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Abstract

Structured singular values and pseudospectra play an fergople in assessing the properties of a linear systemrigtidectured
perturbations. This paper discusses computational aspédtructured pseudospectra for structures that admitganwalue
minimization characterization, including the classesealrskew-symmetric, Hermitian, and Hamiltonian perttidres. For all
these structures we develop algorithms that reqOif@®) operations per grid point, combining the Schur decomjmsivvith a
Lanczos method. These algorithms form the basis of a grapMierLae interface for plotting structured pseudospectra.

Key words: Structured pseudospectrum, structured singular valaépesturbations, skew-symmetric perturbations, Heaniti
perturbations, Hamiltonian perturbations.

1. Introduction The focus of this paper is on how to actually compute (3)
) or, equivalently, how to evaluaje, ((A — A1)™1) for a fixed ma-
Structured singular values and pseudospectra are usefsil to i« A and many dierent values oft € C. ForA = C™", the
for analyzing the spect_ral_ behavior of matrices and dynamic software package EigTool (Wright 2002) is routinely used for
systems under uncertainties. o _ plotting unstructured pseudospectra. The computatioost c
Given a class of perturbahtlgr.ztsg C™, thestructured sin- ¢ £io o0 benefits from two tricks, described for example in
gular valueof a matrixB € C™ is defined as the book by Trefethen and Embree (2005, Chapter 39). First,
ua(B) = [inf{llall : o € Aand det{ - aB) =0)]*. (1) Prior to any pseudospectral computatidhjs replaced by its
Schur form, reducing the cost of multiplying ¢ A1)~ with a
Here and in the following] - || denotes the 2-norm (also called vector fromO(n®) to O("?). It is crucial to note that this trick
spectral norm) of a matrix. 1B is invertible, us(B)™* is the  works because the unstructured pseudospectrum is invarian
minimal norm among all perturbations that make singular.  der unitary similarity transformations. (This propertyesmot
In the unstructured casa, = C™" andua(B) = ||BJ| coincides  hold in general for structured pseudospectra.) Secondne-La

with the largest singular value & _ _ zos method (Bai et al. 2000; Golub and Van Loan 1996) is em-
The structured pseudospectrum of a matkxe C™" with  ployed to estimat#(A— A1)~} based on matrix-vector products
respect ta\ and a threshold > 0 is defined as with (A — A1)~* and its conjugate transpose.
L The dificulty of computing structured singular values and
Aa(Ae) = AL”J” A(A+2), @ pseudospectra heavily depends on the naturk afd ranges
A€EA|[AlI<e

from trivial to NP-hard. In the following we provide a brief
whereA(-) denotes the spectrum of a matrix. Structured pseusurvey of available results in the literature.

dospectra are closely tied to structured singular valuesean

from the relation Computationally trivial classes\. For a surprisingly wide
range of linear structured, it can be shown thati((A —

AMA=eCtm(A-aH>1e. G) 173y Z [(A- )Y for A e A and anyd € C. In
Note that in the unstructured case= C™", we haveu,((A—  these cases there is consequently ritecénce between struc-
A1) = (A = 1)1 = L/ormin(A — A1), whereomin() denotes  tured and unstructured pseudospectra. This has been shown
the smallest singular value of a matrix. by Rump (2006) for the classes of symmetric, persymmetric,

Toeplitz, symmetric Toeplitz, Hankel, persymmetric Hanke
Email addressestaron@nath. tu-berlin. de (Michael Karow), and circulant matrices. The basic idea of the proof is to con-
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lul = 1 and||(A — ADU| = omin(A = Al). Then the rela- f f
tion ux((A — AD™) = |I(A = A1)7Y| readily follows from the
definition (1). A variety of such structured mappings can be
found in (Mackey et al. 2007; Rump 2003). Their connections
to structured pseudospedgtenvalue condition numbers have

also been investigated in (Graillat 2006; Karow 2007; Karow
et al. 2006a).

