
Deflation in Krylov Subspace Methods

and

Distance to Uncontrollability

Daniel Kressner∗

May 4, 2006

Abstract

The task of extracting from a Krylov decomposition the approximation to an eigenpair
that yields the smallest backward error can be phrased as finding the smallest perturbation
which makes an associated matrix pair uncontrollable. Exploiting this relationship, we
propose a new deflation criterion, which potentially admits earlier deflations than standard
deflation criteria. Along these lines, a new deflation procedure for shift-and-invert Krylov
methods is developed. Numerical experiments demonstrate the merits and limitations of
this approach.

AMS subject classifications: 65F15, 65F50, 93B05.

1 Introduction

Lanczos and Arnoldi methods are among the most popular numerical algorithms for com-
puting a few eigenvalues and eigenvectors of a large, possibly sparse matrix. Both methods
proceed by generating a sequence of Krylov subspaces hopefully containing approximations
to a desired subset of eigenvectors. The purpose of deflation is to find, extract and lock
such approximations from these subspaces. A crucial decision to be met in this process is
when to consider an approximate eigenvalue/eigenvector pair (λ̂, x̂) of a matrix A converged.
Assuming ‖x̂H x̂‖2 = 1, the most common convergence criterion is

‖Ax̂ − λ̂x̂‖2 ≤ tol, (1)

with some small, user-defined tolerance tol > 0. Defining the residual r = Ax̂ − λ̂x̂ and the
backward error 4A = −rx̂H , this implies that (λ̂, x̂) is an exact eigenpair of the perturbed
matrix A+4A with ‖4A‖2 = tol. In other words, (λ̂, x̂) has a small backward error, yielding
a small forward error unless the corresponding eigenpair is ill-conditioned [7].

There are several strategies for finding an approximate pair (λ̂, x̂) in a given subspace U ,
see, e.g., [2, 11] for an overview. The Rayleigh-Ritz method (also called Galerkin method)
chooses (λ̂, x̂) to satisfy the conditions

x̂ ∈ U , Ax̂ − λ̂x̂ ⊥ U .
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If the columns of U form an orthonormal basis for U , these conditions amount to requiring λ̂
to be an eigenvalue of B = UT AU , and x̂ = Uw with w being the corresponding eigenvector
of B. In such a setting, λ̂ and x̂ are called Ritz value and Ritz vector, respectively. The
Rayleigh-Ritz method works provably well for the extraction of eigenpairs belonging to well-
separated exterior eigenvalues of Hermitian matrices, but may fail for other situations. In
particular for non-Hermitian matrices, the Ritz vector x̂ may not converge to an eigenvector
even if λ̂ converges to an eigenvalue, see, e.g., [17].

A strategy that avoids this drawback has been developed and analyzed by Jia [12] as well
as Jia and Stewart [13]. Considering a Ritz value λ̂, the vector x̂ is chosen to minimize the
norm of the residual:

‖Ax̂ − λ̂x̂‖2 = min
y∈U

‖y‖2=1

‖Ay − λ̂y‖2. (2)

Under this choice, x̂ is called a refined Ritz vector. Optionally, the Ritz value can be replaced
by the Rayleigh quotient x̂T Ax̂, which minimizes the residual norm (1) for fixed x̂ and is
likely to yield a more accurate eigenvalue approximation [17]. This procedure can be seen
as a two-step optimization process; first (1) is minimized with respect to x̂ for fixed λ̂ and
afterwards with respect to λ̂ for fixed x̂.

In this paper, we propose an approach which minimizes the residual norm (1) with respect
to λ̂ and x̂ at the same time:

‖Ax̂ − λ̂x̂‖2 = min
σ∈C, y∈U
‖y‖2=1

‖Ay − σy‖2. (3)

For general subspaces U , this optimization problem is unlikely to be numerically tractable.
However, if U is a Krylov subspace, it will be shown that (3) is equivalent to computing the
distance to uncontrollability of a small-sized linear time-invariant system. Combined with
recent advances of numerical methods for computing such distances, see [5, 8, 9], this relation
makes (3) tractable for Krylov subspaces of modest dimension. Although the close connection
between Krylov subspace methods and the notion of uncontrollability is well-known, see [3,
15], we are not aware of work turning this relation into (premature) deflation techniques. In
the context of the QR algorithm, a similar relation has motivated the development of the
highly successful aggressive early deflation technique [4].

