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Abstract—We study the problem of parametric model-fitting in
a finite alphabet setting. We characterize the weak convergence of
the goodness-of-fit statistic with respect to an exponential family
when the observations are drawn from some alternate distribu-
tion. We then study the effects of outliers on the model-fitting
procedure by specializing our results to ε-contaminated versions
of distributions from the exponential family. We characterize the
sensitivity of various distributions from the exponential family
to outliers, and provide guidelines for choosing thresholds for a
goodness-of-fit test that is robust to outliers in the data.

I. INTRODUCTION

Consider a sequence of random observations Z = {Zi :
i = 1, . . . , n} drawn i.i.d. from a finite alphabet Z =
{z1, , z2, . . . , zN}. Let P(Z) denote the space of probability
measures on Z. The problem of parametric model-fitting is
concerned with the following question: what is the most likely
distribution from a parametric class of probability distributions

{πθ : θ ∈ Rd} ⊂ P(Z)

that could have generated the string Z? The commonly used
solution to this problem is given by the maximum-likelihood
(ML) estimate θ̂n of the parameter based on the observations.

A related problem that arises in model-fitting is to quantify
the accuracy of the fit, often called the goodness-of-fit of the
model. This question is typically answered using the limiting
distributions of some distance metric between the empirical
distribution of the observations and the ML distribution. For
instance, in the finite alphabet setting, a useful metric is the
Kullback-Leibler divergence D(Γn‖πθ̂n) where Γn denotes
the empirical distribution (type) of the observations:

Γn(z) :=
1

n

n∑
i=1

I{Zi = z}, z ∈ Z (1)

where I is the indicator function. The idea is to accept the
null hypothesis that the observations were indeed drawn from
some distribution in the parametric family {πθ} only if the
divergence D(Γn‖πθ̂n) is less than some pre-decided threshold
τ chosen to meet some false alarm probability constraint.
The threshold τ is typically chosen based on the following
asymptotic weak convergence of the test statistic under the
null hypothesis

2nD(Γn‖πθ̂n)
d.−−−−→

n→∞
χ2
N−d−1

where χ2
a denotes a chi-square random variable with a degrees

of freedom and N is the alphabet size. This result, which
holds under some regularity conditions on {πθ}, enables us to
obtain approximations to the distribution of the test statistic
for large n which can then be used to set thresholds τ that
approximately meet a target false alarm constraint.

One of the pitfalls in using the above technique to quantify
goodness-of-fit is its sensitivity to model inaccuracies. In
reality all models are only approximate. One of the common ir-
regularities is the presence of outliers in the data. In this paper,
we model data with outliers as coming from ε-contamination
classes of distributions [1] from an exponential family and
study the behavior of the test statistic D(Γn‖πθ̂n) in the
presence of outliers. We first obtain the asymptotic distribution
of the divergence statistic when the observations are drawn
from an arbitrary distribution outside of the exponential family.
We then specialize our results to the case of distributions from
the ε-contamination class and characterize the behavior of the
test statistic as a function of ε. These results quantify the
sensitivity of the test to outliers and provide guidelines on
how to choose the threshold τ to design a test that is robust
to outliers. Our results are also useful for approximating the
power of the goodness-of-fit test to reject general distributions
that lie outside the exponential family.

Most of the probabilistic studies of outliers in model-fitting
have focussed on robust estimation, regression and hypothesis
testing [1], [2], [3]. In this paper we pursue a detailed study of
the effect of outliers on goodness-of-fit testing. A related work
is the robust goodness-of-fit test that we studied in [4]. The
finite alphabet uncertainty model studied in [4] is however not
suited for analyzing the effects of data outliers.

We describe the problem setup in Section II, our results
in Section III and conclusions in Section IV. Throughout the
paper, we use the following notation: For measures µ ∈ P(Z)
we use µ(z) to denote the mass at z ∈ Z. We sometimes
use µ also to denote the vector in RN with µi = µ(zi). For
functions f defined on Z we denote the expected value under
µ by 〈µ, f〉 :=

∑
z∈Z µ(z)f(z).

II. PROBLEM SETUP

Consider the following exponential family of distributions.

