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Abstract

The exact formalism from B. Zotter to compute beam
coupling impedances has been fully developed only in the
case of an infinitely long circular beam pipe. For other
two dimensional geometries, some form factors are known
only in the ultrarelativistic case and under certain assump-
tions of conductivity and frequency of the pipe material.
We present here a new and exact formalism to compute the
beam coupling impedances in the case of a collimator-like
geometry where the jaws are made of two infinite plates of
any linear material. It is shown that the impedances can
be computed theoretically without any assumptions on the
beam speed, material conductivity or frequency range. The
final formula involves coefficients in the form of integrals
that can be calculated numerically. This way we obtain
new generalized form factors between the circular and the
flat chamber cases, which eventually reduce to the so-called
Yokoya factors under certain conditions.

INTRODUCTION

Recently, it has been shown that the usual approach to
compute the beam coupling impedances of a flat chamber,
i.e. thanks to a formula valid for an axisymmetric geome-
try [1] multiplied by constant “Yokoya” factors [2, 3], fails
in the case of non metallic materials such as ferrite [4]. In-
deed, the hypotheses on which the Yokoya factors theory
relies (in particular on the conductivity and skin depth of
the material) turn out to be wrong for certain materials.
To provide a more general theory on the flat chamber
impedance, we use similar ideas as the original Zotter’s
formalism for a cylindrical pipe [5] and apply them to an
infinitely long, thick and large flat chamber. Details on the
derivations below will be shown in a later publication [6].

ELECTROMAGNETIC CONFIGURATION

We consider a point-like beam of charge Q travelling
at a speed υ = βc along an infinitely long and large
flat chamber of half gap b. The beam is at the position
(x = 0, y = y1, s = υt) in cartesian coordinates. The
source charge density is in frequency domain (f = ω

2π ) [7]

ρ(x, y, s;ω) =
Q

υ
δ(x)δ(y − y1)e

−jks, (1)

where k ≡ ω
υ and δ is the Dirac distribution. Using the hor-

izontal Fourier transform and dropping the
∫ +∞
0 dkx fac-

tor, we want first to compute the response to the source

ρ̃(kx, y, s;ω) =
Q

πυ
cos(kxx)δ(y − y1)e

−jks, (2)

Figure 1: Cross section of the flat chamber.

which corresponds to a surface charge density on the plane
y = y1. The space is therefore divided into 4 layers parallel
to the y = 0 plane (see Fig. 1), denoted by the superscript
(p) where p = −2, −1, 1 or 2. The inner layers are vacuum
while the outer ones are made of a single, linear, homoge-
neous and isotropic medium.
The macroscopic Maxwell equations in frequency domain
for the electric and magnetic fields �E and �H are written [5]

�curl �H − jω �D = ρ̃υ �es, �curl�E + jω �B = 0,

div �D = ρ̃, div �B = 0, �D = εc �E, �B = μ �H,

where [8]

εc = ε0ε1 =ε0εb [1− j tanϑE ] +
σDC

jω (1 + jωτ)
, (3)

μ = μ0μ1 =μ0μr [1− j tanϑM ] . (4)

In these expressions, ε0 (μ0) is the permittivity (permeabil-
ity) of vacuum, εb the real dielectric constant, μr the real
part of the relative complex permeability, tanϑE (tanϑM )
the dielectric (magnetic) loss tangent, σDC the DC conduc-
tivity and τ the relaxation time. We use the Drude model [9,
p. 312] for the AC conductivity, and assume the validity of
local Ohm’s law.

ELECTROMAGNETIC FIELDS

From Maxwell equations, one can get

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂s2
+ ω2εcμ

]

Es =
1

εc

∂ρ̃

∂s
+ jωμρ̃υ,

(5)
[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂s2
+ ω2εcμ

]

Hs = 0. (6)
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Solutions are sought in the form X(x)Y (y)S(s). We get
three harmonic differential equations, and from the finite-
ness of X(±∞) and the symmetries of the problem:

XEs(x) ∝ cos(kxex), XHs(x) ∝ sin(kxh
x),

SEs(s) ∝ e−jks, SHs(s) ∝ e−jks.

