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From the thermodynamic data obtained by ion-transfer voltammetry, we derive here the ionic partition
diagram of 5,10,15,20-tetraphenyl-21H,23H-porphine (H2TPP) at the water|1,2-dichloroethane interface
using a simple Born solvation model. This zone diagram shows under which form this porphyrin is pres-
ent, i.e. neutral, monoprotonated or diprotonated, and in which phase i.e. either in the aqueous or the
organic phase as a function of the aqueous pH and the interface polarisation that can be controlled exter-
nally or by the distribution of supporting electrolytes. This diagram explains why the monoprotonated
form has been difficult to observe when doing biphasic pH titrations.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Protonation of the porphyrin macrocycle has been extensively
studied [1,2]. Indeed, diprotonation of the porphyrin core has
important effects on the static and dynamic photophysical proper-
ties when compared to their free-base parents. Some of these ef-
fects stems from increased symmetry, and are similar to those
observed upon metalation. Additionally, relative to the parent
free-bases, the diacids yield broadened optical bands, and in-
creased separation between absorption and emission maxima. All
these effects are in particular enhanced in diacids as that of the
free-base 5,10,15,20-meso-tetraphenylporphyrin (H2TPP) [3].

Upon protonation of the free-base porphyrins, the symmetry
changes from D2h to D4h. Indeed, porphyrin diacids have non-pla-
nar structures with mainly saddle-type distortions of the porphy-
rin ring, as revealed by X-ray crystallography [4–7]. Deviations
from planarity for diacids bearing meso-phenyl rings, such as
H2TPP diacids, approach in magnitude those obtained in peripher-
ally crowded porphyrins, such as free-base octaethyltetraphenyl-
porphyrin (H2OEP) [8], dodecaphenylporphyrin (H2DPP) [9]. The
porphyrin diacids are usually the chromophore of the protonated
form and monocations can only be obtained under special experi-
ll rights reserved.
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mental conditions. Corwin et al. have reported the protonation of
porphyrin observing four, three, and two Q bands for the free-base,
monoprotonated and diprotonated porphyrins, respectively [10].

On the other hand, voltammetry at liquid|liquid interfaces has
proved to be a very useful tool to study the interfacial protonation
of lipophilic molecules as pioneered by Hofmanova et al. [11] Over
the last two decades, the transfer of H+ ion facilitated by ion carri-
ers or basic extractants has been studied extensively [12–15].
Homolka et al. investigated proton transfer across the water|nitro-
benzene (W|NB) interface assisted by a series of amines with an
aromatic ring, discussed the dependence of the transfer process
on the structure of the proton acceptors and obtained the kinetic
and thermodynamic parameters of the process [16]. Additionally,
the transfer mechanism of protonated l,10-phenanthroline and
its derivatives between the aqueous phase and 1,2-dichloroethane
(1,2-DCE) phase was elucidated by Yoshida and Freiser using cur-
rent scanning polarography at an ascending water electrode [14].
The transfer behaviour of protonated acridine across the W|NB
interface has been studied by Liu and Wang [15] using chronopo-
tentiometry with linear current scanning, polarography with the
electrolyte dropping electrode [17,18] and cyclic voltammetry
[19,20]. Ion-transfer voltammetry at the ITIES has now become a
well-established method to study the acid-base properties of mol-
ecules dissolved in an organic phase in contact with an aqueous
electrolyte. As shown by Reymond et al. for the study of therapeu-
tic molecules, this methodology allows the determination of
acidity constant and ultimately the formulation of the so-called io-
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nic partition diagrams [21–24]. The transfer behaviour of H+ ion
facilitated by porphyrins has been reported previously at the
W|NB interface by Xia et al. [25] and by Osakai and Muto [26].
The protonation of H2TPP has been studied at the water|dodecane
interface by Nagatani et al. using a two-phase stopped flow [27].