Eπ := {πθ : θ ∈ Rd},
where πθ(z) := π(z) exp(θTψ(z)− Λ(θ)), z ∈ Z (2)
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where π ∈ P(Z) has full support on Z and

ψ := (ψ1, ψ2, . . . , ψd)
T

is a vector of affinely independent real-valued functions over
Z, i.e. the functions {ψ0, ψ1, ψ2, . . . , ψd} are linearly inde-
pendent over Z where ψ0(z) = 1 for all z ∈ Z. Hence
θTψ =

∑d
i=1 θiψi is a real-valued function on Z. The function

Λ(.) in (2) is defined by

Λ(θ) = log〈π, exp(θTψ)〉.

Clearly Λ is an analytic function over Rd. It is also easy to
see that

〈πθ, ψ〉 = ∇Λ(θ). (3)

Furthermore, the Hessian ∇2Λ is given by the covariance
matrix of the random vector ψ(Z) when Z ∼ πθ:

∇2Λ(θ) = Covπθψ(Z) (4)

and is positive definite everywhere on Rd under the affine
independence of the functions in ψ (see [5, Lemma III.1]).

Let θ̂n denote the ML estimate of the parameter θ based
on the n i.i.d. observations {Z1, Z2, . . . , Zn}. In this paper
we are interested in testing whether or not these observations
were drawn from some distribution in Eπ; i.e., we are testing
the following composite null hypothesis

H0 : Zi ∼ i.i.d.µ, i = 1, 2, . . . , for some µ ∈ Eπ. (5)

The test statistic typically used for this purpose is the diver-
gence D(Γn‖πθ̂n) between the empirical distribution and the
ML distribution. We accept hypothesis H0 if this statistic is
below some fixed threshold. i.e., the test is of the form

Ĥ = I{D(Γn‖πθ̂n) < τ} (6)

with Ĥ = 0 indicating a decision in favor of H0. This test
statistic can be motivated based on its interpretation in terms
of error exponents as we elaborate in Section III-C. In the rest
of this paper we study the asymptotic behavior of the statistic
D(Γn‖πθ̂n) and its implications for goodness-of-fit testing in
the presence of outliers.

III. ASYMPTOTIC ANALYSIS

Before we proceed, we need the following known result.

Lemma III.1. Let µ ∈ P(Z) be any distribution with full
support over Z and πθ be as defined in (2). Then there exists
θ∗ ∈ Rd that solves the following reverse I-projection problem

inf
θ∈Rd

D(µ‖πθ). (7)

Proof: Let π̂ denote the I-projection

π̂ = arg min
ν∈P(Z):〈ν,ψ〉=〈µ,ψ〉

D(ν‖π)

Clearly, the minimizer π̂ exists since we are optimizing over a
compact set. Furthermore, by the Lagrange multiplier theorem
it follows that π̂ ∈ Eπ whenever µ has full support in Z (see,
for example, [6, Thm 3.2]). This fact together with [6, Cor 3.1]

imply that π̂ solves the reverse I-projection (7) and π̂ = πθ∗ .

An important consequence of this lemma is that whenever
Γn has full support over Z, the ML estimate θ̂n exists. This
is because

θ̂n := arg max
θ∈Rd

〈Γn, πθ〉 = arg min
θ∈Rd

D(Γn‖πθ). (8)

The following theorem, the first part of which is known
(see, for example, [6]), characterizes the asymptotic behavior
of the statistic D(Γn‖πθ̂n). The main result of this paper is
the second part which we prove in the appendix.

Theorem III.2. Suppose that the observation sequence Z is
i.i.d. with marginal µ ∈ P(Z) with full support over Z. Let
θ∗ ∈ Rd be as in Lemma III.1 and let πθ̂n denote the ML
estimate of the underlying distribution from the exponential
family (2) based on the first n observations. Then we have,

(i) If µ ∈ Eπ , then

2nD(Γn‖πθ̂n)
d.−−−−→

n→∞
χ2
N−d−1 (9)

where χ2
a denotes a chi-squared random variable with a

degrees of freedom.
(ii) If µ /∈ Eπ , then
√
n(D(Γn‖πθ̂n)−D(µ‖πθ∗))

d.−−−−→
n→∞

N (0, σ2
µ) (10)

where N (0, σ2) denotes a mean zero Gaussian random
variable with variance σ2 and σ2

µ := Var µ
[
log µ(Z)

πθ∗ (Z)

]
denotes the variance of the random variable log µ(Z)

