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Abstract

Structured singular values and pseudospectra play an important role in assessing the properties of a linear system under structured
perturbations. This paper discusses computational aspects of structured pseudospectra for structures that admit an eigenvalue
minimization characterization, including the classes of real, skew-symmetric, Hermitian, and Hamiltonian perturbations. For all
these structures we develop algorithms that requireO(n2) operations per grid point, combining the Schur decomposition with a
Lanczos method. These algorithms form the basis of a graphical Matlab interface for plotting structured pseudospectra.
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1. Introduction

Structured singular values and pseudospectra are useful tools
for analyzing the spectral behavior of matrices and dynamical
systems under uncertainties.

Given a class of perturbations∆ ⊆ C
n×n, thestructured sin-

gular valueof a matrixB ∈ C
n×n is defined as

µ∆(B) = [inf {‖△‖ : △ ∈ ∆ and det(I − △B) = 0}]−1 . (1)

Here and in the following,‖ · ‖ denotes the 2-norm (also called
spectral norm) of a matrix. IfB is invertible,µ∆(B)−1 is the
minimal norm among all perturbations that makeB−1 singular.
In the unstructured case,∆ = C

n×n andµ∆(B) = ‖B‖ coincides
with the largest singular value ofB.

The structured pseudospectrum of a matrixA ∈ C
n×n with

respect to∆ and a thresholdǫ > 0 is defined as

Λ∆(A; ǫ) :=
⋃

△∈∆,‖△‖<ǫ

Λ(A+ △), (2)

whereΛ(·) denotes the spectrum of a matrix. Structured pseu-
dospectra are closely tied to structured singular values, as seen
from the relation

Λ∆(A; ǫ) = {λ ∈ C : µ∆
(

(A− λI )−1) > 1/ǫ}. (3)

Note that in the unstructured case∆ = C
n×n, we haveµ∆

(

(A −
λI )−1) = ‖(A− λI )−1‖ = 1/σmin(A− λI ), whereσmin(·) denotes
the smallest singular value of a matrix.
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The focus of this paper is on how to actually compute (3)
or, equivalently, how to evaluateµ∆

(

(A− λI )−1) for a fixed ma-
trix A and many different values ofλ ∈ C. For∆ = C

n×n, the
software package EigTool (Wright 2002) is routinely used for
plotting unstructured pseudospectra. The computational cost
of EigTool benefits from two tricks, described for example in
the book by Trefethen and Embree (2005, Chapter 39). First,
prior to any pseudospectral computation,A is replaced by its
Schur form, reducing the cost of multiplying (A− λI )−1 with a
vector fromO(n3) to O(n2). It is crucial to note that this trick
works because the unstructured pseudospectrum is invariant un-
der unitary similarity transformations. (This property doesnot
hold in general for structured pseudospectra.) Second, a Lanc-
zos method (Bai et al. 2000; Golub and Van Loan 1996) is em-
ployed to estimate‖(A−λI )−1‖ based on matrix-vector products
with (A− λI )−1 and its conjugate transpose.

The difficulty of computing structured singular values and
pseudospectra heavily depends on the nature of∆ and ranges
from trivial to NP-hard. In the following we provide a brief
survey of available results in the literature.

Computationally trivial classes∆. For a surprisingly wide
range of linear structures∆, it can be shown thatµ∆((A −
λI )−1) ≡ ‖(A − λI )−1‖ for A ∈ ∆ and anyλ ∈ C. In
these cases there is consequently no difference between struc-
tured and unstructured pseudospectra. This has been shown
by Rump (2006) for the classes of symmetric, persymmetric,
Toeplitz, symmetric Toeplitz, Hankel, persymmetric Hankel,
and circulant matrices. The basic idea of the proof is to con-
struct astructured mapping△ ∈ ∆ such that△u = v for
v = α(A − λI )u, |α| = 1, and some vectoru ∈ C

n with
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‖u‖ = 1 and ‖(A − λI )u‖ = σmin(A − λI ). Then the rela-
tion µ∆((A − λI )−1) = ‖(A − λI )−1‖ readily follows from the
definition (1). A variety of such structured mappings can be
found in (Mackey et al. 2007; Rump 2003). Their connections
to structured pseudospectra/eigenvalue condition numbers have
also been investigated in (Graillat 2006; Karow 2007; Karow
et al. 2006a).

