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Summary Stewart’s recently introduced Krylov-Schur algorithm
is a modification of the implicitly restarted Arnoldi algorithm which
employs reordered Schur decompositions to perform restarts and de-
flations in a numerically reliable manner. This paper describes a vari-
ant of the Krylov-Schur algorithm suitable for addressing eigenvalue
problems associated with products of large and sparse matrices. It
performs restarts and deflations via reordered periodic Schur decom-
positions and, by taking the product structure into account, it is ca-
pable of achieving qualitatively better approximations to eigenvalues
of small magnitude.
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1 Introduction

The product eigenvalue problem consists of computing eigenvalues and
invariant subspaces of a matrix product

Π = A(p)A(p−1) · · ·A(1), (1)

with the matrices A(1), . . . , A(p) ∈ C
n×n. Instances of this problem

arise naturally in a variety of applications, including periodic sys-
tems [40], queueing network models [9,37], as well as computational
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methods for analyzing bifurcations and computing Floquet multi-
pliers [27,28]. On the theoretical side, it has recently been demon-
strated that the product eigenvalue problem provides a powerful uni-
fying concept for addressing structured eigenvalue problems which
involve, e.g., Hamiltonian, symplectic, pseudosymmetric or unitary
matrices [42].

In principal, one could apply any general-purpose eigenvalue solver
to the explicitly formed matrix Π. For the sake of numerical stability,
however, it is important to take the fact thatΠ is represented as a ma-
trix product into account and develop numerical methods that work
directly on the factors A(1), . . . , A(p). The periodic QR algorithm [5,
19,38] is such a method for products with small- to medium-sized,
dense factors. Requiring O(n2p) memory and O(n3p) computational
time, it achieves strong backward stability in the sense that the com-
puted eigenvalues and invariant subspaces correspond to a matrix
product with slightly perturbed factors.

In this paper, we propose an algorithm for solving product eigen-
value problems with large, sparse factors. It is an extension of the
so-called Krylov-Schur algorithm [36], Stewart’s modification of the
implicitly restarted Arnoldi algorithm [25,31,32], to product eigen-
value problems. To demonstrate the usefulness of our newly developed
periodic Krylov-Schur algorithm, let us consider the following simple
example:

A(1) = A(2) = A(3) = diag(1, 10−1, 10−2, 10−3, . . . , 10−50).

We applied the (standard) Krylov-Schur algorithm as well as the pe-
riodic Krylov-Schur algorithm to A(3)A(2)A(1) using random starting
vectors and the smallest attainable convergence tolerances. The fol-
lowing table displays the number of correct significant decimal digits
of the computed seven largest eigenvalues:

Eigenvalue Krylov-Schur Periodic Krylov-Schur
1 15 15

10−03 14 14
10−06 10 14
10−09 8 14
10−12 4 13
10−15 1 12
10−18 0 11

It can be seen that the accuracy of eigenvalues computed by the
Krylov-Schur algorithm drops rapidly with decreasing magnitude; the
eigenvalue 10−18 has no accuracy at all. In comparison, the periodic



A Periodic Krylov-Schur Algorithm for Large Matrix Products 3

Krylov-Schur algorithm is much more accurate; it computes each dis-
played eigenvalue to at least 11 significant digits correctly.

The rest of this paper is organized as follows. In Section 2, we
recall some basic properties of the product eigenvalue problem, its
relation to block cyclic matrices and the periodic Schur decomposi-
tion. The concepts of periodic Arnoldi and Krylov decompositions are
introduced in Sections 3 and 4, respectively. Restarting techniques are
described in Section 5, while deflations are the matter of Section 6.
Finally, in Section 7, the use of the periodic Krylov-Schur algorithm
is demonstrated for two application areas.

2 The Product Eigenvalue Problem

In order to describe the periodic Krylov-Schur algorithm, it is conve-
nient to review some basic facts related to the product eigenvalue
problem (1). In this respect, the following periodic Schur decom-
position plays an important role; just as standard and generalized
Schur decompositions play important roles in standard and general-
ized eigenvalue problems [16].

Theorem 1 (Periodic Schur decomposition [5,19]) Let A(1),
. . ., A(p) ∈ C

n×n. Then there exist unitary matrices Q(1), . . . , Q(p) ∈
C

n×n so that
T (p) = Q(1)HA(p)Q(p),

T (p−1) = Q(p)HA(p−1)Q(p−1),
...

T (1) = Q(2)HA(1)Q(1),

(2)

are upper triangular matrices.

The periodic Schur decomposition (2) can be written in the more
compact form

T (l) = Q(l+1)HA(l)Q(l), l = 1, . . . , p,

if we identify the matrix Q(p+1) with Q(1). More generally speaking,
we will make use of the following convention:

Throughout this paper we identify ?(l) with ?(l−1 mod p)+1,
where ? can be replaced by any symbol.

Note that (2) yields a Schur decomposition for the matrix product
Π:

Q(1)HΠQ(1) = T (p)T (p−1) · · ·T (1) = @. (3)
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Hence, if t
(l)
ii denotes the ith diagonal element of T (l), then the n

eigenvalues of Π are given by the n products t
(p)
ii · t(p−1)

ii · · · t(1)
ii , with

i = 1, . . . , n. By a suitable reordering of the periodic Schur decompo-
sition, see [17,19,22], we can let the eigenvalues of Π appear in any
desirable order on the diagonals of T (l).

The Schur decomposition (3) also implies that the first k columns
of Q(1) span an invariant subspace of Π. More generally, it can be
easily seen that if we consider all cyclic permutations of this product,

Π(l) = A(p+l−1)A(p+l−2) · · ·A(l), l = 1, . . . , p, (4)

then the first k columns of Q(l) form an invariant subspace of Π (l) for
each l ∈ [1, p]. Note that in applications related to periodic discrete-
time systems, all these invariant subspaces, and not only invariant
subspaces of Π, are typically of interest, see [33,34,40]. There is a
close relationship to certain invariant subspaces of the block cyclic
matrix

A =













0 A(p)

A(1) . . .
. . .

. . .

A(p−1) 0













. (5)

To see this, let us partition

Q(l) =
[

k n−k

X(l) X
(l)
⊥

]

, T (l) =

[

k n−k

k A
(l)
11 A

(l)
12

n−k 0 A
(l)
22

]

.

By setting

X = X(1) ⊕X(2) ⊕ · · · ⊕X(p), X⊥ = X
(1)
⊥ ⊕X

(2)
⊥ ⊕ · · · ⊕X

(p)
⊥ , (6)

where ‘⊕’ denotes the direct sum of two matrices, and

Aij =















0 A
(p)
ij

A
(1)
ij

. . .

