure to weight the influence of each time-frequency point in the
estimated matrix. Inspired by the work of Deville, the confidence measure relies
on the time-frequency local persistence of the activity/inactivity of each source.
Experiments are provided with stereophonic mixtures and show the improved
performance of DEMIX compared to K-means or ELBG clustering algorithms.

1 Introduction

The problem of estimating the number of audio sources and the mixing matrix is
considered in a possibly degenerate noisy linear instantaneous mixture xm(τ) =
∑N

n=1 amnsn(τ)+ em(τ), 1 ≤ m ≤ M, more conveniently written in matrix form x(τ) =
As(τ)+ e(τ). While the M signals xm(τ) are observed, the number N of sources as well
as the M × N mixing matrix A, the N source signals sn(τ) and the noise signals em(τ)
are unknown.

Our approach relies on assumptions similar to those of DUET [1] and TIFROM [2,3].
It exploits the fact that for each source, there is at least one time-frequency region where
it is the only source contributing to the mixture. This assumption is related to sparsity
of the time-frequency representation of the sources, which is a well-known property of
a variety of audio sources. In many sparsity-based source separation approaches [4,5,1]
this property is exploited globally by drawing a scatter plot of the time-frequency values
X(t, f )}t, f – which more or less displays lines directed by the columns an of the mixing
matrix – and cluster them into N clusters. Such a global clustering approach is sensitive
to the parameters of the clustering algorithm, and to the fact that the direction of some
sources of weak energy might not appear clearly in the global scatter plot. Rather than
using a full scatter plot, our approach is to exploit the local time-frequency persistence
[2,3] of the activity/inactivity of each source to get a robust estimation of the number
N of sources and the mixing matrix A. This is similar to the TIFROM [2,3] method,
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which –in the stereophonic case– uses the variance of the ratio X2(t, f )
X1(t, f ) within a time-

frequency region to determine whether the region contains a single active source or
more. Our main contributions are to:

1. use a multi-resolution framework (multiple window STFT) to account for the dif-
ferent possible durations of audio structures in each source.

2. rely on a local confidence measure to determine how valid is the assumption that
only one source contributes to the mixture in a given time-frequency region;

3. propose a new clustering algorithm called DEMIX, based on the confidence mea-
sure, that counts the sources and locates them.

In Section 2, after some reminders on related approaches to estimate the mixing matrix,
we give the outline of our approach and describe the confidence measure. In Section 3
we describe the new clustering algorithm DEMIX, and Section 4 is devoted to experi-
ments that compare several methods on audio mixtures.

2 Exploiting Sparsity and Persistence

Let us analyze briefly the most simple sparse source model: assume that at each time
τ, only one source n := n(τ) is active (sn(τ) �= 0 and sk(τ) = 0 ∀k �= n). In such a case,
the noiseless mixture at time τ is x(τ) = ansn(τ). In other word each point x(τ) ∈ R

M is
aligned on one of the columns an of the mixing matrix A. In fact this simple model is not
very sparse, but (the real and imaginary parts of) STFT values X(t, f ) approximately
displays such a behaviour, since the linear mixture model X(t, f ) = AS(t, f )+ E(t, f )
holds and in many time-frequency points (t, f ), only one source is dominant compared
to the others. However, there are points where several sources are similarly active,
which can make it difficult to estimate the mixing matrix by simply clustering the global
scatter plot.

2.1 Related Work

Many source separation methods for the stereophonic case (M = 2) use the idea of
sparsity in order to find mixing directions. In Bofill and Zibulevsky’s algorithm [4] and
DUET [1], the global (time-frequency) scatter plot is transformed into angular values
θ(t, f ) = tan−1 (X2(t, f )/X1(t, f )), and the columns of the mixing matrix are estimated
by finding maxima in an energy weighted smoothed histogram of these values. One of
the difficulties with this approach is that it seems difficult to adjust how much smoothing
must be performed on the histogram to resolve close directions without introducing
spurious peaks.