πθ∗ (Z)
when Z ∼ µ. ut

The above results suggest that for large enough n, we have
the following approximations of the test statistic when Zi ∼ µ

D(Γn‖πθ̂n) ≈


χ2
N−d−1

2n if µ ∈ Eπ
D(µ‖πθ∗) +

N (0,σ2
µ)

√
n

if µ /∈ Eπ .
(11)

The interesting property of the test statistic D(Γn‖πθ̂n) is
the fact that the asymptotic distribution of this statistic is the
same irrespective of which distribution πθ is true under the
null hypothesis H0. Thus the first approximation in (11) can
be used to determine the threshold levels for the test (6) so
as to meet an approximate false alarm probability constraint
underH0. The second approximation of (11) on the other hand
enables us to approximate the error performance of the test for
alternate hypothesis distributions µ /∈ Eπ .

A. Goodness-of-fit with outliers

One of the problems in model-fitting problems is the pres-
ence of outliers in data. For example, in the problem described
above, while most of the observations in the sequence Z may
be drawn from some member πθ of the exponential family,
a small fraction of these points maybe outliers which do not
correspond to the exponential family model. One approach to



model outliers is to assume that the true distribution of the
observations is a mixture of the form

(1− ε)πθ + εξ where ξ ∈ P(Z). (12)

Here ξ is the unknown distribution of the outliers and ε ∈
[0, 1] is the fraction of outliers in the data. Such distributions
constitute an ε-contamination class [1]. In general the outlier
distribution ξ is allowed to be arbitrary in P(Z) while in some
cases a uniform distribution for the outliers can be justified.

We now obtain approximate expressions and bounds for the
limiting divergence D(µ‖πθ∗) and variance σ2

µ appearing in
Theorem III.2 when µ is of the form (12) and ε is small. For
ease of illustration we will use h to denote ξ − πθ so that µ
is now of the form πθ + εh, with h ∈ RN . We also define the
d×N matrix Ψ as

Ψ(i, j) := ψi(zj), zj ∈ Z, 1 ≤ i ≤ d

and use diag(v) to denote a square matrix with entries
from vector v along its principal diagonal. The following
proposition is proved in the appendix. In these results we
use the standard big-O notation: for any function g(ε) the
notation O(g(ε)) denotes some function f(ε) which satisfies
the condition that there exists κ > 0 such that for ε small
enough, we have |f(ε)| < κg(ε).

Proposition III.3. Suppose µ ∈ P(Z) is of the form (12) and
let θ∗ be as defined in Theorem III.2.

(i) The following approximations hold:

D(µ‖πθ∗) = 1
2ε

2hTGθh+ O(ε3) (13)

σ2
µ = ε2hTGθh+ O(ε3) (14)

where
Gθ = diag(

1

πθ
)−ΨTH−1

θ Ψ

with Hθ := ∇2Λ(θ).
(ii) The divergence and variance satisfy the following

bounds

D(µ‖πθ∗) ≤ log(1− ε) + ε+
ε2δθ
1− ε

(15)

σ2
µ ≤ 2ε2δθ + O(ε3). (16)

where δθ := (minz πθ(z))
−1. ut

Remark: A simpler version of the problem studied in this
paper is when the family Eπ in (5) is replaced by a single
distribution π. Asymptotics of D(Γn‖π) were studied in [5].
The results (9) and (10) continue to hold with πθ̂n and π∗θ
replaced by π and with d = 0. In the presence of outliers, it
can be shown that results (13) and (14) continue to hold with
Gθ replaced by diag( 1

π ).

B. Implications of the results

In the rest of this section we list some of the applications
of the results presented in this paper.

1) Power of rejecting alternate hypotheses: One of the
important facets of model fitting that is often underemphasized
is the ability of the goodness-of-fit procedure to reject wrong
hypotheses. Suppose we are performing the test (6) and the
true distribution µ of the observations {Zi} lies outside the
exponential family Eπ . For such distributions we can use the
second expression in (11) to approximate the probability of
wrongly accepting the hypothesis H0 while performing the
test (6).