. . .
. . .

A
(p−1)
ij 0















, i, j = 1, 2, (7)

the identities (2) are equivalent to a block Schur decomposition of A:

A[X,X⊥] = [X,X⊥]

[

A11 A12

0 A22

]

. (8)
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In particular, X = span(X) is an invariant subspace of A belonging
to the eigenvalues of the block cyclic matrix A11. Not every invariant
subspace of A corresponds to such a block cyclic representation A11,
but in the context of product eigenvalue problems it is sufficient to
consider this type of subspace.

Definition 1 ([26]) Let X be a (pk)-dimensional invariant subspace
of a block cyclic matrix A ∈ C

pn×pn. If there exist matrices X(1),
X(2), . . ., X(p) ∈ C

n×k so that

X = span(X(1) ⊕X(2) ⊕ · · · ⊕X(p)),

then X is called a periodic invariant subspace of A.

By direct computation, it can be seen that every periodic invariant
subspace corresponds to a block cyclic representation. For k = 1, this
yields the following well-known relationship between the eigenvalues
of Π and A.

Corollary 1 A scalar λ is an eigenvalue of the matrix product Π
having the form (1), if and only if λ1/p, ωλ1/p, . . . , ωp−1λ1/p, where ω
denotes the pth primitive root of unity, are eigenvalues of the block
cyclic matrix A having the form (5).

Bhatia [4, Sec. VIII.5] calls a p-tuple of the form {α, ωα, . . . , ωk−1α}
a p-Carrollian tuple in honor of the writer and mathematician Lewis
Carroll. Corresponding to a block cyclic representation, a periodic
invariant subspace always belongs to eigenvalues that form a set of
p-Carrollian tuples.

3 Periodic Arnoldi Decompositions

From the described relationships between product eigenvalue prob-
lems and block cyclic matrices it can be concluded that any structure-
preserving method for computing p-Carrollian eigenvalue tuples and
periodic invariant subspaces of a block cyclic matrix is a suitable
method for solving the corresponding product eigenvalue problem.

In the following, we will develop such a structure-preserving method
based on the Krylov subspace

Kk(A, u1) = span{u1,Au1,A2u1, . . . ,Ak−1u1}

for some starting vector u1 ∈ C
pn. As we are interested in approx-

imating periodic invariant subspaces, which are spanned by block
diagonal matrices, it is reasonable to require that Kk(A, u1) itself ad-
mits a block diagonal basis. Indeed, it will be shown that if a starting
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vector of the form u1 = [u
(1)T
1 , 0, . . . , 0]T , with u

(1)
1 ∈ C

n, is used, then
one can construct, by a minor modification of the standard Arnoldi
method [16], a decomposition of the following type:

A ·
(

U
(1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k

)

=
(

U
(1)
k+1 ⊕ U

(2)
k · · · ⊕ U

(p)
k

)

· Ĥk. (9)

Here, all matrices U
(1)
k+1 = [u

(1)
1 , . . . , u

(1)
k+1] and U

(l)
k = [u

(l)
1 , . . . , u

(l)
k ],

l = 2, . . . , p, are assumed to have orthonormal columns. Moreover,
the factor Ĥk in (9) takes the form

Ĥk =













0 Ĥ
(p)
k

H
(1)
k

. . .

. . .
. . .

H
(p−1)
k 0













=

























@
@

@
@@

?

@
@@

. . .

@
@@

























, (10)

i.e., H
(1)
k , . . . ,H

(p−1)
k ∈ C

k×k are upper triangular matrices while the

matrix Ĥ
(p)
k =

[

H
(p)
k

h
(p)
k+1,k

eT
k

]

∈ C
(k+1)×k has (rectangular) upper Hes-

senberg form. Note that we use ek to denote the kth unit vector.
Any decomposition of the form (9)–(10) will be called a periodic

Arnoldi decomposition of order k. Similar decompositions have played
a role in Krylov subspace methods for solving linear systems with
block cyclic matrices, see [7–9,14,15]. For p = 1 the periodic Arnoldi
decomposition is nothing but a standard Arnoldi decomposition [35].

Lemma 1 Consider a kth-order periodic Arnoldi decomposition of
the form (9)–(10) and assume that the upper triangular matrices

H
(1)
k , . . . ,H

(p−1)
k are invertible. Moreover, assume that Ĥ

(p)
k is in

unreduced Hessenberg form, i.e., all its subdiagonal entries are dif-

ferent from zero. Then the columns of (U
(1)
k+1 ⊕ U

(2)
k · · · ⊕ U

(p)
k ) form

a basis for Kpk+1(A, [u(1)T
1 , 0, . . . , 0]T ).

Proof This result is proven by transforming the periodic Arnoldi de-
composition into an equivalent standard Arnoldi decomposition. For
this purpose, we first permute the (k+1)th row of Ĥk to the bottom
row:

P1Ĥk =

[

Hk

h
(p)
k+1,ke

T
pk

]

,
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where P1 = [e1, . . . , ek, epk+1, ek+1, . . . , epk] denotes the correspond-

ing permutation matrix. Note that Hk takes the same form as Ĥk

in (10), only with the rectangular Hessenberg matrix Ĥ
(p)
k replaced by

the square Hessenberg matrix H
(p)
k . Next, let us consider the pk× pk

perfect shuffle permutation

P2 = [e1, e1+p, . . . , e1+(k−1)p, e2, e2+p, . . . , e2+(k−1)p, . . . ,

ep, ep+p, . . . , ekp].

Applying this permutation to the rows and columns of Hk turns it
into a Hessenberg matrix H̃k = P2HkP

T
2 whose subdiagonal entries

are composed of the diagonal entries of H
(1)
k , . . . ,H

(p−1)
k and the sub-

diagonal entries of H
(p)
k , see also [21]. If we let Vk = (U

(1)
k ⊕U (2)

k · · ·⊕
U

(p)
k )P T

2 and P̂2 = P2 ⊕ 1 then (9) yields the decomposition

AVk =
(

U
(1)
k+1 ⊕ U

(2)
k · · · ⊕ U

(p)
k

)

P T
1 P1ĤkP

T
2

=

[

U
(1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k ,

[

u
(1)
k+1

0

]]

P̂ T
2 P̂2

[

Hk

h
(p)
k+1,ke

T
pk

]

P T
2

=

[

Vk,

[

u
(1)
k+1

0

]][

H̃k

h
(p)
k+1,ke

T
pk

]

.