Computationally tractable classes. Many structures admit (a) Smooth case ¥ (b) Non-smooth case ¥
structured mappingau = v with A € A only under certain _ o _ _
constraints on the vectotsv. For example, a skew-symmetric Figure 1. Pictorial plots illustrating the shape ffa(y)-

mappinga is possible if and only ifi, v are orthogonal to each

other. In such cases, the evaluatiomugf(A—A1)~1) amounts to 2. Computing real structured singular values

the solution of a constrained optimization problem. Fotaiar

structures, the latter can be rewritten as an unconstraiige- In the case of real perturbations = R™", a well-known
valueg'singular .value optimization problem that _is computation- aq it (Qiu et al. 1995) shows that the corresponding siradt
glly tractable in the sense tha} the gIoba} optlmum can be résingular valugusea defined in (1) satisfies

liably computegapproximated in polynomial time. This holds

not only for the well-known casa = R™" as shown by Qiu ) RB —y1IB

et al. (1995), but also for complex skew-symmetric, Heraniti Hreal(B) = yéwfl] T2 ([ yIB  RB )

and other linear structures induced by bilinear and sasgait

forms (Karow 2007). Solely concerned with such structureswhereRB and 7B denote the real and imaginary parts®k
this paper focuses on théefieient solution of the eigenvalue C™", respectively, and,(-) denotes the second largest singular
optimization problems associated wijiy((A — A1)71), partic-  value of a matrix. Hence, computipg.a(B) involves a singular
ularly aiming at the computation of structured pseudospect value optimization with respect tp € (0,1]. To discuss this
Instances of computationally tractable classe®t considered optimization problem in more detail, let us define

in this paper include complex diagonal block structureswit

less than 4 blocks (Doyle 1982), compleff-diagonal block C) = [ RB —ylIB ] 4
structures (Karow et al. 2006b), and structures relatedbtoen vIB RB ’
order systems (Pappas and Hinrichsen 1993; Soh et al. 1985;
Tisseur and Higham 2001). with which
Hreal(B) = yl?)fl] a2(C(y)). (5)

Computationally intractable classes. For many structures
computational methods for evaluatingy, are either pro-

hibitively expensive or not even known. In fact, for a numoger convex(Qiu et al. 1995). A functionf : X — R is called

structures the evaluation gf, has been proven to be NP-hard, g . .
most prominently for diagonal (Demmel 1992) and real blockd2s!"CoNVex iffor eack,y € X' andg € [0, 1], it holds that

diagonal structures (Poljak and Rohn 1993). Despite these p fex+ (L= &)y) < maxf(x), f(y)) (6)
simistic results, reliable and somewhd#iaent techniques for a ’ '

obtaining usually tight lower and upper boundsarfor mixed  Any quasi-convex function has convex level sets. Quasicon-
complexreal diagonal structures are available and form the baVexity also implies that a local minimizer will be a globalmii

sis of MarLag’s p-Analysis and Synthesis Toolbox (Balas et al. mizer. Figure 1(a) illustrates what the objective functfa(y)
1993). However, a summary of these techniques is beyond thepically looks like.

scope of this paper; we refer to (Packard and Doyle 1993) for a
survey of early results in this direction.

The objective functionfiea(y) = o2(C(y)) in (5) is quasi-

2.1. Solving the optimization problem

Outline of the paper.The rest of this paper is organized as fol- We now discuss the solution of the optimization problem (5).
lows. Sections 2 and 3 are concerned with the computation ofFhe optimal solution can be obtained by localizing the pgint
real structured singular values and real structured pspete ~ Where the derivativeica(y) changes sign. In order to compute
tra, respectively. In particular, an algorithm is develbpleat " we have chosen to usgsectionas a simple and robust root
computes the real pseudospectrum at a co8(of) operations  bracketing method. At iteratiok, bisection employs an inter-
per grid point. These results are extended to skew-symenetrival [a, by] that contains the optimum, and divides this interval
Hermitian, and Hamiltonian pseudospectra in Sections 4, Snto two sub-intervals of equal length. In particular, itks the
and 6, respectively. The algorithms presented in this papenidpoint pointyy.; = akgbk and then selects one @ yk1] or
form the basis of a MrLas graphical interface. This interface [yk.1,bk], depending on the sign dfea(yk+1)- The method is
is briefly described in Section 7, which also contains a few exstopped when the length of the interial-ay| becomes smaller
periments concerning computationéfieency. than a given tolerance.




