
KRYLOV SUBSPACE METHODS FOR LINEAR SYSTEMS WITH TENSOR
PRODUCT STRUCTURE∗

DANIEL KRESSNER† AND CHRISTINE TOBLER†

Abstract. The numerical solution of linear systems with certain tensor product structures is considered. Such
structures arise, for example, from the finite element discretization of a linear PDE on a d-dimensional hypercube.
Linear systems with tensor product structure can be regarded as linear matrix equations for d = 2 and appear to
be their most natural extension for d > 2. A standard Krylov subspace method applied to such a linear system
suffers from the curse of dimensionality and has a computational cost that grows exponentially with d. The key to
breaking the curse is to note that the solution can often be very well approximated by a vector of low tensor rank.
We propose and analyse a new class of methods, so called tensor Krylov subspace methods, which exploit this fact
and attain a computational cost that grows linearly with d.

1. Introduction. This paper is concerned with certain linear systems that can be written
as the sum of d Kronecker products of matrices. More specifically, we consider for d = 2,

(
A1 ⊗ In2

+ In1
⊗ A2

)
x = b1 ⊗ b2, (1.1)

and for d = 3,

(
A1 ⊗ In2

⊗ In3
+ In1

⊗ A2 ⊗ In3
+ In1

⊗ In2
⊗ A3

)
x = b1 ⊗ b2 ⊗ b3, (1.2)

where As ∈ R
ns×ns , bs ∈ R

ns , and Ins
denotes the ns × ns identity matrix. For general d ∈ N,

the linear system takes the form

Ax = b, (1.3)

with

A =

d∑

s=1

In1
⊗ · · · ⊗ Ins−1

⊗ As ⊗ Ins+1
⊗ · · · ⊗ Ind

, (1.4)

b = b1 ⊗ · · · ⊗ bd. (1.5)

Classical Krylov subspace methods for solving linear systems, such as conjugate gradient or
GMRES, are not well suited for solving (1.3). To illustrate this, let us consider the case of constant
dimensions, ns ≡ n. Then every vector in the Krylov subspace basis has length nd and a single
scalar product requires 2nd operations. The purpose of this paper is to develop Krylov subspace
methods having computational costs and memory requirements that scale linearly, rather than
exponentially, in d.

The following model problem from [9] shall illustrate the type of applications leading to (1.3).
Consider the partial differential equation

−△u = f in Ω, u|∂Ω = 0, (1.6)

where Ω = [0, 1]d is the d-dimensional hypercube. Choosing a tensorized finite element basis for
discretzing the variational formulation of (1.6) yields the mass and stiffness matrices

M = M1 ⊗ · · · ⊗ Md, B =

d∑

s=1

M1 ⊗ · · · ⊗ Ms−1 ⊗ Bs ⊗ Ms+1 ⊗ · · · ⊗ Md.

Hence, A = M−1/2BM−1/2 is of the form (1.4) with As = (Ms)
−1/2Bs(Ms)

−1/2. If f is separable,
f = f1(y1)f2(y2) · · · fd(yd), then the discretized right hand side takes the form (1.5). Otherwise,

∗Supported by the SNF research module Preconditioned methods for large-scale model reduction within the SNF
ProDoc Efficient Numerical Methods for Partial Differential Equations.

∗Seminar for Applied Mathematics, D-MATH, ETH Zurich, Raemistr. 101, CH-8092 Zurich.
{kressner,ctobler}@math.ethz.ch

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the function f might be well approximated by a short sum of separable functions, in which case
the solution of the discretized equation can be obtained from linear systems of the type (1.3) by
superposition. This is possible, for example, if f is sufficiently smooth and d is moderate, see,
e.g., [4, 5, 9].

For d = 2, the equation (1.1) can be reformulated as follows:

A1X + XA⊤
2 = b1(b2)

⊤, (1.7)

where x = rowvec(X), with the rowvec operator stacking the rows of a matrix X ∈ R
n1×n2 into

a single column vector x ∈ R
n1·n2 . The linear matrix equation (1.7) is usually called Sylvester

equation, which has been studied quite intensively, often motivated by applications in systems and
control theory. In fact, most results and algorithms presented in this paper are already known for
d = 2. In particular, several variants of Krylov subspace algorithms for solving (1.7) have been
developed and analysed, see [16, 17, 20, 22, 23]. The novelty of our work is in the extension to
d > 2; we will point out relevant connections to the case d = 2 whenever suitable. A notable
exception is the convergence bound for extended Krylov subspace methods we give in Section 6;
this result addresses an open question for the case d = 2.

Grasedyck [9] has combined an integral representation of the solution x to (1.3) with quadra-
ture based on sinc interpolation [25] to show that x can be well approximated by vectors of low
tensor rank and to develop a numerical algorithm that scales linearly with d. To the best of
our knowledge, this was the first and so far the only algorithm for efficiently approximating x
for high dimensions. Somewhat a drawback, the algorithm relies on computing matrix exponen-
tials of scalar multiples of As, which might become expensive for larger matrices. In contrast,
the approach proposed in this paper solely relies on matrix-vector multiplications with As. If
available, matrix-vector products with (As)

−1 can be used to speed up convergence. A variant of
Grasedyck’s algorithm is still invoked for solving smaller subsystems.

The rest of this paper is organized as follows. Section 2 contains some preliminary results,
mainly concerning tensor notation and approximations of low tensor rank to the solution of (1.3).
In Section 3, we will describe the newly proposed tensor Krylov subspace method and discuss
some implementation details, such as the efficient computation of the residual. The convergence
of this method is analysed in Section 4 for the (symmetric and non-symmetric) positive definite
case. Section 5 provides a discussion on solving the compressed systems needed in the course
of the tensor Krylov subspace method. In Section 6, we propose an extension of the tensor
Krylov subspace method, which is suitable if matrix-vector products not only with As but also
with (As)

−1 can be performed. Section 7 contains some numerical experiments with academic
examples to illustrate the theoretical results obtained in this paper. Finally, some conclusions are
outlined in Section 8.

2. Preliminaries. The following lemma is a consequence of well-known properties of the
Kronecker product [15].

Lemma 2.1. Consider the matrix A defined in (1.4). Then Λ(A), the set of eigenvalues of
A, is given by all possible sums of eigenvalues of A1, A2, . . . , Ad:

Λ(A) =
{
λ1 + λ2 + · · ·λd : λs ∈ Λ(As)

}
. (2.1)

The linear system (1.3) has a unique solution if and only if Λ(A) contains no zero eigenvalues,
which – by Lemma 2.1 – is equivalent to

λ1 + λ2 + · · · + λd 6= 0, ∀λs ∈ Λ(As). (2.2)

In the case of the Sylvester equation (1.7), this corresponds to the well-known condition Λ(A1) ∩
Λ(−A2) = ∅.

We recall that a non-symmetric matrix A is called positive definite if its symmetric part
(A + A⊤)/2 is positive definite. By Lemma 2.1, the matrix A is positive definite if and only if

ξ1 + ξ2 + · · · + ξd > 0, ∀ξs ∈ Λ(As + A⊤
s)/2. (2.3)

2

The following lemma recalls an integral representation of the solution x from [9].
Lemma 2.2. If A is positive definite then the solution of the linear system (1.3) admits the

representation

x = −
∫ ∞

0

(
exp(−tA1)b1 ⊗ · · · ⊗ exp(−tAd)bd

)
dt.

Note that Lemma 2.2 still holds if we impose the less restrictive condition that the eigenvalues of
A have positive real part, but this is not needed for the developments of our paper.

2.1. Tensor arithmetic and decompositions. This section provides a brief overview of
tensor arithmetic concepts needed in the rest of the paper. We refer to the recent survey [19] for
more details.

A d-way tensor v ∈ R
n1×n2×···×nd is an element of the tensor product of the vector spaces

R
n1 , Rn2 , . . . , Rnd for fixed integers n1, . . . , nd. The coordinates of v (with respect to a choice of

bases) form a multi-dimensional array. The element at the multi-index I = (i1, i2, . . . , in) in such
an array is denoted by vI. A tensor can be represented as a vector in R

n1n2···nd by simply stacking
the elements vI in lexicographical order. In the following, we will identify tensors with their vector
representations. For d = 2, this means that a matrix A ∈ R

n1×n2 is identified with the vector
rowvec(A) ∈ R

n1n2 , where rowvec stacks the transposed rows of A on top of each other. This
identification of tensors with vectors is unambiguous as soon as the order d and the dimensions
n1, . . . , nd are fixed.

A tensor v ∈ R
n1×n2×···×nd is of tensor rank one if its vector representation can be written as

a Kronecker product of d vectors:

v = v(1) ⊗ v(2) ⊗ · · · ⊗ v(d), v(s) ∈ R
ns . (2.4)

Note that this implies that the element at the multi-index I = (i1, i2, . . . in) takes the form

vI = v
(1)
i1

v
(2)
i2

· · · v(d)
id

.
A tensor is called supersymmetric if it is invariant under any permutations of the indices.

For matrices, supersymmetry coincides with the usual notion of symmetry. The following lemma
generalizes a well-known result on the symmetry of solutions to Lyapunov matrix equations.

Lemma 2.3. Consider the linear system Ax = b, where A takes the form (1.4) with constant
coefficients A = A1 = · · · = Ad. If A is invertible and b represents a supersymmetric tensor then
the solution x is also the representation of a supersymmetric tensor.