2) Sensitivity to outliers: Another use of Theorem III.2 is
to quantify the performance degradation of the goodness-of-
fit test (6) when the observations are drawn from Eπ but are
corrupted by outliers. We see that when the true distribution
µ = (1− ε)πθ + εξ /∈ Eπ , the test statistic no longer converges
to zero, but instead converges to D(µ‖πθ∗) with a standard
deviation of order 1√

n
σµ. Proposition III.3 illustrates how the

divergence and variance vary as a function of ε. From the
approximate expressions in (13) and (14) we can argue that
those distributions πθ ∈ Eπ with large eigenvalues for the
corresponding matrix Gθ are most sensitive to outliers.

3) Robustifying for outliers: In practical scenarios when we
expect to have outliers in our data, we may wish to make our
goodness-of-fit test robust to outliers. In this case, we would
like to expand our null hypothesis to

Hε0 : Zi ∼ i.i.d. (1− ε)πθ + εξ, where θ ∈ Rd, ξ ∈ P(Z).

If ε is small, then it may be reasonable to use the same statistic
D(Γn‖πθ̂n) for goodness-of-fit as before. However, we may
now reject hypothesis Hε0 only if the test statistic value cannot
be explained by any distribution in Hε0. Proposition III.3(ii)
gives us an exact bound on the divergence D(µ‖πθ∗) and an
approximate bound on the variance σ2

µ as a function of θ.
If the parameters θ of interest belong to a compact subset
Θ of Rd we know that maxθ∈Θ δθ is finite and hence these
bounds can be used to choose the threshold τ in (6) to ensure
that we approximately meet a false alarm constraint under all
distributions of the form:

Hε,Θ0 : Zi ∼ i.i.d. (1− ε)πθ + εξ, where θ ∈ Θ, ξ ∈ P(Z).

C. Choice of goodness-of-fit statistic

Consider the problem of testing the following simple null
hypothesis

Hπ0 : Zi ∼ i.i.d.π, i = 1, 2, . . .

where π ∈ P(Z). Hoeffding [7] proved that the test that
uses the divergence statistic D(Γn‖π) is universally optimal
in an error exponent sense. This test maximizes the type-
II error exponent (i.e. the error exponent under the alternate
hypothesis (Hπ0 )c) for all distributions subject to a constraint
on the type-I error exponent (i.e. the error exponent under the
null hypothesis Hπ0 ). Now consider the problem of testing the
following composite null hypothesis

HP
0 : Zi ∼ i.i.d.µ, µ ∈ P (17)

where P is some subset of P(Z). This problem was studied
in [2] and [4] when P is a linear family. It was shown in [2]



that a threshold test on infµ∈PD(Γn‖µ) optimizes the type-II
error exponent subject to a constraint on the worst-case type-I
error-exponent. The composite hypothesis testing problem we
study in (5) is identical to the problem in (17) with P = Eπ .
Furthermore, since the ML estimate θ̂n solves the reverse I-
projection problem of (8) it follows that the test (6) is optimal
in an error-exponent sense for solving (17) when P = Eπ .

IV. CONCLUSION AND FUTURE WORK

We have established the asymptotic behavior of the
goodness-of-fit statistic with respect to an exponential family
under general measures from the probability simplex. Our
results can be used to approximate the power of the test to
reject distributions from outside the exponential family. We
have characterized the sensitivity of the goodness-of-fit test to
data outliers and also provided guidelines for designing tests
that are robust to outliers.

Although our results are for an exponential family of
distributions, we believe that our approach can also be used to
obtain similar results for general parametric classes of distri-
butions on a finite alphabet. Another direction for future work
is to analyze the implications of these results for goodness-of-
fit testing using quantized observations drawn from parametric
distributions on infinite alphabets. We are also seeking tighter
bounds in Proposition III.3(ii) that do not explicitly depend on
δθ.
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APPENDIX

A. Proof of Theorem III.2

Proof: Here we prove only the second part of the theorem
since the first is well known (see, e.g., [6]). Since the reverse I-
projection is attained, it follows that D(µ‖πθ) has a stationary
point at θ∗ = θ∗(µ). This means that we have,

〈µ, ψ〉 = ∇Λ(θ∗). (18)

This can be viewed as a fixed point equation in µ and θ(µ).
Since∇2Λ(θ∗) is invertible, it follows by the Implicit Function
Theorem [8] that θ∗(µ) is continuously differentiable in a
Euclidean neighborhood Nδ(µ) of µ. It follows that whenever
Γn ∈ Nδ(µ), the ML estimate θ̂n is guaranteed to exist.
Now since we know by the strong law of large numbers that
Γn

a.s.−−−−→
n→∞

µ, we can argue via Slutsky’s theorem [9] that it
suffices to establish the weak convergence of

