
A block Newton method for nonlinear eigenvalue problems

Daniel Kressner

July 20, 2009

Abstract

We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter.
One of the most fundamental differences from the linear case is that distinct eigenvalues
may have linearly dependent eigenvectors or even share the same eigenvector. This has
been a severe hindrance in the development of general numerical schemes for computing
several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subse-
quently. The purpose of this work is to show that the concept of invariant pairs offers a
way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon.
To demonstrate the use of this concept in the development of numerical methods, we have
developed a novel block Newton method for computing such invariant pairs. Algorith-
mic aspects of this method are considered and a few academic examples demonstrate its
viability.

1 Introduction

Given a function T : Ω→ C
n×n holomorphic on an open set Ω ⊆ C, we consider the nonlinear

eigenvalue problem of finding pairs (x, λ) ∈ C
n × Ω with x 6= 0 such that

T (λ)x = 0. (1)

For any such pair (x, λ), we call x an eigenvector and λ an eigenvalue. This formulation
includes linear eigenvalue problems, for which T (λ) = A − λI with A ∈ C

n×n, as well as
polynomial eigenvalue problems, for which T is a matrix polynomial in λ. To avoid degenerate
situations, we assume that T is regular, i.e., det

(
T (·)

)
6≡ 0 on any of the components of Ω,

throughout this paper. For a recent overview on the numerics and numerous applications of
such nonlinear eigenvalue problems, we refer to [20].

In contrast to the linear case, there may be eigenvector/eigenvalue pairs (λ1, x1), . . .,
(λk, xk) of (1), for which the eigenvalues λ1, . . . , λk are pairwise distinct but {x1, . . . , xk} is
linearly dependent. This possibility is already evident from the fact that k can be larger than
n. Another example [12] is given by

T (λ) =

[
0 12
−2 14

]
+ λ

[
−1 −6
2 −9

]
+ λ2

[
1 0
0 1

]
, (2)

for which the eigenvalues 3 and 4 share the same eigenvector
[1

1

]
. The occurrence of such linear

dependencies is an annoyance when attempting to develop numerical methods for computing
more than one eigenvalue of (1). For example, standard Newton methods [10, 11] for the
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simultaneous computation of several eigenvalues crucially depend on the existence of a basis
for the invariant subspace belonging to the eigenvalues of interest. In methods that determine
several eigenvalues subsequently, such as Krylov subspace or Jacobi-Davidson methods [2],
repeated convergence towards an eigenvalue is usually avoided by reorthogonalization against
converged eigenvectors. If such an idea was directly applied to nonlinear eigenvalue problems,
eigenvalues could be missed due to linear dependencies among eigenvectors.

In the case that the nonlinear eigenvalue problem admits a minimum-maximum charac-
terization [26, 31], its eigenvalues can be ordered and numbered. Voss and his co-authors [4,
5, 7, 27, 28, 29, 30] have developed Arnoldi-type and Jacobi-Davidson-type methods that em-
ploy this numbering as a safety scheme for avoiding repeated convergence towards the same
eigenvalue. Unfortunately, for many applications such minimum-maximum characterizations
do not exist or are difficult to verify.

In this work, we will propose a different approach for dealing with several eigenvalues,
very much inspired by the work of Beyn and Thümmler [9] on continuation methods for
quadratic eigenvalue problems. For this purpose, it will be more convenient to assume that
the nonlinear eigenvalue problem (1) takes the form

(
f1(λ)A1 + f2(λ)A2 + · · ·+ fm(λ)Am

)
x = 0. (3)

for holomorphic functions f1, . . . , fm : Ω→ C and constant matrices A1, . . . , Am ∈ C
n×n. This

is no restriction as we could turn (1) into (3) by choosing m = n2, f(i−1)n+j(λ) = tij(λ) and

A(i−1)n+j = eie
T
j , with ei and ej denoting the ith and jth unit vectors of length n, respectively.

However, many applications of nonlinear eigenvalue problems already come in the form (3)
and such a reformulation is not needed. For example, in eigenvalue problems related to the
stability of time-delay systems [21], the functions fj are exponentials or polynomials. In
applications related to vibrating mechanical structures [30], the functions fj are rational and
model different material properties.

The rest of this paper is organized as follows. In Section 2, the concept of invariant pairs
for the nonlinear eigenvalue problem (3) is introduced. We believe this to be the most suitable
extension of an eigenvalue/eigenvector pair to several eigenvalues. Several useful properties
are shown to substantiate this belief. In Section 3, a Newton method for computing such
invariant pairs is developed, along with some algorithmic details and numerical experiments.