Recently, we have studied by ion-transfer voltammetry the suc-
cessive protonation of H2TPP [28,29] and we were able to deter-
mine the acidity constants in the organic phase. In particular, we
have evidenced the existence of the monoprotonated H3TPP+,
which is otherwise elusive to observe. To determine the conditions
where H3TPP+ can be observed we present here a methodology to
calculate the ionic partition diagram of H2TPP based on the use of
the Born solvation model to evaluate differences in Gibbs energies
of solvation between the different protonation states.
Fig. 1. Cyclic voltammogram using cell 1 with x = 0 (dashed line) and x = 50 (solid
line) at 50 mV s�1.
2. Experimental section

2.1. Chemicals

All chemicals are analytical grade and used as received without
further purification. Lithium chloride (LiCl, >99%), bis(triphenyl-
phosphoranylidene)ammonium chloride (BACl, >98%), tetrameth-
ylammonium chloride (TMACl, >98.0%), and 1,2-dichloroethane
(1,2-DCE, >99.8%) were bought from Fluka. Lithium tetrakis(penta-
fluorophenyl)-borate (LiTB) was provided by Boulder Scientific
Company. Bis(triphenylphosphoranylidene)ammonium tetrakis
(pentafluorophenyl)-borate (BATB) was prepared by metathesis
of BACl and LiTB in a methanol/water (V/V = 2) mixture, followed
by recrystallization in acetone. The aqueous solutions were pre-
pared with ultrapure water from a Milli-Q system (Millipore
Milli-Q185). No buffer was used not to introduce extra ions in
the aqueous phase, and the solution pH was adjusted by addition
of HCl. H2TPP was synthesized following the typical procedure
[30].
2.2. Electrochemical measurements

The electrochemical experiments were performed on an Ivium
Compact Stat in a four-electrode configuration by using a conven-
tional glass cell with a cross section of 1.53 cm2. The electrolyte
compositions of the cells are illustrated in Scheme 1. LiCl and BATB
were employed as the aqueous and organic supporting electro-
lytes, respectively. The potential scale reported is referred to the
Galvani potential difference obtained by correcting the applied po-
tential with respect to the formal ion transfer potential of TMA+

ðDw
o /00

TMAþ ¼ 0:16 VÞ [31].
3. Results and discussion

As illustrated in Fig. 1, the presence of H2TPP in the organic
phase results in a double assisted proton transfer reaction. The first
wave represents the transfer of a proton from water to 1,2-DCE
facilitated by H2TPP that in fact is the first protonation of H2TPP
to form the mono-acid H3TPP+ in 1,2-DCE, and the second one rep-
Scheme 1. Composition of the electrochemical four electrode cell.
resents the facilitated transfer of a second proton by H3TPP+. These
two processes can be expressed as:

H2TPPDCE þHþW ¢ H3TPPþDCE

H3TPPþDCE þHþW ¢ H4TPP2þ
DCE

To determine the apparent assisted ion transfer potential of H+, the
scan rate dependence of the cyclic voltammetry together with the
concentration dependence were extrapolated to zero scan rate
and peak to peak separation of approximately 60 mV was observed
(see SI of [28]). The diffusion coefficient obtained from the scan rate
and the concentration dependence were both found to be equal to
6.1 � 10�5 cm2 s�1.

The facilitated transfer of H+ in the presence of H2TPP and
H3TPP+ is occurring at lower potentials than that of H+ alone. In
addition, considering the two processes are controlled by the diffu-
sion of the porphyrin species in the organic phase, Ka1 and Ka2 the
acidity constants of H4TPP2+ and H3TPP+, respectively, can be esti-
mated by exploring the pH dependence presented in Fig. 2 of the
apparent transfer potential of the second and first respectively
according to equation [32]:

Dw
o /1=2

LHþ ¼ Dw
o /0

Hþ þ
RT
2F

ln
DL

DLHþ

� �
� 2:303RT

F
pKDCE

a þ 2:303RT
F

pHw

ð1Þ

where Dw
o /1=2

LHþ is the half-wave transfer potential of the respective
facilitated proton transfers. Dw

o /0
Hþ is the formal transfer potential

for the transfer of H+. DL and DLH
+ (L = H2TPP, H3TPP+) represent
Fig. 2. Cyclic voltammograms in the presence of H2TPP (Cell 1, x = 50) in 1,2-DCE at
different pH values at a scan rate of 25 mV s�1.
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the diffusion coefficients of the proton acceptor ligand and its
protonated form, and for simplicity it can be assumed that
DL � DLH