Algorithm 1: The Lanczos algorithm grid G on the complex plane and evaluaiga((A - A1)™) at
each grid pointl € G. In light of our discussion in the pre-

vious section, observe that we need to apply bisection iarord
to solve an eigenvalue optimization problem for each gridtpo
A € G. Each step of bisection in turn involves the computa-
tion of a singular triplet of the matri(y) defined in (4) with

B = (A- Al)~. Since computing a singular value decomposi-

1: Input: Matrix C, residual tolerancel
starting vector.
2: Output: Qx: Lanczos basis, céigcientsay andgy
3: Initialization: Bo = |Ir|l2.
4: fork=1,2,...do

2: rk _rr:gf\l;elc(l ) tion for each iteration becomes rather expensive for langee
7: ; B = Geof G- propose below anficient approach for computing real struc-
) B G-2Pk-1- tured pseudospectra, based on the Lanczos method combined
8: ak = (G, ). . "
o with the Schur decomposition &
9:  {Full reorthogonalization

100 forl=1,...,k—1do

3.1. The Lanczos method
11 r=r—<rq)q

12:  end for Let us recall that we only need to determine the second
13 Be=Irll. largest singular valuer, and singular vectors, vo of C(y),

14:  {Check for convergenge see (7). Equalently;r2 is the second largest eigenvalue of
15:  Compute the eigenpair of intereBw = ow. the Hermitian matribxC = C(y)*C(y) andv; is a corresponding

16:  Compute the residuaks(k) = |Bw(K)|. eigenvector. Moreovet, = 2C(y)Vva.

17:  if res(k) < tol then To approximate the eigenvalues ©f we apply the Lanc-

18: SetQx = [0, . .., ] and break. zos method t& (Bai et al. 2000; Golub and Van Loan 1996),
19:  endif see also Algorithm 1. Each step of the Lanczos method in-
20: end for volves one matrix-vector multiplication wit@i(y) followed by

a matrix-vector multiplication wittC(y)*. The version shown
in Algorithm 1 applies full reorthogonalization to retaiomer-

At each step of bisection, we need to evaluate the derivativieal accuracy. Aftek steps of Lanczos, we obtain a decompo-
of frea(y) = 02(C(y)). If the second largest singular value is sition of the form
simple thero,() is differentiable and

_ g CQu = QTk +rep, 8)
2(C(7)) = Re[isC)va 7)
. . whereQ,r = 0 andTy is a tridiagonal symmetric real matrix
whereu, andv; are left and right singular vectors Gf{y) cor-
responding tar,(C(y)), see (Sun 1988). Witl(y) defined as a1 B
in (4), .
. 2 1% .
IB 0 Bes
If the second largest singular value fails to be simple th@n ( Br-1  ak

yields an element of the sulitérential, see Lewis and Sendov

(2005), which can equally be used in the bisection method. Weomposed of the cdicients generated in the course of the

conclude that at each sté&mf bisection we need to compute a method. Well-known convergence results (Bai et al. 2000) im

singular triplet (singular value, right and left singulactors) ~ Ply that the second largest eigenvalueTgfprovides a good

to determinef.ea(yx). However, it is important to stress that approximation tar for sufficiently largek. If w denotes the

this computation is not required to be very accurate exampt f corresponding elgenvector ®f thenQyw provides an approx-

the last few iterations, since only the signaf(C(y)) is of in-  imation tous,.

terest. In the next section, when we discuss the computation It is important to observe that the main computational kerne

of real structured pseudospectra, it will be shown how te tak Of the Lanczos method is the matrix-vector multiplicatidrCo

advantage of this observation. with gk (Line 6). Hence, we only need the action of the matrix
We have also experimented with a regula falsi method, comC on a vector and can avoid the explicit formatiorCbf

bining bisection with the secant method. This somewhat de-

creases the number of iterations but requires higher acgura 3.2. Bficient computation of matrix-vector products

for 2(C(y)). In effect, the improvement of the overall execu-  To multiply € with a vectorx we first need to multiply with

tion time was modest at best. C(y) and then withC*(y). Let us consider the multiplication

with C(y):
3. Computing real structured pseudospectra [ yi ] [ RB —ylIB H X, ]
By (3), the real structured pseudospectraiadre the level y2 yIB  RB X2