This is a standard (although particularly structured) Arnoldi de-
composition. Moreover, the given assumptions guarantee that the
Hessenberg factor is unreduced, which implies that the columns of
[

Vk,

[

u
(1)
k+1
0

]]

form a basis for Kpk+1(A, [u(1)T
1 , 0, . . . , 0]T ), see, e.g., [35,

Thm. 5.1.1]. This proves the desired result. ut
The proof of Lemma 1 provides one way of relating periodic Arnoldi

decompositions to standard Arnoldi decompositions. There is an al-
ternative relationship, which will be explained in the following. For

this purpose, let Uk = U
(1)
k ⊕U (2)

k · · ·⊕U (p)
k . Then (9) can be rewritten

as

AUk = UkHk + h
(p)
k+1,k

[

u
(1)T
k+1 , 0, . . . , 0

]T
eT
pk,

where Hk is as Ĥk in (10) but with Ĥ
(p)
k replaced by the square

Hessenberg matrix H
(p)
k . By repeated application of this equality, we

obtain

ApUk = UkHp
k +

p−1
∑

l=0

h
(p)
k+1,kAp−l−1

[

u
(1)T
k+1 , 0, . . . , 0

]T
eT
pkHl

k. (11)
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Note that Ap is a block diagonal matrix with all cyclic permutations
of Π on the block diagonal, i.e., Π (1), . . . ,Π(p) defined as in (4). The
matrix Hp

k has a similar structure. Rewriting (11) on the coefficient
level yields, after some basic algebraic manipulations,

ΠU
(1)
k = U

(1)
k Π

(1)
k +

(

h
(p)
k+1,k

p−1
∏

l=1

h
(l)
kk

)

u
(1)
k+1e

T
k (12)

and, for i > 1,

Π(i)U
(i)
k = U

(i)
k Π

(i)
k +

(

h
(p)
k+1,k

p−i
∏

l=1

h
(l)
kk

)

A(i−1) · · ·A(1)u
(1)
k+1e

T
k , (13)

where Π
(i)
k = H

(p+i−1)
k H

(p+i−2)
k · · ·H(i)

k . Note that all matrices Π
(i)
k ,

i = 1, . . . , p, have upper Hessenberg form, with nonzero subdiagonal
entries provided that the conditions of Lemma 1 hold. In this case,
the relation (12) is an unreduced standard Arnoldi decomposition for

Π(1) and thus the columns of U
(1)
k+1 form an orthonormal basis for

the Krylov subspace Kk+1(Π,u
(1)
1 ), see, e.g., [35, Thm. 5.1.1]. Sim-

ilarly, the columns of U
(2)
k , . . . , U

(p)
k form orthonormal bases for the

Krylov subspaces Kk(Π
(2), u

(2)
1 ), . . . ,Kk(Π

(p), u
(p)
1 ), respectively. In

other words, a periodic Arnoldi decomposition for A simultaneously
yields Krylov subspaces for all p cyclic permutations of the matrix
product Π.

3.1 The periodic Arnoldi method

Algorithm 1, which we call the periodic Arnoldi method, produces a
periodic Arnoldi decomposition of the form (9)–(10). It is formally
and numerically equivalent to the standard Arnoldi method [16] ap-
plied to the block cyclic matrix A using a starting vector of the form

u1 = [u
(1)T
1 , 0, . . . , 0]T , with the notable difference that the columns

of the produced Krylov basis are sorted in a particular order. Several
remarks concerning the implementation of Algorithm 1 are in order:

1. Algorithm 1 can be implemented such that in each outer loop
exactly p matrix-vector multiplications, involving each of the ma-
trices A(1), . . . , A(p), are needed. It can be expected that the com-
putational cost of Algorithm 1 is dominated by these matrix-
vector multiplications making it comparable to the cost of the
standard Arnoldi method applied to the matrix product Π =
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Algorithm 1 Periodic Arnoldi method

Input: Matrices A(1), . . . , A(p) ∈ C
n×n, a starting vector u

(1)
1 ∈ C

n with

‖u
(1)
1 ‖2 = 1, and an integer k < n.

Output: Matrices U
(1)
k+1 ∈ C

n×(k+1), U
(2)
k , . . . , U

(p)
k ∈ C

n×k having orthonor-

mal columns, upper triangular matrices H
(1)
k , . . . , H

(p−1)
k ∈ C

k×k

and an upper Hessenberg matrix Ĥ
(p)
k ∈ C

(k+1)×k, defining a kth
order periodic Arnoldi decomposition (9)–(10).

H
(1)
0 ← [], . . . , H

(p−1)
0 ← [], Ĥ

(p)
0 ← []

U
(1)
1 ←

h

u
(1)
1

i

, U
(2)
0 ← [], . . . , U

(p)
0 ← []

for j ← 1, 2, . . . , k do

for l← 1, 2, . . . , p− 1 do

h
(l)
j ← U

(l+1)H
j−1 A(l)u

(l)
j % Note that U

(l+1)
j−1 and h

(l)
j are empty for j = 1.

v ← A(l)u
(l)
j − U

(l+1)
j−1 h

(l)
j

h
(l)
jj ← ‖v‖2

u
(l+1)
j ← v/h

(l)
jj , U

(l+1)
j ←

h

U
(l+1)
j−1 , u

(l+1)
j

i

H
(l)
j ←

"

H
(l)
j−1 h

(l)
j

0 h
(l)
jj

#

end for

h
(p)
j ← U

(1)H
j A(p)u

(p)
j

v ← A(p)u
(p)
j − U

(1)
j h

(p)
j

h
(p)
j+1,j ← ‖v‖2

u
(1)
j+1 ← v/h

(p)
j+1,j , U

(1)
j+1 ←

h

U
(1)
j , u

(1)
j+1

i

Ĥ
(p)
j ←

"

Ĥ
(p)
j−1 h

(p)
j

0 h
(p)
j+1,j

#

end for

A(p)A(p−1) · · ·A(1). (Note that this statement is only true under
the assumption that the matrices A(1), . . . , A(p) are subsequently
applied to a vector whenever the standard Arnoldi method re-
quests a matrix-vector product. If the matrix product or parts of
it can be condensed in a cheap manner, the computational cost of
the standard Arnoldi method may be considerably lower.)