Another approach is the TIFROM method [2,3] which consists in selecting only
time-frequency points that have a great chance of being generated by only one source. In
TIFROM, for each time-frequency point (t, f ), the mean ᾱt, f and variance σ2

t, f of Time-
Frequency Ratios Of Mixtures α(t ′, f ′) = x̂2(t ′, f ′)/x̂1(t ′, f ′) are computed using all
times t ′ within a neighborhood of t and f ′ = f . By searching for the lowest value of the
variance, a time-frequency domain is located where essentially one source is present,
and the corresponding column of A is identified as being proportional to (1, ᾱt, f )T .
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However, it seems quite difficult to exploit TIFROM to actually determine how many
sources are present in the mixture and find their directions. In addition, the asymmetric
roles given by α(t ′, f ′) to the left and right channels of a stereophonic mixture is not
fully satisfying as for sources located almost on the first channel (i.e., with mixing
column close to (0,1)T ), the corresponding variance are likely to remain high, even at
good time-frequency points.

2.2 Proposed Approach

We propose to overcome these limitations of TIFROM by replacing the local vari-
ance and mean of the ratios x̂2(t, f )

x̂1(t, f ) with the principal direction of the local scatter

plot (x̂1(t, f ), x̂2(t, f )), together with a measure of how strongly it points in its prin-
cipal direction. For this, we first define time-frequency neighborhoods Ωt, f around
each time-frequency point (t, f ). A discrete STFT with a window of size L computed
with half overlapping windows and no zero padding provides values on the discrete
time-frequency grid t = kL/2, k ∈ Z and f = l/L, 0 ≤ l ≤ L/2. A possible shape of
time-frequency neighborhood of a time-frequency point (t, f ) is Ωt, f = {(t +kL/2, f +
k′/L), |k| ≤ ST , |k′| ≤ SF} but the approach is amenable to using or combining several
shapes and size of neighborhoods. Each neighborhood provides a local scatter plot cor-
responding to a M × card(Ωt, f ) matrix XΩt, f with entries Re[X(t ′, f ′)] and Im[X(t ′, f ′)]
for (t ′, f ′) ∈ Ωt, f . Performing a Principal Component Analysis (PCA) on XΩt, f we ob-
tain a principal direction as a unit vector û(t, f ) ∈ R

M . In the stereophonic case M = 2,
the direction of the estimated principal unit vector û(t, f ) ∈ R

2 is equivalently translated
into an angle θ̂(t, f ).

2.3 A Confidence Measure

To have an idea of how likely it is that the unit principal vector û(t, f ) corresponds to a
direction of the mixing matrix, we need to know with what confidence we can trust the
fact that a single source is active in the corresponding local scatter plot. We propose to
rely again on PCA to define the confidence measure

̂T (t, f ) := λ̂1(t, f )/
M

∑
i=2

λ̂i(t, f ) (1)

where λ̂1(t, f ) ≥ . . . ≥ λ̂M(t, f ) are the eigenvalues of the M ×M matrix XΩt, f XT
Ωt, f

. As
explained in Appendix A, this measure can be viewed as a local signal to noise ratio
between the dominant source and the contribution of the other ones together with the
noise, so we will often express it in deciBels, that is to say 20log10

̂T .
Figure 1(a)-(b) shows the local scatter plot in two time-frequency regions: one where

many sources are simultaneously active, and another one where essentially one source
is active. It illustrates the good correlation of the value of the confidence measure with
the validity of the tested hypothesis.

