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Abstract. The underdetermined blind audio source separation prob-
lem is often addressed in the time-frequency domain by assuming that
each time-frequency point is an independently distributed random vari-
able. Other approaches which are not blind assume a more structured
model, like the Spectral Gaussian Mixture Models (Spectral-GMMs),
thus exploiting statistical diversity of audio sources in the separation
process. However, in this last approach, Spectral-GMMs are supposed to
be learned from some training signals. In this paper, we propose a new
approach for learning Spectral-GMMs of the sources without the need of
using training signals. The proposed blind method significantly outper-
forms state-of-the-art approaches on stereophonic instantaneous music
mixtures.

1 Introduction

The problem of underdetermined Blind Source Separation (BSS) is to recover
single-channel source signals sn(τ), 1 ≤ n ≤ N , from a multichannel mixture
signal xm(τ), 1 ≤ m ≤ M , with M < N . Taking the Short Time Fourier Trans-
form (STFT) Xm(t, f) of each channel xm(t) of the mixture, the instantaneous
mixing process is modeled in the time-frequency domain as:

X(t, f) = AS(t, f) (1)

where X(t, f) and S(t, f) denote respectively the column vectors [Xm(t, f)]Mm=1

and [Sn(t, f)]Nn=1, and A is the M × N real-valued mixing matrix.
The underdetermined BSS problem is often addressed in a two step approach

where: first the mixing matrix is estimated, and then the source coefficients are
estimated with the Maximum A Posteriori (MAP) criterion given a sparse source
prior and the mixing matrix. Sources are then recovered using the inverse STFT.
� A part of this work was done while A. Ozerov was with KTH, Stockholm, Sweden.



In the audio domain, sparse prior distributions are usually a Laplacian [1], a
generalized Gaussian [2], a Student-t [3], or a mixture of two Gaussians [4].

This approach however suffers from the following issues:

1. In each time-frequency point, the maximum number of nonzero sources is
usually assumed to be limited to the number M of channels [1,2].

2. The assumed nonzero sources are always the M neighboring directions which
points toward the direction of the observed mixture [5].

3. Each time-frequency coefficient is estimated independently of the others
without taking into account the structure of each source in the time-frequency
domain. In other words, the signal redundancy and structure are not fully
exploited.

In this paper we assume that A is known or has already been estimated [6],
and the columns are pairwise linearly independent. Issues two and three have
been addressed by the Statistically Sparse Decomposition Principle (SSDP)[5],
which exploit the correlation between the mixture channels and more recently,
the three issues have been addressed by the Local Gaussian Modeling (LGM)
[7], where time-frequency coefficients are modeled via Gaussian priors with free
variances. The third issue has been indeed partially addressed by SSDP and
LGM, which exploit the neighborhood of the time-frequency points, in order to
estimate the source distribution of the coefficients.

A more globally structured approach (to address these three issues) consists
in assuming a spectral model of the sources via Spectral Gaussian Mixture Mod-
els (Spectral-GMMs) [8,9]. This approach has been successfully used to separate
sources in the monophonic case (M = 1) [8,9], when sparse methods are unsuit-
able. However this approach is not blind because the models need to be learned
from some training sources which should have characteristics similar to those of
the sources to be separated. An EM algorithm could be used to learn GMMs
directly from the mixture [10,11], but this approach suffers from two big issues.
First, the number of Gaussians in the observation density grows exponentially
with the number of sources, which often leads to an intractable algorithm. Sec-
ond, the algorithm can be very slow and converges to a local maximum depending
on the initial values.

In this paper, we propose a framework to blindly learn Spectral-GMMs with
a linear complexity, provided that we have for each n-th source and for each
time-frequency point (t, f) the following two estimates:

1. an estimate S̃n(t, f) of the source coefficient Sn(t, f);
2. an estimate σ̃2

n,t(f) of the coefficient estimation squared error:

e2
n,t(f)

�
=

∣∣∣S̃n(t, f) − Sn(t, f)
∣∣∣2 . (2)

The paper is organized as follows. In section 2, we describe the Spectral-GMM
source estimation method assuming known models. In section 3, we recall the
LGM source estimation method and show that, with this approach, we can also
provide the two above-mentioned estimates required by the proposed framework.