Proof. Assume that x is the solution of Ax = b and that x is not supersymmetric. Then
there is a permutation π : {1, . . . , d} → {1, . . . , d} such that the vector xπ, the representation of
the tensor with elements xπ(I) for every multi-index I, is different from x. The structure of A
implies Axπ = bπ. Since b is supersymmetric, Axπ = bπ = b contradicting the unique solvability
of Ax = b.

The CANDECOMP/PARAFAC (CP) decomposition represents a tensor as a sum of rank one
tensors. In vector language, this means

v =
k∑

i=1

v
(1)
i ⊗ v

(2)
i ⊗ · · · ⊗ v

(d)
i , v

(s)
i ∈ R

ns . (2.5)

If v admits a representation (2.5) then we say that v has tensor rank at most k. In our context
we do not need the concept of exact tensor rank, which is much more subtle than the usual rank

concept for matrices. Defining the ns × k matrices Vs =
[
v
(s)
1 , v

(s)
2 , . . . , v

(s)
k

]
, a more compact way

of writing (2.5) is

v = JV1, V2, . . . , VdK

The Tucker decomposition is another popular tensor decomposition. For an integer tuple
K = (k1, . . . , kd) it takes the form

v =
∑

I≤K

cI v
(1)
i1

⊗ v
(2)
i2

⊗ · · · ⊗ v
(d)
id

=: Jc; V1, V2, . . . , VdK, (2.6)

3

where the sum is taken over all multi-indices I = (i1, . . . , id) that are elementwise not larger than

K. It is worth emphasizing that Vs =
[
v
(s)
1 , v

(s)
2 , . . . , v

(s)
ks

]
is now an ns×ks matrix, i.e., the number

of columns of Vs may vary with s. The k1 × · · · × kd tensor formed from the elements cI is called
the core tensor. Note that the CP decomposition (2.5) is a special case of (2.6) for constant ks ≡ k
and an “identity” core tensor that is zero except for ci,i,...,i = 1 for i = 1, . . . , k. However, the
Tucker format usually assume the matrices Vs to be column-orthogonal, which is not the case for
the CP format.

Alternatively, the Tucker decomposition can be written as

v =
(
V1 ⊗ · · · ⊗ Vd

)
c, (2.7)

where c is to be understood as the vector representation of the core tensor in (2.6). This also
reveals that v is in the subspace spanned by V1 ⊗ V2 ⊗ · · · ⊗ Vd.

Notation 2.4. We write the multi-dimensional Kronecker product as
⊗d

s=1 vs := v1⊗· · ·⊗vd.
Note that the order in which the index s is evaluated is important, as the Kronecker product does
not commute.

2.2. Low tensor rank approximations. Solving (1.3) for larger d requires to work with a
data sparse representation of x. For this purpose, x will be approximated by a low rank tensor.
The following theorem provides a fundamental connection between approximations of x by low
rank tensors and separable approximations to the reciprocal of a sum of d variables.

Theorem 2.5. Consider the linear system (1.3) with coefficient matrices As ∈ R
ns×ns ,

assume that the system is solvable and that the matrices As are diagonalizable: P−1
s AsPs = Λs

with invertible Ps and diagonal Λs. Let f
(s)
j : Ωs → C, j = 1, . . . , k, be analytic functions such

that Ωs contains the eigenvalues of As and

∥∥∥
1

µ1 + µ2 + · · · + µd
−

k∑

i=1

f
(1)
i (µ1)f

(2)
i (µ2) · · · f (d)

i (µd)
∥∥∥

Ω
≤ ǫ(k), (2.8)

where ‖ · ‖Ω denotes the supremum norm on Ω = Ω1 × · · · × Ωd Then there is a rank-k tensor xk

such that

‖x − xk‖2 ≤ κP ǫ(k) ‖b‖2,

where κP = κ2(P1)κ2(P2) · · ·κ2(Pd) and κ2(·) denotes the 2-norm condition number of a matrix.
Proof. By a similarity transformation with the matrix P = P1⊗· · ·⊗Pd, the linear system (1.3)

is transformed into

(d∑

s=1

In1
⊗ · · · ⊗ Ins−1

⊗ Λs ⊗ Ins+1
⊗ · · · ⊗ Ind

)
x̃ = b̃.

with x̃ = P−1x and b̃ = P−1b. This is a diagonal linear system and the entry of the solution x̃ at
the multi-index I = (i1, . . . , id) is given by

x̃I =
b̃I

λ
(1)
i1

+ λ
(2)
i2

+ · · · + λ
(d)
id

,

where λ
(1)
i1

+ · · · + λ
(d)
id

6= 0 from Lemma 2.1. Similarly, if we define the rank-k tensor

xk =
k∑

j=1

f
(1)
j

(
A1

)
b1 ⊗ f

(2)
j

(
A2

)
b2 ⊗ · · · ⊗ f

(d)
j

(
Ad

)
bd, (2.9)

the entry of the correspondingly transformed tensor x̃k = P−1xk at I is given by

b̃I f
(1)
j

(
λ

(1)
i1

)
f

(2)
j

(
λ

(2)
i2

)
· · · f (d)

j

(
λ

(d)
id

)
.

4

Hence, with K = (k, . . . , k),

‖x̃ − x̃k‖2
2 =

∑

I≤K

|b̃I|2
∣∣∣∣

1

λ
(1)
i1

+ λ
(2)
i2

+ · · · + λ
(d)
id

−
k∑

j=1

f
(1)
j

(
λ

(1)
i1

)
· · · f (d)

j

(
λ

(d)
id

)∣∣∣∣
2

≤ ǫ(k)2
∑

I≤K

|b̃I|2 = ǫ(k)2‖b̃‖2
2.

Combining this bound with ‖x− xk‖2 = ‖P(x̃− x̃k)‖2 ≤ ‖P‖2‖x̃− x̃k‖2, ‖b̃‖2 ≤ ‖P−1‖2‖b‖2 and
κP = ‖P‖2‖P−1‖2 yields the statement of the theorem.

Theorem 2.5 provides an upper bound on the error for the best approximation of x by a rank-k
tensor. To be practically useful, we still need to address the approximation problem (2.8). The
following technical lemma by Braess and Hackbusch [6, Sec. 2] will turn out to be very helpful for
this purpose.

Lemma 2.6 ([6]). Let sk(µ) =
∑k

i=1 ωi exp(−αiµ) with αi, ωi ∈ R. Then there is a choice of
αi > 0, ωi > 0 (depending on k and R > 1) such that

sup
µ∈[1,R]

∣∣∣
1

µ
− sk(µ)

∣∣∣ ≤ 16 exp
(−kπ2

log(8R)

)
.

Corollary 2.7. Consider the linear system Ax = b with A and b of the form (1.4)–(1.5).
If A is symmetric positive definite then there exists an approximation xk of tensor rank at most
k, such that

‖x − xk‖2 ≤ 16

λmin(A)
exp

(−kπ2

log(8κ(A))

)
‖b‖2. (2.10)

Proof. As A is symmetric positive definite, all coefficient matrices As are symmetric and
Ax = b has a unique solution. Therefore, Theorem 2.5 can be applied with Ps orthogonal (hence,
κP = 1). The result follows directly from this theorem combined with the following observation.

Applying Lemma 2.6, we use the substitution µ = µ1+...+µd

λmin(A) , y ∈ [1, λmax(A)
λmin(A)] =: [1, R] and obtain

λmin(A)
∣∣∣

1

µ1 + . . . + µd
−

k∑

i=1

ωi

λmin(A)
e−αiµ1/λmin(A) · · · e−αiµd/λmin(A)

∣∣∣ ≤ 16 exp
(−kπ2

log(8κ(A))

)
,

yielding a bound on the quantity ǫ(k) defined in (2.8).
Corollary 2.7 shows that the solution x can be well approximated by a low-rank tensor,

provided that A is symmetric positive definite. In comparison, the bound in ([12], Appendix
D3.4.1) yields

‖x − x2k+1‖2 ≤ CSt

λmin(A)
exp(−π

√
k)‖b‖2, (2.11)

where CSt is independent of A and k. Experimentally, we found CSt ≈ 2.75. It is important to
emphasize that the convergence rate predicted by (2.11) does not depend on the condition number
of A. However, this comes at the expense of having

√
k instead of k in the exponent. It is therefore

of interest to compare (2.11) with the bound of Corollary 2.7 for different κ(A), see Figure 2.1. It
turns out that the bound of Corollary 2.7 is often significantly better, except for very large values
of κ(A) and smaller k.

Remark 2.8. Note that Lemma 2.2 also suggests an algorithm for calculating xk:

xk =

k∑

j=1

ω̃j

d⊗

s=1

exp(−α̃jAs)bs, (2.12)

with α̃j = αj/λmin(A), ω̃j = ωj/λmin(A), and αj , ωj as in Lemma 2.6. The coefficients αj , ωj

only depend on k and R = κ(A) > 1. The resulting method will be discussed in somewhat more
detail in Section 5.