√
n(D(Γn‖πθ̂n)−D(µ‖πθ∗))I{Γn ∈ Nδ(µ)}

where I{E} is the indicator function of event E.
Now consider the following decomposition:

D(Γn‖πθ̂n)−D(µ‖πθ∗) = T1 + T2 (19)

where T1 = D(Γn‖πθ̂n)−D(Γn‖πθ∗) and T2 = D(Γn‖πθ∗)−
D(µ‖πθ∗). For Γn ∈ Nδ(µ), we have

T1 = 〈Γn, (θ̂n − θ∗)Tψ〉 − Λ(θ̂n) + Λ(θ∗).

Using the ML condition 〈Γn, ψ〉 = ∇Λ(θ̂n), and a second
order Taylor’s expansion of Λ(.) about θ̂n, we have

T1 = (θ̂n − θ∗)T∇Λ(θ̂n)− Λ(θ̂n) + Λ(θ∗)

= 1
2 (θ̂n − θ∗)T∇2Λ(θ̃n)(θ̂n − θ∗) (20)

where θ̃n = γθ∗+ (1− γ)θ̂n with γ = γ(n) ∈ [0, 1]. Now we
know that θ̂n = θ∗(Γn) holds when Γn ∈ Nδ(µ). Thus by the
differentiability of the θ∗ function, we have

θ̂n − θ∗(µ) = Mn(Γn − µ)

where matrix Mn is given by Mn(i, j) =
∂θ∗i (Γ̃n)
∂µj

where Γ̃n
is some convex combination of Γn and µ. Thus (20) can be
written as

T1 = (Γn − µ)TMT
n∇2Λ(θ̃n)Mn(Γn − µ).

Now as n → ∞ we have by the continuity of ∇2Λ(.) and
differentiability of θ∗(.)

MT
n∇2Λ(θ̃n)MnI{Γn ∈ Nδ(µ)} a.s.−−−−→

n→∞
Constant

Furthermore, we know by the central limit theorem that
n(Γn−µ)(Γn−µ)T converges in distribution to a finite valued
random matrix. Using these results and applying Slutsky’s
theorem we get

n
1
2T1I{Γn ∈ Nδ(µ)} d.−−−−→

n→∞
0.

It follows from [5, Thm. III.3] that
√
n(T2 −D(µ‖πθ∗))

d.−−−−→
n→∞

N (0, σ2
µ).

Combining the results on convergence of T1 and T2, we arrive
at the desired result.

B. Proof of Proposition III.3
Proof of part (i): For any ν ∈ P(Z) in the neighborhood

of πθ let θ∗(ν) denote the reverse I-projection as before.
We know that θ∗ satisfies 〈ν, ψ〉 = ∇Λ(θ∗(ν)). Furthermore,
since ∇2Λ(θ∗) is invertible, we know by the Implicit Function
Theorem that θ∗(ν) is differentiable with respect to ν and if
we define the d × N matrix Mθ by Mθ(i, j) :=

∂θ∗i (ν)
∂νj

we
have for all ν in some neighborhood of πθ,

Ψ = ∇2Λ(θ∗(ν))Mθ∗(ν). (21)

For µ = πθ + εh we have the following approximation via
Taylor’s expansion of θ∗(ν) about ν = πθ:

θ∗(µ) = θ + εMθh+ O(ε2).

Now let θ∗ denote θ∗(µ). Extending the notation of measures
as vectors to likelihood ratios we have,

log
πθ∗

πθ
= ΨT (θ∗ − θ)− (Λ(θ∗)− Λ(θ))1 (22)

= (ΨT − 1(∇Λ(θ))T )(θ∗ − θ) + O(ε2)

= ε(ΨT − 1(∇Λ(θ))T )Mθh+ O(ε2) (23)



where 1 is an N × 1 vector of all 1’s. Now using the fact that
∇Λ(θ∗) = Ψµ (see (18)), we obtain from (22):

〈µ, log
πθ∗

πθ
〉 = (∇Λ(θ∗))T (θ∗ − θ)− (Λ(θ∗)− Λ(θ)). (24)

We know by the second order Taylor’s expansion of Λ(.) that

Λ(θ) = Λ(θ∗) + (θ − θ∗)T∇Λ(θ∗)

+ 1
2 (θ − θ∗)T∇2Λ(θ∗)(θ − θ∗) + O(ε3).