2 Invariant pairs

Definition 1 Let the eigenvalues of S ∈ C
k×k be contained in Ω and let X ∈ C

n×k. Then
(X,S) ∈ C

n×k × C
k×k is called an invariant pair of the nonlinear eigenvalue problem (3) if

A1Xf1(S) + A2Xf2(S) + · · ·+ AmXfm(S) = 0. (4)

Note that the matrix functions f1(S), . . . , fm(S) are well defined under the given assump-
tions [16]. As an example, let (x1, λ1) and (x2, λ2) be eigenvector/eigenvalue pairs of (3).
Then (X,S) with X = [x1, x2] and S = diag(λ1, λ2) is an invariant pair.

To avoid trivial invariant pairs, such as X = 0, an additional property needs to be imposed.
However, we have already seen that requiring X to have full column rank is not reasonable
in the context of nonlinear eigenvalue problems. Instead, we use the concept of minimal
invariant pairs from [6, 9].
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Definition 2 A pair (X,S) ∈ C
n×k × C

k×k is called minimal if there is l ∈ N such that the
matrix

Vl(X,S) =




X
XS
...
XSl−1


 (5)

has rank k. The smallest such l is called the minimality index of (X,S).

Example 3 For the example (2), the pair (X,S) with X =

[
1 1
1 1

]
and S = diag(3, 4) is

invariant and minimal with minimality index 2.

It has been shown in [6, Theorem 3] that any non-minimal pair can be turned into a
minimal one in the following sense. If Vl(X,S) has rank k̃ < k then there is a minimal pair

(X̃, S̃) ∈ C
n×k̃ × C

k̃×k̃ such that span X̃ = spanX and spanVl(X̃, S̃) = spanVl(X,S). The
following Lemma reveals the connection of minimal invariant pairs to the nonlinear eigenvalue
problem (3).

Lemma 4 Let (X,S) ∈ C
n×k ×C

k×k be a minimal invariant pair of (3). Then the following
statements hold.

1. For any invertible matrix Z ∈ C
k×k, (XZ,Z−1SZ) is also a minimal invariant pair

of (3).

2. The eigenvalues of S are eigenvalues of (3).

Proof.

1. Using fj(Z
−1SZ) = Z−1fj(S)Z, the relation (4) can be written as

A1XZf1(Z
−1SZ)Z−1 + A2XZf2(Z

−1SZ)Z−1 + · · ·+ AmXZfm(Z−1SZ)Z−1 = 0,

which is equivalent to

A1XZf1(Z
−1SZ) + A2XZf2(Z

−1SZ) + · · · + AmXZfm(Z−1SZ) = 0, (6)

and shows that (XZ,Z−1SZ) is an invariant pair. Its minimality follows from

Vl(XZ,Z−1SZ) = Vl(X,S)Z.

2. By the Schur decomposition, we can choose Z orthogonal such that S̃ = Z−1SZ is
upper triangular with any eigenvalue λ of S appearing in the (1, 1) position of S̃. Setting
x = XZe1, the first column of Vl(Z

−1SZ,XZ) has the entries x, xλ, . . . , xλl−1. Hence,
x 6= 0 since otherwise Vl(Z

−1SZ,XZ) would be rank deficient for any l. Moreover,

XZfj(Z
−1SZ)e1 = fj(λ)x

and thus the first column of (6) implies that (x, λ) is an eigenvector/eigenvalue pair.
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Let us briefly discuss the practical consequences of Lemma 4. Once a minimal invariant
pair is computed we can extract the corresponding eigenvalues of T (·) by computing the
eigenvalues of S. Moreover, if S admits a diagonalization Z−1SZ then the columns of XZ
contain the corresponding eigenvectors.

The following lemma shows that for checking minimality, it is sufficient to check the rank
of Vk(X,S).

Lemma 5 If a pair (X,S) ∈ C
n×k×C

k×k is minimal then its minimality index cannot exceed
k.

Proof. Since (X,S) is minimal, there is l ∈ N such that rank
(
Vl(X,S)

)
= k. For l ≤ k

there is nothing to prove. For l > k, the Cayley-Hamilton theorem yields the existence of
coefficients αij ∈ C such that

XSk+i = αi0X + αi1XS + · · ·+ αi,k−1XSk−1, i ≥ 0.

Hence, there is a square invertible matrix W such that

W Vl(X,S) =

[
Vk(X,S)

0

]
,

implying rank
(
Vk(X,S)

)
= k.

2.1 Relation to polynomial eigenvalue problems

Given a minimal invariant pair (X,S) ∈ C
n×k × C

k×k, the nonlinear eigenvalue problem (3)
can be locally transformed into a polynomial eigenvalue problem. To see this, we choose
pj ∈ Πk, where Πk denotes all polynomials of degree at most k, as the Hermite interpolating
polynomial of fj at the spectrum of S [16]. Then fj(S) = pj(S) and (4) can be written as

A1Xp1(S) + A2Xp2(S) + · · · + AmXpm(S) = 0.

