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Abstract— Numerical algorithms for solving the continuous-
time algebraic Riccati matrix equation on a distributed-memory
parallel computer are considered. In particular, it is shown that
the Schur method, based on computing the stable invariant
subspace of a Hamiltonian matrix, can be parallelized in
an efficient and scalable way. Our implementation employs
the state-of-the-art library ScaLAPACK as well as recently
developed parallel methods for reordering the eigenvalues in
a real Schur form. Some experimental results are presented,
confirming the scalability of our implementation and comparing
it with an existing implementation of the matrix sign iteration
from the PLiCOC library.

I. INTRODUCTION

The continuous-time algebraic Riccati equation (CARE)
is defined as

0 = Q + AT X + XA−XGX, (1)

with A ∈ Rn×n, Q,G ∈ Rn×n symmetric positive semi-
definite, and the solution matrix X ∈ Rn×n. In many
applications, such as quadratic optimal control of parabolic
partial differential equations, the order n of the coefficients
may become quite large. If n significantly exceeds O(104)
then traditional approaches for solving the CARE, such as
Laub’s Schur method [33] implemented in the MATLAB
control toolbox, will fail on a serial computer due to an
excessive demand for memory and computing time. There
are two approaches to avoid this problem:

(1) algorithms that exploit sparsity and/or low-rank struc-
ture of the coefficients (e.g., [4], [5], [26], [29]);

(2) parallel variants of existing serial algorithms (e.g., [6],
[10], [15]).

While approach (2) still limits the value of n to, say,
O(106), it has the advantage of not requiring any restrictive
assumption on the coefficients of (1). Typically, approach (1)
involves inexact iterative methods and consequently imposes
limits on the accuracy and reliability of the solution. In this
paper, we therefore focus on approach (2) and show how
Laub’s Schur method can be parallelized.

The rest of this paper is organized as follows. In Section II,
we briefly review applications leading to CAREs. While Sec-
tion II represents a summary of existing parallelization strate-
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gies for the CARE, our newly proposed parallel variant of
Laub’s Schur method is presented in Section IV. Finally, the
main contribution is in Section V, showing the performance
and scalability properties of the parallel Schur method and
comparing it with the only (so far) publicly available parallel
solver for the CARE, the PLiCOC implementation [10] based
on the matrix sign function.

II. APPLICATIONS

All applications presented below are related to a
continuous-time linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t), (2)

with states x(t) ∈ Rn, inputs u(t) ∈ Rm, and outputs y(t) ∈
Rp.

A. Linear-quadratic optimal control

Consider the minimization of

J(u) =
∫ ∞

0

(
y(t)T Q̃y(t) + u(t)T R̃u(t)

)
dt, (3)

subject to the dynamical constraints (2) for piecewise contin-
uous controls u. It is required that Q̃ = Q̃T , R̃ = R̃T , and R̃
is positive definite. Under additional mild assumptions [36],
the minimum of (3) is attained by the linear feedback law

u? = −R̃−1BT Xx(t),

where X is the stabilizing solution of

0 = CT Q̃C + AT X + XA−XBR̃−1BT X, (4)

i.e., the eigenvalues of the closed loop matrix A −
BR̃−1BT X are in the open left half plane.

Note that (4) is a CARE with Q = CT Q̃C and G =
BR̃−1BT . In the frequently encountered case that there are
much less inputs/outputs than states both coefficient matrices
are of low rank.

B. Stochastic balancing

Again we consider (2), but with the output equation
appended by a feedthrough term:

y(t) = Cx + Du(t). (5)

We assume that A is stable, p ≤ m, and D ∈ Rp×m has full
row rank. Sometimes unrealistic, the last requirement can
always be achieved after a suitable regularization.