5

0 50 100 150 200

10
−10

10
−5

10
0

k
||x

−
x k|| 2

bound (2.11)
bound(2.10) for cond = 1e5
bound (2.10) for cond = 1e15

Fig. 2.1. Comparison of the convergence bounds (2.10) and (2.11), assuming λmin(A) = 1

3. The tensor Krylov subspace method. In the following, we will develop numerical
algorithms for approximating the solution x to the linear system (1.3). Note that Section 2.2,
in particular Remark 2.8, already provides a rather effective method for computing low tensor
rank approximations as the computational effort grows linearly with d and the convergence rate
depends very mildly, at most logarithmically on the conditioning of A. Indeed, this method is
used for solving compressed systems arising in our algorithms, see Section 5 below. However,
for the purpose of this method, the expressions exp(−α̃jAs)bs must be computed rather exactly
to guarantee a good accuracy of x, which may be regarded expensive for larger matrices when
compared to, say, a simple matrix-vector multiplication.

3.1. Tensorized Krylov subspaces. We let

Kks
(As, bs) = span

{
bs, Asbs, . . . , Aks−1

s bs

}
, s = 1, . . . , d,

denote the Krylov subspace obtained from ks − 1 successive matrix-vector products of As with
bs. In view of the PDE (1.6), each Kks

(As, bs) could be seen as a subspace corresponding to one
coordinate of the domain. To obtain a subspace for all d coordinates, we tensorize and take the
linear hull.

Definition 3.1. Let A, b be as in equations (1.3)–(1.4) and consider a multi-index K =
(k1, . . . , kd) with ks ∈ N. Then

K⊗
K

(A, b) := span
(
Kk1

(A1, b1) ⊗ · · · ⊗ Kkd
(Ad, bd)

)

is called the tensorized Krylov subspace associated with A and b.
Equivalently, the tensorized Krylov subspace can be defined as

K⊗
K

(A, b) = span
{
Ai1−1

1 b1 ⊗ · · · ⊗ Aid−1
d bd : I ≤ K

}
. (3.1)

A more computationally oriented definition is obtained as follows. Define d matrices Us, s =
1, . . . , d, such that the columns of each Us span Kks

(As, bs). Then K⊗
K

(A, b) is spanned by the
columns of U = U1 ⊗ · · · ⊗ Ud. Combined with equations (2.6)–(2.7), this shows that K⊗

K
(A, b) is

spanned by the Tucker decompositions Jc; U1, U2, . . . , UdK for all possible core tensors c.
In the following, we discuss an extension of the well-known relation between Krylov subspaces

and matrix polynomials. Given a multi-index K we call p : R
d → R a multivariate polynomial of

degree less than K if p is a polynomial of degree at most ks − 1 in the sth variable. The space of
all such multivariate polynomials is denoted by Π⊗

K
. Each p ∈ Π⊗

K
can be written as

p(µ1, . . . , µd) =
∑

L≤K

cL µl1−1
1 µl2−1

2 · · ·µld−1
d , cL ∈ R,

where the sum is taken over multi-indices L that satisfy 1 ≤ ls ≤ ks The evaluation of p at the

6

matrix A, defined in (1.4) and represented by the matrix tuple (A1, . . . , Ad), is defined as

p(A1, . . . , Ad) :=
∑

L≤K

cL Âl1−1
1 Âl2−1

2 · · · Âld−1
d

=
∑

L≤K

cL Al1−1
1 ⊗ Al2−1

2 ⊗ · · · ⊗ Ald−1
d , (3.2)

where Âs = In1
⊗ · · · ⊗ Ins−1

⊗ As ⊗ Ins+1
⊗ · · · ⊗ Ind

and A = Â1 + · · · + Âd.
Lemma 3.2. With the notation introduced above, K⊗

K
(A, b) = span

{
p(A1, . . . , Ad)b : p ∈

Π⊗
K

}
.

Proof. Let g = p(A1, . . . , Ad)b for some p ∈ Π⊗
K

. By (3.2), this is equivalent to

g =
∑

L≤K

cL Al1−1
1 b1 ⊗ · · · ⊗ Ald−1

d bd, (3.3)

i.e., g is a linear combination of elements from Kk1
(A1, b1) ⊗ · · · ⊗ Kkd

(Ad, bd) and therefore – by
definition – g ∈ K⊗

K
(A, b). For the other direction, we note that (3.1) implies that any g ∈ K⊗

K
(A, b)

can be written in the form (3.3), which concludes the proof.
Remark 3.3. Lemma 3.2 reveals an important difference between standard and tensorized

Krylov subspace. For k0 ∈ N, the standard Krylov subspace satisfies

Kk0
(A, b) = {p(A)b : p ∈ Πk0

},
where Πk0

denotes the space of all univariate polynomials of degree at most k0. For a given
univariate polynomial p ∈ Πk0

, we define the multivariate polynomial

p̃(µ1, µ2, . . . , µd) := p(µ1 + µ2 + · · · + µd). (3.4)

By direct computation p̃(A1, . . . , Ad)b = p(A)b, which – together with Lemma 3.2 – shows

K⊗
K

(A, b) ⊃ Kk0
(A, b)

for K = (k0, . . . , k0). On the other hand, it is obvious that not every multivariate polynomial takes
the particular form (3.4) and hence K⊗

K
(A, b) 6= Kk0

(A, b) for d > 1 and nontrivial choices of A, b.
To summarize: Tensorized Krylov subspaces are richer than standard Krylov subspaces. This is
no surprise when taking into account that the dimension of K⊗

K
(A, b) grows exponentially with d

while the dimension of Kk0
(A, b) grows only linearly with d.

3.2. Basic algorithm. In this section, we present the basics of the newly proposed tensor
Krylov subspace algorithm. This algorithm approximates the solution x of the linear system (1.3)
by an element from K⊗

K
(A, b).

To start with, we require a basis of K⊗
K

(A, b). For this purpose, the standard Arnoldi method
is used to compute matrices Us ∈ R

ns×ks such that the columns of each Us form an orthonormal
basis of the Krylov subspace Kks

(As, bs). A brief description of the Arnoldi method is provided
in Algorithm 1; more algorithmic details can be found, e.g., in [21, 26]. We assume that a
suitable reorthogonalization strategy is performed such that the columns of Us are also numerically
orthonormal.

Upon successful completion of Algorithm 1, one obtains the so called Arnoldi decomposition

AsUs = UsHs + h
(s)
ks+1,ks

u
(s)
ks+1e

⊤
ks

, (3.5)

where the upper Hessenberg matrix Hs collects the coefficients h
(s)
ij :

Hs =




h
(s)
11 h

(s)
12 · · · h

(s)
1,ks

h
(s)
21

. . .
. . .

...
. . .

. . . h
(s)
ks−1,ks

h
(s)
ks,ks−1 h

(s)
ks,ks




= U⊤
s AsUs. (3.6)

7

Algorithm 1 Arnoldi method

Input: Matrix As ∈ R
ns×ns , Vector bs ∈ R

ns , ks ∈ N.
Output: Matrix Us ∈ R

n×ks containing an orthonormal basis of Kks
(As, bs).

u
(s)
1 ← bs/‖bs‖2

for j = 1, . . . , ks do

w ← Asu
(s)
j

h
(s)
1:j,j ←

[
u

(s)
1 , . . . , u

(s)
j

]⊤
w

ũ
(s)
j+1 ← w −

[
u

(s)
1 , . . . , u

(s)
j

]
h

(s)
1:j,j

h
(s)
j+1,j =

∥∥ũ
(s)
j+1

∥∥
2

u
(s)
j+1 = ũ

(s)
j+1/

∥∥ũ
(s)
j+1

∥∥
2

end for
Set Us =

[
u

(s)
1 , . . . , u

(s)
ks

]
.

Note that if As is symmetric then Hs inherits this symmetry and becomes a tridiagonal matrix.
As discussed above, the tensor Krylov subspace K⊗

K
(A, b) is spanned by the columns of U =

U1 ⊗ . . . ⊗ Ud. To extract an approximation to the solution of the linear system (1.3) from the
tensor Krylov subspace, we define xK = Uy where y solves the compressed linear system

Hy = b̃, with H = U⊤AU and b̃ = U⊤b. (3.7)

Then, xK satisfies the following Galerkin condition:

AxK − b ⊥ K⊗
K

(A, b).

The solvability of (3.7) will be discussed in more detail in Section 4. Note that H and b̃ take the
form

H = U⊤AU =
d⊗

s=1

U⊤
s

(d∑

s=1

In1
⊗ · · · ⊗ Ins−1

⊗ As ⊗ Ins+1
⊗ · · · ⊗ Ind

) d⊗

s=1

Us

=

d∑

s=1

Ik1
⊗ · · · ⊗ Iks−1

⊗ Hs ⊗ Iks+1
⊗ · · · ⊗ Ikd

,

b̃ = U⊤
d⊗

s=1

bs =

d⊗

s=1

U⊤
s bs =

d∏

s=1

‖bs‖2

d⊗

s=1

e1.

It is important to note that the compressed system Hy = b̃ inherits the Kronecker product
structure from the original linear system. Solution methods applicable to the original system can
therefore also be applied to the compressed system, see also Section 5. Note that the computational
effort for building up and storing the bases of the tensorized Krylov subspace grows only linearly
with the number of dimensions. Assuming that the cost for solving the compressed system admits
the same growth, we therefore obtain a numerical method with an overall cost that scales linearly
with d.

For small dimensions d, it might be feasible to store an explicit representation of the solution
y to (3.7). In this case, the approximation xK is represented by the Tucker decomposition

xK = Uy = Jy; U1, U2, . . . , UdK

with core tensor y. If y itself is represented by a Tucker decomposition, then xK admits again a
Tucker decomposition with the same core tensor as y. For high dimensions d, such a representation
is not admissible and we will discuss in Section 5 how to represent (or rather approximate) y by
a CP decomposition,

y =
t∑

i=1

y
(1)
i ⊗ · · · ⊗ y

(d)
i . (3.8)

8

Then xK can also be represented by a CP decomposition:

xK ≈ U
t∑

i=1

y
(1)
i ⊗ · · · ⊗ y

(d)
i =

t∑

i=1

U1y
(1)
i ⊗ · · · ⊗ Udy

(d)
i .

