
AN EFFICIENT AND RELIABLEIMPLEMENTATION OF THE PERIODIC QZALGORITHMDaniel Kressner ��Department of Mathematics, University of Chemnitz, Chemnitz,GermanyAbstract: We discuss performance and accuracy aspects of the periodic QZ algorithm.Blocked formulations of the involved orthogonal transformations increase the datalocality and thus address the �rst task. For the sake of reliability the proposed im-plementation includes balancing, implicit methods for computing shifts and carefullychosen deation strategies. Algorithms for pole placement and other tasks arisingfrom periodic discrete-time systems could bene�t from these improvements.Keywords: Accuracy, Discrete-time systems, E�cient algorithms, Eigenvalueproblems, Exponentially stable, Factorization methods, Implementation1. INTRODUCTIONFor matrices Ei; Fi 2 Rn;n and Gi 2 Rn;mconsider the linear discrete-time systemEixi+1 = Fixi +Giui; i 2 N; (1)where xi; ui are vectors of states and inputs, re-spectively. The coe�cient matrices shall satisfyEi+k = Ei, Fi+k = Fi and Gi+k = Gi forsome �xed k 2 N. Such periodic systems natu-rally arise when performing multirate sampling ofcontinuous-time systems.The corresponding monodromy matrix is associ-ated with the formal productE�1k FkE�1k�1Fk�1 : : : E�11 F1: (2)Some of the equations in (1) might have noalgebraic constraints, that is, Ei is the identitymatrix for some i 2 [1; k]. In this context it is moreappropriate to replace (2) by the general productS = A1As22 As33 : : : Askk ; (3)where Ai 2 Rn;n and si 2 f�1; 1g. The implicitassumption s1 = 1 can always be achieved bya suitable reordering or formal inversion of thecoe�cient matrices. Note that the invertibility offactors Ai with si = �1 is not assumed. Even

when this condition is satis�ed it is not favorableto form (3) explicitly.The periodic Schur decomposition is often the �rstand most expensive step in numerically reliablemethods for pole placement and several othertasks related to linear periodic systems (Sreedharand Van Dooren, 1993). In this decomposition korthogonal matrices Qi are constructed so thatQTi AiQi+1, for si = 1, andQTi+1AiQi, for si = �1,are upper triangular, where i = 2; : : : ; k andQk+1 = Q1. The �rst transformed factor QT1 A1Q2is upper quasi-triangular. Illustrated:QT1 A1Q2| {z } QT2 As22 Q3| {z } : : : QTkAskk Q1| {z } (4)
A numerically stable method to compute (4) isthe so called Periodic QZ algorithm established by(Van Loan, 1975; Bojanczyk et al., 1992; Henchand Laub, 1994). Sections 2 and 3 of this workare concerned with variations of this algorithmwhich signi�cantly decrease its execution time.Reliability, a crucial aspect of any competitive
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implementation, is treated in Sections 4, 5 and6.2. BLOCKED REDUCTION TO PERIODICHESSENBERG FORMAs usual for algorithm which compute a variantof the Schur decomposition, the �rst step consistsof the reduction to a Hessenberg like form. In thecontext of general products, this form is almostidentical to (4) besides the �rst factor which staysupper Hessenberg.An e�cient implementation should, in a �rstattempt, reduce A1 only to block Hessenbergform, that is, nb � 1 subdiagonals are nonzero.This concept was successfully applied to the QZalgorithm (Dackland and K�agstr�om, 1999). Sincethe technique easily generalizes to the periodiccase, only a brief outline of the method for thespecial product A1A�12 A3A4 with n = 9 andnb = 3 is presented.The �rst stage starts with an RQ decomposition ofA2 which alters the matrix A1. Next, A4(:; 1 : 3)is triangularized by three Householder reectorsfrom the left. Their WY representation is appliedto the remaining part of A4 as well as the matrixA3 (Golub and Loan, 1996, Section 5.1.7).
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������������������A QR decomposition triangularizes A3(4 : 9; 1 : 3)introducing nonzeros in the lower triangular partof A2(4 : 9; 4 : 9).
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������������������This part is immediately annihilated by an appro-priate RQ decomposition.
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����������������Repeating the procedure for A3(1 : 6; 1 : 3) yieldsthe following pattern.