2 Krylov decompositions and uncontrollability

Let A ∈ C
n×n and let the columns of [U, u] ∈ C

n×(k+1) form an orthonormal basis for a
Krylov subspace Kk+1(A, u0) = span{u0, Au0, . . . , A

ku0} with some starting vector u0 ∈ C
n.

Then there exists an orthogonal Krylov decomposition of the form

AU = UB + ubH , (4)

where B ∈ C
k×k and b ∈ C

k. Vice versa, a decomposition of the form (4) implies under a mild
extra condition that the columns of U span a Krylov subspace Kk(A, u0) for some u0 [17].
The concept of Krylov decompositions was proposed by Stewart [18] in the context of the
Krylov-Schur algorithm. We note that in the most general definition, U is only assumed to
have linearly independent columns; this level of generality, however, is not suitable for our
purpose.

2



Typical algorithms for producing (4) lead to decompositions that possess some particular
structure. For example, the (implicitly restarted) Arnoldi method produces a matrix B which
is upper Hessenberg and a vector b which is a scalar multiple of the kth unit vector ek. In
this case, (4) is called an Arnoldi decomposition. Krylov decompositions are not significantly
more general than Arnoldi decompositions but admit elegant implicit restarting and deflation
techniques.

What follows is not confined to a particular decomposition or algorithm. We just assume
that a decomposition of the form (4) has been produced and the aim is now to extract the best
approximation (λ̂, x̂) from U = span(U) to an eigenpair of A in the sense of (3). Inserting (4)
into (3) yields

‖Ax̂ − λ̂x̂‖2 = min
σ∈C, w∈Ck

‖w‖2=1

‖(A − σI)(Uw)‖2

= min
σ∈C, w∈Ck

‖x‖=1

∥

∥

∥

∥

[

UH(A − σI)U
uH(A − σI)U

]

w

∥

∥

∥

∥

2

= min
σ∈C, w∈Ck

‖w‖2=1

∥

∥

∥

∥

[

B − σI
bH

]

w

∥

∥

∥

∥

2

= min
σ∈C

σmin([B
H − σI, b]), (5)

where σmin(·) denotes the minimal singular value of a matrix. The equality (5) can be used
to relate deflations in Krylov decompositions to the concept of (un)controllability.

A matrix pair (C,D) ∈ C
k×k × C

k×m is called controllable if the associated linear time-
invariant system ż(t) = Cz(t) + Du(t) is controllable, see, e.g., [10]. Equivalently, by a result
of Kalman [14], the pair (C,D) is controllable if and only if the matrix [C − σI, D] has full
rank for all σ ∈ C. Hence, from (5) it can be readily seen that a Krylov decomposition yields
an exact eigenpair (λ̂, x̂) if and only if the pair (BH , b) is uncontrollable, see also [15].

A reliable way to check controllability numerically is to compute the distance δ(C,D) of
a given matrix pair (C,D) to the nearest uncontrollable matrix pair,

δ(C,D) = inf{‖[E,F ]‖2 : (C + E,D + F ) is not controllable, [E,F ] ∈ C
k×(k+m)}.

By the following result, this multi-parameter optimization problem is reduced to a minimiza-
tion problem in one (complex) parameter.

Theorem 1 (Eising [6]) The distance δ(C,D) of a matrix pair (C,D) ∈ C
k×k × C

k×m to
uncontrollability satisfies

δ(C,D) = inf
σ∈C

σmin([C − σI, D]). (6)

Combined with (5), this theorem shows that a minimizer (λ̂, x̂) of (3) satisfies

‖Ax̂ − λ̂x̂‖2 = δ(BH , b).