Algorithm 2 summarizes the proposed tensor Krylov subspace method for solving (1.3).

Algorithm 2 Tensor Krylov subspace method

Input: Coefficients As ∈ R
ns×ns and bs ∈ R

ns of the linear system (1.3).
Output: Approximation xK = Uy to the solution x of (1.3).

for s = 1 to d do
Apply Algorithm 1 to As and bs to compute Us,Hs.

end for
Compute/approximate solution y to the compressed equation Hy = b̃ in (3.7).

3.3. Computation of the residual. To monitor the convergence of Algorithm 2, one can
compute the norm of the residual rK = b − AxK. The following lemma extends known results
for Lyapunov and Sylvester equations [17] to compute this norm in a cheaper way when xK is
obtained by a Krylov subspace method.

Lemma 3.4. Let xK be computed by Algorithm 2. Then the residual rK = AxK − b satisfies

‖rK‖2
2 =

d∑

s=1

∣∣h(s)
ks+1,ks

∣∣2 ∑

L≤K

ls=ks

∣∣yL

∣∣2 + ‖Hy − b̃‖2
2.

Proof. For β ∈ {0, 1}d, we define Uβ = Uβ,1 ⊗ Uβ,2 ⊗ · · · ⊗ Uβ,d, where Uβ,s = Us if β(s) = 0
and the columns of Uβ,s form a basis of span(Us)

⊥ otherwise. Note that span
(
Uβ

)
⊥ span

(
Uγ

)

unless β = γ. Hence R
n1n2···nd can be written as the orthogonal sum of all span

(
Uβ

)
and therefore

‖rK‖2
2 =

∑

β∈{0,1}d

‖U⊤
β r‖2

2 (3.9)

For β ≡ 0, Uβ = U and U⊤rK = U⊤AUy − U⊤b = Hy − b̃, the error in solving the compressed
system. For general β,

U⊤
β AU =

d∑

s=1

U⊤
β,1U1 ⊗ · · · ⊗ U⊤

β,s−1Us−1 ⊗ U⊤
β,sAsUs ⊗ U⊤

β,s+1Us+1 ⊗ · · · ⊗ U⊤
β,dUd.

Note that U⊤
β,jUj = 0 if β(j) = 1. Hence, U⊤

β AU = 0 if β contains more than one entry 1. Com-

bined with the fact that U⊤
β b = 0 unless β ≡ 0, this implies that only terms corresponding to β with

exactly one entry 1 contribute to the sum (3.9). Let us consider such a βs = (0, . . . , 0, 1, 0, . . . , 0)
with a single entry 1 at the sth position. Then

‖U⊤
βs

rK‖2
2 =

∥∥(
I ⊗ · · · ⊗ I ⊗ U⊤

β,sAsUs ⊗ I ⊗ · · · ⊗ I
)
y
∥∥2

2

=
∥∥(

I ⊗ · · · ⊗ I ⊗ h
(s)
ks+1,ks

U⊤
β,su

(s)
ks+1e

⊤
ks

⊗ I ⊗ · · · ⊗ I
)
y
∥∥2

2

=
∣∣h(s)

ks+1,ks

∣∣2∥∥(
I ⊗ · · · ⊗ I ⊗ e⊤ks

⊗ I ⊗ · · · ⊗ I
)
y
∥∥2

2
=

∣∣h(s)
ks+1,ks

∣∣2 ∑

L≤K

ls=ks

∣∣yL

∣∣2, (3.10)

where we used the Arnoldi decomposition (3.5) and
∥∥U⊤

β,su
(s)
ks+1

∥∥
2

= 1. This completes the proof

as ‖r‖2
2 is obtained by summing up the terms (3.10) for s = 1, . . . , d.

9

Although the expression provided by Lemma 3.4 reduces the cost for computing the residual
norm significantly, it still scales exponentially with d simply because almost all elements of y need
to be accessed. This exponential growth can be avoided if y is represented in a data-sparse format.
Consider, for example, a CP decomposition (3.8) of y. Then

∑

L≤K

ls=ks

∣∣yL

∣∣2 =
∥∥∥

t∑

i=1

e⊤ks
y
(s)
i

⊗

j 6=s

y
(j)
i

∥∥∥
2

2
,

where the cost for computing the latter expression scales linearly with d, assuming that t remains
constant as d grows. Hence, the overall cost for evaluating ‖rK‖2

2 scales quadratically with d.

4. Convergence analysis. In the following, we will develop a convergence analysis for the
tensor Krylov subspace method in special cases. It is clear that this can only be performed in
a meaningful way if the unique solvability of the compressed system (3.7) is guaranteed. The
following lemma is an extension of the usual positive definiteness condition in the convergence
analysis of FOM methods for standard linear systems, see [24] and the references therein.

Lemma 4.1. Given the equation (1.3), suppose that the eigenvalues of the symmetric parts
(As + A⊤

s)/2 are contained in intervals [αs, βs]. Let U = U1 ⊗ · · · ⊗Ud where the columns of each
Us ∈ R

ns×ks form an orthonormal basis. Then the compressed matrix U⊤AU is invertible if

[d∑

s=1

αs,
d∑

s=1

βs

]
∩ {0} = ∅. (4.1)

Proof. The Cauchy interlacing theorem implies that the eigenvalues of the compressed sym-
metric parts U⊤

s AsUs + U⊤
s A⊤

s Us = U⊤
s (As + A⊤

s)Us are also contained in [αs, βs]. Combined
with Lemma 2.1, this shows that any eigenvalue of U⊤AU + U⊤A⊤U can be written as µ =∑d

s=1 µs, µs ∈ [αs, βs] and therefore µ ∈
[∑d

s=1 αs,
∑d

s=1 βs

]
. Then (4.1) implies that the set

of all such µ is either negative or positive. Hence, the symmetric part of U⊤AU is positive or
negative definite, which concludes the proof.

It is common to call a non-symmetric matrix to be positive/negative definite if its symmetric
part is positive/negative definite. By Lemma 2.1, the condition (4.1) is equivalent to the definite-
ness of A. For this condition to be satisfied it is sufficient but not necessary∗ that all coefficients
As are either positive definite or negative definite. In particular, the compressed system is solvable
in the special case when all As are symmetric positive definite.

For the development of our convergence analysis it is central to note that the residual rK =
AxK − b, with xK produced by Algorithm 2, satisfies

U⊤rK = U⊤AxK − U⊤b = U⊤AUy − b̃ = Hy − b̃ = 0.

In other words, the following Galerkin condition holds:

AxK − b ⊥ K⊗
K

(A, b). (4.2)

For practical purposes, the compressed system cannot be solved exactly, but only a low-rank
approximation to the solution y is found. However, as this approximation error can be reduced
at will by increasing the rank of y, we will assume in this section that the compressed system is
solved exactly.

4.1. The symmetric positive definite case. We first consider the case that A is symmetric
positive definite. This allows us to introduce the weighted Euclidean norm

‖c‖A := ‖A1/2c‖2, c ∈ R
n1n2···ns ,

∗On the other hand, it is easy to see that one can always shift the matrices As in a way such that each As

inherits the definiteness of A but A itself is not altered. For positive definite A, Ãs = As + (ᾱ − αs)I with

ᾱ = α1+···+αd
d

is such a shift.

10

and relate the Galerkin condition (4.2) to a linear least-squares problem.
Proposition 4.2. Let x denote the solution of (1.3), where A is symmetric positive definite.

Then the Galerkin condition (4.2) for an approximation xK implies

xK = arg min
x̃∈K⊗

K
(A,b)

‖x̃ − x‖A.

Proof. This result is well known and can be proven by standard techniques (see, e.g. [21]).
An immediate consequence of Proposition 4.2, the error in the A-norm of xK decreases monoton-
ically as any of the individual dimensions ks in the tensorized Krylov subspace K⊗

K
(A, b) grows.

The following theorem turns Proposition 4.2 into a multivariate polynomial approximation
problem. Let us recall from Section 3.1 that Π⊗

K
denotes the space of all multivariate polynomials

of degree at most ks − 1 in the sth variable.
Theorem 4.3. Under the assumptions of Proposition 4.2,

‖xK − x‖A ≤
√
‖A‖2‖b‖2 min

p∈Π⊗
K

max
λs∈Λ(As)

s=1,...,d

∣∣∣p(λ1, . . . , λd) −
1

λ1 + · · · + λd

∣∣∣.

Proof. From Proposition 4.2, we have

‖xK − x‖A = min
x̃∈K⊗

K
(A,b)

‖x̃ − x‖A ≤
√

‖A‖2 min
x̃∈K⊗

K
(A,b)

‖x̃ − x‖2.

By Lemma 3.2, any tensor x̃ in the tensorized Krylov subspace K⊗
K

(A, b) can be expressed as
x̃ = p(A1, . . . , Ad)b, where p is a multivariate polynomial in p ∈ Π⊗

K
. Hence,

‖xK − x‖A ≤
√
‖A‖2 ‖b‖2 min

p∈Π⊗
K

∥∥p(A1, . . . , Ad) −A−1
∥∥

2
.