2. A major drawback of using Algorithm 1 in comparison to the
standard Arnoldi method applied to Π is the increase of memory
requirements by roughly a factor of p due to the need for storing

each basis U
(1)
k+1, U

(2)
k , . . . , U

(p)
k instead of only one n×(k+1) basis.
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3. Algorithm 1 breaks down as soon as it encounters h
(l)
jj = 0, for

1 ≤ l ≤ p − 1, or h
(p)
j+1,j = 0. In the latter case, an exact peri-

odic invariant subspace has been found and can be deflated, see

Section 6. The first case, h
(l)
jj = 0, also admits the deflation of

an invariant subspace, but only after a certain deflation proce-
dure has been applied, see Section 6.1. In both cases, the iteration
can be continued with a random, unit vector orthogonal to the
previously generated vectors.

4. In exact arithmetic, a newly computed vector u
(l)
j will be orthog-

onal to the columns of U
(l)
j−1. In finite-precision arithmetic, how-

ever, this property can get severely violated due to numerical in-
stabilities inherited from the Gram-Schmidt orthonormalization
process. This makes it sometimes necessary to reorthogonalize

u
(l)
j against the columns of U

(l)
j−1. It is straightforward to adapt

the reorthogonalization procedures used in the standard Arnoldi
method, see [13,41], for this purpose.

5. So far, we do not know how to construct a satisfactory periodic
shift-and-invert Arnoldi method as (A− σI)−1 does not preserve
the block cyclic structure of A as long as σ 6= 0. Alternatively, one
could use the product

(A−σ(1)I)−1·(A−σ(2)I)−1 · · · (A−σ(p)I)−1 =

(

Ap −
p
∏

l=1

σ(l)I

)−1

,

where {σ(1), . . . , σ(p)} is a p-Carrollian tuple. Such an approach,
however, is expected to suffer from numerical instabilities similar
to those illustrated by the example in the introduction.

Let us emphasize again that Algorithm 1 is equivalent to the standard
Arnoldi method. This implies that the standard methods for comput-
ing Ritz values, vectors and bases, see e.g. [35], can be applied to ex-
tract approximations to eigenvalues and invariant subspaces from the
Krylov subspace basis produced by this algorithm, see also Section 6.

3.2 Convergence properties

It can be expected that the convergence of the periodic Arnoldi
method to invariant subspaces often follows closely the convergence of

the standard Arnoldi method applied toΠ. To see this, let U
(1)
k ⊕· · ·⊕

U
(p)
k denote the basis for the Krylov subspace Kpk(A, [u(1)T

1 , 0, . . . , 0]T )
obtained by Algorithm 1. Then the decompositions (12)–(13) imply
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that the columns of U
(1)
k , . . . , U

(p)
k span bases for Kk(Π

(1), u
(1)
1 ), . . .,

Kk(Π
(p), u

(p)
1 ), respectively. Let X = span(X(1) ⊕ · · · ⊕X(p)) be the

desired periodic invariant subspace of dimension k′p ≤ kp and set
X (l) = span(X(l)) for l = 1, . . . , p. Because of the block diagonal
structure of the bases, we obtain

δ
(

X ,Kpk(A, [u(1)T
1 , 0, . . . , 0]T )

)

= max
l∈{1,...,p}

δ
(

X (l),Kk(Π
(l), u

(l)
1 )
)

(14)
where δ denotes the sine of the largest canonical angle between two
subspaces [16]. Note that all matrix products Π (l) have the same
eigenvalues but different eigenvectors. Hence, if the convergence of
the standard Arnoldi method applied to Π (l) is mainly determined
by the eigenvalues of Π(l), as considered in [30], then (14) implies that
pk steps of the periodic Arnoldi method applied to A converge as fast
as k steps of the standard Arnoldi method applied to Π (1) = Π. Oth-
erwise, the convergence of the Arnoldi method may differ significantly
for different l, and the convergence of the periodic Arnoldi method is
determined by the slowest one. Such a situation may arise if, e.g., Π
is a nearly normal matrix while Π (2), . . . ,Π(p) are highly nonnormal
matrices [3].

4 Periodic Krylov Decompositions

The applicability of the standard Arnoldi method can be consider-
ably enhanced by employing techniques for restarting and deflating
Arnoldi decompositions. Sorensen [31] and Lehoucq [24] have devel-
oped efficient implicit restarting and deflation techniques, which have
been implemented in the widely used ARPACK software package [25].
Concerning their reliability, it was argued in [23,36] that these tech-
niques sometimes suffer from the forward instability of implicit QR
iterations [29], upon which they are based. An elegant solution to the
difficulties caused by this effect was proposed by Stewart [36]. It con-
sists of relaxing the definition of an Arnoldi decomposition, leading
to the notion of Krylov decompositions, and using reliable eigenvalue
reordering techniques for restarts and deflations.

In this section, we will extend the notion of Krylov decompositions
to periodic Arnoldi decompositions and will use this relaxation in the
next section to develop reliable restarting and deflating techniques for
the periodic Arnoldi method.
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Definition 2 Let A be a block cyclic matrix of the form (5). The
decomposition

A · (U (1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k ) = (U

(1)
k+1 ⊕ U

(2)
k · · · ⊕ U

(p)
k ) · B̂k, (15)

is called a periodic Krylov decomposition of order k if each of the ma-

trices U
(1)
k+1 = [u

(1)
1 , . . . , u

(1)
k+1] and U

(l)
k = [u

(l)
1 , . . . , u

(l)
k ], l = 2, . . . , p,

has orthonormal columns and if the factor B̂k takes the form

B̂k =













0 B̂
(p)
k

B
(1)
k

. . .

. . .
. . .

B
(p−1)
k 0













(16)

for some matrices B
(1)
k , . . . , B

(p−1)
k ∈ C

k×k and B̂
(p)
k =

[

B
(p)
k

b
(p)H
k

]

∈

C
(k+1)×k.

Although Krylov decompositions are seemingly more general than
Arnoldi decompositions, it was shown in [36, Theorem 2.2] that any
Krylov decomposition is actually equivalent to an Arnoldi decompo-
sition. The following lemma is an extension of this fact to periodic
decompositions.

Lemma 2 Let

A · (U (1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k ) = (U

(1)
k+1 ⊕ U

(2)
k · · · ⊕ U

(p)
k ) · B̂k

be a periodic Krylov decomposition. Then there exists a periodic Arnoldi
decomposition

A · (Ũ (1)
k ⊕ Ũ

(2)
k · · · ⊕ Ũ

(p)
k ) = (Ũ

(1)
k+1 ⊕ Ũ

(2)
k · · · ⊕ Ũ

(p)
k ) · Ĥk (17)

so that span(Ũ
(1)
k+1) = span(U

(1)
k+1) and span(Ũ

(l)
k ) = span(U

(l)
k ) for

l = 1, . . . , p.

