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Abstract: We discuss performance and accuracy aspects of the periodic QZ algorithm.
Blocked formulations of the involved orthogonal transformations increase the data
locality and thus address the first task. For the sake of reliability the proposed im-
plementation includes balancing, implicit methods for computing shifts and carefully
chosen deflation strategies. Algorithms for pole placement and other tasks arising

from periodic discrete-time systems could benefit from these improvements.
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1. INTRODUCTION

For matrices FE;,F; € R™™ and G; € R™»™
consider the linear discrete-time system

Eixipy = Fizy + Giug, i €N, (1)

where x;,u; are vectors of states and inputs, re-
spectively. The coefficient matrices shall satisfy
Ei+k = Ei, Fi+k = Fz and Gi+k = Gl for
some fixed k& € N. Such periodic systems natu-
rally arise when performing multirate sampling of
continuous-time systems.

The corresponding monodromy matrix is associ-
ated with the formal product

E'F,E'NF,_,...E/'F,. (2)

Some of the equations in (1) might have no
algebraic constraints, that is, F; is the identity
matrix for some 4 € [1, k]. In this context it is more
appropriate to replace (2) by the general product

S =AARAP . AT, (3)
where 4; € R™" and s; € {—1,1}. The implicit
assumption s; = 1 can always be achieved by

a suitable reordering or formal inversion of the
coefficient matrices. Note that the invertibility of
factors A; with s; = —1 is not assumed. Even

when this condition is satisfied it is not favorable
to form (3) explicitly.

The periodic Schur decomposition is often the first
and most expensive step in numerically reliable
methods for pole placement and several other
tasks related to linear periodic systems (Sreedhar
and Van Dooren, 1993). In this decomposition &
orthogonal matrices ); are constructed so that
Q7 AiQiy1, for s; =1, and QF,, A;Q;, for s; = —1,
are upper triangular, where ¢+ = 2,...,k and
Qi1 = Q1. The first transformed factor QT 4;Q»
is upper quasi-triangular. Illustrated:

,{Al Q2 g’A;2 Q3 R QEAZle (4)

A numerically stable method to compute (4) is
the so called Periodic QZ algorithm established by
(Van Loan, 1975; Bojanczyk et al., 1992; Hench
and Laub, 1994). Sections 2 and 3 of this work
are concerned with variations of this algorithm
which significantly decrease its execution time.
Reliability, a crucial aspect of any competitive
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implementation, is treated in Sections 4, 5 and
6.

2. BLOCKED REDUCTION TO PERIODIC
HESSENBERG FORM

As usual for algorithm which compute a variant
of the Schur decomposition, the first step consists
of the reduction to a Hessenberg like form. In the
context of general products, this form is almost
identical to (4) besides the first factor which stays
upper Hessenberg.

An efficient implementation should, in a first
attempt, reduce A; only to block Hessenberg
form, that is, n; > 1 subdiagonals are nonzero.
This concept was successfully applied to the QZ
algorithm (Dackland and Kagstrom, 1999). Since
the technique easily generalizes to the periodic
case, only a brief outline of the method for the
special product A1A2_1A3A4 with n = 9 and
nyp = 3 is presented.

The first stage starts with an RQ decomposition of
As which alters the matrix Ay. Next, A4(:,1: 3)
is triangularized by three Householder reflectors
from the left. Their WY representation is applied
to the remaining part of A4 as well as the matrix
Ajs (Golub and Loan, 1996, Section 5.1.7).

A QR decomposition triangularizes Az(4:9,1: 3)
introducing nonzeros in the lower triangular part
of A2(4:9,4:9).

This part is immediately annihilated by an appro-
priate RQ decomposition.
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Repeating the procedure for A3(1: 6,1 : 3) yields

the following pattern.
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Now, three blocked Householder reflectors trian-
gularize A;(:,1: 3) from the left.

Repeating the procedure for the remaining south-
east 6-by-6 subproduct finally leads to the follow-
ing block Hessenberg form.

It should be noted that the fill-ins in As overlap
for consecutive iterations. Hence, in an actual im-
plementation R(Q decompositions of smaller sized
r-by-2r matrices are applied in order to annihilate
these fill-ins.