By a similarity transformation (parallel to the proof of Theorem 2.5), we find

∥∥p(A1, . . . , Ad) −A−1
∥∥

2
= max

λs∈Λ(As)

s=1,...,d

∣∣∣p(λ1, . . . , λd) −
1

λ1 + · · · + λd

∣∣∣,

which concludes the proof.
We follow the standard technique of relaxing the min-max problem of Theorem 4.3 such that

the maximum is taken over the intervals [αs, βs] := [λmin(As), λmax(As)] instead of the discrete
sets of eigenvalues. This can only increase the bound and we therefore obtain

‖xK − x‖A ≤
√
‖A‖2‖b‖2 EΩ(K),

where

EΩ(K) := min
p∈Π⊗

K

∥∥∥p(µ1, . . . , µd) −
1

µ1 + · · · + µd

∥∥∥
Ω
, (4.3)

with ‖ · ‖Ω defined as the supremum norm on Ω := [α1, β1] × · · · × [αd, βd].
There are several ways to approach the multivariate polynomial approximation problem (4.3).

Inspired by work in [5], we have first followed an approach based on interpolation by tensor
Chebyshev polynomials in [27]. Unfortunately, the Lebesgue constants needed to be taken care of
in this approach grow exponentially with d, leading to rather loose bounds for high dimensions.

For example, if k1 = · · · = kd =: k a factor proportional to
(

2
π ln(k)

)d−1
is introduced by the

Lebesgue constants. This factor can be avoided when following a completely different approach,
essentially mimicking the proof of [23] on a scalar level for arbitrary dimensions. Lemma A.1 in
the Appendix contains the approximation result obtained in this manner. Combining Theorem 4.3
with Lemma A.1 yields the following convergence bound.

11

Corollary 4.4. Under the assumptions of Proposition 4.2,

‖xK − x‖A ≤
√
‖A‖2 ‖b‖2

λmin(A)

d∑

s=1

√
κs + 1√

κs
·
(√

κs − 1√
κs + 1

)ks

,

where κs = 1 + βs−αs

λmin(A) .

For d = 2, a bound similar to the bound of Corollary 4.4 has been obtained in [23, Proposition
3.1]. In fact, the bound of [23] has a somewhat smaller constant by avoiding the detour via
multivariate polynomial approximations. In principle, the proof techniques [23] could also be
extended to d > 2 but our approach has the advantage of also admitting convergence bounds for
the extended Krylov subspace method, see Section 6.

Remark 4.5. It is instructive to compare the error bound of Corollary 4.4 with the well-
known error bound of the classical CG method applied to the linear system (1.3):

‖xk − x‖A ≤ 2‖b‖A
(√

κ(A) − 1√
κ(A) + 1

)k

≤ 2
√

‖A‖2‖b‖2

(√
κ(A) − 1√
κ(A) + 1

)k

, (4.4)

where κ(A) = ‖A‖2‖A−1‖2 = β1+···+βd

α1+···+αd
.

To simplify the discussion, assume α1 = · · · = αd =: α and β1 = · · · = βd =: β, in which case
it is reasonable to choose K = (k, . . . , k). Then the bound of Corollary 4.4 simplifies to

‖xK − x‖A ≤ d

√
κ + 1√

κ
·
√

‖A‖2 ‖b‖2

λmin(A)

(√
κ − 1√
κ + 1

)k

, (4.5)

where κ = 1 + β−α
dα = d−1

d + κ(A)
d . For larger κ(A) this means that the effective condition

number that determines the convergence rate in (4.5) is divided by d in comparison to (4.4). This
indicates that the tensor Krylov subspace method can be expected to require 1/

√
d times the

iterations needed by classical CG, see also Remark 3.3. More surprisingly, the convergence rate of
the tensor Krylov subspace method appears to improve with increasing number of dimensions d,
assuming that the condition number of A remains constant. This benefit from higher dimensions
was already noted for d = 2 in [23] and is confirmed by the numerical experiments in Section 7.

Remark 4.6. To avoid unnecessary work, it is of interest to choose K = (k1, . . . , kd) such that

the summands in the convergence bound of Corollary 4.4 are balanced, i.e., the terms
(√

κs−1√
κs+1

)ks

are nearly constant for all s. Taking the logarithm yields

ks log
(√

κs − 1√
κs + 1

)
≈ −2

ks√
κs

for large κs. Hence it is reasonable to choose K = (k1, . . . , kd) such that ks√
κs

is nearly constant

across all dimensions s.

4.2. An approach to the non-symmetric positive definite case. To obtain convergence
bounds in the case that A is non-symmetric positive definite, we follow the proof technique by
Simoncini and Druskin [23] for Lyapunov equations. To simplify the presentation it is assumed
that ‖bs‖2 = 1 throughout the rest of this section.

Lemma 4.7. Let x denote the solution of (1.3), where A is positive definite. For the approx-
imation xK obtained by Algorithm 2 it holds that

‖xK − x‖2 ≤
d∑

s=1

∫ ∞

0

e−α̂st
∥∥x

(s)
ks

− x(s)
∥∥

2
dt,

where x(s) = e−tAsbs, x
(s)
ks

= Use
−tHse1, and α̂s =

∑
j 6=s

αj with αj = λmin(Aj + A⊤
j)/2 .

12

Proof. By Lemma 2.2, both x and xK admit integral representations:

x =

∫ ∞

0

x(1) ⊗ · · · ⊗ x(d) dt, xK =

∫ ∞

0

x
(1)
k1

⊗ · · · ⊗ x
(d)
kd

dt.

Note that ‖x(s)‖2 ≤ e−αst as well as ‖x(s)
ks

‖2 ≤ e−αst. We have

‖xK − x‖2 ≤
∫ ∞

0

∥∥∥
d⊗

j=1

x
(j)
kj

−
d⊗

j=1

x(j)
∥∥∥

2
dt

=

∫ ∞

0

∥∥∥
d∑

s=1

(s−1⊗

j=1

x
(j)
kj

)
⊗

(
x

(s)
ks

− x(s)
)
⊗

(d⊗

j=s+1

x(j)
)∥∥∥

2
dt

≤
d∑

s=1

∫ ∞

0

(s−1∏

j=1

‖x(j)
kj

‖2

)∥∥x
(s)
ks

− x(s)
∥∥

2

(d∏

j=s+1

‖x(j)‖2

)
dt

≤
d∑

s=1

∫ ∞

0

e−α̂st
∥∥x

(s)
ks

− x(s)
∥∥

2
dt,

which concludes the proof.

Note that the term
∥∥x

(s)
ks

− x(s)
∥∥

2
appearing in the bound of Lemma 4.7 corresponds to

the approximation error of the usual Krylov subspace approximation to the matrix exponential
e−tAsbs. Any reasonably good bound on this approximation error could be inserted to yield a
bound on ‖xK − x‖2. In the following, we demonstrate this procedure for the case that the fields
of values F (As) = {w⊤Asw : w ∈ C

ns , ‖w‖2 = 1} for s = 1, . . . , d are contained in ellipses.

Theorem 4.8. Additionally to the assumptions of Lemma 4.7, suppose that the field of values

of each As ∈ R
ns×ns is contained in an ellipse of center (cs, 0), foci (cs ± fs, 0) and semi-axes a

(1)
s

and a
(2)
s . Then

‖xK − x‖2 ≤
d∑

s=1

4√
(α̂s + cs)2 − f2

s

ρs

ρs − 1
ρ−ks

s ,

where rs =
a(1)

s +a(2)
s

2 , ρs = cs+α̂s

2rs
+ 1

2rs

√
(cs + α̂s)2 − f2

s for s = 1, . . . , d.

Proof. By the proof of Proposition 4.1 in [23],

‖x(s)
ks

− x(s)‖2 ≤ 4
∞∑

j=ks

e−cstIj(fst)
(2rs

fs

)j

,

where Ij denotes the jth modified Bessel function, see also the proof of Lemma A.1. Combined
with Lemma 4.7, this yields

‖xK − x‖2 ≤ 4
d∑

s=1

∞∑

j=ks

∫ ∞

0

e−(α̂s+cs)tIj(fst)
(2rs

fs

)j

dt

=

d∑

s=1

4√
(α̂s + cs)2 − f2

s

∞∑

j=ks

ρ−j
s =

d∑

s=1

4√
(α̂s + cs)2 − f2

s

ρs

ρs − 1
ρ−ks

s .

In a manner analogous to the proof of Theorem 4.8 the other results from [23] for non-
symmetric positive definite matrices, dealing for example with a field of values contained in a
wedge-shaped set, might be extended to arbitrary dimensions.

13

5. Solving the compressed system. The tensor Krylov subspace method, see Algorithm 2,
requires the solution of the compressed system

Hy = b̃,

having the same Kronecker product structure as the original system (1.3), with the coefficients
Hs in upper Hessenberg form. As mentioned in Section 3.2, this system might be solved explicitly
by a direct method for small dimensions but for higher dimensions this will quickly become pro-
hibitively expensive. The method already suggested in Remark 2.8 provides a viable alternative.
An approximation yt to the exact solution y is calculated as

yt =
t∑

j=1

ωj

λmin(H)

d⊗

s=1

exp
(
− αj

λmin(H)
Hs

)
b̃s,

with

1/λ ≈
t∑

j=1

ωje
−αjλ, λ ∈ Λ(H).