Under these conditions, the left spectral factor W (s) of
the transfer function G(s) = C(sI−A)−1B +D can be de-
termined, such that WT (−s)W (s) = G(s)GT (−s). A state

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


space realization (AW , BW , CW , DW ) of W is obtained as
AW = A, BW = PCT + BDT , CW = E−1/2(C −BT

W X)
and DW = E1/2, with E = DDT . Here, P is the solution
of the Lyapunov equation

0 = AP + PAT + BBT ,

while X is the stabilizing solution of the CARE

0 = (A−BW E−1C)T X + X(A−BW E−1C)
+XBW E−1BT

W X + CT E−1C.
(6)

Stochastic balancing determines a state-space transforma-
tion T such that the correspondingly transformed solutions
T−1PT−T , TT XT are equal and diagonal. Once P and
X are computed, such a matrix T can be computed from
the singular value decomposition of the matrix product PX ,
very much like in ordinary balancing, see also [42]. A main
motivation of this procedure, balanced stochastic truncation
then consists of truncating this balanced system. Note that the
major computational task consists of solving the CARE (6).

C. Other applications

The need for solving CAREs arises in various other areas
of systems and control theory, such as robust and H∞
control [27], [43].

III. SURVEY OF EXISTING PARALLEL METHODS

The ubiquity of algebraic Riccati equations in systems and
control has led to intensive research in designing parallel
methods for solving large scale problems. Most of the
existing approaches are based on building blocks for which
a parallel implementation is either rather straightforward or
already publicly available [12].

Some approaches use the intimate relation of CARE to the
Hamiltonian matrix

H =
[

A G
Q −AT

]
. (7)

Under mild conditions, the 2n × 2n matrix H has n stable
eigenvalues. If

[
X1
X2

]
with X1, X2 ∈ Cn×n denotes a basis

for the invariant subspace belonging to these eigenvalues
then X1 is invertible and X = −X2X

−1
1 ∈ Rn×n is the

stabilizing solution of CARE.

A. Jacobi methods

The Hamiltonian-Jacobi method [15], [17], [35] aims at
computing a unitary matrix U such that

UHHU =
[

T N
0 −TH

]
, (8)

where N = NH ∈ Cn×n and T ∈ Cn×n is upper triangular
with all stable eigenvalues of H on the diagonal of T . Then
the first n columns of U form a basis for the desired invariant
subspace of H .

In the variants described in [15], [35], the factorization (8)
is achieved by a sequence of unitary similarity transforma-
tions each of which transforms a 4×4 Hamiltonian submatrix
of H to the form (8). One complete sweep of transfor-
mations processes the entire matrix and requires O(n3)

operations. For the examples reported in [15], between 10–
20 sweeps were necessary to converge sufficiently close to
the form (8). In general – extrapolating from well-known
results for symmetric matrices – one would expect that the
number of sweeps grows at least proportionally to log2 n,
resulting in a significant increase of operations compared to
standard methods for solving CARE. Another drawback is
that the realness of H is not preserved. On the other hand, as
each transformation requires only local information, Jacobi
methods can be parallelized with very little communication
overhead.

B. Sign function iteration

Given a Jordan canonical form of H ,

P−1HP =
[

J1 0
0 J2

]
, J1, J2 ∈ Cn×n,

such that J1 contains all stable eigenvalues, the matrix sign
function of H is defined as

sign(H) = P

[ −I 0
0 I

]
P−1.

In particular, the first n columns of sign(H) − I2n form a
basis for the desired invariant subspace of H .

The matrix sign function can be computed by applying the
Newton iteration method to the equation Z2 = I:

Z0 ← H, Zj+1 ← 1
2

(
Zj + Z−1

j

)
, j = 0, 1, . . . .

