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Abstract. Invariant subspaces of structured matrices are sometimes better conditioned with
respect to structured perturbations than with respect to general perturbations. Sometimes they are
not. This paper proposes an appropriate condition number cS, for invariant subspaces subject to
structured perturbations. Several examples compare cS with the unstructured condition number.
The examples include block cyclic, Hamiltonian, and orthogonal matrices. This approach extends
naturally to structured generalized eigenvalue problems such as palindromic matrix pencils.
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1. Introduction. An invariant subspace X ⊆ Cn of a matrix A ∈ Cn×n is a
linear subspace that stays invariant under the action of A, i.e., Ax ∈ X for all x ∈ X .
The computation of such an invariant subspace to solve a real-world problem is vir-
tually always affected by some error, e.g., due to the limitations of finite-precision
arithmetic. Instead of X , it is usually the case that only a (hopefully nearby) invari-
ant subspace X̂ of a slightly perturbed matrix A+E is computed, where E represents
measurement, modeling, discretization, or roundoff errors. It is therefore important
to analyze the influence of perturbations in the entries of A on the accuracy of the
invariant subspace X . Stewart [33, 35] developed such a perturbation analysis, yield-
ing a measure on the worst-case sensitivity of X . This measure, the condition number
c(X ), is most appropriate if the only information available on E is that its norm is
below a certain perturbation threshold ε. Often, however, more information is avail-
able, i.e., it is known that the perturbation E preserves some structure of A. For
example, if A is a real matrix then it is reasonable to assume that E is also a real
matrix. Also, for many classes of structured eigenvalue problems, such as Hamilto-
nian eigenvalue problems, it is more natural to study and analyze perturbations that
respect the structure.

In this paper, we analyze the influence of structured perturbations: A + E ∈ S,
where S is a linear matrix subspace or a smooth submanifold of Cn×n or Rn×n. This
will lead to the notion of a structured condition number cS(X ) for an invariant subspace
X . It occasionally happens that cS(X )� c(X ), in which case the standard condition
number c(X ) becomes an inappropriate measure on the actual worst-case sensitivity
of X . An extreme example is provided by
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where α ≥ 0 is considered to be tiny. While c(X ) = 1
2α , we will see that the struc-

tured condition number is given by cS(X ) = 1/2 if the set S of perturbed matrices is
restricted to matrices of the form A + E =

h
Â11

Â21

Â12

Â22

i
with Âij =

�
βij

−γij

γij

βij

�
for some

βij , γij ∈ R.
Structured condition numbers for eigenvectors have been studied in [14, 17] and

for invariant subspaces in [24, 26, 39], mostly for special cases. The (structured)
perturbation analysis of quadratic matrix equations is a closely related area, which is
comprehensively treated in [23, 40]. In this paper, we aim to provide a more general
framework for studying structured condition numbers for invariant subspaces, which
applies to all structures that form smooth manifolds.

The rest of this paper is organized as follows. In Section 2, we briefly summarize
known first-order perturbation results for invariant subspace along with associated
notions, such as Sylvester operators and canonical angles. Two conceptually different
approaches to the structured perturbation analysis of invariant subspaces for linear
structures are described in Section 3. One approach is based on a Kronecker product
formulation and pattern matrices, much in the spirit of [9, 14, 22, 31, 41]. Although
such an approach yields a computable formula for the structured condition number
cS(X ), it gives little or no firsthand information on the relationship between cS(X )
and c(X ). The other approach, possibly offering more insight into this relationship,
is based on the observation that for several relevant structures, the Sylvester opera-
tor associated with an invariant subspace admits an orthogonal decomposition into
two operators, one of them is confined to the structure. This property also allows
one to develop global perturbation results and to deal with invariant subspaces that
are stable under structured perturbations but unstable under unstructured perturba-
tions. Both approaches extend to structures that form smooth manifolds, as shown
in Section 3.4. Illustrating the results, Section 4 explains how structured condition
numbers for product, Hamiltonian, and orthogonal eigenvalue problems can be de-
rived in a considerably simple manner. The results extend to deflating subspaces of
generalized eigenvalue problems, see Section 5, and apply to structured matrix pencils
including polindromic matrix pencils.

2. Preliminaries. Given a k-dimensional invariant subspace X of a matrix A ∈
Cn×n, we need some basis for X to begin with. Let the columns of the matrix
X ∈ Cn×k form such a basis. It is convenient to assume that this basis is orthonormal,
which implies that XHX equals the k × k identity matrix Ik. If the columns of
X⊥ ∈ Cn×k form an orthonormal basis for X⊥, then the orthogonal complement of
X , then A has block Schur decomposition:

[X, X⊥]HA[X, X⊥] =
�

A11 A12

0 A22

�
, (2.1)

where A11 ∈ Ck×k and A22 ∈ C(n−k)×(n−k).
An entity closely associated with X is the so called Sylvester operator

T : R 7→ A22R−RA11. (2.2)

This operator is invertible if and only if A11 and A22 have no eigenvalue in common,
i.e., λ(A11) ∩ λ(A22) = ∅, see [36, Thm. V.1.3]. The separation of A11 and A22,
sep(A11, A22), is defined as the smallest singular value of T:

sep(A11, A22) := min
R 6=0

‖T(R)‖F
‖R‖F

= min
R 6=0

‖A22R−RA11‖F
‖R‖F

. (2.3)
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If T is invertible, this definition implies sep(A11, A22) = 1/‖T−1‖, where ‖ · ‖ is the
norm on the space of linear operators Rk×(n−k) → Rk×(n−k) induced by the Frobenius
norm. Note that neither the invertibility of T nor the value of sep(A11, A22) depend on
the choice of orthonormal bases for X and X⊥. This justifies the following definition.