The success of this approach depends of course crucially on the choice of the coefficients αj >
0, ωj > 0. Ideally, we would like to solve the min-max problem

min
αj ,ωj∈R+

max
µ∈Ω

∣∣∣1/µ −
t∑

j=1

ωje
−αjµ

∣∣∣,

where Ω ⊆ C contains all eigenvalues of H scaled by some factor 1/ρ. Section 5.1 discusses the
case of symmetric positive definite H, in which case ρ = λmin(H) and Ω = [1, κ(H)]. For this
purpose, a finite upper bound on the condition number κ(H) must be available, which can be
determined from the eigenvalues of Hs and applying Lemma 2.1. For non-symmetric H (or in case
no upper bound on κ(H) can be computed) we have Ω = {z ∈ C : ℜ(z) ≥ 1}, assuming that H
has only eigenvalues in the right-half complex plane and ρ = min{ℜ(λ) : λ ∈ Λ(H)}. This case is
discussed in Section 5.2. A comparison of the coefficients αj resulting in each case can be found
in Figure 5.1.

10
−1

10
0

10
1

3

5

7

9

11

Stenger coefficients

10
−2

10
0

10
2

3

5

7

9

11

κ = 10

10
−4

10
0

10
4

3

5

7

9

11

κ = 104

10
−5

10
0

10
5

3

5

7

9

11

κ = 108

Fig. 5.1. Coefficients αj proposed in Section 5.2 (leftmost plot) and Section 5.1 (3 rightmost plots, for
κ(H) = 10, 104, 108), for t = 3, 5, . . . , 11 coefficients.

For both choices of coefficients, the choice of t needs to be determined in advance. We choose
t such that the convergence bounds given below are not larger than a tolerance provided by the
user. As this tolerance determines the overall quality of the approximation to the large linear
system (1.3), it will usually be chosen rather small, say 10−9.

14

5.1. Symmetric H and condition number known. As already mentioned in Section 2,
the existence of coefficients αj > 0, ωj > 0 satisfying

∣∣∣
1

µ
−

t∑

j=1

ωje
−αjµ

∣∣∣ ≤ 16 exp
(−tπ2

log(8R)

)
∀µ ∈ [1, R]

is proved in [11]. By Corollary 2.7,

‖y − yt‖2 ≤ 16

λmin(H)
exp

(−tπ2

log(8κ(H))

)
‖b̃‖2.

Unfortunately, there is no explicit formula for determining such coefficients αj > 0, ωj > 0. The
optimal choice of coefficients can be calculated by a Remez-like algorithm for specific values of t
and R. This has been performed for a large set of pairs (t, R) by Hackbusch [10] and the resulting
coefficients were used in this paper.

5.2. Condition number unknown and/or non-symmetric H. If Ω is a subset of the
right-half complex plane, the following bound from [12, Appendix D3.4.1] applies:

∣∣∣
1

µ
−

t∑

j=−t

ωje
−αjµ

∣∣∣ ≤ CSt exp
(
|ℑ(µ)|/π

)
exp(−π

√
t), ∀µ ∈ C,ℜ(µ) ≥ 1,

where CSt does not depend on t or µ. This yields

‖y − y2t+1‖2 ≤ CSt
κP
β

exp(γ/π) exp(−π
√

t)‖b̃‖2,

where β = min{ℜ(λ) : λ ∈ Λ(H)}, γ = max{|ℑ(λ)| : λ ∈ Λ(H)} and κP as defined in Theorem 2.5.
In this case, there are explicit formulas for suitable coefficients:

hSt = π/
√

t,

αj = log
(

exp(jhSt) +
√

1 + exp(2jhSt)
)
,

ωj = hSt

(
1 + exp(−2jhSt)

)−1/2
, for j = −t, . . . , t.

6. An extended tensor Krylov subspace method. In many cases of practical interest,
the convergence of the tensor Krylov subspace method can be enhanced by including matrix-
vector products with A−1

s for all or some s, for example by means of sparse direct factorizations.
Although the computational cost for such an operation is significantly higher than a matrix-
vector multiplication, this may be offset by accelerated convergence. Moreover, the tensor rank
of the resulting approximate solution is reduced, potentially offering advantages to subsequent
computations.

In the following we propose such an extended tensor Krylov subspace method, in the spirit of
the closely related extended Krylov subspace methods for matrix functions [8] and linear matrix
equations [22, 14]. The convergence of this method for approximating matrix functions has been
recently discussed in [3, 18].

In contrast to the tensor Krylov subspace method described in Section 3, some (or all) of the
matrices Us now represent orthonormal bases for the extended Krylov subspace

K̃ks
(As, bs) := Kks

(As, bs) + Kks+1(A
−1
s , bs),

assuming of course that As is invertible. Generically, the dimension of the extended Krylov
subspace is 2ks and hence Us ∈ R

ns×2ks . Arnoldi-type algorithms for computing Us are discussed,
for example, in [18, 22]. The rest of the extended tensor Krylov subspace method is identical with
Algorithm 2.

15

For simplicity, we assume that all As are symmetric positive definite and extended Krylov
subspaces are used for all s = 1, . . . , d. Then

K̃ks
(As, bs) = span{A−ks

s bs, . . . , A
−1
s bs, bs, Asbs, . . . , A

ks−1
s bs}

= span{ℓ(As)bs : ℓ ∈ Lks
},

where Lks
denotes the linear space of Laurent polynomials ℓ(µ) =

∑ks−1
j=−ks

cjµ
j . Similarly for the

tensorized extended Krylov subspace it holds that

K̃⊗
K

(A, b) := span
(
K̃k1

(A1, b1) ⊗ · · · ⊗ K̃kd
(Ad, bd)

)

= span
{
ℓ(A1, . . . , As)b : ℓ ∈ L

⊗
ks

}
. (6.1)

Here, L⊗
ks

denotes the space of all multivariate Laurent polynomials

ℓ(µ1, . . . , µd) =
∑

−K≤L<K

cLµl1
1 µl2

2 · · ·µld
d , cL ∈ R,

where −K ≤ L < K is to be understood as −ks ≤ ls ≤ ks − 1 for s = 1, . . . , d. The evaluation of ℓ
at a matrix tuple (A1, . . . , Ad) is then – analogously to (3.2) – defined as

ℓ(A1, . . . , Ad) =
∑

−K≤L<K

cL Al1
1 ⊗ Al2

2 ⊗ · · · ⊗ Ald
d , cL ∈ R.

The identity (6.1) can be shown in a similar way as Lemma 3.2.
Much of the convergence analysis of Section 4 can be extended in a straightforward way. In

particular, the convergence bound of Theorem 4.3 becomes

‖xK − x‖A ≤
√
‖A‖2‖b‖2 min

ℓ∈L
⊗
K

max
λs∈Λ(As)

∣∣∣ℓ(λ1, . . . , λd) −
1

λ1 + · · · + λd

∣∣∣

≤
√

‖A‖2‖b‖2 min
ℓ∈L

⊗
K

max
µs∈[αs,βs]

∣∣∣ℓ(µ1, . . . , µd) −
1

µ1 + · · · + µd

∣∣∣, (6.2)

where [αs, βs] = [λmin(As), λmax(As)]. To proceed further, we need to address the multivariate
Laurent polynomial approximation problem

ẼΩ := min
ℓ∈L

⊗
K

∥∥∥ℓ(µ1, . . . , µd) −
1

µ1 + · · · + µd

∥∥∥
Ω
, (6.3)

where ‖ · ‖Ω denotes the supremum norm on Ω := [α1, β1] × · · · × [αd, βd].

Lemma 6.1. Consider ẼΩ defined in (6.3) for constant αs ≡ α, βs ≡ β, and K = (k, . . . , k).
Then

ẼΩ ≤
(
1 +

β

α

) 1

α̃

√
κ̃ + 1√

κ̃
·
(√

κ̃ − 1√
κ̃ + 1

)k

,

where
1. for d = 2: α̃ = 2

√
αβ, β̃ = α + β, κ̃ = (α̃ + β̃)/(2α̃);

2. for d > 2: α̃ = d2(d − 1)
1−d

d α
d−1

d β
1
d , β̃ = d(α + β), κ̃ = β̃/α̃.

Proof. Part 1. Setting ξs(µs) = µs + γ/µs for s = 1, 2, we have

1

µ1 + µ2
=

(
1 + γµ−1

1 µ−1
2

) 1

ξ1(µ1) + ξ2(µ2)
. (6.4)

The choice γ = αβ balances the maximal value of ξs at the boundaries of the interval: ξs(α) =
ξs(β) = α + β = β̃. It is straightforward to see that the minimum of ξs is attained at

√
γ with

16

ξs(
√

γ) = 2
√

αβ = α̃. Hence α̃ ≤ ξs(µs) ≤ β̃ for µs ∈ [α, β]. By Lemma A.1 there is a bivariate
polynomial p(ξ1, ξ2) ∈ Π⊗

K
such that

EeΩ :=
∥∥∥p(ξ1, ξ2) −

1

ξ1 + ξ2

∥∥∥
eΩ
≤ 1

α̃

√
κ̃ + 1√

κ̃
·
(√

κ̃ − 1√
κ̃ + 1

)k

,

where Ω̃ = [α̃, β̃]d and κ̃ is defined as in the statement of the lemma. By (6.4), the bivariate
Laurent polynomial ℓ(µ1, µ2) :=

(
1 + γµ−1

1 µ−1
2

)
p
(
ξ1(µ1), ξ2(µ2)

)
∈ L

⊗
K

satisfies

ẼΩ ≤
∥∥∥ℓ(µ1, µ2) −

1

µ1 + µ2

∥∥∥
Ω
≤

∥∥1 + γµ−1
1 µ−1

2

∥∥
Ω
EeΩ = (1 + β/α)EeΩ,

which concludes the proof of Part 1.