Computationally tractable classes∆. Many structures admit
structured mappings△u = v with △ ∈ ∆ only under certain
constraints on the vectorsu, v. For example, a skew-symmetric
mapping△ is possible if and only ifu, v are orthogonal to each
other. In such cases, the evaluation ofµ∆((A−λI )−1) amounts to
the solution of a constrained optimization problem. For certain
structures, the latter can be rewritten as an unconstrainedeigen-
value/singular value optimization problem that is computation-
ally tractable in the sense that the global optimum can be re-
liably computed/approximated in polynomial time. This holds
not only for the well-known case∆ = R

n×n as shown by Qiu
et al. (1995), but also for complex skew-symmetric, Hermitian
and other linear structures induced by bilinear and sesquilinear
forms (Karow 2007). Solely concerned with such structures,
this paper focuses on the efficient solution of the eigenvalue
optimization problems associated withµ∆((A − λI )−1), partic-
ularly aiming at the computation of structured pseudospectra.
Instances of computationally tractable classes∆ not considered
in this paper include complex diagonal block structures with
less than 4 blocks (Doyle 1982), complex off-diagonal block
structures (Karow et al. 2006b), and structures related to higher
order systems (Pappas and Hinrichsen 1993; Soh et al. 1985;
Tisseur and Higham 2001).

Computationally intractable classes∆. For many structures
computational methods for evaluatingµ∆ are either pro-
hibitively expensive or not even known. In fact, for a numberof
structures the evaluation ofµ∆ has been proven to be NP-hard,
most prominently for diagonal (Demmel 1992) and real block
diagonal structures (Poljak and Rohn 1993). Despite these pes-
simistic results, reliable and somewhat efficient techniques for
obtaining usually tight lower and upper bounds onµ∆ for mixed
complex/real diagonal structures are available and form the ba-
sis of Matlab’s µ-Analysis and Synthesis Toolbox (Balas et al.
1993). However, a summary of these techniques is beyond the
scope of this paper; we refer to (Packard and Doyle 1993) for a
survey of early results in this direction.

Outline of the paper.The rest of this paper is organized as fol-
lows. Sections 2 and 3 are concerned with the computation of
real structured singular values and real structured pseudospec-
tra, respectively. In particular, an algorithm is developed that
computes the real pseudospectrum at a cost ofO(n2) operations
per grid point. These results are extended to skew-symmetric,
Hermitian, and Hamiltonian pseudospectra in Sections 4, 5,
and 6, respectively. The algorithms presented in this paper
form the basis of a Matlab graphical interface. This interface
is briefly described in Section 7, which also contains a few ex-
periments concerning computational efficiency.

γ

f

(a) Smooth case γ

f

(b) Non-smooth case

Figure 1: Pictorial plots illustrating the shape offreal(γ).

2. Computing real structured singular values

In the case of real perturbations∆ = R
n×n, a well-known

result (Qiu et al. 1995) shows that the corresponding structured
singular valueµreal defined in (1) satisfies

µreal(B) = inf
γ∈(0,1]

σ2

([

RB −γ−1IB
γIB RB

])

,

whereRB andIB denote the real and imaginary parts ofB ∈
C

n×n, respectively, andσ2(·) denotes the second largest singular
value of a matrix. Hence, computingµreal(B) involves a singular
value optimization with respect toγ ∈ (0,1]. To discuss this
optimization problem in more detail, let us define

C(γ) =

[

RB −γ−1IB
γIB RB

]

