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Abstract

This article is concerned with the structured distance to uncontrollability of a linear
time-invariant system and relates this concept to a variation of the µ-value. The developed
framework is applied to derive computational expressions for the class of real perturbations
as well as for Hermitian, symmetric, and skew-symmetric perturbations in a relatively
simple manner. Examples demonstrate that the structured distance can differ from the
standard, unstructured distance to uncontrollability by an arbitrary amount. It is also
shown how systems of higher order can be addressed.

1 Introduction

A matrix pair (A,B) ∈ Cn×n × Cn×p is said to be controllable if rank[A − λI,B] = n for all
λ ∈ C. By a result of Kalman [11], this coincides with the definition of controllability of the
associated linear time-invariant system ẋ = Ax+Bu. A reliable way to check controllability
numerically is to compute the distance δ(A,B) of a given matrix pair (A,B) to the nearest
uncontrollable matrix pair,

δ(A,B) = inf{‖[E,F ]‖ : (A+ E,B + F ) is not controllable, [E,F ] ∈ Cn×(n+p)}. (1)

Here, ‖ · ‖ may denote any matrix norm. In this paper, we will use the spectral norm if
not otherwise stated. The definition of δ(A,B) is motivated by the fact that modelling, dis-
cretization, approximation and other errors may have introduced uncertainties in the entries
of the matrices A and B. For example, a tiny value of δ(A,B) may signal that ẋ = Ax+Bu
is actually the approximation of an uncontrollable system. Moreover, δ(A,B) plays a promi-
nent role in the sensitivity of various control problems, see [5, 8] and the references therein.
Efficient algorithms for computing δ(A,B) can be found, e.g., in [6, 7].

In many applications, it is unreasonable to impose no restriction on the perturbation
pair (E,F ) in (1). For example, if A and B are real matrices, it is natural to consider only
real perturbations. In the most general setting, we consider an arbitrary perturbation class
∆ ⊆ Cl×r, structure matrices L ∈ Cn×l, R ∈ Cr×(n+p), and define

δL,R∆ (A,B) = inf
{
‖∆‖ :

(A+ E,B + F ) is not controllable,
[E,F ] = L∆R, ∆ ∈∆.

}
(2)
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For brevity, we write δ∆(A,B) if L = In, R = diag(In, Ip), and δR(A,B) if additionally
∆ = Rn×n+p. We drop the subscript ∆ if ∆ = Cl×r. Trivially, δ∆(A,B) ≥ δ(A,B). It may
happen that δ(A,B) is tiny while δ∆(A,B)� 0. In this case, δ(A,B) gives no indication on
the (near) uncontrollability of (A,B) if [E,F ] is restricted to be in ∆. For example, consider
the matrices

Au =
[
0 −u2

1 0

]
, B =

[
1
0

]
, (3)

with the real parameter u ≥ 1. Then δ(Au, B) ≤ 1/u while δR(Au, B) = 1, see Appendix A
for a proof.

The rest of this paper is organized as follows. In Section 2, we employ the notion of
µ-values to generalize Eising’s [4] formula,

δ(A,B) = inf
λ∈C

σmin([A− λI,B]), (4)

to δ∆(A,B). (Note that σmin denotes the minimal singular value of a matrix.) Deriving
explicit expressions for δ∆(A,B) is, depending on the structure of ∆, a difficult task. Us-
ing results from [1, 15], we will first consider ∆ = Rn×(n+p). Already addressed by Hu and
Davison [10], we point out that this case can also be directly obtained from [1, Theorem
3.1]. Demonstrating the flexibility gained by admitting the matrices L and R in the defini-
tion (2), it is shown to naturally include cases where either the state or input matrices are
not perturbed. Section 3 provides computational formulas for structures ∆ that enforce some
kind of symmetry in the perturbation of A. Extending results from [12], we cover Hermitian,
symmetric and skew-symmetric perturbations. Finally, Section 4 reveals how the seemingly
more general distance to uncontrollability for higher order systems fits into the developed
framework.

2 Structured distances and µ-value

We start our discussion of structured distances by extending Eising’s formula (4) to admit
factors L and R.