Part 2. Trivially, (µ1 + · · · + µd)
−1 =

(
1 + γ

d∏
s=1

µ−1
s

)
ξ(µ1, . . . , µd)

−1, with

ξ(µ1, . . . , µd) =
(
1 + γ

d∏

s=1

µ−1
s

) d∑

s=1

µs =
d∑

s=1

µs + γ
d∑

s=1

∏

j 6=s

µ−1
j

for some γ > 0. Note that ξ is a sum of convex functions and therefore itself convex. The
maximum of ξ is attained at the extrema of the convex polytope [α, β]d. The choice γ = αd−1β
approximately balances the values at the extrema µs ≡ α and µs ≡ β, which leads to

max
µs∈{α,β}

ξ(µ1, . . . , µd) = ξ(α, . . . , α) = d(α + β) = β̃.

Since grad ξ = 0 at µs ≡
(
(d − 1)γ

)1/d
, the minimum of ξ is given by d2(d − 1)

1−d
d γ1/d = α̃. By

Lemma A.1 there is a polynomial p of degree at most k − 1 such that

EeΩ :=
∥∥p(ξ) − ξ−1

∥∥
[α̃,β̃]

≤ 1

α̃

√
κ̃ + 1√

κ̃
·
(√

κ̃ − 1√
κ̃ + 1

)k

.

Similarly as in the proof of Part 1, the multivariate Laurent polynomial ℓ(µ1, . . . , µd) :=
(
1 +

γ
d∏

s=1
µ−1

s

)
p(ξ(µ1, . . . , µd)) ∈ L

⊗
K

yields

ẼΩ ≤
∥∥∥ℓ(µ1, . . . , µd) −

1

µ1 + · · · + µd

∥∥∥
Ω
≤

∥∥∥1 + γ

d∏

s=1

µ−1
s

∥∥∥
Ω
EeΩ =

(
1 + β/α

)
EeΩ,

which concludes the proof.
For d = 2, the factor κ̃ that determines the asymptotics of the convergence bound in Lemma 6.1

satisfies κ̃ ≈
√

κ(A)/4 for β ≫ α. This compares favorably with the factor κ = κ(A)/2 that deter-
mines the asymptotics of the convergence bound (4.5) for the (standard) tensor Krylov subspace
method. The linear convergence rate of the extended Krylov subspace method for solving Sylvester
equations is therefore bounded by

√
κ̃ ≈ κ(A)1/4/2, which was also observed experimentally in [22].

For d = 3, κ̃ ≈
(
2κ(A)

)2/3
/3 for β ≫ α. As d increases, the bound of Lemma 6.1 becomes more

pessimistic: κ̃
d→∞→ 1 + κ(A). It is not clear to us whether the bound of Lemma 6.1 could be im-

proved to also reflect the significantly better convergence of the extended tensor Krylov subspace
method we observed for higher dimensions.

7. Numerical experiments. We have implemented the (extended) tensor Krylov subspace
methods in Matlab, using the Tensor Toolbox [1, 2] for storing tensors in CP decomposition
and for multiplying matrices with tensors. For solving the compressed systems, the coefficients
described in Section 5 are used. A tolerance of ε = 10−9 is chosen as an upper bound on the
accuracy of the solution to the compressed system.

17

7.1. Symmetric example. As a first example, we consider the d-dimensional Poisson equa-
tion (1.6) with separable right-hand side f(µ1, µ2, . . . , µd) = g(µ1)g(µ2) · · · g(µd). A standard
finite-difference discretization on equidistant nodes leads to the linear system Ax = b, with

As =
1

h2




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




, bs =




g(z
(s)
1)

...

g(z
(s)
n)




.

It is well-known that the minimal and maximal eigenvalues of As are given by

λmin =
2

h2

(
1 − cos

(π

ns + 1

))
, λmax =

2

h2

(
1 − cos

(πns

ns + 1

))
,

resulting in the convergence factor (see Corollary 4.4),

κ = 1 +
λmax − λmin

dλmin
= 1 +

2 cos(π
n+1)

d(1 − cos(π
n+1))

≈ 4(n + 1)2

π2d
. (7.1)

For simplicity, we have used right-hand side vectors bs composed of uniformly distributed pseudo-
random numbers.

The tensor Krylov subspace method was used with multi-index K = (k, . . . , k), as the size ns

and condition number are identical for all As. All convergence plots display the convergence of
the relative residual ‖Axk − b‖2/‖b‖2. As the solution xk cannot be stored explicitly, the norm of
the residual must be calculated directly from its CP decomposition. For this purpose, an efficient
method is proposed in Section 3.3. As Lemma 3.4 shows, the error is ultimately bounded by the
residual induced by the approximation error from the compressed system.

Figures 7.1 and 7.2 show the convergence of the tensor Krylov subspace method for systems
of size ns = 200 and ns = 1000, respectively, with s = 1, . . . , d and various dimensions d. The
observed convergence rates correspond reasonably well to the theoretically predicted convergence
rates; in particular, the convergence rates improve for higher dimensions. The plots in Figures 7.1
and 7.2 are remarkably similar apart from the different scaling of the x-axis, caused by the increase
of the condition number as ns grows. The convergence curves also nicely confirm the fact that
xk = x holds for k ≡ ns up to the approximation error from the compressed system.

In Figure 7.3, we apply the extended tensor Krylov subspaces method to a system of size
ns = 200. At k = 40, the method converges up to the approximation error in the compressed
system for all dimensions. The observed convergence is significantly better than the convergence

rate
(√

κ̃−1√
κ̃+1

)k
predicted by Lemma 6.1. We suspect that this can be attributed to eigenvalues

converging at both ends of the spectrum rather quickly, leading to a rapid decrease of the effective
condition number in the course of the iteration.

7.2. Non-symmetric example. We next consider the convection-diffusion equation

−∆u + c⊤∇u = f in Ω = [0, 1]d

u = 0 on Γ := ∂Ω,

where f is again a separable function. A standard finite-difference discretization on equidistant
nodes, combined now with a second order convergent scheme for the convection term, leads to

As =
1

h2




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




+
cs

4h




3 −5 1

1 3 −5
. . .

. . .
. . .

. . . 1
1 3 −5

1 3




.

18

50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

Fig. 7.1. Relative residual of the tensor Krylov subspace method for symmetric example and ns = 200 (left).

Predicted convergence rate
`

√
κ−1√
κ+1

´k
(right).

200 400 600 800 1000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

200 400 600 800 1000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

Fig. 7.2. Relative residual of the tensor Krylov subspace method for symmetric example and ns = 1000 (left).

Predicted convergence rate
`

√
κ−1√
κ+1

´k
(right).

Note that A is identical with the system matrix in [9, Example 22]. Again, the right-hand side is
composed of vectors bs containing uniformly distributed pseudo-random numbers. Since we have
chosen the system size ns = 200 to be constant over all dimensions, it is again reasonable to choose
K = {k, . . . , k}.

Figure 7.4 displays the convergence of the tensor Krylov subspace method applied to this
example for various dimensions. The convection coefficients are cs = 10 for the left plot and
significantly larger, cs = 100, for the right plot. The convergence is significantly slower compared
to the symmetric case but the qualitative behavior is similar: the convergence rate improves
for higher dimensions. As expected, the convergence rate slightly deteriorates as the convection
coefficient grows.

We have also performed experiments with the extended tensor Krylov subspace method applied
to the non-symmetric example. The observed convergence rates improve similarly as for the
symmetric example.

8. Conclusions. A tensor Krylov subspace method has been proposed that deals well with
high-dimensional linear systems that exhibit a certain, rather particular Kronecker product struc-
ture. We envision the methods developed in this paper as building blocks in future algorithms
for addressing more general high-dimensional problems. For example, they could be used in a
preconditioned inverse iteration for high-dimensional PDE eigenvalue problems [13].

9. Acknowledgments. The authors thank Lars Grasedyck for helpful and inspiring discus-
sions on the subject of this paper and both referees for carefully checking the paper and providing
a number of helpful remarks.

Appendix A. Appendix.

19

5 10 15 20 25 30 35 40
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

Fig. 7.3. Relative residual of the extended tensor Krylov subspace method for symmetric example and ns = 200

(left). Predicted convergence rate
`

√
κ̃−1√
κ̃+1

´k
(right)

50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
la

tiv
e

re
si

du
al

dim = 5
dim = 10
dim = 50
dim = 100

Fig. 7.4. Relative residual of the tensor Krylov subspace method for non-symmetric example and ns = 200,
with factor cs = 10 (left) and cs = 100 (right).

The following lemma contains the approximation result needed in Section 4 for the convergence
analysis of the tensor Krylov subspace method.

Lemma A.1. For the multivariate polynomial approximation error EΩ(K) defined in (4.3) it
holds that

EΩ(K) ≤ 1

λmin(A)

d∑

s=1

√
κs + 1√

κs
·
(√

κs − 1√
κs + 1

)ks

,

where κs = 1 + βs−αs

λmin(A) .