From the boundary conditions at y = ±b and y = y1 it can
be shown that kxe = kxh

= kx in all the layers. Defining

then ν(p) ≡ k

√
1− β2ε

(p)
1 μ

(p)
1 and k

(p)
y =

√
k2x + ν(p)

2
,

we get the fields longitudinal components in layer (p):

E(p)
s = cos(kxx)e

−jks
[
C

(p)
e+ ek

(p)
y y + C

(p)
e− e−k(p)

y y
]
, (7)

H(p)
s = sin(kxx)e

−jks
[
C

(p)
h+e

k(p)
y y + C

(p)
h−e

−k(p)
y y

]
, (8)

where the constants C (p)
e+ , C(p)

e− , C(p)
h+ and C

(p)
h− depend on

kx and ω. The transverse components are found from

E(p)
x =

jk

ν(p)
2

(
∂E

(p)
s

∂x
+ υμ(p) ∂H

(p)
s

∂y

)

, (9)

E(p)
y =

jk

ν(p)
2

(
∂E

(p)
s

∂y
− υμ(p) ∂H

(p)
s

∂x

)

, (10)

H(p)
x =

jk

ν(p)
2

(

−υε(p)c

∂E
(p)
s

∂y
+

∂H
(p)
s

∂x

)

, (11)

H(p)
y =

jk

ν(p)
2

(

υε(p)c

∂E
(p)
s

∂x
+

∂H
(p)
s

∂y

)

. (12)

Then the boundary conditions at y = y1 give

C
(1)
e+ = C

(−1)
e+ − C e

−k(1)
y y1

k
(1)
y

, C
(1)
e− = C

(−1)
e− + C e

k(1)
y y1

k
(1)
y

,

with C = jωμ0Q
2πβ2γ2 and γ2 = 1

1−β2 . The finiteness of
Y (±∞) reduce the number of unknowns to 8, while the
boundary conditions at y = ±b provide 8 distinct equations
which can be solved analytically [6]. Noticing that in the
vacuum region ν (±1) = k

γ , while in the chamber material
we can drop the superscript (±2) for ν, μ and εc, such that

k
(±1)
y =

√
k2x + k2

γ2 and k
(±2)
y =

√
k2x + ν2, we obtain:

C
(1)
e+ = − C

k
(1)
y

[
χ(kx)e

k(1)
y y1 + η(kx)e

−k(1)
y y1

]
, (13)

C
(−1)
e− = − C

k
(1)
y

[
η(kx)e

k(1)
y y1 + χ(kx)e

−k(1)
y y1

]
, (14)

with

χ(kx) =
g6g3 − g2g7
g1g6 − g2g5

, η(kx) =
g6g4 − g2g8
g1g6 − g2g5

,

g1 = e−k(1)
y b

(−f2
5f1 + f2

2 f3
)
+ e3k

(1)
y bf1

(
f2
5 − f1f3

)
,

g2 = ek
(1)
y b

(
f2
5 f2 − f2

1 f4
)
+ e−3k(1)

y bf2
(
f2f4 − f2

5

)
,

g3 = ek
(1)
y bf1

(
f2
5 − f1f4

)
+ e−3k(1)

y bf2
(
f2f4 − f2

5

)
,

g4 = e−k(1)
y bf2

5 (f2 − f1) ,

g5 = e−k(1)
y b

(
f4(f1 − f2)− f2f3 + f2

5

)

+ e3k
(1)
y b

(−f2
5 + f1f3

)
,

g6 = ek
(1)
y b

(
f3(f1 − f2)− f2

5 + f1f4
)

+ e−3k(1)
y b

(−f2f4 + f2
5

)
,

g7 = ek
(1)
y b

(−f2
5 + f1f4

)
+ e−3k(1)

y b
(−f2f4 + f2

5

)
,

g8 = e−k(1)
y bf4 (f1 − f2) ,

and

f1,2 = υ

(

±γ2μ0

k2
k(1)y +

μ

ν2
k(2)y

)

,

f3,4 = υ

(

±γ2ε0
k2

k(1)y +
εc
ν2

k(2)y

)

, f5 = kx

(
γ2

k2
− 1

ν2

)

.