Proof The proof of this result proceeds in a similar fashion as the
proof of Theorem 2.2 in [36]. First, let us partition

B̂
(p)
k+1 =

[

B
(p)
k

b
(p)H
k+1

]

, B
(p)
k ∈ C

k×k, b
(p)
k+1 ∈ C

k,

and construct a unitary matrix Q0, e.g. a Householder matrix [16],

such thatQH
0 b

(p)
k+1 = hk+1,kek for some hk+1,k ∈ C. Next, we apply Al-

gorithm 2, a rowwise version of the reduction to periodic Hessenberg
form [5], to the matrices

B
(1)
k , B

(2)
k , . . . , B

(p−2)
k , QH

0 B
(p−1)
k , B

(p)
k Q0.
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It is simple to check that the unitary factor Q(p) returned by this

Algorithm 2 Rowwise reduction to periodic Hessenberg form

Input: Matrices B(1), . . . , B(p) ∈ C
k×k.

Output: Unitary matrices Q(1), . . . , Q(p) ∈ C
k×k such that Q(1)HB(p)Q(p) is

upper Hessenberg and Q(2)HB(1)Q(1), . . ., Q(p)HB(p−1)Q(p−1) are
upper triangular matrices. The matrices B(1), . . . , B(p) are overwrit-
ten by the reduced matrices.

Remark: Housej(x) denotes a Householder matrix [16] which maps the lead-
ing j − 1 entries of a vector x ∈ C

k to zero without affecting its
trailing n− j entries.

Q(1) ← Ik, . . . , Q(p) ← Ik

for j ← k, k − 1, . . . , 2 do

for l← p− 1, p− 2, . . . , 1 do

x← B(l)Hej

B(l) ← B(l) ·Housej(x)H

B(l−1) ← Housej(x) ·B(l−1)

Q(l) ← Q(l) ·Housej(x)H

end for

x← B(p)Hej

B(p) ← B(l) ·Housej−1(x)H

B(p−1) ← Housej−1(x) ·B(p−1)

Q(p) ← Q(p) ·Housej−1(x)H

end for

algorithm satisfies eT
kQ

(p) = eT
k . Note that this requirement is not

fulfilled by the original, columnwise algorithm for reduction to peri-
odic Hessenberg form. This implies that setting

Ũ
(1)
k = U

(1)
k Q(1), . . . , Ũ

(p−1)
k = U

(p−1)
k Q(p−1), Ũ

(p)
k = U

(p)
k Q0Q

(p),

and Ũ
(1)
k+1 = [Ũ

(1)
k , u

(1)
k+1] yields a periodic Arnoldi decomposition (17),

where the factor Ĥk takes the form (10) with the coefficient matrices

H
(1)
k = Q(2)HB

(1)
k Q(1),

...

H
(p−2)
k = Q(p−1)HB

(p−2)
k Q(p−2),

H
(p−1)
k = Q(p)HQH

0 B
(p−1)
k Q(p−1),

Ĥ
(p)
k = (Q(1) ⊕ 1)HB̂

(p)
k Q0Q

(p),

having Hessenberg-triangular form, which completes the proof. ut
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The original definition of Krylov decompositions admits non-or-
thogonal bases. This level of generality is not needed for the al-
gorithms considered in this paper, but by a similar argument as
in [36] the statement of Lemma 2 can be extended to the case that

U
(1)
k+1, U

(2)
k , . . . , U

(p)
k are only required to have linearly independent

columns. In analogy to the notation introduced in [36], a decomposi-
tion of the form (15)–(16) is called a periodic Krylov-Schur decompo-

sition if all coefficient matrices B
(1)
k , . . . , B

(p)
k are upper triangular.

5 Implicit Restarting

One of the drawbacks of Algorithm 1 (as of any Arnoldi method
for nonsymmetric matrices) is its need for saving complete Krylov
subspace bases. Depending on the speed of convergence, these bases
may exceed the available computer memory long before the desired
invariant subspace is sufficiently well approximated by the Krylov
subspace. Implicit restarting resolves this issue by occasionally dis-
posing of information which does not contain good approximations
to the invariant subspace of interest.

Given a periodic Krylov decomposition of order m,

A · (U (1)
m ⊕U (2)

m ⊕ · · ·⊕U (p)
m ) = (U

(1)
m+1 ⊕U (2)

m ⊕ · · ·⊕U (p)
m ) · B̂m, (18)

where B̂m is a block cyclic matrix of the form (16), implicit restarting

proceeds as follows. First, unitary matrices Q
(1)
1 , . . . , Q

(p)
1 ∈ C

m×m

are constructed such that T
(l)
m = Q

(l+1)H
1 B

(l)
m Q

(l)
1 is a periodic Schur

decomposition. The eigenvalues of the product

ΠT = T (p)
m T (p−1)

m · · ·T (1)
m

correspond to the m Carrollian tuples of Ritz values of the Krylov
decomposition (18). Some of these eigenvalues may be of interest and
approximate desired eigenvalues of Π, but some may not. Therefore,
the next step of implicit restarting consists of reordering the k < m

wanted eigenvalues to the top left corner of the triangular matrix
ΠT , using reliable reordering methods as described in [5,6,22]. This
corresponds to filtering the starting vector of the periodic Arnoldi
method with a degree (m− k)p polynomial (with the zeros being the
pth roots of the unwanted eigenvalues), as opposed to a degree m−k
polynomial used for the standard Arnoldi method.



A Periodic Krylov-Schur Algorithm for Large Matrix Products 15

In effect, reordering yields another set of unitary matricesQ
(1)
2 , . . . , Q

(p)
2 ∈

C
m×m so that

A · (U (1)
m Q

(1)
1 Q

(1)
2 ⊕ U (2)

m Q
(2)
1 Q

(2)
2 ⊕ · · · ⊕ U (p)

m Q
(p)
1 Q

(p)
2 )

= ([U (1)
m Q

(1)
1 Q

(1)
2 , u

(1)
m+1] ⊕ U (2)

m Q
(2)
1 Q

(2)
2 ⊕ · · · ⊕ U (p)

m Q
(p)
1 Q

(p)
2 ) · T̂m,

where T̂m is a block cyclic matrix of the form (16). The coefficients

of T̂m are given by triangular matrices T
(l)
m =

[

T
(l)
w

0
?

T
(l)
u

]

, l = 1, . . . , p,

and

T̂ (p)
m =







T
(p)
w ?

0 T
(p)
u

b
(p)T
w ?






.