Definition 2.1. An invariant subspace is called simple if the associated Sylvester
operator is invertible.

We are now prepared to state a first-order perturbation expansion for simple
invariant subspaces, which can be proved by the implicit function theorem [37, 39, 25].

Theorem 2.2. Let A have a block Schur decomposition of the form (2.1) and
assume the invariant subspace X spanned by the columns of X to be simple. Let
A+E ∈ B(A) be a perturbation of A, where B(A) ⊂ Cn×n is a sufficiently small open
neighborhood of A. Then there exists a uniquely defined analytic function f : BA →
Cn×k so that X = f(A) and the columns of X̂ = f(A + E) form a (not-necessarily
orthonormal) basis of an invariant subspace of A + E. Moreover, XH(X̂ − X) = 0
and we have the expansion

X̂ = X −X⊥T−1(XH
⊥EX) +O(‖E‖2F ), (2.4)

with the Sylvester operator T : R 7→ A22R−RA11.

2.1. Canonical angles, a perturbation bound and c(X ). In order to obtain
perturbation bounds and condition numbers for invariant subspaces we require the
notions of angles and distances between two subspaces.

Definition 2.3. Let the columns of X and Y form orthonormal bases for the
k-dimensional subspaces X and Y, respectively, and let σ1 ≤ σ2 ≤ · · · ≤ σk de-
note the singular values of XHY . Then the canonical angles between X and Y are
defined as θi(X ,Y) := arccos σi for i = 1, . . . , k. Furthermore, we set Θ(X ,Y) :=
diag(θ1(X ,Y), . . . , θk(X ,Y)).

Canonical angles can be used to measure the distance between two subspaces. In
particular, it can be shown that any unitarily invariant norm ‖ · ‖γ on Ck×k defines a
unitarily invariant metric dγ on the space of k-dimensional subspaces via dγ(X ,Y) =
‖ sin[Θ(X ,Y)]‖γ , see [36, p. 93].

In the case that one of the subspaces is spanned by a non-orthonormal basis, as
in Theorem 2.2, the following lemma provides a useful tool for computing canonical
angles.

Lemma 2.4 ([36]). Let X be spanned by the columns of [Ik, 0]H , and Y by the
columns of [Ik, RH ]H . If σ1 ≥ σ2 ≥ · · · ≥ σk denote the singular values of R then
θi(X ,Y) = arctanσi for i = 1, . . . , k.

This yields the following perturbation bound for invariant subspaces.
Corollary 2.5. Under the assumptions of Theorem 2.2,

‖Θ(X , X̂ )‖F ≤
‖E‖F

sep(A11, A22)
+O(‖E‖2F ), (2.5)

where X̂ = range(X̂).
Proof. Without loss of generality, we may assume X = [I, 0]T . Since XT (X̂ −

X) = 0 the matrix X̂ must have the form [I,RH ]H for some R ∈ C(n−k)×k. Together
with the perturbation expansion (2.4) this implies

‖R‖F = ‖X̂ −X‖F ≤ ‖E‖F / sep(A11, A22).
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Inequality (2.5) is proved by applying Lemma 2.4 combined with the expansion
arctan z = z +O(z3).

The derived bound (2.5) is approximately tight. To see this, let V be a matrix
such that ‖V ‖F = 1 and ‖T−1(V )‖F = 1/ sep(A11, A22). Plugging E = εX⊥V XH

with ε > 0 into the perturbation expansion (2.4) yields

‖Θ(X , X̂ )‖F = ‖X̂ −X‖F +O(‖X̂ −X‖3F ) = ε/ sep(A11, A22) +O(ε2).

Hence, we obtain the following condition number for a simple invariant subspace X :

c(X ) := lim
ε→0

sup
¦
‖Θ(X , X̂ )‖F /ε : E ∈ Cn×n, ‖E‖F ≤ ε

©
(2.6)

= 1/ sep(A11, A22) = ‖T−1‖,

see also [33, 36]. The condition number c(X ) extends to invariant subspaces X which
are not simple by the convention c(X ) = ∞. Unlike eigenvalues, invariant subspaces
with infinite condition number are generally discontinuous with respect to changes in
the matrix entries, i.e., they are unstable under unstructured perturbations [36].