The second stage is to annihilate the remaining
np — 1 subdiagonals of Ay, to get an upper Hessen-
berg matrices while keeping the other matrices up-
per triangular. This is accomplished via a super-
sweep routine as for the general product AB~! de-
scribed in (Dackland and Kagstrom, 1999). There
is virtually no difference when going to larger
products, only that the description of algorithm
becomes rather awkward.

Several benchmarks were run to compare the
above described blocked with the original ver-
sion (Bojanczyk et al., 1992) of the Hessenberg
reduction algorithm. The FORTRAN 77 imple-
mentations were compiled and serially executed
on an Origin 2000 computer equipped with 400
MHz IP27 R12000 processors. The programs call
optimized BLAS and LAPACK (Anderson et al.,
1994) subroutines from the SGI/Cray Scientific
Library version 1.2.0.0. The block size n, was
chosen to be 64.

s n Original  Blocked
(1,-1) 1024 432 195
(1,-1) 2048 4740 2481
(1,-1,1,—-1,1,-1) 512 110 60
(1,-1,1,-1,1,-1) 1024 1295 595
(1,1,1,1,1,1) 512 62 39
(1,1,1,1,1,1) 1024 1047 308

Table 1. Execution times in seconds for
the reduction to periodic Hessenberg
form.

In Table 1 an extract of the observed execution
times is presented. Overall, significantly lower
times for the blocked algorithms were noted as
soon as n > 128.



3. BLOCKED PERIODIC QZ ITERATION

A similiar algorithm as for the supersweep algo-
rithm can be used to speed up the generalized QZ
iterations as well (Dackland and Kagstrom, 1999).
Again, there is a straightforward way to adapt this
technique to the periodic case. From the results in
Section 2 it can be extrapolated that the execution
times of such a blocked periodic QZ iteration will
be significantly lower than the original formula-
tion.

4. BALANCING

The periodic QZ algorithm is backward stable
(Bojanczyk et al., 1992). That is, the computed
Schur decomposition corresponds to a slightly
perturbed product Hle flfi, where the backward
error ||A; — A;|| is of the order unit round off times
||A;]|. However, even such small perturbations
can be harmful when dealing with ill-conditioned
problems.

For example, consider the formal product

r 5726 3714 6716 1T 6728 3716 5718 .
6706 2+06 3+04 7709 3+03 7+01
4—16 2—04 5—06 6—23 3—11 3—13

rg—02 =24 g=117 [H+00 4—22 309 -1

5+17 5—05 6+08 7+20 2—02 9+11 7(5)
3+03 4719 7706 4+10 6712 7+01

where the signed integer superscript at the end
of a number represents its exponential exponent.
The eigenvalues, given by the general product
of the diagonal elements of the periodic Schur
decomposition, and the corresponding condition
numbers (Benner et al., 2000) are tabulated be-
low.

Eigenvalue Condition number
2.88728 4.32 x 1077
0.39941 1.77 x 10%!
0.07459 2.59 x 102!

Not surprisingly the periodic QZ algorithm com-
pletely fails to compute eigenvalues with accept-
able accuracy.

Such effects, caused from matrix entries of widely
varying magnitudes, can be removed by a preced-
ing balancing step. For positive definite diagonal
matrices Dy, Dg, D~, D¢ the eigenvalues of the
formal product AB~'CE~! and

(DaADg)(D,BDg)~"(D,CD¢) (Do EDg)™" (6)

are equivalent. Different sign patterns do not pose
a problem; if for example sg = 1, then in the
following discussion B can virtually be replaced
by the matrix

B = [bij]; ;= [6(bji #0)- i]n

id,5=1

The diagonal transformations shall reduce the
condition numbers and thus improve the accuracy
of the computed eigenvalues. However, minimiz-
ing the conditioning of the periodic eigenvalue
problem is certainly an unrealistic goal. On the
other hand, reducing the magnitude ranges of the
elements in the factors seems to be reasonable.