Hence, (X,S) is a minimal invariant pair for the polynomial eigenvalue problem

(
p1(λ)A1 + p2(λ)A2 + · · ·+ pm(λ)Am

)
x = 0. (7)

In particular, Lemma 4.2 implies that the eigenvalues of S are eigenvalues of (7). Note,
however, that the converse is not true: from the kn eigenvalues of (7) only k can be expected
to solve the original nonlinear eigenvalue problem. Nevertheless, (7) allows us to show that
minimal invariant pairs can be easily constructed in the case of pairwise distinct eigenvalues.

Lemma 6 Let (x1, λ1), . . . , (xk, λk) be eigenvector/eigenvalue pairs for the nonlinear eigen-
value problem (3), with λi 6= λj for i 6= j. Then the invariant pair

(X,S) =
(
[x1, . . . , xk],diag(λ1, . . . , λk)

)

is minimal.
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Proof. The construction above shows that (X,S) is an invariant pair for the polynomial
eigenvalue problem (7). Without loss of generality, we may assume that (7) is regular. If this
is not the case, (7) can always be replaced by a regular higher order interpolation that also
incorporates derivative of fj, see the proof of Theorem 10.

By the companion linearization [14] of (7), there is a matrix pencil CA − λCB ∈ C
kn×kn

such that (v1, λ1), . . . , (vk, λk) with vj = [xT
j , λjx

T
j , . . . , λk−1

j xT
j ]T are eigenvector/eigenvalue

pairs of CA − λCB. Eigenvectors belonging to pairwise distinct eigenvalues of matrix pencils
are linearly independent and hence Vk(X,S) = [v1, . . . , vk] has rank k, concluding the proof.

2.2 Simple invariant pairs

Relation (1) immediately implies that λ is an eigenvalue if and only if det(T (λ)) = 0. The
algebraic multiplicity of λ is defined as usual.

Definition 7 Let λ be an eigenvalue of a holomorphic function T : Ω→ C
n×n. Then the alge-

braic multiplicity of λ, denoted by algT (λ), is the smallest integer j such that ∂j

∂λj det(T (λ)) 6=
0.

Note that det(T (·)) is also holomorphic in the open set Ω and thus – by basic complex analysis
results – the algebraic multiplicity of λ is finite unless det(T (·)) ≡ 0 in some component of
Ω. However, in the latter case T is not regular, contradicting the assumption made in the
introduction.

The following definition defines an invariant pair to be simple if it includes eigenvalues in
their full multiplicity.

Definition 8 An invariant pair (X,S) for a regular, holomorphic function T : Ω→ C
n×n is

called simple if (X,S) is minimal and the algebraic multiplicities of the eigenvalues of S are
identical to the algebraic multiplicities of the corresponding eigenvalues of T .

In the following, it will be shown that simple invariant pairs are well posed objects in the sense
of being regular solutions to a nonlinear matrix equation. For this purpose, we introduce the
nonlinear matrix operator

T : C
n×k × C

k×k
Ω → C

n×k,
(X,S) 7→ A1Xf1(S) + A2Xf2(S) + · · ·+ AmXfm(S),

(8)

associated with T (λ) = f1(λ)A1 + f2(λ)A2 + · · · + fm(λ)Am. Here, C
k×k
Ω denotes the set of

k × k matrices with eigenvalues in Ω. By definition, see (4), an invariant pair (X,S) satisfies
T(X,S) = 0. But this relation is clearly not sufficient to characterize (X,S) and we need to
add some normalization. For this purpose, choose l such that the matrix Vl(X,S), see (5),
has rank k. Define and partition the matrix

W =




W0

W1
...

Wl−1


 := Vl(X,S)

(
Vl(X,S)HVl(X,S)

)−1
∈ C

nk×k,
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with Wj ∈ C
n×k. Thus, V(X,S) = 0 for the operator

V : C
n×k × C

k×k
Ω → C

k×k,
(X,S) 7→ W HVl(X,S) − Ik.

(9)

Note that W is considered constant and not treated as a function of X and S.
In the following it will be investigated whether the two conditions T(X,S) = 0, V(X,S) =

0 are sufficient to characterize (X,S), at least locally. For this purpose, we compute the
Fréchet derivatives of T and V at (X,S):

DT : (△X,△S) 7→ T(△X,S) +

m∑

j=1

AjX [Dfj(S)](△S), (10)

DV : (△X,△S) 7→ W H
0 △X +

l−1∑

j=1

W H
j

(
△XSj + X DSj(△S)

)
. (11)

Here, [Dfj(S)] denotes the Fréchet derivative of fj at S. Note that the Fréchet derivative
DSj of the map S 7→ Sj can be written as

DSj : △S 7→

j∑

i=0

Si△S Sj−i−1.