In section 4, we describe our approach to blindly estimate Spectral-GMMs of
the sources, with a linear complexity EM algorithm. Finally, we evaluate the
performances of our approach on musical data in section 5.

2 Spectral-GMM Source Estimation

In this section, we briefly describe the principles of the Spectral-GMM source
estimation methods [9], that we extend to the multichannel case. The short
time Fourier spectrum S(t) = [S(t, f)]f3 of source S at time t is modeled by
a multidimensional zero-mean complex valued K-states GMM with probability
density function (pdf) given by :

P (S(t)|λ) =
∑K

k=1
πk Nc(S(t); 0̄, Σk) (3)

where Nc(S(t); 0̄, Σk)
�
=

∏
f

1
πσ2

k(f)
exp

[
− |S(t,f)|2

σ2
k(f)

]
, λ

�
= {πk, Σk}k is a Spectral-

GMM of source S, πk being a weight of Gaussian k of GMM λ, and
Σk

�
=diag([σ2

k(f)]f ) is a diagonal covariance matrix of Gaussian k of GMM λ.
Provided that we know the Spectral-GMMs Λ = [λn]Nn=1 of the sources, the

separation is performed in the STFT domain with the Minimum Mean Square
Error (MMSE) estimator, which can be viewed as a form of adaptive Wiener
filtering :

Ŝ(t, f) =
∑
k

γk(t)Wk(f)X(t, f) (4)

where k
�
=[kn]Nn=1, and γk(t) is the state probability at frame t (

∑
k γk(t) = 1):

γk(t)
�
=P (k|X(t);A,Λ) ∝ πk

∏
f

Nc

(
X(t, f); 0̄,AΣk(f)AT

)
(5)

with X(t)
�
=[X(t, f)]f , Σk(f)

�
=diag([σ2

n,kn
(f)]Nn=1), and the Wiener filter is given

by :
Wk(f)

�
=Σk(f)AT

(
AΣk(f)AT

)−1
(6)

Thus, at each frame t, the source estimation is done in two steps :

1. decoding step, where the state probabilities γk(t) are calculated with equa-
tion (5);

2. filtering step, where the source coefficients are estimated by the weighted
Wiener filtering of equation (4).

In such an approach the models λn are usually learned separately [8] by maxi-
mization of the likelihoods P (S̄n|λn), where S̄n is the STFT of the training signal
for source sn. This maximization is achieved via the Expectation Maximization
3 The notation [S(t, f)]f means a column vector composed of elements S(t, f),∀f



(EM) algorithm [12] initialized by some clustering algorithm (e.g., K-means).
As we will see in section 5, the performances of this method can be very good.
However, it suffers from two big issues :

– The approach requires availability of training signals, that are difficult to
obtain in most realistic situations [9].

– As the mixture state k is a combination of all the source states kn, 1 ≤ n ≤
N , the decoding step of equation (5) is of complexity O(KN ).

3 LGM Source Estimation

The LGM [7] is a method which consists in estimating local source variances
v(t, f) = [σ2

n(t, f)]Nn=1 in each time-frequency point and then estimating the
source coefficients with the MMSE estimator given by the Wiener filter :

S̃(t, f) = W(t, f)X(t, f) (7)

where W(t, f) = Σ̂(t, f)AT
(
AΣ̂(t, f)AT

)−1

, and Σ̂(t, f) is a diagonal matrix

whose entries are the estimated source variances : Σ̂(t, f) = diag (v̂(t, f)).
The LGM is based on the empirical local covariance matrix in the time-

frequency domain, which has already been used by mixing matrix estimation
methods [6,13] so as to select time-frequency regions where only one source is
supposed active, and which is defined by :

R̂x(t, f) =
∑
t′,f ′

w(t − t′, f − f ′)X(t′, f ′)XH(t′, f ′) (8)

where w is a bi-dimensional normalized window function which defines the
neighborhood shape, and H denotes the conjugate transpose of a matrix. If
we assume that each complex source coefficient Sn(t, f) in a time-frequency
neighborhood follows an independent (over time t and frequency f) zero-mean
Gaussian distribution with variance σ2

n(t, f), then the mixture coefficients in that
neighborhood follow a zero-mean Gaussian distribution with covariance matrix
:

Rx(t, f) = AΣ(t, f)AT . (9)

The Maximum Likelihood (ML) estimate of source variances σ2
n (we drop the

(t, f) index for simplicity) is obtained by minimization of the Kullback-Leibler
(KL) divergence between the empirical and the mixture model covariances [14]:

Σ̂ = arg min
Σ=diag(v),v≥0

KL(R̂x|Rx), (10)

where KL(R̂x|Rx) is defined as :

KL(R̂x|Rx) =
1
2

(
tr

(
R̂xR−1

x

)
− log det

(
R̂xR−1

x

)
− M

)
. (11)



The LGM method [7] uses a global non-iterative optimization algorithm to
solve the problem of equation (10), which roughly consists of estimating variances
v by solving the linear system R̂x ≈ Rx with a sparsity assumption on the
variance vector v.

The MMSE estimate of (S̃ − S)(S̃ − S)H is given by the covariance matrix
of S given X:

C
�
= E

[
(S̃ − S)(S̃ − S)H

∣∣∣X]
= (I − WA)Σ̂, (12)

where W is defined just after equation (7).
So the MMSE estimate of e2

n,t(f) defined by equation (2) is given by the
corresponding diagonal element of matrix C(t, f):

σ̃2
n,t(f) = E

[∣∣∣S̃n(t, f) − Sn(t, f)
∣∣∣2∣∣∣∣X

]
= C(t, f)n,n. (13)

4 Spectral-GMM Blind Learning Framework

The aim of the proposed framework is to learn the Spectral-GMM λn for each
source sn, provided that at each time-frequency point (t, f), we have an estimate
S̃n(t, f) of the source coefficient Sn(t, f) together with an estimate σ̃2

n,t(f) of the
squared error e2

n,t(f) defined by equation (2).
The learning step is done for each source independently, so in the following

we drop the source’s index n for simplicity. Let us denote the error of source
estimation as Ẽ(t, f)

�
= S̃(t, f) − S(t, f). Now we assume that Ẽ(t) = [Ẽ(t, f)]f

is a realization of a Gaussian complex vector with zero mean and a diagonal
covariance matrix Σ̃t = diag([σ̃2

t (f)]f ), i.e., P (Ẽ(t)|Σ̃t) = Nc(Ẽ(t); 0̄, Σ̃t). The
relation :

S̃(t, f) = S(t, f) + Ẽ(t, f) (14)

can be interpreted as a single sensor source separation problem with mixture S̃
and sources S and Ẽ, where source Ẽ is modeled by Σ̃ = [Σ̃t]Tt=1, which is fixed,
and source S is modeled by GMM λ = {πk, Σk}Kk=1 that we want to estimate in
the ML sense, given the observed mixture S̃ and fixed model Σ̃. Thus, we are
looking for λ optimizing the following ML criterion :

λ = arg max
λ′

p(S̃|λ′, Σ̃). (15)

Algorithm 1 summarizes an Expectation-Maximization (EM) algorithm for
optimization of criterion (15) (see [9] for derivation). Initialization is done by
applying K-means clustering algorithm to the source estimate S̃.

Once we have learned the source models Λ = [λn]Nn=1, we could estimate the
sources with the procedure of section 2, but in that case the decoding step at each
frame t will still be of complexity O(KN ). In order to have a linear complexity
method, we do not calculate all the KN mixture state probabilities, but only the



Algorithm 1 EM Algorithm for source Spectral-GMM estimation in ML sense
(index (l) in power denotes the parameters estimated at the lth iteration of the
algorithm)

1. Compute the weights γ
(l)
k (t) satisfying

P
k γ

(l)
k (t) = 1 and

γ
(l)
k (t) � P (q(t) = k|S̃, λ(l), Σ̃) ∝ π

(l)
k Nc(S̃(t); 0̄, Σ

(l)
k + Σ̃t) (16)

where q(t) is the current state of GMM λ at frame t.
2. Compute the expected Power Spectral Density (PSD) for state k