Moreover, a suitable λ̂ is given by a minimizer σ of (6) and x̂ can be set to Uŵ, where ŵ is a
left singular vector belonging to the smallest singular value of [BH − λ̂I, b]. To summarize,
we obtain the following algorithm for extracting the optimal eigenpair approximation from a
Krylov decomposition.
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Algorithm 1 Given a Krylov decomposition of the form (4), this algorithm produces the
optimal eigenpair approximation (λ̂, x̂).

1. Compute λ̂ such that δ(BH , b) = σmin([B
H − λ̂I, b]).

2. Compute a left singular vector ŵ belonging to the smallest singular value of [BH−λ̂I, b].

3. Set x̂ = Uŵ.

The computationally most expensive part of Algorithm 1 is Step 1. The algorithm presented
in [9] requires O(k5) floating point operations (flops) in the worst case and O(k4) flops on av-
erage. This makes the computational cost of Algorithm 1 justifiable as long as k is moderate.
For example for k = O(n1/3), the average cost is of the same order as the cost of orthogonal-
izing a new vector with respect to the Krylov basis. It should be noted that the algorithms
presented in [8, 9] run into numerical difficulties if the distance to uncontrollability gets too
small, say smaller than 10−8. On the other hand, the value of Algorithm 1 for such tiny
values of δ(BH , b) is possibly limited. The following basic result indicates that Algorithm 1
amounts to the refined Ritz vector strategy as δ(BH , b) → 0, provided that the eigenvalues
of B are not ill-conditioned.

Lemma 2 Assume that the eigenvalues of C ∈ C
k×k, denoted by Λ(C), are mutually distinct

and let D ∈ C
k×m. Then

min
σ∈Λ(C)

σmin([C − σI, D]) ≤ (1 + κ)δ(C,D) + O(δ(C,D)2),

where κ is the maximal eigenvalue condition number of C.

Proof. If λ̂ is a minimizer for σmin([C − σI, D]) then there is a perturbation [E,F ] of
norm δ(C,D) such that [C − λ̂I, D] + [E,F ] has rank less than n. In particular, this implies
that λ̂ is an eigenvalue of C + E. By first order perturbation theory, there is an eigenvalue λ
of C such that |λ̂ − λ| ≤ κδ(C,D) + O(δ(C,D)2), see, e.g., [7]. Weyl’s theorem implies

σmin([C − λI, D]) = σmin([C − λ̂I, D]) ≤ δ(C,D) + |λ̂ − λ|,

which concludes the proof.
Once Algorithm 1 has found a pair (λ̂, x̂) satisfying the convergence criterion (1), we can

lock this pair by performing a change of basis UQ = [x̂, U2], where Q is an appropriate k × k
unitary matrix. Since the Rayleigh quotient minimizes the residual for fixed x̂, we may assume
without loss of generality that λ̂ = x̂HAx̂. This yields a transformed Krylov decomposition
of the form

A[x̂, U2] = [x̂, U2]

[

λ̂ B12

B21 B22

]

+ u[bH
1 , bH

2 ], (7)

where [bH
1 , bH

2 ] = bHQ and
[

λ̂
B21

B12

B22

]

= QHBQ. Since
∥

∥

∥

[

B21

bH
1

]∥

∥

∥

2
= ‖Ax̂ − λ̂x̂‖2 ≤ tol, we

may safely set B21 and b1 to zero. This decouples (7) and results into the reduced Krylov
decomposition

ÃU2 = U2B22 + ubH
2 ,

with the projected matrix Ã = (I − x̂x̂T )A(I − x̂x̂T ). We can apply Algorithm 1 again to find
another potential candidate for an eigenpair approximation. Some care must be taken since
neglecting B21 and b1 can have a (mild) influence on the attainable residuals in the further
process of the Krylov subspace method, see [16] for more details.
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3 Shift-and-invert Krylov decompositions