, (4)

with which
µreal(B) = inf

γ∈(0,1]
σ2(C(γ)). (5)

The objective functionfreal(γ) = σ2(C(γ)) in (5) is quasi-
convex(Qiu et al. 1995). A functionf : X → R is called
quasi-convex if for eachx, y ∈ X andξ ∈ [0,1], it holds that

f (ξx+ (1− ξ)y) ≤ max{ f (x), f (y)}. (6)

Any quasi-convex function has convex level sets. Quasicon-
vexity also implies that a local minimizer will be a global mini-
mizer. Figure 1(a) illustrates what the objective functionfreal(γ)
typically looks like.

2.1. Solving the optimization problem

We now discuss the solution of the optimization problem (5).
The optimal solution can be obtained by localizing the pointγ∗

where the derivativėfreal(γ) changes sign. In order to compute
γ∗ we have chosen to usebisectionas a simple and robust root
bracketing method. At iterationk, bisection employs an inter-
val [ak,bk] that contains the optimum, and divides this interval
into two sub-intervals of equal length. In particular, it picks the
midpoint pointγk+1 =

ak+bk

2 and then selects one of [ak, γk+1] or
[γk+1,bk], depending on the sign oḟfreal(γk+1). The method is
stopped when the length of the interval|bk−ak| becomes smaller
than a given tolerance.
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Algorithm 1: The Lanczos algorithm

1: Input: Matrix C̃, residual tolerancetol
starting vectorr.

2: Output: Qk: Lanczos basis, coefficientsαk andβk

3: Initialization: β0 = ‖r‖2.
4: for k = 1,2, . . . do
5: qk = r/βk−1.
6: r = matvec(C̃,qk).
7: r = r − qk−1βk−1.
8: αk = 〈qk, r〉.
9: {Full reorthogonalization}

10: for l = 1, . . . , k− 1 do
11: r = r − 〈r,ql〉ql

12: end for
13: βk = ‖r‖2.
14: {Check for convergence}
15: Compute the eigenpair of interestTkw = θw.
16: Compute the residualres(k) = |βkw(k)|.
17: if res(k) ≤ tol then
18: SetQk = [q1, . . . ,qk] and break.
19: end if
20: end for

At each step of bisection, we need to evaluate the derivative
of freal(γ) = σ2(C(γ)). If the second largest singular value is
simple thenσ2(·) is differentiable and

σ̇2(C(γ)) = Re
[

u∗2Ċ(γ)v2

]

, (7)

whereu2 andv2 are left and right singular vectors ofC(γ) cor-
responding toσ2(C(γ)), see (Sun 1988). WithC(γ) defined as
in (4),

Ċ(γ) =

[

0 1/γ2IB
IB 0

]

.

If the second largest singular value fails to be simple then (7)
yields an element of the subdifferential, see Lewis and Sendov
(2005), which can equally be used in the bisection method. We
conclude that at each stepk of bisection we need to compute a
singular triplet (singular value, right and left singular vectors)
to determineḟreal(γk). However, it is important to stress that
this computation is not required to be very accurate except for
the last few iterations, since only the sign of ˙σ2(C(γ)) is of in-
terest. In the next section, when we discuss the computation
of real structured pseudospectra, it will be shown how to take
advantage of this observation.

We have also experimented with a regula falsi method, com-
bining bisection with the secant method. This somewhat de-
creases the number of iterations but requires higher accuracy
for σ̇2(C(γ)). In effect, the improvement of the overall execu-
tion time was modest at best.

3. Computing real structured pseudospectra

By (3), the real structured pseudospectra ofA are the level
sets ofµreal((A − λI )−1), λ ∈ C. For plotting the real struc-
tured pseudospectrum ofA, we introduce a two-dimensional

grid G on the complex plane and evaluateµreal((A − λI )−1) at
each grid pointλ ∈ G. In light of our discussion in the pre-
vious section, observe that we need to apply bisection in order
to solve an eigenvalue optimization problem for each grid point
λ ∈ G. Each step of bisection in turn involves the computa-
tion of a singular triplet of the matrixC(γ) defined in (4) with
B = (A− λI )−1. Since computing a singular value decomposi-
tion for each iteration becomes rather expensive for largern, we
propose below an efficient approach for computing real struc-
tured pseudospectra, based on the Lanczos method combined
with the Schur decomposition ofA.