(10)

sets ofueal((A — A1)71), 2 € C. For plotting the real struc- _ RBx — Y 1IBX
tured pseudospectrum &, we introduce a two-dimensional yIBX, + RBX

3



Observe that Algorithm 2: The bisection algorithm
1. Input: URU*: Schur decomposition d&, A: shift,

. 71 _ . . 71
(Y1 +iy77y2) = (RB+IIB)(x1 + iy X2), (11) tol, tol;: high and low tolerancea, bo]: initial interval.
2: Output: y*, A-ah™).
which implies thaty;, y, can be computed by performing one 3 k= g 7" hreall )
complex matrix-vector multiplication witl8 = KRB + i7B and 4: while by, — a > tol,, do
scaling the imaginary parts. A similar statement holds lier t 5. yier = A
. . . . . . 2 .
matrix-vector multiplication withC(y)*: 6:  Approximatefea(yk:1) using Lanczosol).
y RBT 7BT X 7. if frealyki1) > Othen
L= Mg o ! 8: A+l = A, b1 = Vit
Yo —-yIB" RB X2 o dse
_ RBTx; + yIBT %o (12) 10: A1 = Yir1s P = b
-y 1IBTx + RBTX, |’ 11:  endif
. ) 122 k=k+1
which can be written as 13: end while
_ o , 14: ¥ = Ykt
(1 +iyy2) = (RB' —17B ) (X1 +iyXp), (13) 15: Computeuea((A - A1)71) = 02(C(y*)) (see (5)) using

Lanczos(oly).

reducing the computation to a matrix-vector multiplicatieith
B*.

In summary, one step of Lanczos appliedQ¢y)*C(y) re-
quires two matrix-vector multiplications witB andB*, respec-
tively. In order to make this computation moréieent, we
propose to perform a Schur decompositiorAd priori, before
the pseudospectrum computation starts. Then, using the fac
thatA = URU*, whereU is unitary andR is upper triangular, it A=
holds that

3.4. Numerical example

Let us illustrate the real structured pseudospectrum fer th
following matrix by Demmel (1987):

o -1 -100
0 0 -1

(15)

-1 -100 -10000 \

B=(A-al)'=(URU -A)" =UR-A)"U". (14)  We used a grid of 100 points in each direction. Figures 2(a)
and 2(b) show the unstructured and real structured pseadosp

A matrix-vector multiplication withB (or B*) now requires a trum, respectively, and reveal strikingfirences between both.
matrix-vector multiplication witiJ*, followed by a linear sys-  On the first sight, the eigenvaluel appears to become much
tem solution with an upper (lower) triangular matRXR*) and,  |ess sensitive if the perturbations are restricted to ble fidds
finally, a matrix-vector multiplication witlJ. This not only  would contradict first-order sensitivity results in (Krasset al.
avoids the explicit formation oB but also reduces the cost of 2009), which state that the d#ler condition number of an
matrix-vector multiplications wittB or B* to O(n?). eigenvalue remains almost the same under real perturlsation
Indeed, a closer inspection of the real pseudospectrunalseve
that for smallere the eigenvalue-1 is still moved to almost
the same extent but its movement is mainly confined to the six

As we have already mentioned in Section 2, each step of bls_plkes at-1. This observation agrees well with the fact that

: . ) : the shape of real pseudospectra for Jordan blocks convierges
section only requires the sign OfZ(.C(y»' This suggest; that spikes as= — 0 (Karow 2008; Chaitin-Chatelin and Fragss
one can significantly relax the residual tolerance used ictta

zos (see Algorithm 1, Line 17) and still be able to estimate th 1996).