The following example illustrates the definitions above.

Example 9 Consider T (λ) = λI −A0−A1e
−λτ with A0, A1 ∈ C

n×n and τ ∈ R. The associ-
ated nonlinear eigenvalue problem arises from the stability study of a linear delay differential
equation (DDE) with a single delay [21]. For k = l = 2, the operators T and V take the form

T(X,S) = XS −A0X −A1Xe−τS ,

V(X,S) = W H
0 X + W H

1 XS − I2.

The corresponding Fréchet derivatives at (X,S) are given by

DT(△X,△S) = T(△X,S) + X△S −A1X De−τS(△S),

DV(△X,△S) = W H
0 △X + W H

1 (△X S + X△S).

Note that De−τS, the Fréchet derivative of the exponential matrix function, can be computed
using methods described in [16, 18, 22], see also Section 3 below.

The following theorem is the main result of this section and proves that simple invariant
pairs are well posed.

Theorem 10 Let (X,S) be a minimal invariant pair for the nonlinear eigenvalue prob-
lem (3). Then (X,S) is simple if and only if the associated linear matrix operator

L : C
n×k × C

k×k → C
n×k × C

k×k

(△X,△S) →
(
DT(△X,△S), DV(△X,△S)

)
,

with DT and DV defined in (10)–(11), is invertible.
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Proof. The basic idea of the proof is to replace the holomorphic functions f1, . . . , fm by
polynomials and apply results from [6]. Complex interpolation theory [13] shows that there
are polynomials pi, i = 1, . . . ,m, of degree not larger than ℓ, with some integer ℓ > k, such
that

p
(j)
i (λs) = f

(j)
i (λs), j = 0, . . . , 2k − 1,

for every eigenvalue λs of S. In particular, this implies fi(S) = pi(S) for i = 1, . . . ,m and
hence (X,S) is a minimal invariant pair for P (λ) = A1p1(λ) + · · · + Ampm(λ). Moreover,

∂j

∂λj
det(T (λs)) =

∂j

∂λj
det(P (λs)), j = 0, . . . , 2k − 1, (12)

showing that the algebraic multiplicities of T for the eigenvalues of S match those of P , unless
the algebraic multiplicity exceeds 2k − 1 (in which case (X,S) cannot be simple, neither for
T nor for P ). By definition, (12) thus proves that (X,S) is a simple invariant pair for T if
and only if it is a simple invariant pair for P . In [6, Theorem 7], the latter condition is shown
to be equivalent to the condition that (X,S) is a regular solution to the matrix equations

P(X,S) = A1Xp1(S) + · · ·+ AmXp1(S) = 0, T(X,S) = W̃ HVℓ(X,S) = 0. (13)

A minor complication is that in general ℓ > l, but this can be easily fixed by defining W̃ as
the matrix obtained from appending W with (ℓ − l)n zero rows. In turn, (X,S) is a simple
invariant pair if and only if the linear matrix operator

L̃ : C
n×k ×C

k×k → C
n×k × C

k×k

(△X,△S) →
(
DP(△X,△S), DV(△X,△S)

)
,

is invertible, where

DP : (△X,△S) 7→ T(△X,S) +
m∑

j=1

AjX [Dpj(S)](△S).

Using (12) we obtain from the results in [18] that
[

fj(S) [Dfj(S)](△S)
0 fj(S)

]
= fj

([
S △S
0 S

])
= pj

([
S △S
0 S

])

=

[
pj(S) [Dpj(S)](△S)

0 pj(S)

]

for j = 1, . . . ,m. Thus [Dfj(S)](△S) = [Dpj(S)](△S), which implies L̃ = L and concludes
the proof.

By the implicit function theorem for holomorphic functions [17], Theorem 10 reveals that
the entries of a simple invariant pair (X,S) vary analytically under analytic changes of T .
This shows that (X,S) is well posed and reasonable to compute numerically.

3 A Newton method for simple invariant pairs

In this section, we show how the theoretical framework developed in the previous section can
be turned into a numerical algorithm for computing simple invariant pairs. The aim is to
compute a solution (X,S) ∈ C

n×k × C
k×k to the nonlinear matrix equations

T(X,S) = 0, V(X,S) = 0. (14)
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with T(X,S) = A1Xf1(S)+ · · ·+AmXfm(S) and V(X,S) = W HVl(X,S)− Ik for some fixed
W ∈ C

ln×k of full column rank. By Lemma 4, the eigenvalues of S are eigenvalues of T (·) and
if there is an invertible Z such that Z−1SZ is diagonal then XZ contains the corresponding
eigenvectors.