Lemma 1 Let L ∈ Cn×l, R ∈ Cr×(n+p) and N ∈ Cn×(n+p). Suppose that R has full column
rank and N has full row rank. Then

min
{
‖∆‖ : ∆ ∈ Cl×r, rank(N − L∆R) < n

}
=

∥∥∥(N(R∗R)−1/2
)†
L
∥∥∥−1

, (5)

where † denotes the Moore-Penrose inverse of a matrix.

Proof. Let ∆ be such that rank(N − L∆R) < n, which readily implies

rank(N(R∗R)−1/2 − L∆R(R∗R)−1/2) < n.

By an RQ decomposition, there is a unitary matrix Q0 ∈ C(n+m)×(n+m) such that

N(R∗R)−1/2Q∗0 = [N0, 0]

with N0 invertible. We partition the matrix

∆R(R∗R)−1/2Q∗0 = [∆0, ∆1]
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accordingly. Note that R(R∗R)−1/2Q∗0 has orthonormal columns and hence

∆̃ := [∆0, 0]Q0(R∗R)−1/2R∗

satisfies ‖∆̃‖ = ‖∆0‖ ≤ ‖∆‖. Moreover,

n > rank(N − L∆R) = rank [N0 − L∆0, −L∆1] ≥ rank [N0 − L∆0, 0] = rank(N − L∆̃R),

and thus we can always replace the matrix ∆ in the minimization problem (5) by ∆̃. The
proof is completed by observing

min
{
‖∆̃‖ : rank(N − L∆̃R) < n

}
= min{‖∆0‖ : rank(N0 − L∆0) < n} = ‖N−1

0 L‖−1

= ‖[N0, 0]†L‖−1 = ‖(N(R∗R)−1/2Q∗0)†L‖−1

= ‖(N(R∗R)−1/2)†L‖−1.

Corollary 1 Let ∆ = Cl×r and (A,B) ∈ Cn×n × Cn×p be controllable. Provided that R has
full column rank, the structured distance to uncontrollability defined in (2) satisfies

δL,R(A,B) =
(

sup
λ∈C

∥∥∥([A− λIn, B](R∗R)−1/2
)†
L
∥∥∥)−1

, (6)

Proof. Apply Lemma 1 to N = [A− λIn, B].
In the following, we tacitly assume that ∆ is a connected set containing the zero matrix. For
M ∈ Cn×(n+p) and ∆ ⊆ Cn×(n+p) we introduce a value closely related to the µ-value [3] as
follows

µ̃∆(M) = inf{‖∆‖ : ∆ ∈∆, rank(M + ∆) < n }.

The following result is a trivial consequence of this definition.

Lemma 2 Let A ∈ Cn×n and B ∈ Cn×p such that (A,B) is controllable. Then the structured
distance to uncontrollability satisfies

δ∆(A,B) = inf
λ∈C

µ̃∆( [A− λIn, B] ). (7)

Note that for ∆ = Cn×(n+p) we have µ̃∆(M) = σmin(M). Thus, equation (7) extends Eising’s
formula.

2.1 Real perturbations

For the important case of real perturbations, i.e. ∆ = Rl×r and ∆ = Rn×(n+p) respectively
the following formula has been given in [1, 15]:

µ̃R(M) = sup
γ∈(0,1]

σ2n−1

([
<M −γ−1=M
γ =M <M

])
, for M ∈ Cn×(n+p), (8)
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where σ2n−1 denotes the second smallest singular value, and <M and =M denote the real
and the imaginary part of M respectively. Inserting the latter formula into (7) directly gives

δR(A,B) = inf
λR,λI∈R

sup
γ∈(0,1]