+.
The relationship between Dw

o / and the pHw is found to be linear,
and the intercept allows the determination of the pKa in the organ-
ic phase. As shown in Fig. 1 in Ref. [28] and as confirmed in the
present study, pKDCE

a1 and pKDCE
a2 were found to be equal to 6.0 and

9.8 using TB� as the organic counter anion, and 6.7 and 10.3 when
using TPBCl� as the organic counter anion [29] showing the influ-
ence of the organic supporting electrolyte in the basic properties of
the porphyrin with

KDCE
a1
¼

aDCE
H3TPPaDCE

Hþ

aDCE
H4TPP2þ

ð2Þ

and

KDCE
a2
¼

aDCE
H2TPPaDCE

Hþ

aDCE
H3TPPþ

ð3Þ

Ionic partition diagrams have proved to be a rather useful rep-
resentation of thermodynamic equilibria involving ionisable spe-
cies in biphasic liquid systems [21–24]. The method consists in
representing the domains of predominance of the various species
as a function of applied potential and aqueous pH. The construc-
tion of the partition diagram of an ionisable solute follows the
well-known potential versus pH diagrams developed by Pourbaix
[33].

3.1. Ion transfer reactions

As the boundary lines represent the locus where the concentra-
tions of two contiguous species are equal, the Nernst equations for
ion transfer reactions can be used directly to determine the evolu-
tion of the potential with pH for the partition of each ionic species
between the two phases:

Line for H3TPPþW ¢ H3TPPþo

Although the monocation does not exist in water under normal
experimental conditions, it is interesting to evaluate this theoreti-
cal borderline to gain access to the estimation of the second acidity
constant Kw

a2
in water. The Nernst equation for H3TPP+ reads

Dw
o / ¼ Dw

o /0
H3TPPþ þ

RT
F

ln
ao

H3TPPþ

aw
H3TPPþ

 !
ð4Þ

where the superscripts ‘‘o’’ and ‘‘w’’ stand for organic 1,2-DCE phase
and water, respectively. The standard transfer potential of H3TPP+

can be calculated from the Nernst equation for proton transfer to
give

Dw
o /0

H3TPPþ ¼ Dw
o /0

Hþ þ
RT
F

ln
Ko

a2

Kw
a2

P0
H2TPP

 !
ð5Þ

where P0
H2TPP is the standard partition coefficient of the neutral por-

phyrin defined by

P0
H2TPP ¼

ao
H2TPP

aw
H2TPP

ð6Þ

In Eq. (5) the terms Dw
o /0

Hþ and Ko
a2 have been determined exper-

imentally but we need to evaluate the term Kw
a2

.
According to the Born solvation model, the Gibbs energy of sol-

vation, is the sum of a term for the solvation of the equivalent neu-
tral species and one for the ion-solvent contribution of the charge,
DGIS, given by [34]:
DGIS ¼ � z2e2NA

8pe0rion
1� 1

er

� �
ð7Þ

where e is the elementary charge, NA is the Avogadro’s constant, r is
the molecular radius, er is the relative permittivity, z is the charge
number and e0 is the vacuum permittivity. In this way, the standard
partition coefficient for H3TPP+ is related to the partition coefficient
of the neutral H2TPP by:

ln P0
H3TPPþ ¼ �

FDw
o /0

H3TPPþ

RT
¼ �

DG0;w!o
tr;H3TPPþ

RT

¼ �
DG0;w!o

tr;H2TPP

RT
þ DGw

IS � DGo
IS

RT

¼ ln P0
H2TPP þ

e2NA

8pe0rionRT
1
ew

r
� 1

eo
r

� �
ð8Þ

According to Eq. (8), the ratio P0
H3TPPþ=P0

H2TPP can be calculated as a
function of the porphyrin radius. From the molecular structure,
the diameters of H2TPP are found to be 17.64 Å and 10.16 Å
respectively.

ln
P0

H3TPPþ

P0
H2TPP

 !
¼ e2NA

8pe0rionRT
1
ew

r
� 1

eo
r

� �
¼ �3:54 ð9Þ

i.e. a shift of �8.8 kJ mol�1 for an average diameter of 1.3 nm.
Since according to Eq. (5), we also have

log
P0

H3TPPþ

P0
H2TPP

 !
¼ log P0

Hþ þ pKo
a2
� pKw

a2
ð10Þ

we can calculate Kw
a2

. With P0
Hþ = 5 � 10�10 [35], we have pKw

a2
¼ 2:0.