Figure 2(a) displays the collection of pairs (θ̂(t, f ),20log10 T̂ (t, f )), or direction-
confidence scatter plot (DCSP), obtained by PCA for all time-frequency regions of the
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Fig. 1. Two local scatter plots for a stereophonic noiseless mixture of four audio sources. Solid
lines indicate all possible true directions, the dashed line indicates the direction estimated by
PCA. (a) Local scatter plot in a region where multiple sources contribute to the mixture. The
measured confidence value is low (9.4 dB) (b) Region where essentially only one source con-
tributes to the mixture. The measured confidence value is high (101.4 dB) and the dashed line
coincides with one of the solid lines.

signal, together with four lines indicating the angles corresponding to the true underly-
ing directions. One can observe that the higher the confidence, the smaller the average
distance between the point and one of the true directions. We discuss in Appendix A
a statistical analysis of the Significance of the confidence measure in the stereophonic
case, which is used to build the DEMIX clustering algorithm described in the next
section.

3 The DEMIX Algorithm

We propose a clustering algorithm called DEMIX (Direction Estimation of Mixing ma-
trIX) which estimates both the number of sources and the directions of the columns of
the mixing matrix. The algorithm is deterministic and does not rely on a prior knowl-
edge on the number N of columns of A. However, in the case where this number is
known the algorithm can be adapted to incorporate this information. The algorithm is
described in the stereophonic case M = 2 using angles θ̂ to denote mixing directions,
but the approach extends to M > 2 mixtures by clustering the directions û(t, f ) instead.

The first step of the algorithm consists in iteratively creating K clusters by selecting
points (̂θk, ̂Tk) with highest confidence and aggregating sufficiently close points around
them. The second step is to estimate the direction ̂θc

k of each cluster. Finally, we use
a statistical test to eliminate non significant clusters and keep ̂N ≤ K clusters which
centroids provide the estimated directions of the mixing matrix.

3.1 Step 1: Cluster Creation

DEMIX iteratively create K clusters Ck ⊂ P –where P is the DCSP– starting from K = 0,
PK = P0 = P:



540 S. Arberet, R. Gribonval, and F. Bimbot

1. find the point (̂θK , ̂TK) ∈ PK with the highest confidence;

2. create a cluster CK with all points (̂θ, ̂T ) ∈ P “sufficiently close” to (̂θK , ̂TK);
3. if PK+1 := PK \CK = /0, stop; otherwise increment K ← K +1 and go back to 1.

Note that in step 2 the newly created cluster might interesect previous clusters. To give
a precise meaning to the notion of being “sufficiently close” to (̂θK , ̂TK), we rely on
the statistical model developped in Appendix A and include in CK all points (θ̂, ̂T )
such that |θ̂ − ̂θK | ≤ σ(̂T , ̂TK) where the expression of σ(̂T , ̂TK) is given in Equa-
tion (8).

3.2 Step 2: Direction Estimation

Since the clusters might intersect, the estimation of the centroid ̂θc
k of a cluster Ck is

based on a subset C′′
k ⊂ Ck of “unbiased” points that belong exclusively to Ck. Due to

lack of space we skip the description of how these subsets are selected. In light of the
statistical model developped in Appendix A, the points (θ̂, T̂ ) ∈ C′′

k are assumed inde-
pendent and distributed as ̂θ ∼ N

(

θtrue
k ,σ2

θ(T̂ )
)

where θtrue
k is the unknown underlying

direction and σ2
θ(

̂T ) is defined in equation (6). The centroid of the cluster if therefore
defined as the minimum variance unbiased estimator of θtrue

k

̂θc
k := ∑

(̂θ,̂T )∈C′′
k

σ−2
θ (̂T )̂θ/ ∑

(̂θ,̂T )∈C′′
k

σ−2
θ (̂T ). (2)

3.3 Step 3: Cluster Elimination

The last step aims at removing possibly spurious clusters among the K that have been
built. We propose to use the variance 1/∑(̂θ,T̂ )∈C′′

k
σ−2

θ (T̂ ) of the centroid estimator ̂θc
k

to help decide which clusters should be kept. We define two strategies: (DEMIXN) if
we know the true number N of true directions, we keep the directions of the N clusters
with the smallest centroid variance; (DEMIX) otherwise, we remove the directions of a
clusters Cj whenever there is another cluster Co �= Cj with

|̂θc
j −̂θc

o| ≤ q2/ ∑
(̂θ,T̂ )∈C′′

j

σ−2
θ (T̂ ) (3)

where the quantile q2 defines a confidence interval (see the Appendix). It is also possible
to replace σθ with a slightly modified version σ̂θ relying on a quantile q1 to define a
confidence interval, see Eq. (7). To finish, we recompute the centroids of the clusters
defined by the remaining directions, as described in Sections 3.1 and 3.2.