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����������������Now, three blocked Householder reectors trian-gularize A1(:; 1 : 3) from the left.
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Repeating the procedure for the remaining south-east 6-by-6 subproduct �nally leads to the follow-ing block Hessenberg form.
It should be noted that the �ll-ins in A2 overlapfor consecutive iterations. Hence, in an actual im-plementation RQ decompositions of smaller sizedr-by-2r matrices are applied in order to annihilatethese �ll-ins.The second stage is to annihilate the remainingnb�1 subdiagonals of A1, to get an upper Hessen-berg matrices while keeping the other matrices up-per triangular. This is accomplished via a super-sweep routine as for the general product AB�1 de-scribed in (Dackland and K�agstr�om, 1999). Thereis virtually no di�erence when going to largerproducts, only that the description of algorithmbecomes rather awkward.Several benchmarks were run to compare theabove described blocked with the original ver-sion (Bojanczyk et al., 1992) of the Hessenbergreduction algorithm. The FORTRAN 77 imple-mentations were compiled and serially executedon an Origin 2000 computer equipped with 400MHz IP27 R12000 processors. The programs calloptimized BLAS and LAPACK (Anderson et al.,1994) subroutines from the SGI/Cray Scienti�cLibrary version 1.2.0.0. The block size nb waschosen to be 64.s n Original Blocked(1;�1) 1024 432 195(1;�1) 2048 4740 2481(1;�1; 1;�1; 1;�1) 512 110 60(1;�1; 1;�1; 1;�1) 1024 1295 595(1; 1; 1; 1; 1; 1) 512 62 39(1; 1; 1; 1; 1; 1) 1024 1047 308Table 1. Execution times in seconds forthe reduction to periodic Hessenbergform.
In Table 1 an extract of the observed executiontimes is presented. Overall, signi�cantly lowertimes for the blocked algorithms were noted assoon as n � 128.



3. BLOCKED PERIODIC QZ ITERATIONA similiar algorithm as for the supersweep algo-rithm can be used to speed up the generalized QZiterations as well (Dackland and K�agstr�om, 1999).Again, there is a straightforward way to adapt thistechnique to the periodic case. From the results inSection 2 it can be extrapolated that the executiontimes of such a blocked periodic QZ iteration willbe signi�cantly lower than the original formula-tion. 4. BALANCINGThe periodic QZ algorithm is backward stable(Bojanczyk et al., 1992). That is, the computedSchur decomposition corresponds to a slightlyperturbed product Qki=1 Âsii , where the backwarderror kÂi�Aik is of the order unit round o� timeskAik. However, even such small perturbationscan be harmful when dealing with ill-conditionedproblems.For example, consider the formal product24 5�26 3�14 6�166�06 2+06 3+044�16 2�04 5�06 3524 6�28 3�16 5�187�09 3+03 7+016�23 3�11 3�13 35�1� 24 8�02 6�24 6�115+17 5�05 6+083+03 4�19 7�06 3524 9+00 4�22 3�097+20 2�02 9+114+10 6�12 7+01 35�1 ;(5)where the signed integer superscript at the endof a number represents its exponential exponent.The eigenvalues, given by the general productof the diagonal elements of the periodic Schurdecomposition, and the corresponding conditionnumbers (Benner et al., 2000) are tabulated be-low. Eigenvalue Condition number2:88728 4:32� 10210:39941 1:77� 10210:07459 2:59� 1021Not surprisingly the periodic QZ algorithm com-pletely fails to compute eigenvalues with accept-able accuracy.Such e�ects, caused from matrix entries of widelyvarying magnitudes, can be removed by a preced-ing balancing step. For positive de�nite diagonalmatrices D�, D� , D , D� the eigenvalues of theformal product AB�1CE�1 and(D�AD�)(DBD�)�1(DCD�)(D�ED�)�1 (6)are equivalent. Di�erent sign patterns do not posea problem; if for example sB = 1, then in thefollowing discussion B can virtually be replacedby the matrix