3.1. The Lanczos method

Let us recall that we only need to determine the second
largest singular valueσ2 and singular vectorsu2, v2 of C(γ),
see (7). Equivalently,σ2

2 is the second largest eigenvalue of
the Hermitian matrixC̃ = C(γ)∗C(γ) andv2 is a corresponding
eigenvector. Moreover,u2 =

1
σ2

C(γ)v2.
To approximate the eigenvalues ofC̃ we apply the Lanc-

zos method toC̃ (Bai et al. 2000; Golub and Van Loan 1996),
see also Algorithm 1. Each step of the Lanczos method in-
volves one matrix-vector multiplication withC(γ) followed by
a matrix-vector multiplication withC(γ)∗. The version shown
in Algorithm 1 applies full reorthogonalization to retain numer-
ical accuracy. Afterk steps of Lanczos, we obtain a decompo-
sition of the form

C̃Qk = QkTk + re∗k, (8)

whereQ∗kr = 0 andTk is a tridiagonal symmetric real matrix

Tk =









































α1 β1

β1 α2
. . .

. . .
. . . βk−1

βk−1 αk









































(9)

composed of the coefficients generated in the course of the
method. Well-known convergence results (Bai et al. 2000) im-
ply that the second largest eigenvalue ofTk provides a good
approximation toσ2

2 for sufficiently largek. If w denotes the
corresponding eigenvector ofTk thenQkw provides an approx-
imation tou2.

It is important to observe that the main computational kernel
of the Lanczos method is the matrix-vector multiplication of C̃
with qk (Line 6). Hence, we only need the action of the matrix
C̃ on a vector and can avoid the explicit formation ofC̃.

3.2. Efficient computation of matrix-vector products

To multiply C̃ with a vectorx we first need to multiply with
C(γ) and then withC∗(γ). Let us consider the multiplication
with C(γ):

[

y1

y2

]

=

[

RB −γ−1IB
γIB RB

] [

x1

x2

]

=

[

RBx1 − γ
−1IBx2

γIBx1 + RBx2

]

. (10)
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Observe that

(y1 + iγ−1y2) = (RB+ iIB)(x1 + iγ−1x2), (11)

which implies thaty1, y2 can be computed by performing one
complex matrix-vector multiplication withB = RB+ iIB and
scaling the imaginary parts. A similar statement holds for the
matrix-vector multiplication withC(γ)∗:

[

y1

y2

]

=

[

RB⊤ γIB⊤

−γ−1IB⊤ RB⊤

] [

x1

x2

]

=

[

RB⊤x1 + γIB⊤x2

−γ−1IB⊤x1 + RB⊤x2

]

, (12)

which can be written as

(y1 + iγy2) = (RB⊤ − iIB⊤)(x1 + iγx2), (13)

reducing the computation to a matrix-vector multiplication with
B∗.

In summary, one step of Lanczos applied toC(γ)∗C(γ) re-
quires two matrix-vector multiplications withB andB∗, respec-
tively. In order to make this computation more efficient, we
propose to perform a Schur decomposition ofA a priori, before
the pseudospectrum computation starts. Then, using the fact
thatA = URU∗, whereU is unitary andR is upper triangular, it
holds that

B = (A− λI )−1 = (URU∗ − λI )−1 = U(R− λI )−1U∗. (14)

A matrix-vector multiplication withB (or B∗) now requires a
matrix-vector multiplication withU∗, followed by a linear sys-
tem solution with an upper (lower) triangular matrixR(R∗) and,
finally, a matrix-vector multiplication withU. This not only
avoids the explicit formation ofB but also reduces the cost of
matrix-vector multiplications withB or B∗ to O(n2).