4 Experiments

We compared on several test mixtures the proposed algorithms (DEMIX and DEMIXN)
and the classical K-means [6] and ELBG [7] clustering algorithms. Two variants of
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K-means and ELBG were considered, one on the scatter plot of tan−1(X2/X1)(t, f ),
the other one on that of the angles θ̂(t, f ) obtained after the proposed local PCA.
The mixtures were based on signals taken from a set of 200 Polish voice excerpts
of 5 seconds sampled at 4kHz1. Noiseless linear instantaneous mixtures were per-
formed with mixing matrices in the most favorable shape where all directions are
equally spaced (as in [4]), with a number of directions ranging from N = 2 to N = 15.
For each N, we chose T = 20 differents configurations of signals sources among the
200 available. A first measure of performance was the rate of success in the esti-
mation of the number of sources (for DEMX and DEMXN only, because K-means
and ELBG have a fix number of clusters). We observed that up to N = 8 sources,
DEMIX estimates correctly the number of directions in more than four cases out of
five, but when N > 10 it always fails to count the number of sources. DEMIXN is sim-
ilarly successful up to N = 10 sources and always fails for N > 12. The reason why
DEMIXN can fail in finding the right number of sources while it is known is that the
cluster creation stage might result in K < N clusters. In case success, we could also
measure the angular mean error (AME) which is the mean distance in degrees be-
tween true directions and estimated ones. Distances are computed in the best way to
pair estimated directions with the true ones. For each tested algorithm, we computed
the average AME among test mixtures where ̂N = N. Since K-means and ELBG are
randomly initialized, we ran them I = 10 times for each test mixture and focussed
on the smallest AME over these 10 runs, which gives an optimistic estimate of their
performance.

As can be seen on Figure 2(b), DEMIX and DEMIXN algorithms obtain the best
performance. Since the AME for DEMIX and DEMIXN can only be measured when a
correct number of sources is estimated, it is not computed when N > 10 (resp. N > 12)
for DEMIX (resp. DEMIXN).
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(a) Direction-confidence scatter plot (DCSP)

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

number of sources

er
ro

r 
in

 d
eg

re
es

DEMIX when number of sources correctly identify
DEMIXN when number of sources correctly identify
K−Means
ELBG
K−Means after PCA
ELBG after PCA

(b) Average AME as a function of the number
of sources

Fig. 2. (a) Direction-confidence scatter plot of points (θ̂,20log10 T̂ ) obtained by PCA on time-
frequency regions based on a single STFT with window size is L = 4096 and neighborhoods of
size |Ωt, f | = 10. (see section 2.3). (b) Experimental results of section 4.

1 The signals are available at http://mlsp2005.conwiz.dk/index.php?id=30
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5 Conclusion

We designed,developped, and evaluated a new algorithm to estimate the source direc-
tions of the mixing matrix in the instantaneous underdetermined two-sensor case. The
proposed DEMIX algorithm yields better experimental results than those obtained by
K-means and ELBG clustering algorithms on the same multiscale STFT data. Further-
more DEMIX estimates itself the number of mixing sources. This algorithm was de-
signed using a confidence measure which is one of the main contribution of the article.
The confidence measure allows to well detect regions of time-frequency points where
essentially one source is active. This confidence measure could also be used in the
source separation process, in addition with the estimated mixing matrix, to determine
which source should be estimated in which time-frequency region, possibly providing
a fully adaptive local (pseudo) Wiener filter. Further works include the extension of the
DEMIX algorithm to delayed and convolved mixtures. We are also looking into the
practical aspects and validation of the algorithm for source separation with more than
two sensors.
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A Statistical Analysis in the Stereophonic Case