σ2n−1

([
<A− λRI <B −γ−1(=A− λII) −γ−1=B
γ(=A− λII) γ =B <A− λRI <B

])
,

(9)
see [10] for a different derivation of this formula. Example (3), see also Appendix A, shows that
the ratio δR(A,B)/δ(A,B) can be arbitrarily large. The inner optimization in (9) involves
a unimodal function and therefore can be conveniently addressed. In contrast, it is not
clear how to perform the outer optimization other than by a brute-force grid search in C.
An optimization algorithm based on a completely different characterization of δR(A,B) was
developed by Wicks and DeCarlo [16]. However, as also pointed out in [10], this algorithm
can become rather tedious for large n and it is not clear whether it always attains the global
minimum. Note that the definition of δR(A,B) in [16] is not based on the spectral norm
but on the Frobenius norm, which explains the different values of δR(A,B) for an example
reported in [16, Sec. VI] and [10, Sec. V]. The difference between spectral and Frobenius
norms is due to the fact that the optimal perturbation in the spectral norm is usually of rank
2 [1].

2.2 Separable perturbations

This section is concerned with the case that one of the matrices A or B is perturbed to a
different extent. First of all, R = diag(αIn, βIm) with α 6= 0 and β 6= 0 allows to weight
the perturbations E and F differently. For the unstructured case, we can apply Lemma 1 to
obtain an expression for the corresponding distance to uncontrollability. Note, however, that
the full rank assumption on R in Lemma 1 excludes the cases α = 0 or β = 0, i.e., when one
of the coefficient matrices is not perturbed at all. These cases are treated in the following
lemma.

Lemma 3

1. Let E = {[E, 0] : E ∈ Cn×n} and assume that B∗ has a nontrivial null space with
orthonormal basis U . Then

δE(A,B) = min
λ∈C

σmin

(
U∗(A− λI)

)
.

2. Let F = {[0, F ] : F ∈ Cn×m} and let the columns of Eigλ(A) contain an orthonormal
basis for the left eigenspace belonging to the eigenvalue λ of A. Then

δF (A,B) = min
λ∈Λ(A)

σmin

(
Eigλ(A)∗B

)
,

where Λ(A) denotes the spectrum of A.

Proof. The matrix [A−λI+E, B] has rank smaller than n if and only if there is a nonzero
vector x such that x∗[A − λI + E, B] = 0 or, equivalently, x∗(A − λI) = −x∗E under the
condition x∗B = 0. Note that

min{‖E‖ : x∗(A− λI) = −x∗E} = ‖x∗(A− λI)‖/‖x‖.
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see, e.g., [13]. Hence,

δE(A,B) = min
λ∈C

min
x∈Cn

x∗B=0

‖x∗(A− λI)‖
‖x‖

= min
λ∈C

min
‖y‖=1

‖y∗U∗(A− λI)‖,

which shows Part 1. The proof of Part 2 is analogous, after observing that rank([A−λI, B+
F ]) < n can only hold if λ is an eigenvalue of A.

3 Symmetry structures

Recently, formulas for µ-values with respect to Hermitian, symmetric, and skew-symmetric
structures have been developed in [12]. In the following, we show how these results can
be extended to obtain computable expressions for the structured controllability radius with
respect to these perturbation classes.

3.1 Hermitian matrices

Lemma 4 Let ∆ = {[E,F ] : E ∈ Cn×n is Hermitian and F ∈ Cn×p}. Then

δ∆(A,B) = inf
λ∈C

√
sup
t∈R

λmin (H0(λ) + tH1(λ)), (10)

where λmin(·) denotes the smallest eigenvalue of a Hermitian matrix and

H0(λ) = (A− λI)(A− λI)∗ +BB∗, H1(λ) =
1
2ı

(A−A∗)−=λ I.

Proof. From Lemma 2 we have δ∆(A,B) = inf
λ∈C

µ̃∆( [A− λIn, B] ) where

µ̃∆( [Ã, B] ) = inf
[E,F ]∈∆

{‖[E,F ]‖ : rank([Ã+ E,B + F ]) < n}

= inf
[E,F ]∈∆

{‖[E,F ]‖ : ∃x ∈ Cn with ‖x‖ = 1, x∗[Ã+ E,B + F ] = 0}

= inf
‖x‖=1

inf
[E,F ]∈∆

{‖[E,F ]‖ : x∗[Ã+ E,B + F ] = 0}.