As a result, the theoretical horizontal boundary line separating the
monocation in the two adjacent phases is located at
Dw

o / ¼ �0:26 V. It is important to notice that pKw
a2
� log P0

H2TPP rep-
resents the apparent extraction pKa. Indeed, to extract H2TPP from
the organic phase, the pH of the aqueous phase should be smaller
than the apparent pKa value, which can be estimated here at being
equal to about �4.0.

Line for H4TPP2þ
W ¢ H4TPP2þ

o

Again the Nernst equation for H4TPP2+ transfer reads

Dw
o / ¼ Dw

o /0
H4TPP2þ þ

RT
2F

ln
ao

H4TPP2þ

aw
H4TPP2þ

 !
ð11Þ

with the standard transfer potential of H4TPP2+ given by

Dw
o /0

H4TPP2þ ¼ Dw
o /0

Hþ þ
RT
2F

ln
Ko

a1
Ko

a2

Kw
a1

Kw
a2

PH2TPP

 !
ð12Þ

The acidity constants in the organic phase were determined by vol-
tammetry, and as before we shall use the Born solvation model to
estimate the aqueous pKa values.

Similarly, we have:

ln
P0

H4TPP2þ

P0
H2TPP

 !
¼ 4e2NA

8pe0rionRT
1
ew

r
� 1

eo
r

� �
ð13Þ

representing a shift of �35.2 kJ mol�1 for a diameter of 1.3 nm. By
subtraction of Eqs. (13) and (9), we have

ln
P0

H4TPP2þ

P0
H3TPPþ

 !
¼ 3e2NA

8pe0rionRT
1
ew

r
� 1

eo
r

� �
ð14Þ

By comparing Eqs. (5) and (12), we have also

log
P0

H4TPP2þ

P0
H3TPPþ

 !
¼ log P0

Hþ � pKo
a1
þ pKw

a1
ð15Þ



Fig. 3. Ionic partition diagram of H2TPP at the water|1,2-DCE interface. The
shadowed area represents the attainable conditions in a typical experiment.
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So we can calculate Kw
a1

. With P0
Hþ = 5 � 10�10, we have pKw

a1
¼ 2:0.

Since pKw
a1
> pKw

a2
� log P0

H2TPP � �4:0, we can conclude that the
mono-acid does not exist in water. Indeed, the boundary line sepa-
rating the dication between the two phases is located at
Dw

o / ¼ 0:004 V, i.e. at more positive values than for the monocation.
Assisted proton transfer reactions

Line for H2TPPo þHþW ¢ H3TPPþo

The Nernst equation for proton transfer gives

Dw
o / ¼ Dw

o /0
Hþ þ

RT
F

ln
Ko

a2

aw
Hþ

 !
þ RT

F
ln

ao
H3TPPþ

ao
H2TPP

 !
ð16Þ

The borderline of the partition diagram for the equiconcentra-
tion of H2TPP and H3TPP+ in the organic phase is then

Dw
o / ¼ Dw

o /0
Hþ þ

RT
F

ln Ko
a2
þ 0:06pH ð17Þ

Line for H3TPPþo þHþW ¢ H4TPP2þ
o

In this case, the Nernst equation for proton transfer gives

Dw
o / ¼ Dw

o /0
Hþ þ

RT
F

ln
Ko

a1

aw
Hþ

 !
þ RT

F
ln

ao
H4TPP2þ

ao
H3TPPþ

 !
ð18Þ

and the borderline for the equiconcentration of H3TPP+ and H4TPP2+

in the organic phase is then

Dw
o / ¼ Dw

o /0
Hþ þ

RT
F

ln Ko
a1
þ 0:06pH ð19Þ

Line for H3TPPþo þHþW ¢ H4TPP2þ
W

We start here from the Nernst equation for the mono-acid given
by Eq. (4)

Dw
o / ¼ Dw

o /0
H3TPPþ þ

RT
F

ln
ao

H3TPPþ

aw
H3TPPþ

 !