In this appendix we make a statistical model in the stereophonic case (M = 2) to better
understand the significance of the confidence measure ̂T (t, f ) as a measure of how ro-
bustly ̂θ(t, f ) estimates the “true” underlying direction of the dominant source. For that,
we model the STFT coefficients of the most active source in the time-frequency region
Ωt, f with a centered normal distribution of (large) variance σ2, and the contribution
of all other sources, plus possibly noise, as 2-dimensional centered normal distribution
with covariance matrix σ̃2Id2. Letting a be the normalized (‖a‖2 = 1) column of the
mixing matrix A which corresponds to the most active source, then the model is that for
(t ′, f ′) ∈ Ωt, f we have:

x(t ′, f ′) = s(t ′, f ′)a+n(t ′, f ′) (4)
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where
s(t ′, f ′) ∼ N

(

0,σ2) , n(t ′, f ′) ∼ N
(

0, σ̃2Id2
)

(5)

therefore x(t ′, f ′) ∼ N
(

0, σ̃2Id2 +σ2aaT
)

. Let λ1 ≥ λ2 be the eigenvalues of the co-
variance matrix Σ := σ̃2Id2 +σ2aaT and u = (u1,u2)T be a unit eigenvector correspond-

ing with λ1. By elementary linear algebra we have λ1
λ2

= σ̃2+σ2

σ̃2 = 1+ σ2

σ̃2 and, if λ1 > λ2

(i.e., σ > 0), u is colinear to a. Therefore, the true direction θtrue = tan−1( a2
a1

) is given
by the direction of the principal component. Note that in this model λ1/λ2 is related to
the “local signal to noise ratio” σ2/σ̃2 between the most active source and the others.

A.1 Precision of PCA

Since the values ̂θ(t, f ) and ̂T (t, f ) = λ̂1/λ̂2 are computed by PCA on sample of m :=
card(Ωt, f ) points, they only provide estimates of the true direction and of the “true”
confidence λ1/λ2 with a finite precision which we want to estimate as a function of the
sample size m. For that, we use the following result which is an immediate application
of [8, Theorems 4.11, 5.7, 9.4] : for large sample size, ̂T /(λ1/λ2) converges in law to
N

(

1,σ2
T

)

with σ2
T = 4/(m−1), and ̂θ converges in law to N (θtrue,σ2

θ(λ1/λ2)) with

σ2
θ(T ) :=

1
m−1

T
(T −1)2 . (6)

A.2 Confidence Intervals

If λ1/λ2 is known, then we know the standard deviation of the estimated angle θ̂ with
respect to the true one. Since we know the distribution of the confidence measure T̂
which is close, but not equal to λ1/λ2, we can only predict the deviation of θ̂ with
respect to a “true” direction” using confidence intervals. With probability exceeding
1−α(q1)/2, we have λ1/λ2 ≥ T̂ /(1+q1σT ). Therefore, instead of σ2

θ(T̂ ) we can use

σ̂2
θ(T̂ ) := σ2

θ

(

T̂ /(1+q1σT )
)

(7)

and model θ̂ as θ̂ ∼ N
(

θtrue, σ̂2
θ(T̂ )

)

instead of θ̂ ∼ N
(

θtrue,σ2
θ(T̂ )

)

.

Neglecting the possible dependencies between θ̂ and T̂ and following the same
path, we get a statistical upper bound |θ̂ − θtrue| ≤ q2σ̂θ(T̂ ) with confidence level
1 − α(q2)/2. We use it to determine whether two points belong to the same cluster
in the cluster creation step. This leads to the definition

σ(̂T , ̂T c) = q2

(

σ̂θ(̂T )+ σ̂θ(̂T c)
)

(8)

We use quantil values q1 = q2 = 2.33 to provide confidence levels of 99 percent.
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