˙|S(t, f)|2¸(l)

k
� ES

h
|S(t, f)|2

˛̨
˛q(t) = k, S̃, λ(l), Σ̃

i
=

=
σ

2,(l)
k (f)σ̃2

t (f)

σ
2,(l)
k (f) + σ̃2

t (f)
+

˛̨
˛̨
˛

σ
2,(l)
k (f)

σ
2,(l)
k (f) + σ̃2

t (f)
S̃(t, f)

˛̨
˛̨
˛
2

(17)

3. Re-estimate Gaussian weights

π
(l+1)
k =

1

T

X
t

γ
(l)
k (t) (18)

4. Re-estimate covariance matrices

σ
2,(l+1)
k (f) =

P
t

˙|S(t, f)|2¸(l)

k
γ

(l)
k (t)

P
t γ

(l)
k (t)

(19)

K state probabilities of each source using γ
(L+1)
kn

(t), where γ
(L)
kn

(t) (defined by
equation (16) in algorithm 1) are the state probabilities of source Sn calculated
during the last iteration of algorithm 1. The source coefficients are then estimated
with the Wiener filter Wk∗(t)(f) of equation (6), with k∗(t) = [k∗

n(t)]Nn=1 and
where k∗

n(t) = arg maxk P (q(t) = k|S̃n, λ
(L+1)
n , Σ̃n) is the most likely state of

model λ(L+1)
n at frame t, given S̃n(t, f) and Σ̃n.

5 Experimental results

We evaluate our method4 over music mixtures, with the number of sources N
varying from 3 to 6. For each N a mixing matrix was computed as described in
[15], given an angle of 50 − 5N degrees between successive sources, and ten in-
stantaneous mixtures were generated from different source signals of duration 10
s, sampled at 22.05 kHz. The STFT was computed with a sine window of length
2048 (93 ms). The performance measure used is the Signal-to-Distortion Ratio
(SDR) defined in [16]. The bi-dimensional window w defining time-frequency
neighborhoods of the LGM method was the outer product of two Hanning win-
dows with length 3 as in [7]. The Spectral-GMMs were learned with 30 iterations

4 This method was also submitted to the 2008 Signal Separation Evaluation Campaign.



of algorithm 1 using LGM parameters given by equations (7) and (13) as entries,
and the number K of states per GMM was chosen equal to 8, because it yielded
the best results in SDR. Figure 1 compares the average SDR achieved by the
proposed Spectral-GMM method, the LGM method presented in Section 3 and
the classical DUET [17]. The proposed algorithm outperforms DUET by more
than 5 dB in the 3 sources case and LGM by at least 2 dB whatever the num-
ber of sources. We also plotted the performance of the (oracle) Spectral-GMM
separation when models, with the same number K of states, are learned and
decoded using the original sources. We can notice that the performance of the
proposed method remains between 2 dB and 5 dB below the oracle performance,
and that this gap increases with the number of sources, showing the difficulty
to blindly learn Spectral-GMM when the number of sources is high. As for the
computational load, the MATLAB implementation of the proposed algorithm
on a 3.4 GHz CPU runs in 133 s in the 4 sources case, while it runs in 120 s for
LGM and in 2 s for DUET.
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Fig. 1. Source separation performance over stereo instantaneous musical mixtures.
STFT window length is 2048 (93 ms) and K = 8.

6 Conclusion

In this paper, we proposed a new framework for the blind audio source sepa-
ration problem in the multichannel instantaneous mixture case. In this frame-
work Spectral-GMM models of sources were blindly learned, i.e. without using
any other informations than the mixture and the mixing matrix, with an EM
algorithm having a linear O(N K) complexity, in contrast to some related state-
of-the-art methods having an exponential O(KN) complexity. As opposed to the
other blind audio source separation methods, the proposed method exploits the
structure of each source in the time-frequency domain. The proposed method
outperforms the state-of-the-art methods tested by between 2 dB and 5 dB in
SDR. Further work include an extension of the method to the anechoic and
convolutive cases, evaluation of the robustness of the method by using mixing
matrices which are not perfectly estimated, and improvement of the method to
fill the gap between the blindly learned models and the oracle ones.
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