The condition x∗[Ã + E,B + F ] = 0 implies ‖x∗[Ã, B]‖ = ‖x∗[E,F ]‖ ≤ ‖[E,F ]‖ and
=(x∗Ãx) = 0. In the following, we show that E and F can be chosen to attain the lower
bound: ‖x∗[Ã, B]‖ = ‖[E,F ]‖. Since =(x∗Ãx) = 0 there is a Hermitian matrix E such that
x∗E = −x∗Ã and ‖E‖ = ‖x∗Ã‖, see [13, Thm. 5.8]. Note that this relation also implies that
x is a left singular vector belonging to the largest singular value of E. Setting F = xx∗B it
holds that ‖F‖ = ‖x∗B‖ and x is a left singular vector belonging to the largest singular value
of F . This implies that x is also a left singular vector belonging to the largest singular value
of [E,F ] and

‖[E,F ]‖ = ‖x∗[E,F ]‖ = ‖x∗[Ã, B]‖.

Consequently,

µ̃∆( [A− λI,B] ) = inf
‖x‖=1

{‖x∗[A− λI,B]‖ : =(x∗(A− λI)x) = 0} (11)

=
√

inf
‖x‖=1

{x∗H0(λ)x : x∗H1(λ)x = 0}.
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By a result in [12], the latter minimization problem can be written as

µ̃∆( [A− λI,B] ) =
√

sup
t∈R

λmin (H0(λ) + tH1(λ)),

which concludes the proof.
Let us briefly consider the case that A itself is Hermitian. Then the matrix H1(λ) in

Lemma 4 becomes positive definite for λ 6∈ R, in which case the supremum is infinite. Hence,
we can restrict the outer optimization in (10) to λ ∈ R yielding

δ∆(A,B) = inf
λ∈R

σmin ([A− λI,B])

for Hermitian A.
For non-Hermitian A, the range of the outer optimization in (10) can be restricted to all λ

satisfying =λ ∈ [−λmax(A−A
∗

2ı ),−λmin(A−A
∗

2ı )]. See [12] for restricting the range of the inner
optimization, which involves a unimodal function and is thus considerably simple.

3.2 Symmetric matrices

The next lemma is concerned with complex symmetric perturbations. Note that ET denotes
the complex transpose of E.

Lemma 5 Let ∆ = {[E,F ] : E ∈ Cn×n satisfies E = ET, F ∈ Cn×p}. Then δ∆(A,B) =
δ(A,B).

Proof. The lemma can be proven along the lines of the proof of Lemma 4. However, in
contrast to the Hermitian case there always exists a complex symmetric matrix E such that
x∗E = −x∗Ã and ‖E‖ = ‖x∗Ã‖, see [13, Thm. 5.8]. Thus the additional constraint in (11)
can be dropped, which gives

µ̃∆( [A− λI,B] ) = inf
‖x‖=1

‖x∗[A− λI,B]‖ = σmin([A− λI,B])

and therefore completes the proof.

3.3 Skew-symmetric matrices

Lemma 6 Let ∆ = {[E,F ] : E ∈ Cn×n satisfies E = −ET, F ∈ Cn×p}. Then

δ∆(A,B) = inf
λ∈C

√√√√sup
t≥0

λ2n−1

([
H(λ) t S(λ)

t S(λ) H(λ)

])
, (12)

where λ2n−1(·) denotes the second smallest eigenvalue of a 2n× 2n Hermitian matrix and

H(λ) = (A− λI)(A− λI)∗ +BB∗, S(λ) =
1
2

(A+AT)− λI.

Proof. Proceeding as in the proof of Lemma 4, we obtain

µ̃∆( [Ã, B] ) = inf
‖x‖=1

inf
[E,F ]∈∆

{‖[E,F ]‖ : x∗[Ã+ E,B + F ] = 0}.
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From the skew-symmetry of E it follows that x∗E = −x∗Ã implies xTÃx = 0. On the other
hand, provided that xTÃx = 0 is satisfied, we can always find a skew-symmetric matrix E
such that x∗E = −x∗Ã and ‖E‖ = ‖x∗Ã‖. Once again, this is a consequence of Theorem 5.8
in [13]. Similarly to (11), one can show that

µ̃∆( [A− λI,B] ) = inf
‖x‖=1

{‖x∗[A− λI,B]‖ : xT(A− λI)x = 0}

=
√

inf
‖x‖=1

{x∗H(λ)x : xTS(λ)x = 0}.