sign correctly. Numerical experience suggests that agotay

of 107° suffices. This limits the number of matrix-vector mul- 4. Skew-symmetric pseudospectra

tiplications required by the Lanczos method and therefoee t

total computational cost of bisection itself. Neverths|esis The techniques described above for accelerating the com-
important to stress that once the optimal solutjérhas been putation of real structured pseudospectra can be exteraed t
localized, we require high accuracy in the final approxiorati other structures. We first illustrate this for the classf (com-

of treal((A — A1)7Y) = 05(C(y*)), so we set the tolerance to plex) skew-symmetric perturbations. In this case, it can be
10715 in the Lanczos method (only) at this final step. Algo- Shown (Karow 2007) that the corresponding structured $amgu
rithm 2 summarizes the main steps of bisection for computiny/@lue usken(B) satisfies the following eigenvalue optimization
real((A—1)71). The matrix-vector multiplication needed in the Problem:
Lanczos method called in lines 6 and 15 (with the twidedlent _
tolerances) is performed i@(n?) operations with the trick de setonlB) = \/'yrl]; /12([ B'B  y(B+B) D (16)

3.3. Stopping criterion and accuracy

scribed in Section 3.2. y(B+ BT) B'B



with uy, v, the left and right singular vectors belonging to the

1.5 —-2

1/ 125 second largest singular value ©fy) =[ fl’ 7;3—' ]
05 —13 At each step of bisection we therefore need to compute the
' —1-35 second singular triplet d€(y). For this purpose, we apply the
0 ) —-4 Lanczos algorithm taC(y)*C(y), which requires one matrix-
. vector multiplication withC(y) followed by another one with
03 || - C(y)*. This in turn requires matrix-vector multiplications with
-1 | | B or B. Similarly to the real structured pseudospectrum, we
' propose to use the Schur decompositio¢see (14)), which
15 -2 -1 0 1 e reduces the cost of matrix-vector multiplication wigh(or B)
to O(n?) without the need of actually forming or factorizing
(a) Unstructured pseudospectrum B=(A- ,1|)—1_
15 ]2 4.1. Numerical example
1 —*° As an illustrative example, we use the complex skew-
05 3 symmetric matrix
' —-3.5
0 —]-4 0 1-¢ O
L | 45 A= -1+¢ 0 i |, ¢=001 (22)
0% . o - o0
-1
—>° from (Rump 2006). Figures 3(a) and 3(b) show the unstrudture
-15

—-6 and skew-symmetric pseudospectrumAofrespectively, using
a grid of 100 points in each direction.

(b) Real pseudospectrum

Figure 2: Unstructured (top) and real pseudospectrumdimtof the Demmel 5. Hermitian pseudospectra

matrix (15) . . . . .
This section is concerned with the clasef Hermitian per-

turbations. Lettingl; denote the largest eigenvalue of a Hermi-

. _ tian matrix, it can been shown (Karow 2007) that the Hermitia
where, denotes the second largest eigenvalue of a Hermitia@ctured singular value satisfies

matrix. By definition, the skew-symmetric pseudospectram i

the level set Ofisken(B), With B = (A — A1)~! as usual. Observe Unermitian( B) = \/inﬂ‘; 11 (B*B +vi(B - BY)), (23)
that e

BB y(|§+§*) [ B T B yl provided that the matri, = i(B — B*) is not definite. Assum-
y(B+BT) B'B |yl B y| B ’ ing for the moment that this indefiniteness condition is te
(17)  observe that

which implies that the objective function is identical to

2|

B'B+7i(B—B*) = (B—yil)"(B—yil) = y2l,  (24)

B |

_ 2 v 2

fskew(y) = 0'2( yl B ]) A (18 \which implies that the objective function is equivalent to

Hence, the optimization problem becomes frermitan(y) = 05(B — yil) — ¥ (25)
Hskew(B) = /Iygg fskew(¥)- (19)  Hence, the optimization problem (23) becomes

Again we employ bisection for solving this optimization pro HHermitian(B) = /'YQH]; fHermitian(y)- (26)

lem. Recall that each step of bisection requires the sighef t

derivative offsew(y) with respect toy. Differentiating (18) we  Once again, we apply bisection in order to solve this optmiz
obtain tion problem, requiring the sign of the derivative @ mitiar(y)