For computing interior eigenvalues by Krylov subspace methods, it is preferable to replace
the matrix A by the matrix (A − τI)−1, where τ ∈ C is some target value. This leads to so
called shift-and-invert methods, corresponding to Krylov decompositions of the form

(A − τI)−1U = UB + ubH . (8)

Here, again under a mild extra condition, the columns of U ∈ C
n×k form an orthonormal

basis for a Krylov subspace Kk((A − τI)−1, u0). Usage of shift-and-invert methods has the
advantage that eigenvalues close to τ are usually much faster approximated, but comes at the
expense of having to solve a sequence of linear systems in the course of computing (8).

We could directly apply the results from the previous section to extract an eigenpair
approximation (λ̂, x̂) from (8) which minimizes the residual with respect to (A − τI)−1.
However, a small residual of the form (A − τI)−1x̂ − λ̂x̂ does not necessarily correspond to
a small residual with respect to the original matrix A. To find a pair (λ̂, x̂) which minimizes
the residual (and consequently the backward error) with respect to A, we assume B to be
nonsingular and rewrite (8) as

AU = U(B−1 + τI) − (A − τI)ubHB−1.

This yields

‖Ax̂ − λ̂x̂‖2 = min
σ∈C, w∈Ck

‖w‖2=1

‖(A − σI)(Uw)‖2 (9)

= min
σ∈C, w∈Ck

‖w‖=1

∥

∥

∥

∥

[

UH(A − σI)U
(I − UUH)(A − σI)U

]

x

∥

∥

∥

∥

2

= min
σ∈C,x∈Ck

‖x‖=1

∥

∥

∥

∥

[

B−1 + τI − UHAubHB−1 − σI
−((I − UUH)A − τI)ubHB−1

]

x

∥

∥

∥

∥

2

(10)

= min
σ∈C

σmin([B̃
H − σI, b̃]) (11)

with
B̃ = (I − UHAubH)B−1 + τI, b̃ = ‖(I − UUH)Au − τu‖B−Hb. (12)

Here we have used to fact that the two-norm is invariant under orthogonal transformations,
which allows us to compress the vector −((I − UUH)A − τI)u in (10) to a multiple of the
first unit vector by using, e.g., a Householder reflector [7].

Again, finding an pair (λ̂, x̂) satisfying (11) amounts to computing the distance to un-
controllability for a small-sized matrix pair. Algorithm 1 applies likewise with the quantities
B and b replaced by B̃ and b̃, respectively. If k, the dimension of the Krylov subspace, is
small compared to n then the most expensive steps when forming B̃ and b̃ consist of the
matrix-vector multiplication c = Au and the O(nk) computation of UHc. In many situations,
it can be expected that the cost of the (repeated) application of (A− τI)−1 greatly outweighs
these expenses.

To save the costly computation of the distance to uncontrollability, we can restrict the
domain of (11) to the Ritz values Λ(B̃):

‖Ax̂ − λ̂x̂‖2 = min
σ∈Λ(B̃)

σmin([B̃
H − σI, b̃]). (13)
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In view of Lemma 2, this choice is certainly justified for sufficiently small residuals and leads
to a shift-and-invert variant of refined Ritz vectors.

Algorithm 2 Given a shift-and-invert Krylov decomposition of the form (8), this algorithm
produces an eigenpair approximation (λ̂, x̂) satisfying (13).

1. Compute B̃ and b̃ according to (12).

2. Find σ̂ in the set of all eigenvalues of B̃ which minimizes σmin([B̃
H − σ̂I, b̃]).

3. Compute a left singular vector ŵ belonging to the smallest singular value of [B̃H−σ̂I, b̃].

4. Set x̂ = Uŵ and λ̂ = x̂HAx̂.

4 Numerical experiments

We have performed some preliminary numerical experiments to assess the value of the new
deflation strategies in comparison with the existing Rayleigh-Ritz and refined Ritz strategies.
All numerical experiments were performed in Matlab 6.5.