3.3. Stopping criterion and accuracy

As we have already mentioned in Section 2, each step of bi-
section only requires the sign of ˙σ2(C(γ)). This suggests that
one can significantly relax the residual tolerance used in Lanc-
zos (see Algorithm 1, Line 17) and still be able to estimate the
sign correctly. Numerical experience suggests that a tolerance
of 10−5 suffices. This limits the number of matrix-vector mul-
tiplications required by the Lanczos method and therefore the
total computational cost of bisection itself. Nevertheless, it is
important to stress that once the optimal solutionγ∗ has been
localized, we require high accuracy in the final approximation
of µreal((A − λI )−1) = σ2(C(γ∗)), so we set the tolerance to
10−15 in the Lanczos method (only) at this final step. Algo-
rithm 2 summarizes the main steps of bisection for computing
µreal((A−λI )−1). The matrix-vector multiplication needed in the
Lanczos method called in lines 6 and 15 (with the two different
tolerances) is performed inO(n2) operations with the trick de-
scribed in Section 3.2.

Algorithm 2: The bisection algorithm
1: Input: URU∗: Schur decomposition ofA, λ: shift,

tolh, toll : high and low tolerance, [a0,b0]: initial interval.
2: Output: γ∗, µreal((A− λI )−1).
3: k = 0
4: while |bk − ak| > tolh do
5: γk+1 =

ak+bk

2
6: Approximate ḟreal(γk+1) using Lanczos(toll).
7: if ḟreal(γk+1) > 0 then
8: ak+1 = ak, bk+1 = γk+1

9: else
10: ak+1 = γk+1, bk+1 = bk

11: end if
12: k = k+ 1
13: end while
14: γ∗ = γk+1

15: Computeµreal((A− λI )−1) = σ2(C(γ∗)) (see (5)) using
Lanczos(tolh).

3.4. Numerical example

Let us illustrate the real structured pseudospectrum for the
following matrix by Demmel (1987):

A =





















−1 −100 −10000
0 −1 −100
0 0 −1





















. (15)

We used a grid of 100 points in each direction. Figures 2(a)
and 2(b) show the unstructured and real structured pseudospec-
trum, respectively, and reveal striking differences between both.
On the first sight, the eigenvalue−1 appears to become much
less sensitive if the perturbations are restricted to be real. This
would contradict first-order sensitivity results in (Kressner et al.
2009), which state that the Hölder condition number of an
eigenvalue remains almost the same under real perturbations.
Indeed, a closer inspection of the real pseudospectrum reveals
that for smallerǫ the eigenvalue−1 is still moved to almost
the same extent but its movement is mainly confined to the six
spikes at−1. This observation agrees well with the fact that
the shape of real pseudospectra for Jordan blocks convergesto
spikes asε → 0 (Karow 2008; Chaitin-Chatelin and Frayssé
1996).

4. Skew-symmetric pseudospectra

The techniques described above for accelerating the com-
putation of real structured pseudospectra can be extended to
other structures. We first illustrate this for the class∆ of (com-
plex) skew-symmetric perturbations. In this case, it can be
shown (Karow 2007) that the corresponding structured singular
valueµskew(B) satisfies the following eigenvalue optimization
problem:

µskew(B) =

√

inf
γ≥0
λ2

([

B∗B γ(B̄+ B∗)
γ(B+ B⊤) B⊤B̄

])

, (16)
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(a) Unstructured pseudospectrum
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(b) Real pseudospectrum

Figure 2: Unstructured (top) and real pseudospectrum (bottom) of the Demmel
matrix (15)

whereλ2 denotes the second largest eigenvalue of a Hermitian
matrix. By definition, the skew-symmetric pseudospectrum is
the level set ofµskew(B), with B = (A− λI )−1 as usual. Observe
that
[