The proof is completed by applying results from [12] to the latter optimization problem.

3.4 Extension to related structures

Let J ∈ Cn×n be a fixed unitary matrix and define the structures

∆ = {[E,F ] : E ∈ S, F ∈ Cn×p}, ∆J = {[E,F ] : JE ∈ S, F ∈ Cn×p},

for some S ⊆ Cn×n. Then, directly by the definition of δ∆(A,B),

µ̃∆J
( [A− λI,B] ) = µ̃∆( [JA− λJ, JB] ). (13)

This relation allows to extend the results for δ∆(A,B) of Lemmas 4, 5, and 6 to derive similar
formulas for the structured distance δ∆J

(A,B), provided of course that ∆ corresponds to the
set of Hermitian, symmetric, or skew-symmetric matrices.

To illustrate this, let us consider the set of Hamiltonian matrices for which S is the set of
Hermitian matrices and J =

[
0
−I

I
0

]
. Inserting (13) in (11) leads to

δ∆J
(A,B) = inf

λ∈C

√
sup
t∈R

λmin (H0,J(λ) + tH1,J(λ)),

where

H0,J(λ) = J
(
(A− λI)(A− λI)∗ +BB∗

)
J∗, H1,J(λ) =

1
2ı

(JA− (JA)∗) + 2ı<λJ.

4 Higher order systems

Let us consider a higher order linear time-invariant system

Akx
(k)(t) +Ak−1x

(k−1)(t) + · · ·+A1x
′(t) +A0x(t) = Bu(t), (14)

where A0, . . . , Ak ∈ Cn×n and B ∈ Cn×m. Furthermore, we assume that Ak is nonsingular.
Then (14) is controllable if and only if rank[P (λ), B] = n for all λ ∈ C, with the matrix
polynomial

P (λ) = Akλ
k +Ak−1λ

k−1 + · · ·+A1λ+A0. (15)

see [9, 14]. The polynomial corresponding to a perturbation of (14) is denoted by

PE(λ) = αkEkλ
k + αk−1Ek−1λ

k−1 + · · ·+ α1E1λ+ α0E0
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for fixed nonnegative scalars α0, . . . , αk. These scalars account for the fact that some co-
efficients of (14) may be less (or not at all) affected by perturbations. The distance to
uncontrollability of (14) can then be defined as

δ(P,B) = inf {‖[E0, . . . , Ek, F ]‖ : (P + PE , B + F ) is not controllable.} (16)

To avoid technical difficulties, we tacitly assume that the perturbed leading factor Ak + Ek
always remains nonsingular (see [2] for handling singular leading factors in the case k = 1).
Note that we can write PE(λ) = ∆R, where

R =


α0 0
α1λ 0

...
...

αkλ
k 0

0 1

 .

Thus,

δ∆(P,B) = inf{‖∆‖ : ∆ ∈ Cn×(kn+m), rank([P (λ), B] + ∆R) < n for some λ}. (17)

Using that

R∗R =
[
s(λ) 0

0 1

]
, s(λ) :=

k∑
j=0

α2
j |λ|2j ,

Lemma 1 applied to (17) yields

δ∆(P,B) =
(

sup
λ∈C

∥∥∥([P (λ), B](R∗R)−1/2
)†∥∥∥)−1

=
(

sup
λ∈C

∥∥([P (λ)/
√
s(λ), B]

)†∥∥)−1

= inf
λ∈C

σmin([P (λ)/
√
s(λ), B]).

Note that this result is also covered by Theorem 2.3 in [14]. However, we feel that our
approach is conceptually simpler.