Formally, the Newton method for solving (14) can be written as

(Xp+1, Sp+1) = (Xp, Sp)− L
−1
p

(
T(Xp, Sp), V(Xp, Sp)

)
(15)

where Lp is the Jacobian of (14) at (Xp, Sp). We have

Lp(△X,△S) =
(
DTp(△X,△S), DVp(△X,△S)

)

with DTp and DVp defined as in (10)–(11) but with X,S replaced by Xp, Sp. Theorem 10
implies that the iteration (15) converges locally quadratically to a simple invariant pair.

Remark 11 In principle, W can be chosen arbitrarily as long as W HV is invertible for any
basis V of span

(
Vl(X,S)

)
. Equivalently, the largest principal angle between span(W ) and

span
(
V (X,S)

)
must be less than π/2 [25]. To avoid an ill-conditioned basis in the course

of the iteration, it is common practice in Newton methods for eigenvalue computation [1]
to choose an orthonormal basis for W in each iteration. In our setting, this corresponds to
computing a compact QR decomposition Vl(Xp, Sp) = WR with W HW = Ik and R ∈ C

k×k

invertible. To preserve the relation W HVl(Xp, Sp) = Ik, we then have to replace Xp ← XpR
−1

and Sp ← RSpR
−1 accordingly.

Algorithm 1 Newton method for computing invariant pairs

Input: Initial pair (X0, S0) ∈ C
n×k × C

k×k such that Vl(X0, S0)
HVl(X0, S0) = Ik.

Output: Approximate solution (Xp+1, Sp+1) to (14).
1: p← 0, W ← Vl(X0, S0)
2: repeat
3: Res← T(Xp, Sp)
4: Solve linear matrix equation Lp(△X,△S) = (Res, 0).

5: X̃p+1 ← Xp −△X, S̃p+1 ← Sp −△S

6: Compute compact QR decomposition Vl

(
X̃p+1, S̃p+1

)
= WR.

7: Xp+1 ← X̃p+1R
−1, Sp+1 ← RS̃p+1R

−1

8: until convergence

3.1 Setting up the initial pair (X0, S0)

In many applications the approximate location of the eigenvalues of interest might be known,
but usually little or no information is available for the eigenvectors. To compensate for this
imbalance, a variant of inverse iteration should be applied before starting Algorithm 1.

Algorithm 2 Inverse iteration for stetting up initial pair (X0, S0)

Input: An initial matrix S0 ∈ C
k×k.

Output: An initial matrix X0 ∈ C
n×k.

1: Choose random matrix X0 ∈ C
n×k.

2: for p← 1, 2, 3 do
3: Compute solution Y to linear matrix equation T(Y, S0) = X0.
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4: Compute compact QR decomposition Vl(Y, S0) = WR.
5: Update X0 ← YkR

−1, S0 ← RS0R
−1

6: end for

The linear matrix equation to be solved in Step 3 is a special case of the matrix equation in
Step 4 of Algorithm 1, whose efficient solution is discussed in the next section. Note that
choosing 3 as the number of loops to be performed in Algorithm 2 is a heuristics; for the
examples reported below we did not observe any significant benefit from iterating further.

3.2 Solving the linear system

The most expensive part of Algorithm 1 is certainly the solution of the linear matrix equation
in Step 4. In principal, by using Kronecker products to replace the involved matrix products,
this is equivalent to a linear system of order (nk + k2). However, even if this system can
be cheaply set up, its solution still requires O(k3(n + k)3) flops, which is only acceptable as
long as k is not significantly larger than 1. Fortunately, ideas from [8, 9] can be extended to
reduce the cost significantly. For notational convenience, we drop the index p and consider
the solution of a linear system of matrix equations

T(△X,S) +

m∑

j=1

AjX [Dfj(S)](△S) = RT , (16)

W H
0 △X +

l−1∑

j=1

W H
j

(
△XSj + X DSj(△S)

)
= RV , (17)

where (△X,△S) is unknown. Moreover, by a suitable normalization of X,S,W we can
assume w.l.o.g. that S is in (complex) Schur form. Because of the triangular structure of S,
the equations (16)–(17) simplify considerably for the first columns of △X and △S. To see
this, we will make use of the following technical result.