B∗B γ(B̄+ B∗)
γ(B+ B⊤) B⊤B̄

]

=

[

B γI
γI B̄

]∗ [

B γI
γI B̄

]

− γ2I ,

(17)
which implies that the objective function is identical to

fskew(γ) = σ2
2

([

B γI
γI B̄

])

− γ2. (18)

Hence, the optimization problem becomes

µskew(B) =
√

inf
γ≥0

fskew(γ). (19)

Again we employ bisection for solving this optimization prob-
lem. Recall that each step of bisection requires the sign of the
derivative of fskew(γ) with respect toγ. Differentiating (18) we
obtain

ḟskew(γ) = 2σ2

([

B γI
γI B̄

])

σ̇2

([

B γI
γI B̄

])

− 2γ, (20)

where

σ̇2

([

B γI
γI B̄

])

= Re

[

u∗2

[

0 I
I 0

]

v2

]

, (21)

with u2, v2 the left and right singular vectors belonging to the

second largest singular value ofC(γ) =

[

B γI
γI B̄

]

.

At each step of bisection we therefore need to compute the
second singular triplet ofC(γ). For this purpose, we apply the
Lanczos algorithm toC(γ)∗C(γ), which requires one matrix-
vector multiplication withC(γ) followed by another one with
C(γ)∗. This in turn requires matrix-vector multiplications with
B or B̄. Similarly to the real structured pseudospectrum, we
propose to use the Schur decomposition ofA (see (14)), which
reduces the cost of matrix-vector multiplication withB (or B̄)
to O(n2) without the need of actually forming or factorizing
B = (A− λI )−1.

4.1. Numerical example

As an illustrative example, we use the complex skew-
symmetric matrix

A =





















0 1− φ 0
−1+ φ 0 i

0 −i 0





















, φ = 0.01, (22)

from (Rump 2006). Figures 3(a) and 3(b) show the unstructured
and skew-symmetric pseudospectrum ofA, respectively, using
a grid of 100 points in each direction.

5. Hermitian pseudospectra

This section is concerned with the class∆ of Hermitian per-
turbations. Lettingλ1 denote the largest eigenvalue of a Hermi-
tian matrix, it can been shown (Karow 2007) that the Hermitian
structured singular value satisfies

µHermitian(B) =
√

inf
γ∈R
λ1 (B∗B+ γi(B− B∗)), (23)

provided that the matrixBh = i(B− B∗) is not definite. Assum-
ing for the moment that this indefiniteness condition is true, we
observe that

B∗B+ γi(B− B∗) = (B− γiI )∗(B− γiI ) − γ2I , (24)

which implies that the objective function is equivalent to

fHermitian(γ) = σ
2
1(B− γiI ) − γ2. (25)

Hence, the optimization problem (23) becomes

µHermitian(B) =
√

inf
γ∈R

fHermitian(γ). (26)

Once again, we apply bisection in order to solve this optimiza-
tion problem, requiring the sign of the derivative offHermitian(γ)
in each iteration. Differentiating (25) with respect toγ gives

fHermitian(γ) = 2σ1(B− γiI )σ̇1(B− γiI ) − 2γ, (27)

where
σ̇1(B− γiI ) = Re[−iu∗1v1] = Im[u∗1v1] (28)
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(b) Skew-symmetric pseudospectrum

Figure 3: Unstructured (top) and skew-symmetric pseudospectrum (bottom) of
matrix (22)

andu1, v1 denote the left and right singular vectors belonging
to the largest singular value ofC(γ) = (B− γiI ).

Each step of bisection requires the computation of the largest
singular triplet ofC(γ). Applying Lanczos toC(γ)∗C(γ) re-
quires matrix-vector multiplications withC(γ) andC(γ)∗. As in
Section 4, exploiting the Schur decomposition ofA (see (14))
reduces the complexity of each matrix-vector multiplication to
O(n2) without the need of formingB = (A− λI )−1.