Being a popular test example, let us first consider the discretization of a convection-
diffusion equation

−4u(x, y) + ∂u(x, y)/∂x = λu(x, y)

on the unit square with Dirichlet boundary condition u|∂ = 0. Taking centered differences
yields an n2 × n2 block tridiagonal matrix A with

A =













D −In

−In D
. . .

. . .
. . . −In

−In D













, D =













4 d

c 4
. . .

. . .
. . . d
c 4













, (14)

where c = −1− 1/2(n + 1) and d = −1 + 1/2(n + 1). For the following experiments, we have
used n = 30 as in [12].

Example 1 To assess Algorithm 1, we have applied the standard Arnoldi method with
random starting vector to successively generate Krylov decompositions of the form (4) for
k = 1, . . . , 20. Figure 1 shows the residuals of the optimal eigenpair approximations obtained
by the Rayleigh-Ritz method, by the refined Ritz method, and by Algorithm 1. It can be
seen that the Rayleigh-Ritz method leads to significantly larger residuals, which agrees with
the results reported in [12]. On the other hand, there is no visible difference between refined
Ritz method and Algorithm 1. In fact, the obtained norms of the residuals have 4 significant
decimal digits in common. Although such a close agreement seems to be incidental, several
experiments with other matrices from the Matrix Market collection [1] did not a reveal a
single case where the use of Algorithm 1 led to a mentionable difference.

Example 2 To assess the different possibilities for extracting approximate eigenpairs from
shift-and-invert Krylov decompositions, we have modified Example 1, replacing A by (A −
τI)−1 with τ ∈ {4, 10}. Figure 2 shows the residuals of the optimal eigenpair approximations
obtained by the Rayleigh-Ritz method, by the refined Ritz method, and by Algorithm 2. For
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Figure 1: Optimal eigenpair approximations obtained from the Arnoldi method applied to
the matrix A defined in (14).

τ = 10, a target value far away from all eigenvalues of A, there is only a slight difference
between the refined Ritz method and Algorithm 2. However, for τ = 4, a target value
very close to a large cluster of eigenvalues, Algorithm 2 yields considerably smaller residuals.
This effect can be amplified by choosing τ even closer to an eigenvalue of A. Similarly as
before, we found no significant difference when applying the full, distance-to-uncontrollability
minimization (11) in place of (13).

To demonstrate that the observations from Example 2 are valid for other settings, we
repeated the numerical experiments for the Tolosa matrix (TOLS340 with τ = −0.25 +
26ı), the Olmstead model (OLM1000 with τ = −5), the reaction-diffusion Brusselator model
(RDB1250 with τ = 0), as well as the Tubular reactor model (TUB1000 with τ = −30+1.6ı);
all from the Matrix Market collection. In all cases, the target value has been chosen so that
it is close to at least one eigenvalue. In all experiments, Algorithm 2 yields significantly lower
residuals.

5 Conclusions

We have investigated the relationship between finding the distance to uncontrollability for lin-
ear time-invariant systems and finding good eigenpair approximations in Krylov subspaces.
This has resulted in an extraction strategy which provably delivers the eigenpair approxi-
mation with minimal residual for both standard and shift-and-invert Krylov subspace meth-
ods. Numerical experiments indicate that this new strategy is not significantly better than
the refined Ritz method for standard Krylov subspace methods. In view of the increased
computational effort, the use of this method without further modification is therefore not
recommended. For shift-and-invert Krylov subspaces, however, Rayleigh-Ritz and refined
Ritz methods are demonstrated to be inferior to a new strategy (Algorithm 2). The detailed
analysis and use of this strategy in modern variants of the (implicitly restarted) Arnoldi al-
gorithm are subject to further investigation. Also, theoretical and numerical comparisons to
the extraction strategies presented in [11] need to be performed.
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Figure 2: Optimal eigenpair approximations obtained from the shift-and-invert Arnoldi
method with τ = 4 and τ = 10 applied for the matrix A defined in (14).
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