Lemma 12 Let f be holomorphic on an open set Ω ⊆ C containing the spectrum of the upper
triangular matrix S ∈ C

k×k. Then there is an upper triangular matrix [Df(S)]11 ∈ C
k×k such

that
[Df(S)]11 Ce1 = [Df(S)](C) e1 (18)

for any matrix C ∈ C
k×k. Moreover, we have the relation

f

([
S Ik

0 s11Ik

])
=

[
f(S) [Df(S)]11

0 f(s11)Ik

]
. (19)

Proof. Since f : Ω → C and its derivative are considered for a fixed matrix S, we can
assume w.l.o.g. (e.g., by replacing f by a Hermite interpolant) that Ω is connected. Let Γ be
a closed contour that is contained in Ω and encircles the eigenvalues of S. Then [16],

[Df(S)](C) e1 =
1

2πi

∫

Γ
f(z)(zI − S)−1C(zI − S)−1e1 dz

=
1

2πi

∫

Γ

f(z)

z − s11
(zI − S)−1Ce1 dz,
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where we used that S is upper triangular. Hence,

[Df(S)]11 =
1

2πi

∫

Γ

f(z)

z − s11
(zI − S)−1 dz,

which is clearly upper triangular. The equality (19) follows from

f

([
S Ik

0 s11Ik

])
=

1

2πi

∫

Γ
f(z)

[
zI − S −Ik

0 (z − s11)Ik

]−1

dz

=
1

2πi

∫

Γ
f(z)

[
(zI − S)−1 (z − S)−1(z − s11)

−1

0 (z − s11)
−1Ik

]
dz

=

[
f(S) [Df(S)]11

0 f(s11)Ik

]
,

which concludes the proof.
Using Lemma 12, post-multiplying (16)–(17) by e1 yields the following linear system of

order nk: 


T (s11)
m∑

j=1
AjX[Dfj(S)]11

l−1∑
j=0

sj
11W

H
j

l−1∑
j=1

W H
j X[DSj ]11




[
△x1

△s1

]
=

[
RT e1

RV e1

]
, (20)

where △x1 = △X e1 and △s1 = △S e1. While (19) offers an appropriate way to compute
[Dfj(S)]11, the matrices [DSj ]11 can be computed more efficiently by making use of the
recursion

DS1(△S) = △S, DSj(△S) = (DSj−1(△S))S + Sj−1△S, j ≥ 2,

implying
[DS1]11 = Ik, [DSj]11 = s11[DSj−1]11 + Sj−1, j ≥ 2.

Before continuing this process for the next columns of △X and △S, we need to update
the right hand sides of (16)–(17) after △x1 and △s1 have been computed from (20) (this
bears resemblance to the forward substitution process for solving lower triangular systems).
For this purpose, partition

△X = [△x1,△X2], △S = [△s1,△S2], RT = [RT e1, RT2], RV = [RV e1, RV 2],

and

S =

[
s11 s12

0 S22

]
, f(S) =

[
f(s11) [f(S)]12

0 f(S22)

]

for some function f . Inserted into (16)–(17), we obtain the following linear matrix equation
for the pair (△X2,△S2) ∈ C

n×(k−1) × C
k×(k−1):

T(△X2, S22) +

m∑

j=1

AjX [Dfj(S)]
(
[0,△S2]

) [
0

Ik−1

]
= R̃T2, (21)

W H
0 △X2 +

l−1∑

j=1

W H
j

(
△X2S

j
22 + X DSj

(
[0,△S2]

) [
0

Ik−1

])
= R̃V 2, (22)
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with updated right-hand sides

R̃T2 = RT2 −

m∑

j=1

Aj

(
△x1[fj(S)]12 + X[Dfj(S)]([△s1, 0])

[
0

Ik−1

])
,

R̃V 2 = RV 2 −
l−1∑

j=1

W H
j

(
△x1[S

j ]12 + X DSj
(
[△s1, 0]

) [
0

Ik−1

])
.

The first columns of the solutions to (21)–(22) can be computed similarly as for the original
transformed equations (16)–(17). We refrain from providing the algorithmic details here and
refer to Appendix A for a Matlab implementation of the sketched forward substitution
process. If k ≪ n and l ≪ n then the cost of the overall algorithm is dominated by the
solution of k linear systems of the form (20). Since each of these systems has order n+ k, the
overall cost is O(k(n + k)3) flops, which compares well with the O(k3(n + k)3) flops needed
by the Kronecker product formulation. Moreover, if the matrices Aj are sparse then (20)
is a bordered sparse system and a sparse direct solver, possibly adapted to such bordered
matrices [3], could be used.