Using this relation in (24) and using Hθ for the Hessian, we
get

〈µ, log
πθ∗

πθ
〉

= 1
2 (θ − θ∗)THθ∗(θ − θ∗) + O(ε3)

= 1
2ε

2hTMT
θ Hθ∗Mθh+ O(ε3)

= 1
2ε

2hTΨTH−1
θ Hθ∗H

−1
θ Ψh+ O(ε3)

= 1
2ε

2hTΨTH−1
θ Ψh+ O(ε3) (25)

where the last step follows by applying the analyticity of Λ
to approximate Hθ∗ with Hθ up to O(ε). We know that

D(µ‖πθ∗) = D(µ‖πθ)− 〈µ, log
πθ∗

πθ
〉. (26)

By Taylor’s expansion of D(ν‖πθ) about ν = πθ, we have,

D(µ‖πθ) = 1
2 (µ− πθ)T diag(

1

πθ
)(µ− πθ) + O(ε3)

= 1
2ε

2hT diag(
1

πθ
)h+ O(ε3).

Combining this result with (25) using (26) we get (13).
For obtaining the approximate value of the variance σ2

µ =
Var µ[log µ

πθ∗
(Y )] we first note that we have the following

approximation for the log-likelihood ratio (LLR) function
L(.) := log µ

πθ∗
(.):

L = log
πθ + εh

πθ∗
= log

πθ
πθ∗

+ log(1 +
εh

πθ∗
)

= −ε(ΨT − 1(∇Λ(θ))T )Mθh+
εh

πθ∗
+ O(ε2)

where the last step follows from (23) and the fact that log(1+
x) = x+ O(x2). From the fact that the LLR function L is of
order O(ε), it can easily be seen that

Var µ (L(Y )) = Var πθ (L(Y )) + O(ε3). (27)

The variance term on the right side can be expressed via the
vector notation as

Var πθ (L(Y )) = ε2BT (diag(πθ)− πθπTθ )B + O(ε3) (28)

where B is the vector L with the invariant part
ε1(∇Λ(θ))TMθh omitted (since it does not contribute to the
variance), and with h

πθ∗
replaced by h

πθ
(since it is correct up

to O(ε)):

B := (diag(
1

πθ
)−ΨTMθ)h.

Simplifying and using Ψ(diag(πθ)− πθπTθ )ΨT = ∇2Λ(θ) by
(4) we obtain,

BT (diag(πθ)− πθπTθ )B = hT (diag(
1

πθ
)−ΨTMθ

−MT
θ Ψ +MT

θ ∇2Λ(θ)Mθ)h

= hT (diag(
1

πθ
)−ΨTH−1

θ Ψ)h.

where the last step follows from (21). Combining with (27)
and (28) the result follows.

Proof of part (ii): We have

D(µ‖πθ∗) ≤ D(µ‖πθ) = D((1− ε)πθ + εξ‖πθ)
≤ max

z
D((1− ε)πθ + ε1z‖πθ). (29)

where 1z ∈ P(Z) has unit mass on z ∈ Z. The inequality (29)
follows from the convexity of KL divergence. Now for any
distribution ν ∈ P(Z) we have,

D((1− ε)ν + ε1z‖ν)

=
∑
y

((1− ε)ν(y)) log(1− ε)− (1− ε)ν(z) log(1− ε)

+ ((1− ε)ν(z) + ε) log(1− ε +
ε

ν(z)
)

= (1− ε) log(1− ε) + ε log(1− ε) + ε(x+ 1) log(1 +
1

x
)

= log(1− ε) + ε(x+ 1) log(1 +
1

x
) (30)

where x = (1−ε)ν(z)
ε . Now using log(1 + 1

x ) ≤ 1
x , and

substituting for x, we get

D((1− ε)ν + ε1z‖ν) ≤ log(1− ε) + ε+
ε2

(1− ε)ν(z)
. (31)

Combining with (29) we get (15). The second result (16)
follows from the approximation (14) together with the fact
that hTGθh ≤ hT diag( 1

πθ
)h ≤ hThδθ ≤ 2δθ.
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