Analogously to the generalized eigenvalue prob-
lem (Ward, 1981), the balancing step can be for-
mulated as the solution of an optimization prob-
lem. Let oy, (35, v; and & denote the binary loga-
rithm of the i-th diagonal entry in the correspond-
ing diagonal matrix. Then one wants to minimize
the expression

n

> (i + B; +logy |a)?

i,j=1
+(7i + Bj + logy |bij
+(7i +&; + logs i
+(ai + & +logy [eij|)”.

S(a7 ﬁ7/\y7£) =

)? (7)
)2

By differentiation a minimal point («, 3,7, £) sat-

isfies the linear system of equations with system
matrix

F(E,A) H(A) 0 H(E)
HT(A) G(A,B) H'(B) 0
0 H(B) F(B,C) H(C)
HT(E) 0 HT(C) G(C,E)
and right hand side
row(A) + row(E)
_ | col(B) + col(A)
row(C) +row(B) |’

col(E) + col(C)
where the notation is as follows:

(1) F(X,Y) / G(X,Y) is a diagonal matrix
whose elements are given by the number of
nonzero entries in the rows / columns of X
and Y,

(2) H(X) is the incidence matrix of X,

(3) row(X) / col(X) is the vector of row /
column sums of the matrix

[6(zi; #0) - log, |1'ij|]?,j:1‘

It can be shown that this linear system is symmet-
ric, positive semidefinite and consistent. For its
solution a generalized conjugate gradient iteration
is used as described in (Ward, 1981).

To reduce the computational it is desirable to
construct a suitable preconditioner. Under the
assumption of completely dense factors the system
matrix is for even k given by a kn-kn block
circulant My, ,, with first n rows

[2n[ e’ 0...0 eeT],



and for odd & by a kn-by-kn block skew circulant
Ni,n, with first n rows

[QnI e’ 0...0 —eeT],

where e is the n-vector containing a one in each
element.

To be useful for preconditioning the application
of the Moore-Penrose generalized inverses M ,In

and NJr should be cheap. Indeed, for z € R* the

products M,I 1 and N,I ,x can be formed within
O(k) operatlons by using an incomplete Cholesky
factorization.

One can show that for general n > 1, now = €
]Rlcn7

1 1
M,Inx = [QIIm (M,Il - ilk) ®eeT]x

An analogous result holds for Np%.

Hence, per iteration of the conjugate gradient
method O(kn?) operations are required. If the
factors are reasonably dense, then the iterative
scheme usually converges within 3 iterations,
which was already observed in the context of the
generalized eigenvalue problem (Ward, 1981).

For Example (5) the binary logarithms of the
optimal scaling parameters are given by

=[36.3 —=30.0 3.14] B =[47.6 8.85 14.7]
= [42.7 —20.4 265 ¢ =[—38.8 34.7 —8.96 |

The eigenvalues of the balanced product are sub-
stantially less sensitive as shown below.

Eigenvalue Condition number
2.88728 2.49
0.39941 4.40
0.07459 3.44

As expected, the periodic QZ algorithm now re-
veals eigenvalues nearly to machine precision.

5. SHIFT COMPUTATION

At the start of each periodic QZ iteration an initial
orthogonal matrix Qg is applied to both sides of
the product. Given m shifts o; the matrix Qg
is required to satisfy the condition that its first
column is parallel to the first column of the shift
polynomial

k k
Pg = <HA:I —0’1) <HA:I —0'm>.
i=1 i=1
An wusual choice of shifts is to take the two
eigenvalues of the southeast two-by-two part of
the product,

alpr alan | [alon al, 1™
al aly)

alp, e 1™
]

nn

where m = n — 1 and a%) denotes the (j,1)-th
entry of A;.

Especially for long products, computing the shifts
and the shift polynomial desires for great care to
avoid unnecessary over-/underflow and disastrous
cancellations. From this point of view it is more
favorable to construct @y directly from the given
data. For example, if the shift polynomial can be
rewritten as a product of matrices, then Q¢ can be
computed by a partial product QR factorization
(De Moor and Van Dooren, 1992). For the double
shift strategy described above a suitable product
embedding is given by

A 0 1%
P=[4 L]-I] [ a0 In]
=2
_{—In 0 HAalaﬁ)I]
aM I, —al) I, 0 a1, al)r,

Lt ] 5]
Ao smddm] e
By carefully exploiting the underlying structure

the recursive computation of g from this embed-
ding requires approximately 37k operations.