B 4l ). B 4l in each iteration. Oferentiating (25) with respect togives
s )l 7 5 -2 e

fsken(y) = 2072 ([ yl B - B e .
fhermitian(y) = 2071(B — yil )o1(B - yil ) - 2y, (27)
where

] B [ oo where
o2 [y| %D=Re[“z[| oM’ (1) ¢1(B - il) = R-iujvi] = Im{upvi] (28)



we check whether the signs of the smallest and largest eigen-

03 2 value approximations oBy, agree. If this is the case thd,
0.2 —1-2.25 is considered definite and a zero structured singular value i
—-2.5 returned. Otherwise, the computation is continued by Bglvi
01 L 1 575 the optimization problem (26) using bisection. If, for soraa-
0 % ® |, son, the deflnltess'te.st fails an.d re_turns afalse poanwe t26)
does not have a minimum, which in turn leads to a failure of the
—01 17325 bisection algorithm.
—1-3.5
-0.2 L | 55 5.1. Numerical example
-4 As an example, consider the non-Hermitian matrix
-02 -01 0 01 02
. 3 -1
(a) Unstructured pseudospectrum A= dlag(O, 1, 2’( 1 3 )) (29)
0.3 —1-2 having the eigenvalue®,1,2,3 +i,3 — i}. Figures 4(a) and
L1 505 4(b) show the unstructured and Hermitian pseudospectrum of
0.2 | |, A, respectively, using a grid of 100 points in each direction.
01 ' Notice that above the imaginary line 1 and below the imaginar
17 line —1 the Hermitian pseudospectrum is void due to fact that
0 . -3 for a given complex shift € C, with [Im(2)| > 1, the matrixBy,
o1 L1 355 becomes definite.
—-3.5

0.25
—1-3.75

0.2 _ 2 \_
.

[

(b) Skew-symmetric pseudospectrum

0.5
Figure 3: Unstructured (top) and skew-symmetric pseudogpedtbottom) of
matrix (22) 0.75
-1
0 1 2 3

-1 4

(=]

|
[

andug, v, denote the left and right singular vectors belonging (a) Unstructured pseudospectrum
to the largest singular value 6f(y) = (B — vil).

Each step of bisection requires the computation of the &irge 2 0.25
singular triplet ofC(y). Applying Lanczos taC(y)*C(y) re-
quires matrix-vector multiplications witG(y) andC(y)*. Asin
Section 4, exploiting the Schur decompositionfofsee (14))
reduces the complexity of each matrix-vector multiplioatto
O(n?) without the need of forming = (A - A1)~

Let us come back to our initial assumption ttgat = i(B —
B*) = i((A - A1)~ — (A - Al)™) is not definite. If this condi-

0.25

0.5

0.75

tion is violated, there is no Hermitian perturbatiarsuch that - -1
. o -1 0 1 2 3 4

A+ A has the eigenvalu¢ and consequently it is reasonable to

defineurermitan((A — A1)™!) = 0. This can be seen as follows. (b) Hermitian pseudospectrum

Assuming thaBy, is definite, a basic linear algebra result (Horn
and Johnson 1985) implies that aigfA — A1) — (A — A1)*) iS  Figure 4: Unstructured (top panel) and Hermitian pseuddsgegmiddie and
definite. If there was a Hermitian perturbatiansuch thatt  bottom panel) of matrix (29)
becomes an eigenvalue with eigenvectot 0 of A + H then
(A+H)x = Aximplies 0= x*(A-Al+H)x. Taking the imaginary
part of the last expression gives (A— Al) — (A - A1)*)x = 0,
which contradicts the definiteness assumption.