Proof. Since A is assumed to be symmetric positive definite, α1 + · · · + αd > 0 and hence
every (µ1, . . . , µd) ∈ Ω also satisfies µ1 + · · · + µd > 0. This allows us to write

1

µ1 + · · · + µd
=

∫ ∞

0

e−(µ1+···+µd)t dt =

∫ ∞

0

d∏

s=1

e−µst dt.

Following [7, 23], we expand e−µst in terms of Chebyshev series:

e−µst = e−
αs+βs

2 t
∞∑

j=0

a
(s)
j (t)Tj(−gs(µs)), (A.1)

where Tj denotes the jth Chebyshev polynomial of the first kind, and the parameter transforma-
tions gs : [αs, βs] → [−1, 1] are defined as

gs(µs) =
2

βs − αs
µs −

βs + αs

βs − αs

20

The Chebyshev coefficients a
(s)
j take the form

a
(s)
j (t) =

{
Ij

(
βs−αs

2 t
)
, j = 0,

2Ij

(
βs−αs

2 t
)
, otherwise,

where Ij denotes the jth modified Bessel function. We define polynomials p
(s)
ks

(µs, t) in µs by
truncating the series (A.1) after the (ks − 1)th term. Obviously,

∥∥p
(s)
ks

(µs, t) − e−µst
∥∥

Ω
≤ e−

αs+βs
2 t

∞∑

j=ks

a
(s)
j (t). (A.2)

Moreover,

∥∥p
(s)
ks

(µs, t)
∥∥

Ω
≤

∣∣p(s)
ks

(αs, t)
∣∣ = e−

αs+βs
2 t

ks−1∑

j=0

a
(s)
j (t) ≤ e−

αs+βs
2 t

∞∑

j=0

a
(s)
j (t) = e−αst.

Hence,

∥∥∥
d∏

s=1

e−µst −
d∏

s=1

p
(s)
ks

(µs, t)
∥∥∥

Ω
=

∥∥∥
d∑

s=1

[s−1∏

j=1

e−µjt
](

e−µst − p
(s)
ks

(µ(s), t)
)[d∏

j=s+1

p
(j)

k(j)(µj , t)
]∥∥∥

Ω

≤
d∑

s=1

∥∥e−µst − p
(s)
ks

(µs, t)
∥∥

Ω

d∏

j=1
j 6=s

e−αjt

=

d∑

s=1

∥∥e−µst − p
(s)
ks

(µs, t)
∥∥

Ω
e−(λmin(A)−αs)t (A.3)

To use these results for our multivariate interpolation problem, we set

p(µ1, . . . , µd) =
∑

I≤K

cI p
(1)
i1

(µ1)p
(2)
i2

(µ2) · · · p(d)
id

(µd),

where I = (i1, . . . , id) with 1 ≤ is ≤ ks, and

p
(s)
is

(µs) = Tis−1(−gs(µs)), cI =

∫ ∞

0

d∏

s=1

e−
αs+βs

2 ta
(s)
is−1(t) dt.

21

With this choice,

EΩ(K) ≤
∥∥∥p(µ1, . . . , µs) −

1

µ1 + · · · + µs

∥∥∥
Ω

=
∥∥∥

∑

I≤K

cI

d∏

s=1

p
(s)
is

(µs) −
1

µ1 + · · · + µs

∥∥∥
Ω

=
∥∥∥

∫ ∞

0

∑

I≤K

d∏

s=1

e−
αs+βs

2 ta
(s)
is−1(t)p

(s)
is

(µs) dt −
∫ ∞

0

d∏

s=1

e−µst dt
∥∥∥

Ω

=
∥∥∥

∫ ∞

0

d∏

s=1

ks∑

is=1

e−
αs+βs

2 ta
(s)
is−1(t)p

(s)
is

(µs)

︸ ︷︷ ︸
=p

(s)
ks

(µs,t)

dt −
∫ ∞

0

d∏

s=1

e−µst dt
∥∥∥

Ω
.

≤
∫ ∞

0

∥∥∥
d∏

s=1

p
(s)
ks

(µs, t) −
d∏

s=1

e−µst
∥∥∥

Ω
dt

(A.3)

≤
d∑

s=1

∫ ∞

0

e−(λmin(A)−αs)t
∥∥e−µst − p

(s)
ks

(µs, t)
∥∥

Ω
dt

(A.2)

≤
d∑

s=1

∞∑

j=ks

∫ ∞

0

e−(λmin(A)+ βs−αs
2)ta

(s)
j (t) dt

︸ ︷︷ ︸
=:Es(ks)

. (A.4)

Using
∫ ∞
0

e−δtIj(γt) dt = γj√
δ2−γ2(δ+

√
δ2−γ2)j

, which holds for δ > γ [23] and j 6= 0, we obtain

after some algebraic manipulation

∫ ∞

0

e−
(
λmin(A)+ βs−αs

2

)
t 2Ij

(βs − αs

2
t
)

dt =
2

λmin(A)
√

κs
·
(√

κs − 1√
κs + 1

)j

with κs = 1 + βs−αs

λmin(A) . Hence,

Es(ks) =
2

λmin(A)
√

κs

∞∑

j=ks

(√
κs − 1√
κs + 1

)j

=

√
κs + 1

λmin(A)
√

κs
·
(√

κs − 1√
κs + 1

)ks

which, together with (A.4), concludes the proof.

REFERENCES

[1] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored tensors. SIAM J.
Sci. Comput., 30(1):205–231, 2007.

[2] B. W. Bader and T. G. Kolda. MATLAB tensor toolbox version 2.2, January 2007. Available from http:

//csmr.ca.sandia.gov/~tgkolda/TensorToolbox/.
[3] B. Beckermann and L. Reichel. Error estimation and evaluation of matrix functions via the Faber transform.

Technical report, Université de Lille, 2008.
[4] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high dimensions. SIAM J. Sci.

Comput., 26(6):2133–2159, 2005.
[5] S. Börm. H2-matrices – an efficient tool for the treatment of dense matrices. Habilitationsschrift, Christian-

Albrechts-Universität zu Kiel, 2006.
[6] D. Braess and W. Hackbusch. Approximation of 1/x by exponential sums in [1,∞). IMA J. Numer. Anal.,

25(4):685–697, 2005.
[7] V. L. Druskin and L. A. Knizhnerman. Two polynomial methods for calculating functions of symmetric

matrices. Zh. Vychisl. Mat. i Mat. Fiz., 29(12):1763–1775, 1989.
[8] V. L. Druskin and L. A. Knizhnerman. Extended Krylov subspaces: approximation of the matrix square root

and related functions. SIAM J. Matrix Anal. Appl., 19(3):755–771, 1998.

22

[9] L. Grasedyck. Existence and computation of low Kronecker-rank approximations for large linear systems of
tensor product structure. Computing, 72(3-4):247–265, 2004.

[10] W. Hackbusch. Approximation of 1/x by exponential sums. Available from http://www.mis.mpg.de/scicomp/

EXP_SUM/1_x/tabelle. Retrieved August 2008.
[11] W. Hackbusch. Entwicklungen nach Exponentialsummen. Technical Report, Max-Planck-Institut für Math-

ematik in den Naturwissenschaften, 2009. Revised version. See http://www.mis.mpg.de/preprints/tr/

report-0405.pdf.
[12] W. Hackbusch. Hierarchische Matrizen: Algorithmen und Analysis. Springer, Berlin, 2009.
[13] W. Hackbusch, B. N. Khoromskij, S. A. Sauter, and E. E. Tyrtyshnikov. Use of tensor formats in elliptic

eigenvalue problems. Preprint 78/2008, Max-Planck-Institut für Mathematik in den Naturwissenschaften,
2008.

[14] M. Heyouni. Extended Arnoldi methods for large Sylvester matrix equations. Technical report L.M.P.A.,
2008.

[15] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[16] D. Y. Hu and L. Reichel. Krylov-subspace methods for the Sylvester equation. Linear Algebra Appl., 172:283–

313, 1992.
[17] I. M. Jaimoukha and E. M. Kasenally. Krylov subspace methods for solving large Lyapunov equations. SIAM

J. Numer. Anal., 31:227–251, 1994.
[18] L. A. Knizhnerman and V. Simoncini. A new investigation of the extended Krylov subspace method for matrix

function evaluations. Technical report, 2008. To appear in Numer. Linear Algebra Appl.
[19] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500, 2009.
[20] Y. Saad. Numerical solution of large Lyapunov equations. In Signal processing, scattering and operator

theory, and numerical methods (Amsterdam, 1989), volume 5 of Progr. Systems Control Theory, pages
503–511. Birkhäuser Boston, Boston, MA, 1990.

[21] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha, PA, 2003.
[22] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci.

Comput., 29(3):1268–1288, 2007.
[23] V. Simoncini and V. L. Druskin. Convergence analysis of projection methods for the numerical solution of

large Lyapunov equations. SIAM Journal on Numerical Analysis, 47(2):828–843, 2009.
[24] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems.

Numer. Math., 78(1):103–117, 1997.
[25] F. Stenger. Numerical methods based on sinc and analytic functions, volume 20 of Springer Series in Com-

putational Mathematics. Springer-Verlag, New York, 1993.
[26] G. W. Stewart. Matrix Algorithms. Vol. II. SIAM, Philadelphia, PA, 2001. Eigensystems.
[27] C. Tobler. Krylov subspace methods for large linear systems with tensor product structure. Master’s thesis,

ETH Zürich, September 2008.

23