3.3 Improving global convergence

In an attempt to improve the global convergence of Algorithm 1, we have implemented a
simple Armijo rule based on the residual norm

‖T(X,S)‖F = ‖A1Xf1(S) + · · ·+ AmXfm(S)‖F . (23)

More specifically from a discrete set {2−3, 2−2, 2−1, 1} of step sizes we choose the largest step
size τ such that

‖T(Xτ , Sτ )‖F ≤ (1− 10−4τ)‖T(Xp, Sp)‖F , (24)

where (Xτ , Sτ ) is obtained from applying the orthogonalization steps 6–7 of Algorithm 1 to
(Xp + τ△X,Sp + τ△X). If (24) cannot be fulfilled we choose τ as small as possible, i.e.,
τ = 2−3. The next iterate is obtained as (Xp+1, Sp+1)← (Xτ , Sτ ).

3.4 Application 1

We continue Example 3; computing eigenvalues for

T (λ) = λI −A0 −A1e
−λτ (25)

with A0, A1 ∈ C
n×n and a delay τ > 0. For the stability analysis of the corresponding DDE

ẋ(t) = A0x(t) + A1x(t− τ), it is of interest to compute eigenvalues with large real part. To
obtain an initial guess, we approximate T (λ) by a polynomial

T (λ) ≈ P (λ) := λI −A0 −A1

ℓ∑

i=0

1

i!
(−λτ)i. (26)

and compute the k eigenvalues λ1, . . . , λk of P that have largest real part. We then choose
S0 = diag(λ1, . . . , λk) and compute X0 with Algorithm 2.
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Figure 1: Numerical results for Example 13. Left plot: Location of eigenvalue approximations
initially (+), after 3 Iterations (◦), and at convergence after 12 iterations (×). Right plot:
Residual norm (23) in the course of the Newton iteration.

Example 13 ([21, Sec. 2.4.1]) Consider (25) for the matrices

A0 =

[
−5 1
2 −6

]
, A1 =

[
−2 1
4 −1

]

and τ = 1. We aim at computing an invariant pair for 5 eigenvalues. In this case, the
minimality index is at least 3. Figure 1 displays the numerical results obtained from running
the block Newton method proposed in this paper for this example with k = 5 and l = 3 . For
the initial approximation (26), we have chosen ℓ = 4. Initially, three eigenvalues are well
and two eigenvalues are poorly approximated. During the first 2 iterations the step size is at
the allowed minimum 2−3 before it successively increases to 1 at the sixth step, after which
quadratic convergence sets in. Comparing with the results [21], it turns out that the converged
eigenvalues are in fact the ones with largest real part. Note that the condition number of the
Jacobian is 9.2 × 105 at convergence, which could explain the poor transient behavior of the
Newton method.

Example 14 ([21, Sec. 2.4.2]) The experiments from Example 13 are repeated for the ma-
trices

A0 =



−0.8498 0.1479 44.37
0.003756 −0.2805 −229.2
−0.1754 0.02296 −0.3608


 , A1 =




0.28 0 0
0 −0.28 0
0 0 0


 ,

and τ = 1, which has – according to [15] – applications in the stability analysis of a semi-
conductor laser subject to external feedback. This time, ℓ = 2 in the approximation (26), and
k = 4, l = 2. The step size is either 2−2 or 2−1 during the first 5 iterations and settles at 1
at the sixth iteration. The condition number of the Jacobian is 2.2 × 106 at convergence.

3.5 Application 2

As a second application, we consider a simple boundary eigenvalue problem, which was also
considered in [24]. Find λ > κ and a nonzero function u : [0, 1]→ R such that

−u′′(y) = λu(y), u(0) = 0, −u′(1) = f(λ)u(1), (27)
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Figure 2: Numerical results for Example 14. Left plot: Location of eigenvalue approximations
initially (+), after 3 Iterations (◦), and at convergence after 12 iterations (×). Right plot:
Residual norm (23) in the course of the Newton iteration.

where f(λ) = κMλ
λ−κ

and κ = K
M

for given positive numbers K,M . The equation (27) describes
the eigenvibrations of a string with a load of mass M attached by an elastic spring of stiffness
K. In practice, two- or three-dimensional variants of (27) are used to model mechanical
structures with elastically attached loads.

A finite element discretization of (27) with linear elements on subintervals of length h =
1/n leads to the nonlinear matrix eigenvalue problem

(A1 + f(λ)eneT
n − λA3)x = 0, (28)

where

A1 =
1

h




2 −1

−1
. . .

. . .
. . . 2 −1

−1 1




, A3 =
h

6




4 1

1
. . .

. . .
. . . 4 1

1 2




.

Note that (28) could be turned into a polynomial eigenvalue problem by multiplying with
λ − κ but this introduces the erroneous eigenvalue κ. Moreover, in more realistic problems
with a large number of different springs, this strategy would lead to a polynomial of high
degree and massive numerical cancellation can be expected when forming this polynomial.