It can be shown [39] that the iterates Zj converge glob-
ally and locally quadratic to sign(H). Initial convergence,
however, might be slow, especially when H has eigenvalues
close to the imaginary axis. In this case, also the norms of the
initial iterates may significantly grow, adversely affecting the
numerical stability of the method. Byers’ determinantal scal-
ing strategy [16], implemented in the PLiCOC library [10],
aims at avoiding this effect:

Z0 ← H, Zj+1 ← 1
2

(
βjZj +

1
βj

Z−1
j

)
, j = 0, 1, . . . ,

with βj = (det Zj)−1/n. Note that βj can be computed at
virtually no extra cost if Z−1

j is computed via the LU factor-
ization of Zj . For the examples reported in [10], convergence
was usually attained after at most 10–25 iterations. However,
even with the scaling strategy, maximum accuracy can only
be obtained when combined with iterative refinement, see
Section III-C below.

A major advantage of the sign function iteration is that its
computational core consists of little more than explicit matrix
inversion, which has a well-tested highly scalable parallel
implementation in ScaLAPACK [12].

C. Newton method

The Newton method can also be directly applied to CARE.
For some symmetric initial starting guess X0, this leads to
the iteration Xj+1 ← Xj + Nj , where the correction Nj

solves the Lyapunov equation

0 = (A−GXj)T Nj + Nj(A−GXj) + Res(Xj). (9)



Here, Res(Xj) = Q + AT Xj + XjA−XjGXj denotes the
residual of CARE for Xj .

Provided A − GX0 is stable, the Newton iteration con-
verges globally and locally quadratic to the stabilizing solu-
tion of CARE. Line search strategies [6] should be used to
avoid undesirable initial behavior. To solve (9) in parallel,
the PLiCOC library uses a specialized matrix sign function
iteration. Alternatives could be based on the Bartels-Stewart
method, combining the parallel QR algorithm in ScaLA-
PACK with the SCASY library [23], [24], [40]. The Newton
method for CARE enjoys the self-correcting properties of
general Newton methods and is thus numerically stable.
However, since solving (9) is significantly more expensive
than one step of the sign function iteration, it is advisable to
use the Newton method only for refining a computed solution
from a less accurate method, such as the sign function
iteration, or the Schur method.

D. Other methods

By a Cayley transform, the Hamiltonian matrix (7) can
be turned into a symplectic pencil. This simple trick often
allows to extend methods for solving discrete-time Riccati
equations to CARE. However, it is dubious whether such
an approach offers any advantage over methods that tackle
CARE directly. For example, numerical experiments in [10]
reveal that Malyshev’s inverse free iteration [34] applied to
the symplectic pencil requires significantly more execution
time than the sign function iteration.

IV. PARALLELIZATION OF THE SCHUR METHOD

The Schur method [33] applies the QR algorithm [21] to
the Hamiltonian matrix H in (7) in order to compute an
orthogonal matrix U1 such that S = UT

1 HU1 is in real Schur
form, i.e., block upper triangular with 1×1 and 2×2 blocks
on the diagonal each corresponding to a real eigenvalue or
a pair of complex conjugate eigenvalues. Assuming that H
has no eigenvalues on the imaginary axis, we can reorder the
eigenvalues of S and compute an orthogonal matrix U2 such
that

UT
2 SU2 = S̄ ≡

[
S11 S12

0 S22

]
, S11, S22 ∈ Rn×n,

where S11 is stable. As explained in Section III, the solution
of CARE can then be easily obtained from the first n
columns of U = Q1Q2.

Our implementation builds on the existing functionality
of ScaLAPACK (see, e.g., [12], [41]) and is based on
its conventions of the parallel distributed memory (DM)
environment, as follows:
• The parallel processers are organized into a rectangular

Pr × Pc mesh labelled from (0, 0) to (Pr − 1, Pc − 1)
according to their specific position indices in the mesh.

• The matrices are distributed over the mesh using 2-
dimensional (2D) block cyclic mapping with the block
sizes mb and nb in the row and column dimensions,
respectively.

In this contribution we consider only square blocks in
the data distribution (nb = mb). The implementation also
follows the outline of the state-of-the-art routine SB02MD
from SLICOT [8]:
• Construction of the Hamiltonian matrix H (7).
• Computation of the real Schur form S ofH .
• Computation of the corresponding ordered real Schur

form S̄ by separating the stable and the unstable eigen-
values.