¼ Dw
o /0

H3TPPþ þ
RT
F

ln
ao

H3TPPþaw
Hþ

Kw
a2

aw
H4TPP2þ

 !
ð20Þ

The borderline for the equiconcentration of H3TPP+ in the or-
ganic phase and H4TPP2+ in water is then

Dw
o / ¼¼ Dw

o /0
H3TPPþ �

RT
F

ln Kw
a1
� 0:06pH ð21Þ

Line for H2TPPo þ 2Hþw ¢ H4TPP2þ
w

Given that the aqueous form of the mono-acid does not exist,
the frontier separating the predominance regions of H2TPPðoÞ and
H4TPP2þ

ðwÞ is calculated from the two aqueous acidity constants pre-
viously estimated and the partition coefficient of the neutral free-
base, as follows:

Kw
a1

Kw
a2
¼

aw
Hþ

� �2aw
H2TPP

aw
H4TPP2þ

¼
aw

Hþ
� �2ao

H2TPP

aw
H4TPP2þP0

H2TPP

ð22Þ

which can be finally expressed as:

pH ¼ 1
2

pKw
a1
þ pKw

a2
� log P0

H2TPP

� �
ð23Þ
Table 1

H2TPPo=H3TPPþo Dw
o / ¼ 0:55þ 0:059 � ðpH� 9:8Þ

H3TPPþo =H4TPP2þ
o Dw

o / ¼ 0:55þ 0:059 � ðpH� 6Þ
H4TPP2þ

o =H4TPP2þ
w Dw

o /0
H4 TPP2þ ¼ 0:55þ 0:059

2 � ð2þ 1:3� 6� 9:8� 6Þ ¼ 0:004 V

H3TPPþo =H4TPP2þ
w Dw

o / ¼ �0:31� 0:059 � ð�1:3þ pHÞ
H2TPPo=H4TPP2þ

w pH ¼ 1
2 ð1:3þ 2� 6Þ ¼ �1:35
In summary, the partition diagram of the H2TPP can be summa-
rized by the equations given in Table 1 and illustrated in Fig. 3.

4. Conclusion

The Born solvation model provides a self-consistent extra-ther-
modynamic approximation to calculate the ionic partition diagram
of H2TPP from the assisted proton transfer voltammetric data. In
particular, it provides an indirect method to estimate the acidity
constants in water that cannot be measured experimentally.

The partition diagram of H2TPP also illustrates why the mono-
protonated form in the organic phase has been difficult to observe,
as its zone of existence is rather limited. By ion-transfer voltamme-
try, one travels along a vertical line when the aqueous pH is fixed
and the two protonation reactions are separated by about 200 mV.

When doing a biphasic pH titration, i.e. changing the aqueous
pH and monitor the two phases by UV–vis, it is very difficult to
keep the polarisation constant in the absence of a potentiostatic
control.

Free-base porphyrins have been recently shown to act as cata-
lysts for oxygen reduction [29,36], and the present methodology
is useful to determine the ionic partition diagrams of these mole-
cules to better understand their catalytic role upon their
protonation.

Acknowledgements

This work was supported by EPFL, the Swiss National Science
Foundation (FNRS 200020-116588) and European COST Action
(D36/007/06).

References

[1] J. Simplicio, Biochemistry 11 (1972) 2525–2528.
[2] S. Mazumdar, O.K. Medhi, N. Kannadaguili, S. Mitra, J. Chem. Soc. Dalton (1989)

1003–1005.
[3] V.S. Chirvony, A. Van Hoek, V.A. Galievsky, I.V. Sazanovich, T.J. Schaafsma, D.

Holten, J. Phys. Chem. B 104 (2000) 9909–9917.
[4] A. Stone, E.B. Fleischer, J. Am. Chem. Soc. 90 (1968) 2735–2748.
[5] W.S. Sheldrick, J. Chem. Soc. Perkin Trans. 2 (1976) 453–456.



R. Partovi Nia et al. / Journal of Electroanalytical Chemistry 656 (2011) 147–151 151
[6] E. Cetinkaya, A.W. Johnson, M.F. Lappert, G.M. McLaughlin, K.W. Muir, J. Chem.
Soc. Dalton (1974) 1236–1243.

[7] B. Cheng, O.Q. Munro, H.M. Marques, W.R. Scheidt, J. Am. Chem. Soc. 119
(1997) 10732–10742.

[8] L.D. Sparks, C.J. Medforth, M.S. Park, J.R. Chamberlain, M.R. Ondrias, M.O.
Senge, K.M. Smith, J.A. Shelntt, J. Am. Chem. Soc. 115 (1993) 581–592.