Example 15 We consider (28) for n = 100 and M = K = κ = 1. We apply the Newton
method with k = 5, l = 1. As initial pair, we choose S0 = diag(2, 2, 2, 2, 2) and a random
matrix X0 ∈ R

n×5. Figure 3 reveals convergence despite this poor choice of initial eigenvalues.
Also, quadratic convergence almost immediately sets in. We have repeated this experiment for
n = 400 and obtained a rather similar convergence behavior. For reference, we provide the
first 10 decimal digits of the computed eigenvalues:

n λ1 λ2 λ3 λ4 λ5

100 4.4821765459 24.223573113 63.723821142 123.03122107 202.20089914
400 4.4820338110 24.219005847 63.692138408 122.91317036 201.88234012
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Figure 3: Numerical results for Example 15. Left plot: Obtained eigenvalue approximations
in the course of the Newton iteration. Right plot: Residual norm (23) in the course of the
Newton iteration.

These values compare well with the analytically computed values from [24] and reveal that the
Newton method has in fact converged to the 5 smallest eigenvalues.

4 Conclusions

When little is known about a nonlinear eigenvalue problem at hand, the concept of invariant
pairs proposed in this paper offers a robust way of representing several eigenvalues and eigen-
vectors simultaneously. We are not aware of any competitive alternative representation in
the literature. To compute such invariant pairs, we have developed a block Newton method
and described some algorithmic details, mainly to maintain a reasonable computational cost.
However, it should be emphasized that our block Newton method inherits the disadvantages
of similar methods [11] for solving linear eigenvalue problems: Its global convergence may
be erratic and already a single slowly converging eigenvalue contained in S will hinder the
convergence of the entire pair. To a certain extent, this is avoided in single-vector methods
such as Jacobi-Davidson [7, 23], Arnoldi [27], and preconditioned inverse iteration [24]. A
logical next step of future research is to employ invariant pairs in single-vector methods for
safely locking and purging converged eigenpairs, similar to the work by Meerbergen [19] on
the quadratic eigenvalue problem.
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A Matlab code

The following Matlab function implements the forward substitution method sketched in
Section 3.2.

function [dX,dS] = nlevp_newtonstep( A, f, X, S, W, RT, RV )

% Computes the solution (dX,DS) to the linearized system in one step of

% the block Newton method for a nonlinear eigenvalue problem (NLEVP).

%

% Input: A - 3d-array containing the matrices A_j of the NLEVP

% f - handle to a function f(j,M) that returns f_j(M)

% for any square matrix M

% (X,S) - current iterate. S is assumed upper triangular.

% W - 3d-array containing the normalization matrices W_j

% (RT,RV) - right-hand side

%

% Ouput: Solution (dX,dS) to the linearized equation in one step

% of the block Newton method for the NLEVP.

n = size(A,1); m = size(A,3); k = size(X,2); l = size(W,3);

dX = zeros(n,k); dS = zeros(k,k);

% Precompute all required powers and functions of S.

fS = zeros(k,k,m); pS = zeros(k,k,l-1); pS(:,:,1) = S;

for j = 1:m, fS(:,:,j) = feval(f,j,S); end

for j = 2:l-1, pS(:,:,j) = pS(:,:,j-1)*S; end

% Main loop for computing the ith columns of dX and dS

for i = 1:k,

% Set up and solve linear system

s = S(i,i);

T11 = zeros(n); for j = 1:m, T11 = T11 + A(:,:,j)*feval(f,j,s); end

T12 = zeros(n,k);

for j = 1:m,

DF = feval(f,j,[S, eye(k);zeros(k) s*eye(k) ]);

T12 = T12 + A(:,:,j)*X*DF(1:k,k+1:2*k);

end

T21 = W(:,:,1)’; for j = 2:l, T21 = T21 + s^(j-1) * W(:,:,j)’; end

DS = eye(k); T22 = zeros(k);

for j = 2:l, T22 = T22 + W(:,:,j)’*X*DS; DS = s*DS + pS(:,:,j-1); end

sol = [T11 T12; T21 T22] \ [RT(:,i);RV(:,i)];

dX(:,i) = sol(1:n); dS(:,i) = sol(n+1:end);

% Update right-hand side

Z = zeros(k); Z(:,i) = dS(:,i); DS = Z;

for j = 1:m,

DF = feval(f,j,[S, Z;zeros(k) S ]);

RT(:,i+1:k) = RT(:,i+1:k) - A(:,:,j) * ( dX(:,i)*fS(i,i+1:k,j) + X*DF(1:k,k+i+1:2*k) );

end

for j = 2:l,

RV(:,i+1:k) = RV(:,i+1:k) - W(:,:,j)’ * ( dX(:,i)*pS(i,i+1:k,j-1) + X*DS(:,i+1:k) );

DS = DS*S + pS(:,:,j-1)*DS;

end

end
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