• Computation of the solution X from the resulting stable
invariant subspace.

Each of these steps is a challenge in a distributed memory
environment. First of all, the construction of the Hamiltonian
matrix requires some care to avoid excessive data copying
over the network; a specialized routine was developed for this
purpose. Second, the efficient initial parallel reduction of the
Hamiltonian matrix to Hessenberg form needed by the QR
algorithm is a nontrivial task [11], [18] (see ScaLAPACK’s
PDGEHRD). This is even more the case for the QR algo-
rithm itself, for which the only publicly available scalable
implementation [28] (see ScaLAPACK’s PDLAHQR) suffers
from low node performance. Finally, reliable and efficient
software for parallel eigenvalue reordering was missing in
the context of ScaLAPACK until recently [25].

V. EXPERIMENTS

In this section, we present some experimental results that
demonstrate the parallel performance of our implemented
Schur-based CARE solver PSB02MD.

Our target machine is the 64-bit Opteron Linux Clus-
ter sarek with 192 dual AMD Opteron nodes (2.2 GHz),
8Gb RAM per node and a Myrinet-2000 high-performance
interconnect with 250 MB/sec bandwidth. All experiments
were conducted using the Portland Group’s pgf77 1.2.5
64-bit compiler, the compiler flag -fast and the fol-
lowing software: MPICH-GM 1.5.2 [37], LAPACK 3.0
[32], GOTO-BLAS r0.94 [22], ScaLAPACK 1.7.0 [41] and
BLACS 1.1patch3 [13]. All experiments were performed in
double precision arithmetic (εmach ≈ 2.2× 10−16).

We consider different collections of random problems
and several scalable benchmark problems. Furthermore, we
compare our implementation with existing software from
PLiCOC [9], [10]: From PLiCOC we utilize the following
two driver routines:

PDGECOCA contains an implementation of the sign func-
tion iteration with the scaling strategy described in
Section III-B;

PDGECRNX contains an implementation of the Newton
method described in Section III-C, with the Lya-
punov equation (9) solved by a specialized sign
function iteration.

Notice that PDGECOCA solves the LQ-optimal problem with
the matrices G and Q factorized as in (4).

For fair comparisons, exactly the same problem is gen-
erated for both solvers. Moreover, our parallel Schur-based
solver is sometimes combined with iterative refinement using



TABLE I
PARAMETERS AND OUTPUT VARIABLES FOR THE EXPERIMENTS.

Pr × Pc Parallel processer mesh configuration.
Tp Overall parallel execution time in seconds.
Sp Parallel speedup Tpmin(n)/Tp, where p = Pr · Pc and

pmin(n) is the min. number of processors used for n.

Rr
‖Q + AT X + XA−XGX‖F

(‖Q‖F + 2‖A|‖F ‖X‖F + ‖X‖F ‖G‖F ‖X‖F )
(relative norm of residual).

Re Relative norm of forward error, ‖X̃−X‖F /‖X‖F , where
X and X̃ are the computed and the exact solutions,
respectively.

Is Number of iterations needed by sign function iteration.
Io Number of outer Newton iterations needed by iterative

refinement.
Ii Overall number of inner sign function iterations needed by

iterative refinement.

TABLE II
EXPERIMENTAL RESULTS FOR PSBO2MD WITHOUT ITERATIVE

REFINEMENT SOLVING RANDOM PROBLEMS ON sarek.