Let us come back to our initial assumption thatBh = i(B −
B∗) = i((A − λI )−1 − (A − λI )−∗) is not definite. If this condi-
tion is violated, there is no Hermitian perturbation△ such that
A+ △ has the eigenvalueλ and consequently it is reasonable to
defineµHermitian((A − λI )−1) = 0. This can be seen as follows.
Assuming thatBh is definite, a basic linear algebra result (Horn
and Johnson 1985) implies that alsoi((A − λI ) − (A − λI )∗) is
definite. If there was a Hermitian perturbation△ such thatλ
becomes an eigenvalue with eigenvectorx , 0 of A + H then
(A+H)x = λx implies 0= x∗(A−λI+H)x. Taking the imaginary
part of the last expression givesix∗((A− λI ) − (A− λI )∗)x = 0,
which contradicts the definiteness assumption.

In practice, we test the definiteness ofBh by applying a few
steps of the Lanczos method toBh. This will quickly yield good
approximations to the extremal (real) eigenvalues ofBh. Then,

we check whether the signs of the smallest and largest eigen-
value approximations ofBh agree. If this is the case thenBh

is considered definite and a zero structured singular value is
returned. Otherwise, the computation is continued by solving
the optimization problem (26) using bisection. If, for somerea-
son, the definitess test fails and returns a false positive then (26)
does not have a minimum, which in turn leads to a failure of the
bisection algorithm.

5.1. Numerical example

As an example, consider the non-Hermitian matrix

A = diag

(

0,1,2,

(

3 −1
1 3

))

, (29)

having the eigenvalues{0,1,2,3 + i,3 − i}. Figures 4(a) and
4(b) show the unstructured and Hermitian pseudospectrum of
A, respectively, using a grid of 100 points in each direction.
Notice that above the imaginary line 1 and below the imaginary
line −1 the Hermitian pseudospectrum is void due to fact that
for a given complex shiftλ ∈ C, with |Im(λ)| > 1, the matrixBh

becomes definite.
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(a) Unstructured pseudospectrum
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(b) Hermitian pseudospectrum

Figure 4: Unstructured (top panel) and Hermitian pseudospectrum (middle and
bottom panel) of matrix (29)

6. Hamiltonian pseudospectra

Following the discussion in (Karow et al. 2006a; Karow
2007), linear structures induced by bilinear and sesquilinear

6



forms can be handled by structured pseudospectra computation
for symmetric, skew-symmetric, and Hermitian perturbations.
In the following, this will be demonstrated for the practically
relevant case of Hamiltonian perturbations.

A matrix H is called Hamiltonian if it takes the form

H =

[

A B
C −A∗

]

∈ C
2n×2n, B = B∗, C = C∗.

The eigenvalues ofH are symmetric with respect to the imagi-
nary axis, and so is its Hamiltonian pseudospectrum. Defining

J =

[

0 I
−I 0

]

it is easy to see thatH is Hamiltonian if and

only if JH is Hermitian. For a general matrixB ∈ C
2n×2n we

therefore obtain

µHamiltonian(B) = µHermitian(JB).

and hence the Hamiltonian pseudospectrum can be computed
by solving the optimization problem (26) for each grid point
with B replaced byJB.

6.1. Numerical examples

The following two examples illustrate the use of Hamilto-
nian pseudospectra to provide insight into the movement of
purely imaginary eigenvalues under Hamiltonian perturbations.
In both examples we use a grid of 100 points in each direction.
First, consider the matrix

A =

[

0 diag(0,1,1)
diag(0,−1,−1) 0

]

(30)

with eigenvalues{0, i,−i}, each having algebraic multiplicity
two. Figure 5(a) and 5(b) show the unstructured and Hamilto-
nian pseudospectrum ofA, respectively. The latter reveals that
the eigenvalues±i stay on the imaginary axis under Hamilto-
nian perturbations up to the point when they meet the perturbed
zero eigenvalue, which allows them to leave the imaginary axis.