6. DEFLATION AND EXPONENTIAL
SPLITTINGS

Convergence is certainly the most important as-
pect of an iterative algorithm.

Consider the product with factors

9.0 4.0 1.0 4.0 3.0 4.0
6.0 8.0 2.0 4.0 0.0 2.0
0.0 7.0 4.0 4.0 6.0 6.0
0.0 0.0 8.0 4.0 6.0 7.0
0.0 0.0 0.0 8.0 9.0 3.0
0.0 0.0 0.0 0.0 5.0 0.0

Ay =--- = Ay = diag(1071,1072,1073,1,1, 1),

and sy =+ = s = 1. For k = 5 the periodic QZ
algorithm requires 29 iterations to converge, 62
for k = 10, 271 for k = 40 and for k£ > 50 it does
not converge at all. Even worse, the breakdown
can not be cured by using standard ad hoc shifts.

The reason is basically that the leading diagonal
entries in the triangular factors diverge exponen-
tially, that is, the relation

k (4) 5
1T (%;“) =0@"), 0<a<1, (9)
i=1 @jj
is satisfied for j = 1,2. A Givens rotator acting
on such a (j,j + 1) plane is likely to converge to
the 2-by-2 identity matrix when propagated over
Ak, Akfl, N ,Ag back to Al.



It is important to note that (9) is not an excep-
tional situation. Exponentially splitted products
in the sense of (Oliveira and Stewart, 2000) have
the pleasant property that even for extremely
large k the eigenvalues can be computed to high
relative accuracy. Moreover, such products hardly
ever fail to satisfy (9). One of the prominent exam-
ples is the infinite product where all factors have
random entries chosen from a uniform distribution
on the interval (0,1). It can be shown that the
sequence of periodic Hessenberg forms related to
finite truncations of this product satisfies (9) for
allj=1,...,n—1.

In the original algorithm (Bojanczyk et al., 1992),
a direct deflation is only performed when a small
subdiagonal element in A; or a small diagonal
element in As, ..., Ay is encountered. For the pur-
pose that exponentially diverging diagonal entries
do not represent a convergence barrier the follow-
ing additional deflation strategy is proposed.

A QR decomposition is applied to the Hessenberg
matrix Ag. If s;, = 1, the resulting n — 1 Givens
rotators (cj,s;) are successively applied to the
columns of Ay,

(k) (k)
i i ¢ Sj]
0 a§+)1’j+1 =55 €

[ (k) (k) (k) (k)

€i% = Si%ivng $i%, ";CJ'GHLJ'] .

T8 41,541 Ci%j41,54+1
Whenever it happens that |s]aj+17j+1| is small
compared to

max (|cja§.fc~) — Sja;'ﬁ-)l,j|v |Cja§'li17j+1 |)’

or, being more generous, compared to ||Aglr,
then in the following steps (cj,s;) can be safely
set to (1,0). Otherwise, the (j + 1, 7)-th element
of Ay is annihilated by a Givens rotator acting
on rows (j,j + 1). (¢;,s;) is overwritten with the
parameters of this rotator.

The process, being similiar when s, = 1, is
recursively applied to Ag_1,...,As. At the end,
the rotator sequence is applied to the columns of
A, and each pair (¢j,s;) = (1,0) results in a zero
element at position (j + 1,j) in A;.

Since the above procedure is as expensive as a
single shift periodic QZ iteration it should only
occasionally be applied.

For Example (8) with & = 40 two applications of
the proposed deflation strategy result in zeros at
positions (2,1), (3,2) and (7,6) in A;. Barely 7
periodic QZ iterations are required to reduce the
remaining 3-by-3 product to quasi upper triangu-
lar form.

7. SOFTWARE IMPLEMENTATION

A FORTRAN 77 software package based on the
described algorithms is being developed. The rou-
tines conform to the SLICOT implementation and
documentation standards (Benner et al., 1999)
and are readily available from

http://www.math.tu-berlin.de/ kressner/
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