A diag. dom. A not diag. dom.
n Pr × Pc Tp Sp Rr Tp Sp Rr

1000 1× 1 188 1.00 0.21E-15 145 1.00 0.76E-15
1000 2× 2 97.4 1.93 0.77E-16 90.9 1.60 0.66E-15
1000 4× 4 35.1 5.35 0.36E-15 38.6 3.77 0.72E-15
1000 8× 8 14.5 13.0 0.10E-15 14.6 9.94 0.65E-15
2000 1× 1 3934 1.00 0.16E-15 2829 1.00 0.96E-15
2000 2× 2 665 5.92 0.15E-16 644 4.40 0.93E-15
2000 4× 4 290 13.6 0.17E-15 235 12.0 0.99E-15
2000 8× 8 96.1 40.9 0.12E-15 96.8 29.3 0.23E-14
3000 1× 1 10820 1.00 0.28E-15 11260 1.00 0.11E-14
3000 2× 2 3053 3.54 0.21E-16 2901 4.37 0.14E-14
3000 4× 4 1015 10.7 0.16E-15 845 15.0 0.36E-14
3000 8× 8 327 33.1 0.11E-15 279 45.5 0.17E-13

PDGECRNX. A general observation of the benefits of the
refinement procedure is that it often improves the accuracy of
the residual norm (see below) but not necessarily the forward
error of the solution when compared with an exact solution
(which is sometimes known for the considered benchmark
examples).

A. Random problems

We generate a collection of uniformly distributed random
problems using ScaLAPACK’s matrix generator PDMATGEN,
as follows: The matrix A is generated as a diagonal dominant
matrix with random off-diagonal elements, B as a random
matrix, X as a symmetric random matrix, G is computed as
BBT and Q is computed to satisfy the corresponding CARE.
For the sign function iteration, G is kept in factorized form.

We also consider random problems with A as a completely
random matrix (i.e., not diagonal dominant), which are
expected to be more ill-conditioned.

Results are displayed in Table II.

B. Benchmarks

We consider some of the examples from the benchmark
collection CAREX [7]. The matrices are generated using
the associated Fortran 77 routines on one of the nodes
and distributed to the whole process mesh prior to the
invocation of the solvers. Unfortunately, this means that

TABLE III
EXPERIMENTAL RESULTS FOR PSBO2MD AND PDGECOCA SOLVING

CAREX BENCHMARK PROBLEM 15 ON sarek.

PSB02MD
n Pr × Pc Tp Sp Rr Is Io Ii

1999 1× 1 3427 1.00 0.32E-20 0 3 36
1999 2× 2 1000 3.47 0.32E-20 0 3 36
1999 4× 4 374 9.16 0.32E-20 0 3 36
1999 8× 8 163 21.0 0.32E-20 0 3 36
3999 2× 2 6553 1.00 0.11E-20 0 3 36
3999 4× 4 1381 4.75 0.11E-20 0 3 36
3999 8× 8 647 10.1 0.11E-20 0 3 39

PDGECOCA
n Pr × Pc Tp Sp Rr Is Io Ii

1999 1× 1 1188 1.00 0.61E-20 12 3 36
1999 2× 2 381 3.12 0.53E-20 12 3 36
1999 4× 4 153 7.76 0.53E-20 12 3 36
1999 8× 8 74.9 15.9 0.53E-20 12 3 36
3999 2× 2 2818 1.00 0.19E-20 13 3 39
3999 4× 4 947 2.98 0.19E-20 13 3 39
3999 8× 8 382 7.38 0.19E-20 13 3 39

the available memory on one node dictates the limit of the
problem size generated by the CAREX routines. A parallel
implementation of this benchmark collection would avoid
this effect, the problem size would then only be limited by
the memory on the whole target machine.

Example 15 in [7]. The system matrices describe a mathe-
matical model of position and velocity for a string of high-
speed vehicles; a problem also known as smart or intelligent
highway. The system matrices are of order n = 2N − 1,
where N denotes the number of vehicles. The closed loop
eigenvalues are all of magnitude O(1) and have a distance of
at least 0.66 from the imaginary axis. Results are displayed
in Table III.

Example 16 in [7]. All system matrices and the solution are
circulant matrices. Most eigenvalues are of the corresponding
Hamiltonian matrix have algebraic multiplicity 2 which may
slow down the convergence of the multishift QR algorithm
in the Schur method. All closed loop eigenvalues are real,
of magnitude O(1), and have at least a distance of 1 to the
imaginary axis. Results are displayed in Table IV.