[9] C.J. Medforth, M.O. Senge, K.M. Smith, L.D. Sparks, J.A. Shelnutt, J. Am. Chem.
Soc. 114 (1992) 9859–9869.

[10] A.H. Corwin, A.B. Chivvis, R.W. Poor, D.G. Whitten, E.W. Baker, J. Am. Chem.
Soc. 90 (1968) 6577–6583.

[11] A. Hofmanova, L.Q. Hung, W. Khalil, J. Electroanal. Chem. 135 (1982) 257–264.
[12] N. Kozlov Yu, J. Koryta, Anal. Lett. 16 (1983) 255–263.
[13] E. Wang, Y. Liu, J. Electroanal. Chem. 214 (1986) 459–464.
[14] Z. Yoshida, H. Freisher, J. Electroanal. Chem. 162 (1984) 307–319.
[15] Y. Liu, E. Wang, J. Electroanal. Chem. 234 (1987) 85–92.
[16] D. Homolka, K. Holub, V. Marecek, J. Electroanal. Chem. 138 (1982) 29–36.
[17] J. Koryta, P. Vanysek, M. Brezina, J. Electroanal. Chem. 75 (1977) 211–228.
[18] J. Koryta, P. Vanysek, M. Brezina, J. Electroanal. Chem. 67 (1976) 263–266.
[19] Z. Samec, V. Marecek, J. Weber, J. Electroanal. Chem. 100 (1979) 841–852.
[20] Z. Samec, V. Marecek, J. Koryta, M.W. Khalil, J. Electroanal. Chem. 83 (1977)

393–397.
[21] F. Reymond, G. Steyaert, A. Pagliara, P.A. Carrupt, B. Testa, H. Girault, Helv.

Chim. Acta 79 (1996) 1651–1669.
[22] F. Reymond, G. Steyaert, P.A. Carrupt, B. Testa, H.H. Girault, Helv. Chim. Acta 79

(1996) 101–117.
[23] F. Reymond, G. Steyaert, P.A. Carrupt, B. Testa, H. Girault, J. Am. Chem. Soc. 118
(1996) 11951–11957.

[24] V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P. Carrupt, B. Testa, H. Girault,
J. Am. Chem. Soc. 123 (2001) 10684–10690.

[25] X.H. Xia, W.D. Su, S.M. Zhou, J. Electroanal. Chem. 324 (1992) 59–68.
[26] T. Osakai, K. Muto, J. Electroanal. Chem. 496 (2001) 95–102.
[27] H. Nagatani, H. Watarai, Anal. Chem. 68 (1996) 1250–1253.
[28] B. Su, F. Li, R. Partovi-Nia, C. Gros, J.M. Barbe, Z. Samec, H.H. Girault, Chem.

Commun. (2008) 5037–5038.
[29] A. Trojanek, J. Langmaier, B. Su, H.H. Girault, Z. Samec, Electrochem. Commun.

11 (2009) 1940–1943.
[30] J.W. Buchler, The Porphyrins, Academic Press, New York, 1978.
[31] M.H. Abraham, A.F. Danil de Namor, J. Chem. Soc., Faraday Trans. 72 (1976)

955–962.
[32] H. Matsuda, Y. Yamada, K. Kanamori, Y. Kudo, Y. Takeda, Bull. Chem. Soc. Jap.

64 (1991) 1497–1508.
[33] M. Pourbaix, Atlas d’Equilibres Electrochimiques, Gauthier-Villars, Paris,

1963.
[34] H. Girault, Electrochime Physique et Analytique, Presses Polytechniques et

Universitaires Romandes, Lausanne, 2007.
[35] A.J. Olaya, M.A. Méndez, F. Cortes-Salazar, H.H. Girault, J. Electroanal. Chem.

644 (2010) 60–66.
[36] I. Hatay, B. Su, M.A. Mendez, C. Corminboeuf, T. Khoury, C.P. Gros, M.

Bourdillon, M. Meyer, J.-M. Barbe, M. Ersoz, S. Zalis, Z. Samec, H.H. Girault, J.
Am. Chem. Soc. 132 (2010) 13733–13741.


	Ionic partition diagram of tetraphenylporphyrin at the water|1,2-dichloroethane interface
	Introduction
	Experimental section
	Chemicals
	Electrochemical measurements

	Results and discussion
	Ion transfer reactions

	Conclusion
	Acknowledgements
	References