In practice, we test the definitenessByf by applying a few
steps of the Lanczos methodBg. This will quickly yield good Following the discussion in (Karow et al. 2006a; Karow
approximations to the extremal (real) eigenvalueBpfThen,  2007), linear structures induced by bilinear and sescpalin

6. Hamiltonian pseudospectra



forms can be handled by structured pseudospectra congputar

for symmetric, skew-symmetric, and Hermitian perturbagio 2 —1°
In the following, this will be demonstrated for the practiga 15 15
relevant case of Hamiltonian perturbations. L L
A matrix H is called Hamiltonian if it takes the form —°%%
A B 0.5 0.5
— 2nx2n _ * _ *
H_[C _p |€C®. B=B, C=C". 0 6 ||
. . . . . -05 -0.5
The eigenvalues dfl are symmetric with respect to the imagi-
nary axis, and so is its Hamiltonian pseudospectrum. Definii -1 -1 —-0.75
J = _OI 0 it is easy to see thdil is Hamiltonian if and  -15 -15
only if JH is Hermitian. For a general matr® € C2™?" we 2 . 1 2 5 L =1

therefore obtain

Liamitioniark B) = fihermitiar(J B) (a) Unstructured pseudospectrum (b) Hamiltonian pseudospectrum
amiitonial - ermitian .

and hence the Hamiltonian pseudospectrum can be computed Figure 5: Pseudospectra of the matrix (30)

by solving the optimization problem (26) for each grid point

with B replaced byl B.

2 2 —0
6.1. Numerical examples 15 15
The following two examples illustrate the use of Hamilto:
nian pseudospectra to provide insight into the movement ! @ ! @ %
purely imaginary eigenvalues under Hamiltonian pertucnast 05 05
In both examples we use a grid of 100 points in each directia
First, consider the matrix 0 0 —°°
0 diag(@1. 1) -0.5 -0.5
B iag(Q1,
A=| diag(@-1,-1) 0 30 4 -1 —-0.75
L - . . N -1.5 -1.5
with eigenvalued0,i, —i}, each having algebraic multiplicity
two. Figure 5(a) and 5(b) show the unstructured and Hamilt 2 s 1 2 5 1 —-1

nian pseudospectrum &f respectively. The latter reveals thai
the eigenvaluesi stay on the imaginary axis under Hamilto-
nian perturbations up to the point when they meet the pesturb
zero eigenvalue, which allows them to leave the imaginaiy. ax

(a) Unstructured pseudospectrum (b) Hamiltonian pseudospectrum

Figure 6: Pseudospectra of the matrix (31)

Next, consider the following matrid

A 0 diag(Q-1,1) (31) dospectra. For convenience, Table 1 summarizes the SVD cal-
~ | diag(Q1,-1) 0 ’ culations required in the computation of structured psepdo-
tra, depending on the perturbation class

where we have simply switched the signs of the ones. This ma- Our software inherits the complete interface of
trix has the same eigenvalugsi, i} as (30). Figures 6(a) and EigTool (Wright 2002), with a few modifications to allow
6(b) show the unstructured and Hamiltonian pseudospeaifum the specification of the perturbation structure, see Figuri®
Arespectively. In remarkable contrast to Figure 5, thereris v its present state, this software should be understood eanes
tually no diference between both pseudospectra. In particulagode with potential for further improvements. In partiaula
the eigenvaluesi may leave the imaginary axis for arbitrar- all computations are currently implemented asrMs code.
ily small Hamiltonian perturbations. A theoretical expdéion  Significant speedup could be obtained by outsourcing low-
for this efect of the sign change can be found, for examplejevel computations (e.g., the Lanczos method) to a lowteve
in (Grivet-Talocia 2004; Mehrmann and Xu 2008). programming language, as done in EigTool. Moreover, in view
of the non-smooth boundaries of structured pseudospéttra,
would be advantageous to use an adaptive grid, see (Breda
et al. 2009) for work in this direction.

The algorithms described in this paper have been imple-
mented into a software package for computing structured-pse  'Seehttp://www.sam.math.ethz.ch/NLAgroup/software.html.
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7. A MarLas interfacefor plotting structured pseudospectra
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[ o computing the unstructured pseudospectra of the samexmatri
: requires only a few seconds.
F Pillauc | Finally, we mention that our software also provides the pos-
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S S Einsis sibility — inherited by EigTool — to display 3D plots of the
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o iltanian . such a 3D plot for the Hamiltonian pseudospectrum shown in

Figure 5(b).

Figure 7: MsrLag interface for computing structured pseudospectra . The plot,
shows the real structured pseudospectra of thext@00 Frank matrix (Tre-
fethen and Embree 2005).
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