Next, consider the following matrixA

A =

[

0 diag(0,−1,1)
diag(0,1,−1) 0

]

, (31)

where we have simply switched the signs of the ones. This ma-
trix has the same eigenvalues{0, i,−i} as (30). Figures 6(a) and
6(b) show the unstructured and Hamiltonian pseudospectrumof
A respectively. In remarkable contrast to Figure 5, there is vir-
tually no difference between both pseudospectra. In particular,
the eigenvalues±i may leave the imaginary axis for arbitrar-
ily small Hamiltonian perturbations. A theoretical explanation
for this effect of the sign change can be found, for example,
in (Grivet-Talocia 2004; Mehrmann and Xu 2008).

7. A Matlab interface for plotting structured pseudospectra

The algorithms described in this paper have been imple-
mented into a software package for computing structured pseu-
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Figure 5: Pseudospectra of the matrix (30)
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Figure 6: Pseudospectra of the matrix (31)

dospectra.1 For convenience, Table 1 summarizes the SVD cal-
culations required in the computation of structured pseudospec-
tra, depending on the perturbation class∆.

Our software inherits the complete interface of
EigTool (Wright 2002), with a few modifications to allow
the specification of the perturbation structure, see Figure7. In
its present state, this software should be understood as research
code with potential for further improvements. In particular,
all computations are currently implemented as Matlab code.
Significant speedup could be obtained by outsourcing low-
level computations (e.g., the Lanczos method) to a low-level
programming language, as done in EigTool. Moreover, in view
of the non-smooth boundaries of structured pseudospectra,it
would be advantageous to use an adaptive grid, see (Breda
et al. 2009) for work in this direction.

1Seehttp://www.sam.math.ethz.ch/NLAgroup/software.html.
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Real Skew-symmetric

σ2

([

RB −γ−1IB
γIB RB

])

σ2

([

B γI
γI B̄

])

Hermitian Hamiltonian

σmax(B− γiI ) σmax(JB− γiI )

Table 1: SVD calculations involved in structured pseudospectra.

Figure 7: Matlab interface for computing structured pseudospectra . The plot
shows the real structured pseudospectra of the 100× 100 Frank matrix (Tre-
fethen and Embree 2005).

Note that the non-smoothness of structured pseudospectra
may pose a particular challenge for grid-based algorithms.In
particular, structured pseudospectra may partially collapse to
intervals on the real or imaginary line. We deal with this sit-
uation by enforcing the real axis (in the case of Hermitian and
real perturbations) and the imaginary axis (in the case of Hamil-
tonian perturbations) to be part of the computational grid.Let
us emphasize, however, that there might be other (nearly) one-
dimensional structures that are not well captured by a uniform
grid. For example, the spikes in Figure 2 are not well resolved;
at a finer resolution one can observe small isolated patches
along the spikes, which are artifacts due to the contour interpo-
lation used by Matlab. This could be avoided by applying an
edge detection algorithm (Canny 1983), refining the grid along
the edges, and using a different contour interpolation.

To give an impression of the performance of the current im-
plementation: On a single core of a 2.2GHz Intel 2 Core proces-
sor, computing the real structured pseudospectra displayed in
Figure 7 requires about 7 minutes with the algorithms described
in the paper. In comparison, a naive implementation based on
full SVD computations instead of the Lanczos method requires
about 79 minutes. However, it should also be mentioned that

Figure 8: µ values for Hamiltonian perturbations of the Hamiltonian ma-
trix (30).

computing the unstructured pseudospectra of the same matrix
requires only a few seconds.

Finally, we mention that our software also provides the pos-
sibility – inherited by EigTool – to display 3D plots of theµ
values. In certain situations this might provide more intuitive
visualization than contour plots. For example, Figure 8 displays
such a 3D plot for the Hamiltonian pseudospectrum shown in
Figure 5(b).
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