~B = �~bij�ni;j=1 := ��(bji 6= 0) � 1bji �ni;j=1 :The diagonal transformations shall reduce thecondition numbers and thus improve the accuracyof the computed eigenvalues. However, minimiz-ing the conditioning of the periodic eigenvalueproblem is certainly an unrealistic goal. On theother hand, reducing the magnitude ranges of theelements in the factors seems to be reasonable.Analogously to the generalized eigenvalue prob-lem (Ward, 1981), the balancing step can be for-mulated as the solution of an optimization prob-lem. Let �i, �i, i and �i denote the binary loga-rithm of the i-th diagonal entry in the correspond-ing diagonal matrix. Then one wants to minimizethe expressionS(�; �; ; �) = nXi;j=1 (�i + �j + log2 jaij j)2+(i + �j + log2 jbij j)2 (7)+(i + �j + log2 jcij j)2+(�i + �j + log2 jeij j)2:By di�erentiation a minimal point (�; �; ; �) sat-is�es the linear system of equations with systemmatrix2664 F (E;A) H(A) 0 H(E)HT (A) G(A;B) HT (B) 00 H(B) F (B;C) H(C)HT (E) 0 HT (C) G(C;E) 3775and right hand side�2664 row(A) + row(E)col(B) + col(A)row(C) + row(B)col(E) + col(C) 3775 ;where the notation is as follows:(1) F (X;Y ) = G(X;Y ) is a diagonal matrixwhose elements are given by the number ofnonzero entries in the rows / columns of Xand Y ,(2) H(X) is the incidence matrix of X ,(3) row(X) = col(X) is the vector of row /column sums of the matrix��(xij 6= 0) � log2 jxij j�ni;j=1:It can be shown that this linear system is symmet-ric, positive semide�nite and consistent. For itssolution a generalized conjugate gradient iterationis used as described in (Ward, 1981).To reduce the computational it is desirable toconstruct a suitable preconditioner. Under theassumption of completely dense factors the systemmatrix is for even k given by a kn-kn blockcirculant Mk;n with �rst n rows� 2nI eeT 0 : : : 0 eeT � ;



and for odd k by a kn-by-kn block skew circulantNk;n with �rst n rows� 2nI eeT 0 : : : 0 �eeT � ;where e is the n-vector containing a one in eachelement.To be useful for preconditioning the applicationof the Moore-Penrose generalized inverses M yk;nand Nyk;n should be cheap. Indeed, for x 2 Rk theproducts Myk;1x and Nyk;1x can be formed withinO(k) operations by using an incomplete Choleskyfactorization.One can show that for general n � 1, now x 2Rkn ,Myk;nx = 1n2 �n2 Ikn + �Myk;1 � 12Ik�
 eeT�x:An analogous result holds for N botk;nx.Hence, per iteration of the conjugate gradientmethod O(kn2) operations are required. If thefactors are reasonably dense, then the iterativescheme usually converges within 3 iterations,which was already observed in the context of thegeneralized eigenvalue problem (Ward, 1981).For Example (5) the binary logarithms of theoptimal scaling parameters are given by� = � 36:3 �30:0 3:14 � � = � 47:6 8:85 14:7 � = � 42:7 �20:4 26:5 � � = ��38:8 34:7 �8:96 �The eigenvalues of the balanced product are sub-stantially less sensitive as shown below.Eigenvalue Condition number2:88728 2:490:39941 4:400:07459 3:44As expected, the periodic QZ algorithm now re-veals eigenvalues nearly to machine precision.5. SHIFT COMPUTATIONAt the start of each periodic QZ iteration an initialorthogonal matrix Q0 is applied to both sides ofthe product. Given m shifts �i the matrix Q0is required to satisfy the condition that its �rstcolumn is parallel to the �rst column of the shiftpolynomialP� = � kYi=1Asii � �1� : : :� kYi=1Asii � �m�:An usual choice of shifts is to take the twoeigenvalues of the southeast two-by-two part ofthe product,� a(1)mm a(1)mna(1)nm a(1)nn �� a(2)mm a(2)mn0 a(2)nn �s2 : : : � a(k)mm a(k)mn0 a(k)nn �sk ;