Here, the k×k product T
(p)
w T

(p−1)
w · · ·T (1)

w contains the wanted eigen-

values of ΠT while the (m− k)× (m− k) product T
(p)
u T

(p−1)
u · · ·T (1)

u

contains the unwanted eigenvalues. Note that these products corre-
spond to the block cyclic matrices

Tw =













0 T
(p)
w

T
(1)
w

. . .

. . .
. . .

T
(p−1)
w 0













, Tu =













0 T
(p)
u

T
(1)
u

. . .

. . .
. . .

T
(p−1)
u 0













. (19)

Finally, the constructed periodic Krylov-Schur decomposition is trun-

cated. By letting Ũ
(l)
k contain the first k columns of U

(l)
m Q

(l)
1 Q

(l)
2 ,

l = 1, . . . , p, and setting ũ
(1)
k+1 = u

(1)
m+1, we obtain the following

Krylov-Schur decomposition of order k:

A · (Ũ (1)
k ⊕ Ũ

(2)
k ⊕ · · · ⊕ Ũ

(p)
k ) = ([Ũ

(1)
k , ũ

(1)
k+1]⊕ Ũ

(2)
k ⊕ · · · ⊕ Ũ

(p)
k ) · T̂w,

where T̂w is almost identical to Tw in (19), with the only difference

being that the k×k coefficient matrix T
(p)
w is replaced by the (k+1)×k

matrix T̂
(p)
w =

[

T
(p)
w

b
(p)T
w

]

.

The described procedure of reduction to periodic Krylov-Schur de-
composition, reordering and truncation is depicted in Figure 1. Note
that the Krylov subspace corresponding to the truncated decomposi-
tion is the same subspace that would have been obtained if implicit
restarting with the filter polynomial

ψ(z) =
∏

λ∈λ(Tu)

(z − λ),
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(a) p. Krylov decomp. of order m (b) p. Krylov-Schur decomp.

A× = × A× = ×

(c) reordered p. Krylov-Schur decomp. (d) truncated p. Krylov decomp.

A× = × A× = ×

Fig. 1. Restarting a periodic Krylov decomposition.

see [31], had been applied to the standard Arnoldi decomposition
corresponding to (18). The notable difference of our method is that
it exploits and preserves the structure of periodic Krylov decomposi-
tions.

6 Deflation

After a periodic Krylov decomposition has been truncated to order k,
it can again be expanded to a decomposition of order m by applying
a variant of the periodic Arnoldi method, Algorithm 1. This process
of truncation and expansion is repeated until convergence occurs. We
suggest the use of a convergence criterion similar to the one used
in [36] for deflating invariant subspaces from Krylov decompositions.
In order to preserve the structure of periodic Krylov decompositions,
we will only deflate invariant subspaces that belong to a p-Carrollian
tuple of Ritz values.

For the purpose of describing this deflation strategy in detail, as-
sume that we have an mth order periodic Krylov decomposition,
where d < m p-Carrollian tuples of Ritz values have already been
deflated. This corresponds to a decomposition of the following parti-
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tioned form:

A · ([Q(1)
d , U

(1)
m−d] ⊕ [Q

(2)
d , U

(2)
m−d] · · · ⊕ [Q

(p)
d , U

(p)
m−d])

= ([Q
(1)
d , U

(1)
m−d+1] ⊕ [Q

(2)
d , U

(2)
m−d] · · · ⊕ [Q

(p)
d , U

(p)
m−d]) · B̂m,

(20)

where Q
(1)
d , . . . , Q

(p)
d ∈ C

n×d and B̂m is a block cyclic matrix of the
form (16) with accordingly partitioned coefficient matrices

B(l)
m =

[

T
(l)
d ?

0 B
(l)
m−d

]

, l = 1, . . . , p−1, B̂(p)
m =

[

T
(p)
d ?

0 B̂
(p)
m−d

]

. (21)

Let Td be the block cyclic matrix associated with the (usually upper

triangular) matrices T
(1)
d , . . . , T

(p)
d ∈ C

d×d. The structure of (20)–(21)

implies that the columns of the matrix Qd = Q
(1)
d ⊕ · · · ⊕ Q

(p)
d span

a periodic invariant subspace belonging to the eigenvalues of Td. In
other words, the eigenvalues of Td have already been deflated.

To deflate another p-Carrollian tuple of Ritz values, we assume,
e.g. by using a periodic Schur decomposition, that the submatrices

B
(1)
m−d, . . . , B

(p−1)
m−d , B̂

(p)
m−d in (21) take the form

B(l)
m =

[

λ(l) ?

0 B̃
(l)
m−d−1

]

, l = 1, . . . , p− 1, B̂(p)
m =







λ(p) ?

0 B̃
(p)
m−d−1

b̃
(p)
1 b̃

(p)H
m−d−1







for some scalars λ(1), . . . , λ(p). The eigenvalues of the cyclic matrix

Λ =













0 λ(p)

λ(1) . . .
. . .

. . .

λ(p−1) 0













are regarded as a converged p-Carrollian tuple of Ritz values if the

scalar b̃
(p)
1 satisfies

|b̃(p)
1 | ≤ max{u · ‖B̂(p)

m ‖F , tol · |λ(p)|}, (22)

where u denotes the machine precision and tol > 0 is a chosen user
tolerance. Being in the spirit of standard convergence criteria for
Arnoldi methods [25, Sec. 4.6], this criterion implies that the n × p

matrix V = U
(1)
m−de1 ⊕ · · · ⊕ U

(p)
m−de1 satisfies

‖(I−QdQ
H
d )A(I−QdQ

H
d )V −V Λ‖F ≤ max{u · ‖B̂(p)

m ‖F , tol · |λ(p)|}.
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Thus, the columns of V nearly span an invariant subspace belonging
to the eigenvalues of Λ, in the sense that the residual of the pair (V,Λ)
is satisfactorily small. If the considered p-Carrollian tuple does not
satisfy (22), we may test any other tuple of Ritz values by reordering
the periodic Schur form of the matrix product

[

λ(p) ?

0 B̃
(p)
m−d−1

][

λ(p−1) ?

0 B̃
(p−1)
m−d−1

]

· · ·
[

λ(1) ?

0 B̃
(1)
m−d−1

]

. (23)

As already pointed out in [36], the use of a convergence criterion of
the form (22) leads to a numerically backward stable method for ap-
proximating invariant subspaces. To see this for the periodic Krylov-
Schur algorithm, let us assume that the d deflated p-Carrollian tuples
of Ritz values in (20) have been deflated based upon a criterion of

the form (22). Then the matrix Qd = (Q
(1)
d ⊕ · · · ⊕Q

(p)
d ) satisfies

AQd −QdTd = Rd,

where Rd ∈ C
np×dp is a block cyclic matrix with

‖Rd‖F ≤
√
dmax{u · ‖A(p)‖F , tol · ‖T (p)

d ‖F }.