Note that χ and η depend on kx but not on y1. The total
fields due to our initial point-like source are obtained by
integration over kx. Using the polar coordinates (r, θ) in
the (x, y) plane, we can obtain Es in vacuum [6]:

Evac
s,tot = Ce−jks

[

K0

(
k

γ

√
x2 + (y − y1)2

)

−4

+∞∑

m,n=0

αmn cos
(
nθ − nπ

2

)

(1 + δm0)(1 + δn0)
Im

(
ky1
γ

)

In

(
kr

γ

)]

,

(15)

where δi0 = 1 if i = 0, 0 otherwise, and αmn are obtained
by integrals that can be computed numerically:

αmn =
{
(−1)m+n + 1

}∫ +∞

0

dv (coshmv) (coshnv)

[

χ

(
k

γ
sinh v

)

+ (−1)mη

(
k

γ
sinh v

)]

. (16)

The first term in Evac
s,tot is the direct space-charge part,

which is the same as the one found for a cylindrical ge-
ometry [10]. The other term is the “wall” part of the fields,
as αmn depend only on the chamber properties and on ω.

IMPEDANCES AND FORM FACTORS

We can now proceed to the impedances (longitudinal and
transverse) for a test particle located at (x2, y2), and gen-
eralizing the source position at (x1, y1). We use the defini-
tions from [1] and Eqs. (9) to (12) in vacuum:

Z‖ = − 1

Q

∫
dsEvac

s,tot(x2, y2, s;ω)e
jks, (17)

Zx = − 1

kQ

∫
ds

∂Evac
s,tot

∂x
(x2, y2, s;ω)e

jks, (18)

Zy = − 1

kQ

∫
ds

∂Evac
s,tot

∂y
(x2, y2, s;ω)e

jks. (19)

The direct space-charge part of E vac
s,tot gives exactly the

same multimode direct space-charge impedances as in [10].
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For the wall impedances [8], restricting ourselves to the
first linear terms with respect to the source and test coordi-
nates, we get (L is the length of the element andZ0 = μ0c):

ZWall
‖ =

jLμ0ω

2πβ2γ2
α00, (20)

ZWall
x =

jLZ0k
2

4πβγ4
(α02 − α00) (x1 − x2) , (21)

ZWall
y =

jLZ0k
2

4πβγ4
[2α11y1 + (α00 + α02) y2] . (22)

In the transverse impedances, the term proportional to x 1

or y1 is the dipolar term while the one proportional to x2

or y2 is the quadrupolar one. Comparing the above to the
formulae in [10] we get then the form factors:

F‖ =
α00

αTM(m = 0)
, (23)

F dip
x =

α02 − α00

αTM(m = 1)
, F dip

y =
2α11

αTM(m = 1)
, (24)

F quad
x =

α00 − α02

αTM(m = 1)
, F quad

y =
α00 + α02

αTM(m = 1)
, (25)

where the αTM constants are for a cylindrical pipe [10].
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Figure 2: Vertical dipolar impedance (divided by y1 and L) for
an LHC graphite collimator (γ = 479.7, b = 2mm, μr = εb = 1,
ϑE = ϑM = 0, σDC = 105S/m, τ = 0.8ps).

As a first check of this theory, we have plotted in Fig. 2
the vertical dipolar impedance of an LHC graphite collima-
tor, comparing our results to those obtained with the model
in [11] on a rectangular geometry, putting the plates per-
pendicular to the jaws 25cm apart and taking the graphite
thickness as 25cm, in order to get closer to the case of an
infinitely large and thick chamber. The agreement between
the two approaches is very good.
We have then plotted our generalized frequency dependent
form factors for the cases of graphite in Fig. 3 and of a ce-
ramic (hBN) in Fig. 4. The form factors are complex num-
bers but their imaginary parts are quite small (except at very
high frequencies) so we did not plot them. For graphite, de-
viations from the usual Yokoya factors are significant only
at high frequencies. For hBN significant differences with
the Yokoya factors appear at all frequencies.
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Figure 3: Form factors for graphite (parameters of Fig. 2).
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Figure 4: Form factors for an hBN ceramic (γ = 479.7, b =
4mm, μr = 1, εb = 2, ϑE = ϑM = τ = 0, σDC = 0.25 ·
10−12S/m).

CONCLUSION

New generalized frequency dependent form factors be-
tween the flat and cylindrical chambers impedances have
been obtained. As was also seen by other means for a SPS
kicker [4], those form factors can be quite different from
the usual constant Yokoya factors for non metallic materi-
als. An extension of this theory to the multilayer case is
foreseen.
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