Optimal Cooling of Steel Profiles. Part of the Oberwolfach
model reduction benchmark collection [31], the system ma-
trices arise from the spatial discretization of a controlled 2D
heat transfer process for optimal cooling of steel profiles. A
similar example was previously used in LYAPACK [38]. The
order n depends on the grid size of the FEM discretization;
we have used the two coarsest discretizations available,
leading to n = 1357 and n = 5177. Note that the original
problem is a descriptor system, which has been turned into
a standard system by the Cholesky factorization of the
symmetric positive definite descriptor matrix E. Results are
displayed in Table V, where we also include Rc, which is
an estimate of the reciprocal of the condition number (in the
1-norm) of the N th order system of equations from which
the solution matrix X is obtained; this quantity is computed
by PSB02MD only.



TABLE IV
EXPERIMENTAL RESULTS FOR PSBO2MD WITHOUT ITERATIVE

REFINEMENT AND PDGECOCA WITH ITERATIVE REFINEMENTS SOLVING

CAREX BENCHMARK PROBLEM 16 ON sarek.

PSB02MD
n Pr × Pc Tp Sp Rr Re Is Io Ii

1000 1× 1 175 1.00 0.78E-16 0.11E-12 0 0 0
1000 2× 2 94.0 3.46 0.79E-16 0.11E-12 0 0 0
1000 4× 4 38.5 4.56 0.79E-16 0.11E-12 0 0 0
1000 8× 8 14.5 12.1 0.77E-16 0.11E-12 0 0 0
2000 1× 1 3806 1.00 0.60E-16 0.22E-12 0 0 0
2000 2× 2 659 5.77 0.59E-16 0.22E-12 0 0 0
2000 4× 4 244 15.6 0.60E-16 0.22E-12 0 0 0
2000 8× 8 94.5 40.2 0.60E-16 0.22E-12 0 0 0
3000 2× 2 2390 1.00 0.14E-18 0.72E-12 0 0 0
3000 4× 4 768 3.11 0.33E-18 0.72E-12 0 0 0
3000 8× 8 232 10.3 0.21E-18 0.72E-12 0 0 0

PDGECOCA
n Pr × Pc Tp Sp Rr Re Is Io Ii

1000 1× 1 51.0 1.00 0.21E-15 0.11E-12 8 3 15
1000 2× 2 17.0 2.99 0.21E-15 0.11E-12 8 3 15
1000 4× 4 7.93 6.42 0.21E-15 0.11E-12 8 3 15
1000 8× 8 4.65 11.0 0.21E-15 0.11E-12 8 3 15
2000 1× 1 381 1.00 0.63E-15 0.27E-12 7 3 15
2000 2× 2 114 3.34 0.63E-15 0.27E-12 7 3 15
2000 4× 4 42.2 9.04 0.63E-15 0.27E-12 7 3 15
2000 8× 8 18.5 20.6 0.63E-15 0.27E-12 7 3 15
3000 2× 2 735 1.00 0.29E-18 0.72E-12 7 3 15
3000 4× 4 245 3.00 0.27E-18 0.72E-12 7 3 15
3000 8× 8 98.6 7.45 0.32E-18 0.72E-12 7 3 15

TABLE V
EXPERIMENTAL RESULTS FOR PSBO2MD AND PDGECOCA SOLVING THE

OPTIMAL COOLING OF STEEL PROFILES PROBLEM FOR n = 1357, 5177

ON sarek.