5 Conclusions

We have derived characterizations of the structured distance to uncontrollability for several
practically relevant structures. The obtained expressions can be computed numerically by
performing a grid search in the complex plane and evaluating a certain function at each grid
value. This inner function evaluation could be addressed by a general optimization procedure
presented in [17]. However, this procedure may miss global minima and is thus not entirely
reliable. In contrast, the expressions for symmetry structures presented in this paper only
require the minimization of a unimodal function at each grid point, which is both inexpensive
and reliable.

Note that recently developed algorithms [6, 7] for computing the unstructured distance
to uncontrollability do not require any form of grid search. This is achieved by specifically
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exploiting the fact that the inner function in the unstructured case is the minimum singular
value of a matrix. It is currently under investigation how these ideas can be extended to
structured distances.

Finally, we note that the results of this paper can be extended to the stabilizability radius
by restricting the set of admissible λ to C+.
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A Appendix

The proposition below gives a simple example for the fact that the ratio between the real and
the complex distance to uncontrollability can be arbitrarily large.

Proposition 7 Let u ≥ 1, Au =
[
0 −u2

1 0

]
, b0 =

[
1
0

]
. Then

δC(Au, b0) ≤ 1/u,
δR(Au, b0) = 1,

and hence
lim
u→∞

δR(Au, b0)
δC(Au, b0)

=∞.

The proof of the proposition is based on the following lemma on 2-dimensional systems.

Lemma 8 Let A ∈ C2×2, b ∈ C2×1. Then the following holds.

(i) The pair (A, b) is not controllable if and only if either b = 0 or b is an eigenvector of A.

(ii) If A and b are real then the real distance of (A, b) to uncontrollability satisfies

δR(A, b) ≥ min{ ‖b‖, min
λ∈R

σ2(A− λ I2) }.

Proof. (i) The pair (A, b) is not controllable iff the vectors b and Ab are linearly dependent
1 , i.e. iff either b = 0 or b 6= 0 and 0 = Ab− λb = (A− λ I2)b for some λ ∈ C.
(ii) Let (E, f) ∈ R2×2 × R2×1. Suppose (A + E, b + f) is not controllable. Then by (i)
either f = −b or f 6= −b and (A + E − λ I2)(b + f) = 0 for some λ ∈ R. In the first case,
‖ [E, f ] ‖ ≥ ‖ [0, f ] ‖ = ‖b‖. In the second case, ‖b+ f‖ 6= 0 and

‖E(b+ f)‖ = ‖(A− λ I2)(b+ f)‖ ≥ σ2(A− λ I2) ‖b+ f‖.

This implies ‖ [E, f ] ‖ ≥ ‖E‖ ≥ ‖E(b+ f)‖/‖b+ f‖ ≥ σ2(A− λ I2).
We are now in a position to prove Propositon 7. Let E = 0 ∈ C2×2 and f = [ 0 1/(iu) ]T .

Then (Au +E)(b0 + f) = (iu)(b0 + f). Hence, (Au +E, b0 + f) is uncontrollable by the first
1This is immediate from the following well known controllability criterion: The pair (A, B) ∈ Cn×n×Cn×p

is controllable if and only if rank [B, AB, . . . , An−1B] = n.
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statement of the lemma. Thus δC(Au, b0) ≤ ‖ [E, f ] ‖ = 1/u. Now, let E =
[

0 0
−1 0

]
, f = 0.

Then (Au + E)(b0 + f) = 0, and there hence δR(Au, b0) ≤ ‖ [E, f ] ‖ = 1. It remains to show
δR(Au, b0) ≥ 1. To this end we consider the matrix

Pu,λ = (Au − λ I2)T (Au − λ I2)− I2

=
[

λ2 λ(1− u2)
λ(1− u2) u4 + λ2 − 1

]
.

For all λ ∈ R, u ≥ 1, Pu,λ has nonnegative diagonal elements, and

det(Pu,λ) = λ2(λ2 + 2(u2 − 1)) ≥ 0.

Hence, Pu,λ is positive semidefinite. Thus σ2(Au − λ I2) ≥ 1 for λ ∈ R, u ≥ 1. Now, the
second statement of the lemma yields

δR(Au, b0) ≥ min{ ‖b0‖, min
λ∈R

σ2(Au − λ I2) } ≥ 1.
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