where m = n � 1 and a(i)jl denotes the (j; l)-thentry of Ai.Especially for long products, computing the shiftsand the shift polynomial desires for great care toavoid unnecessary over-/underow and disastrouscancellations. From this point of view it is morefavorable to construct Q0 directly from the givendata. For example, if the shift polynomial can berewritten as a product of matrices, then Q0 can becomputed by a partial product QR factorization(De Moor and Van Dooren, 1992). For the doubleshift strategy described above a suitable productembedding is given byP� = �A1 In � � kYi=2 �Ai 00 a(i)mmIn �si� � �In 0a(1)mmIn �a(1)nmIn � ��A1 a(1)nmIn a(1)nnIn0 a(1)mmIn a(1)mnIn �� kYi=224Ai 0 00 a(i)mmIn a(i)mnIn0 0 a(i)nnIn 35si � 24 In0In 35 :By carefully exploiting the underlying structurethe recursive computation of Q0 from this embed-ding requires approximately 37k operations.6. DEFLATION AND EXPONENTIALSPLITTINGSConvergence is certainly the most important as-pect of an iterative algorithm.Consider the product with factorsA1 = 26666664 9:0 4:0 1:0 4:0 3:0 4:06:0 8:0 2:0 4:0 0:0 2:00:0 7:0 4:0 4:0 6:0 6:00:0 0:0 8:0 4:0 6:0 7:00:0 0:0 0:0 8:0 9:0 3:00:0 0:0 0:0 0:0 5:0 0:0
37777775 ; (8)A2 = � � � = Ak = diag(10�1; 10�2; 10�3; 1; 1; 1);and s2 = � � � = sk = 1. For k = 5 the periodic QZalgorithm requires 29 iterations to converge, 62for k = 10, 271 for k = 40 and for k � 50 it doesnot converge at all. Even worse, the breakdowncan not be cured by using standard ad hoc shifts.The reason is basically that the leading diagonalentries in the triangular factors diverge exponen-tially, that is, the relationkYi=1 a(i)j+1;j+1a(i)jj !si = O(�k); 0 � � < 1; (9)is satis�ed for j = 1; 2. A Givens rotator actingon such a (j; j + 1) plane is likely to converge tothe 2-by-2 identity matrix when propagated overAk; Ak�1; : : : ; A2 back to A1.



It is important to note that (9) is not an excep-tional situation. Exponentially splitted productsin the sense of (Oliveira and Stewart, 2000) havethe pleasant property that even for extremelylarge k the eigenvalues can be computed to highrelative accuracy. Moreover, such products hardlyever fail to satisfy (9). One of the prominent exam-ples is the in�nite product where all factors haverandom entries chosen from a uniform distributionon the interval (0; 1). It can be shown that thesequence of periodic Hessenberg forms related to�nite truncations of this product satis�es (9) forall j = 1; : : : ; n� 1.In the original algorithm (Bojanczyk et al., 1992),a direct deation is only performed when a smallsubdiagonal element in A1 or a small diagonalelement in A2; : : : ; Ak is encountered. For the pur-pose that exponentially diverging diagonal entriesdo not represent a convergence barrier the follow-ing additional deation strategy is proposed.A QR decomposition is applied to the Hessenbergmatrix A0. If sk = 1, the resulting n � 1 Givensrotators (cj ; sj) are successively applied to thecolumns of Ak," a(k)j;j a(k)j+1;j0 a(k)j+1;j+1 # � cj sj�sj cj �= " cja(k)j;j � sja(k)j+1;j sja(k)j;j + cja(k)j+1;j�sja(k)j+1;j+1 cja(k)j+1;j+1 # :Whenever it happens that ��sja(k)j+1;j+1�� is smallcompared tomax���cja(k)j;j � sja(k)j+1;j��; ��cja(k)j+1;j+1���;or, being more generous, compared to kAkkF ,then in the following steps (cj ; sj) can be safelyset to (1; 0). Otherwise, the (j + 1; j)-th elementof Ak is annihilated by a Givens rotator actingon rows (j; j + 1). (cj ; sj) is overwritten with theparameters of this rotator.The process, being similiar when sk = 1, isrecursively applied to Ak�1; : : : ; A2. At the end,the rotator sequence is applied to the columns ofA1 and each pair (cj ; sj) = (1; 0) results in a zeroelement at position (j + 1; j) in A1.Since the above procedure is as expensive as asingle shift periodic QZ iteration it should onlyoccasionally be applied.For Example (8) with k = 40 two applications ofthe proposed deation strategy result in zeros atpositions (2; 1), (3; 2) and (7; 6) in A1. Barely 7periodic QZ iterations are required to reduce theremaining 3-by-3 product to quasi upper triangu-lar form.
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