PSB02MD
n Pr × Pc Tp Sp Rr Rc Is Io Ii

1357 1× 1 654 1.00 0.11E-17 0.80E-8 0 3 48
1357 2× 2 303 2.16 0.82E-18 0.79E-8 0 4 64
1357 4× 4 106 6.16 0.78E-18 0.79E-8 0 3 48
1357 8× 8 71.6 9.13 0.86E-18 0.80E-8 0 4 64
5177 2× 2 1.00 0 0 0
5177 4× 4 5996 0.43E-18 0.22E-8 0 4 68
5177 8× 8 2137 0.45E-18 0.22E-8 0 4 68

PDGECOCA
n Pr × Pc Tp Sp Rr Rc Is Io Ii

1357 1× 1 558 1.00 0.23E-17 0.80E-8 21 3 48
1357 2× 2 178 3.13 0.18E-17 0.79E-8 21 3 48
1357 4× 4 81.4 6.85 0.18E-17 0.79E-8 21 3 48
1357 8× 8 47.4 11.8 0.19E-17 0.80E-8 21 3 48
5177 2× 2 1.00 0 0 0
5177 4× 4 2630 0.91E-18 0.22E-8 20 3 51
5177 8× 8 933 0.88E-18 0.22E-8 20 3 51

C. Summary and profiling

In all presented examples, the sign function iteration
clearly outperforms our preliminary parallel implementation
of the Schur method. The difference is between a factor of
3–10 on a single node and a factor of 2–5 on 64 nodes.

These figures tell little about the potential performance of
the Schur method itself, they merely illustrate how difficult
it is – in comparison to the sign function iteration – to
develop an efficient parallel implementation. It turns out
that the parallel performance of the Schur method is highly
dominated by the poor performance of the QR algorithm in
ScaLAPACK, i.e., reduction of the Hamiltonian matrix from
Hessenberg form to real Schur form. For example, for the

considered CAREX benchmarks as much as 90–95% of the
uniprocessor execution time can be due to the parallel QR
algorithm alone; for multiple processors this ratio is typically
less but still at least 75% of the total parallel execution time.
A modern re-implementation of the parallel QR algorithm,
almost entirely based on level 3 BLAS and equipped with
aggressive early deflation [14], is expected to cut down this
figure drastically, say, by a factor of 10 for sufficiently large
matrices. This would make the Schur-based algorithm more
competitive in comparison with the matrix sign function
iteration regarding parallel performance.

VI. CONCLUSIONS AND FUTURE WORK

The results of our preliminary parallel implementation
clearly demonstrate that there is a need for a thorough
revision of the parallel QR algorithm implemented in ScaLA-
PACK.

The developed parallel Schur-based method can be gen-
eralized to cover the discrete-time variant of the Riccati
equation (DARE) of the form

X = AT XA−AT XB(R + BT XB)−1BT XA + Q, (10)

as well as generalized descriptor variants of the CARE and
DARE equations (see, e.g., [10], [20]). However, the latter
problems require a reliable and efficient implementation of
the parallel QZ algorithm and related eigenvalue reordering
algorithms; recent progress in this direction was presented
in [19], [1], [2], [3], [25] and in [30] multishift variants of
the QZ algorithm with aggressive early deflation [14] was
presented.
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[25] R. Granat, B. Kågström, and D. Kressner. Parallel eigenvalue reorder-
ing in real Schur forms. Concurrency and Computation: Practice and
Experience, 2007. submitted.

[26] L. Grasedyck, W. Hackbusch, and B. N. Khoromskij. Solution of
large scale algebraic matrix Riccati equations by use of hierarchical
matrices. Computing, 70(2):121–165, 2003.

[27] M. Green and D. J. N. Limebeer. Linear Robust Control. Prentice-
Hall, Englewood Cliffs, NJ, 1995.

[28] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation
of the nonsymmetric QR algorithm for distributed memory architec-
tures. SIAM J. Sci. Comput., 24(1):284–311, 2002.

[29] K. Jbilou. Block Krylov subspace methods for large algebraic Riccati
equations. Numer. Algorithms, 34(2-4):339–353, 2003. International
Conference on Numerical Algorithms, Vol. II (Marrakesh, 2001).
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