The subspace spanned by the columns of Qd is the exact periodic
invariant subspace of the slightly perturbed block cyclic matrix A−
RdQ

H
d . Neglecting the effects of roundoff errors, this shows the strong

backward stability [11] of the periodic Krylov-Schur algorithm for
computing periodic invariant subspaces of block cyclic matrices. Sim-
ilarly as for the standard Krylov-Schur algorithm [36], it can be shown
that roundoff errors do not introduce numerical instabilities, if Algo-
rithm 1 is carefully implemented.

Remark 1 In the case of real factors A(1), . . . , A(p), the realness of
periodic Krylov decompositions can be preserved by employing real
periodic Schur decompositions [5] and reordering/deflating complex
conjugate pairs of eigenvalues together.

6.1 Deflation of singular factors

In the case that one of the triangular factors H
(1)
m , . . . ,H

(p−1)
m in an

mth order periodic Arnoldi decomposition (9)–(10) happens to be
(almost) singular, then the assumption of Lemma 1 is not satisfied
and the basis produced by Algorithm 1 does not span a Krylov sub-
space. Such a situation arises, e.g., if Algorithm 1 encounters a zero
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vector v in the inner loop and continues the iteration with a random,

unit vector orthogonal to the previously generated vectors in U
(l+1)
j−1 .

In the following, it will be shown that a zero diagonal element in
the triangular factors admits the deflation of an invariant subspace by
using a deflation procedure similar to the one used in the periodic QR
algorithm for dealing with singular triangular factors, see [5,38]. Let
us outline this deflation for a fifth order periodic Arnoldi decompo-
sition with p = 3, where the third diagonal element of the triangular

matrix H
(2)
5 happens to be zero:

Ĥ
(3)
5 H

(2)
5 H

(1)
5 =

















x x x x x

x x x x x

0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x





























x x x x x

0 x x x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x

























x x x x x

0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x













.

Applying a sequence of two Givens rotations [16], the subdiagonal

elements (2, 1) and (3, 2) of Ĥ
(3)
5 can be annihilated at the expense

of introducing two nonzeros in the subdiagonal of H
(1)
5 :

















x̂ x̂ x̂ x̂ x̂

0̂ x̂ x̂ x̂ x̂

0 0̂ x̂ x̂ x̂
0 0 x x x
0 0 0 x x
0 0 0 0 x





























x x x x x

0 x x x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x

























x̂ x̂ x̂ x x

x̂ x̂ x̂ x x

0 x̂ x̂ x x
0 0 0 x x
0 0 0 0 x













.

These two newly created nonzeros can be annihilated in a similar
fashion, but now – owing to the zero diagonal element – only one

nonzero entry is introduced in H
(2)
5 :

















x x x x x

0 x x x x
0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x





























x̂ x̂ x̂ x x

x̂ x̂ x̂ x x

0 0 0 x x
0 0 0 x x
0 0 0 0 x

























x̂ x̂ x̂ x̂ x̂

0̂ x̂ x̂ x̂ x̂

0 0̂ x̂ x̂ x̂
0 0 0 x x
0 0 0 0 x













.
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Annihilating this entry returns the product to periodic Hessenberg
form:

















x̂ x̂ x x x

x̂ x̂ x x x

0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x





























x̂ x̂ x̂ x̂ x̂

0̂ x̂ x̂ x̂ x̂
0 0 0 x x
0 0 0 x x
0 0 0 0 x

























x x x x x

0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x













. (24)

This yields a deflated periodic invariant subspace of dimension 2p. Al-
though another p-Carrollian tuple of eigenvalues is known to consist
of zero eigenvalues there seems to be no straightforward way to de-
flate the corresponding periodic invariant subspace unless the (4, 3)

subdiagonal entry of Ĥ
(3)
5 is sufficiently small. A simple remedy is

to ignore this additional information and perform an explicit restart
with a random starting vector orthogonal to the deflated subspace.

A technically more involved remedy is to allow varying dimensions
and relabel the periodic Krylov decomposition. Let us repartition (24)
as follows:

















x x x x x

x x x x x

0 0 x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x





























x x x x x

0 x x x x
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.

By applying two further steps of the periodic Arnoldi method, Algo-
rithm 1, one obtains the following periodic Hessenberg form:
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
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








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
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



.

This corresponds to a periodic Arnoldi decomposition of the form

A(3) ·
[

2 3

Q(3), U (3)
]

=
[

3 3

Q(1), U (1)
]

·
[

2 3

3 T (3) ?

3 0 H(3)

]

,

A(2) ·
[

3 3

Q(2), U (2)
]

=
[

2 3 1

Q(3), U (3), u(3)
]

·
[

3 3

2 T (2) ?

4 0 Ĥ(2)

]

, (25)
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A(1) ·
[

3 3

Q(1), U (1)
]

=
[

3 3

Q(2), U (2)
]

·
[

3 3

3 T (1) ?

3 0 H(1)

]

.

Note that the deflated matrix product T (3)T (2)T (1) consists of rect-
angular factors, which accounts for the discovered zero eigenvalue. A
slight variation of the periodic QR algorithm can be used to compute
eigenvalues and invariant subspaces of such matrix products in a nu-
merically backward stable manner, see [39] for more details. Also, the
subspace X spanned by the columns of Q(1)⊕Q(2)⊕Q(3) is an invari-
ant subspace of A. Strictly speaking, X is not a periodic invariant
subspace in the sense of Definition 1, as the diagonal blocks in the
basis of X do not have the same number of columns. Nevertheless,
the columns of Q(1), Q(2), and Q(3) span invariant subspaces of the
matrix products Π(1),Π(2), and Π(3), respectively.

The undeflated part in (25) corresponds to the decomposition

A(3)U (3) = U (1)H(3), A(2)U (2) = [U (3), u(3)]Ĥ(2), A(1)U (1) = U (2)H(1)

By the index transformation

(2) → (3), (3) → (1), (1) → (2),

it can be seen that this decomposition is actually a periodic Arnoldi
decomposition. Hence, the periodic Arnoldi method can be continued
from this decomposition.

7 Numerical Examples

In this section, we demonstrate the use of the periodic Krylov-Schur
algorithm for two application areas: model reduction and periodic
discrete-time systems.

Before, we consider the simple example from the introduction:

A(1) = A(2) = A(3) = diag(1, 10−1, 10−2, 10−3, . . . , 10−50). (26)

Figure 2 displays the approximation error

min{|λi − σj | : σj is Ritz value} (27)

for each of the 7 largest eigenvalues 1, 10−3, . . . , 10−18 versus the num-
ber of (product) Arnoldi steps. It can be seen that these errors stag-
nate at a value above 10−20 for the Krylov-Schur algorithm, while
the product Krylov-Schur algorithm is capable of computing much
more accurate approximations to the smaller eigenvalues (which cor-
respond to the lower error curves). All computations in this and the
following numerical examples have been performed in Matlab 6.5.
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Fig. 2. Approximation errors of the 7 largest eigenvalues for the standard (left
plot) and the periodic (right plot) Krylov-Schur algorithm applied to the product
A(3)A(2)A(1) as defined in (26).

7.1 Model reduction and Hankel singular values

Let us consider a continuous, linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(28)

where x(t) ∈ C
n, u(t) ∈ C

m, and y(t) ∈ C
q represent the state, input,

and output vectors at time t, respectively, while the system matrices
A ∈ C

n×n, B ∈ C
n×m, C ∈ C

q×n are assumed to be constant. Model
reduction aims at approximating (28) by a reduced LTI system with a
similar input-output-behavior but with a much smaller number ñ�
n of states.

Some popular model reduction techniques, such as balanced trun-
cation, are closely related to the two Lyapunov equations

AP + PAH = −BBH , AHQ+QA = −CHC, (29)

see [1]. It will be assumed that the system (28) is stable, i.e., all
eigenvalues of A lie in the open left half plane. In this case, one can
directly compute Cholesky factors R and S such that P = SHS and
Q = RHR are the unique solutions of (29), see, e.g., [18,20]. Balanced
truncation proceeds by computing a singular value decomposition

RSH = UΣV H , (30)

where the matrices U, V are unitary and Σ is a diagonal matrix with
the so-called Hankel singular values on its diagonal. This results in
a transformation matrix T = SHV Σ−1/2 which in turn yields a bal-
anced system with system matrices T−1AT , T−1B, TC. This bal-
anced system is reduced by maintaining only those parts that belong
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Fig. 3. Approximation errors of the 10 largest eigenvalues for the standard (left
plot) and the periodic (right plot) Krylov-Schur algorithm applied to the matrix
product Π corresponding to a discretized clamped beam model.

to non-negligible Hankel singular values. For this purpose, it is im-
portant to identify these values correctly.

Computing the Hankel singular values is equivalent to computing
the positive square roots of the eigenvalues of the matrix product
Π = SRHRSH . In the following, we consider a practical example
to compare the standard Krylov-Schur algorithm with the periodic
Krylov-Schur algorithm applied to Π. For this purpose, we have used
the discretized model of a clamped beam as described in [2,12], for
which n = 348 and m = q = 1. The corresponding Cholesky factors
R and S as well as the Hankel singular values can be obtained from
the model reduction benchmark collection [12]. Figure 3 displays the
eigenvalue approximation errors, see (27), for the 10 largest eigenval-
ues of Π:

{5.7·106, 4.7·106, 7.4·104, 7.1·104, 2.0·103, 1.9·103, 1.1·102, 13, 9.7}
(only the leading two significant digits are displayed). A restart was
applied after 17 Arnoldi steps, truncating the (periodic) Arnoldi de-
composition to a (periodic) Krylov-Schur decomposition which main-
tains the 12 largest Ritz values. The errors in the eigenvalue approx-
imations produced by the Krylov-Schur algorithm stagnate at a level
above 10−10. Again, the periodic Krylov-Schur algorithm produces
more accurate approximations; the lower error curves in the right
plot of Figure 3 correspond to the smaller eigenvalues.

7.2 Periodic discrete-time systems

A periodic discrete-time system takes the form

xl+1 = A(l)xl +B(l)ul,
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yl+1 = C(l)xl, l = 0, 1, . . . ,

where xl ∈ C
n, ul ∈ C

m, and yl ∈ C
p are the state, input, and

output vectors, respectively. The system matrices A(l), B(l), C(l) have
appropriate dimensions and are assumed to be periodic for some fixed
period p ≥ 1, i.e., A(l+p) = A(l), B(l+p) = B(l), C(l+p) = C(l). The
Floquet multipliers of this system, which determine the asymptotic
behavior of xl for l → ∞, are given by the pth roots of the eigenvalues
of the matrix product A(p−1)A(p−2) · · ·A(0).

In view of the lack of publicly available large-scale periodic discrete-
time systems, we consider a system of state dimension n = 12 that
models the dynamics of nitrogen absorption, distribution, and translo-
cation in citrus trees [10]. This system has period p = 365 and its
nonzero Floquet multipliers are the 365th roots of

0.1943, 0.1614, 9.834·10−3, 1.048·10−3, 1.013·10−14

(only the leading four significant digits are displayed). To compute
these values, we applied the (periodic) Krylov-Schur algorithm to
Π = A(364)A(363) · · ·A(0). The parameters were set such that 5 eigen-
values are to be computed and restarts are performed if the dimen-
sion of the Krylov subspace exceeds 9p + 1, in which case the sub-
space is truncated to dimension 6p+ 1 (with p = 1 for the standard
Krylov-Schur algorithm). We observed that the standard Krylov-
Schur algorithm was not capable of computing any reasonable ap-
proximation to the smallest nonzero eigenvalue (1.013·10−14), instead
9.471·10−11 +9.952·10−11ı was returned as the fifth-largest converged
Ritz value. The periodic Krylov-Schur algorithm, however, computed
the leading five significant decimal digits of this eigenvalue correctly.

It is worth mentioning again that many computational tasks re-
lated to periodic discrete-time systems require the complete infor-
mation contained in the (approximate) periodic invariant subspaces
of Π [33,34,40]. While being a natural by-product of the periodic
Krylov-Schur algorithm, computing this information reliably by the
standard Krylov-Schur algorithm is an expensive and difficult task.

8 Conclusions and Future Work

We have introduced the periodic Krylov-Schur algorithm, an Arnoldi-
like algorithm tailored to matrix products. In terms of accuracy, it has
been demonstrated that this algorithm compares favorably with the
standard Krylov-Schur algorithm. However, several important issues
such as reliable shift-and-invert strategies, harmonic Ritz values, re-
fined Ritz vectors and null-space purification remain to be addressed
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in order to make the periodic Krylov-Schur algorithm as robust and
practicable as, e.g., ARPACK [25].
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