2.2. On the computation of sep. To obtain a computable formula for the
quantity sep(A11, A22), a convenient (but computationally expensive) approach is to
express the Sylvester operator T, see (2.2), in terms of Kronecker products:

vec(T(R)) = KT · vec(R), (2.7)

where the k(n− k)× k(n− k) matrix KT is given by

KT = Ik ⊗A22 −AT
11 ⊗ In−k. (2.8)

Here, ‘⊗’ denotes the Kronecker product of two matrices and the vec operator stacks
the columns of a matrix in their natural order into one long vector [12]. Note that AT

11

denotes the complex transpose of A11. Combining (2.3) with (2.7) yields the formula

sep(A11, A22) = σmin(KT) = σmin(Ik ⊗A22 −AT
11 ⊗ In−k), (2.9)

where σmin denotes the smallest singular value of a matrix.
Computing the separation based on a singular value decomposition of KT is

costly in terms of memory and computational time. A cheaper estimate of sep can be
obtained by applying a norm estimator [15] to K−1

T . This amounts to the solution of
a few linear equations KTx = c and KH

T x = d for particular chosen right hand sides
c and d or, equivalently, the solution of a few Sylvester equations A22X −XA11 = C
and AH

22X − XAH
11 = D. This approach becomes particularly attractive when A11

and A22 are already in Schur form, see [1, 5, 18, 19].

3. The structured condition number cS(X ). The condition number c(X ) for
a simple invariant subspace X of A provides a first-order bound on the sensitivity of
X . This bound is strict in the sense that for any sufficiently small ε > 0 there exists
a perturbation E with ‖E‖F = ε such that ‖Θ(X , X̂ )‖F ≈ c(X )ε. If, however, it is
known that the set of admissible perturbations is restricted to a subset S ⊆ Cn×n

then c(X ) may severely overestimate the actual worst-case sensitivity of X . To avoid
this effect, we introduce an appropriate notion of structured condition numbers in the
sense of Rice [32] as follows.
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Definition 3.1. Let S ⊆ Cn×n and let X be an invariant subspace of A ∈ S.
Then the structured condition number for X with respect to S is defined as

cS(X ) := lim
ε→0

sup
A+E∈S
‖E‖F≤ε

inf{‖Θ(X , X̂ )‖F /ε : X̂ is an invariant subspace of A + E}.

Note that the structured condition number cS(X ) may be finite even when X is not
simple. This reflects the fact that (as in (1.1) with “α = 0”) an invariant subspace may
be unstable with respect to unstructured perturbation (c(X ) = ∞) but stable with
respect to structured perturbations (cS(X ) <∞). If S = Cn×n, then cS(X ) = c(X ).

If X is simple, then Definition 3.1 simplifies to

cS(X ) = lim
ε→0

sup
¦
‖Θ(X , X̂ )‖F /ε : A + E ∈ S, ‖E‖F ≤ ε

©
, (3.1)

where X̂ is defined in the sense of Theorem 2.2.
As the supremum in (3.1) is taken over a set which is potentially smaller than for

the unstructured condition number in (2.6), it is clear that cS(X ) ≤ c(X ). Much of
the following discussion will be concerned with the question by how far can cS(X ) be
below c(X ). As a first step, we provide a useful connection between the structured
condition number and T−1.

Lemma 3.2. Let X be a simple invariant subspace of a matrix A corresponding to
a block Schur decomposition of the form (2.1). Then the structured condition number
for X with respect to S ⊆ Cn×n satisfies

cS(X ) = lim
ε→0

sup
¦
‖T−1(XH

⊥EX)‖F /ε : A + E ∈ S, ‖E‖F ≤ ε
©
, (3.2)

where T is the Sylvester operator T : R 7→ A22R−RA11.
Proof. This statement can be concluded from Theorem 2.2 along the line of

arguments that led to the expression (2.6) for the standard condition number.

3.1. A Kronecker product approach. In the following, we consider pertur-
bations that are linearly structured, i.e., E is known to belong to some linear matrix
subspace L. In this case, Lemma 3.2 implies

cA+L(X ) = sup
¦
‖T−1(XH

⊥EX)‖F : E ∈ L, ‖E‖F = 1
©
, (3.3)

provided that X is simple.
The Kronecker product representation of T described in Section 2.2 can be used

to turn (3.3) into a computable formula for cA+L(X ). Very similar approaches have
been used to obtain expressions for structured condition numbers in the context of
eigenvalues [14, 22, 31, 41] and matrix functions [9]. Given an m-dimensional linear
matrix subspace L ⊆ Kn×n with K ∈ {R, C}, one can always find an n2 ×m pattern
matrix ML such that for every E ∈ L there exists a uniquely defined parameter vector
p ∈ Km with

vec(E) = MLp, ‖E‖F = ‖p‖2.

This implies

vec(T−1(XH
⊥EX)) = K−1

T (XT ⊗XH
⊥ ) vec(E) = K−1

T (XT ⊗XH
⊥ )MLp, (3.4)
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where KT is defined as in (2.8). Consequently, we have the formula

cA+L(X ) = sup
‖p‖2=1

‖K−1
T (XT ⊗XH

⊥ )MLp‖2 = ‖K−1
T (XT ⊗XH

⊥ )ML‖2, (3.5)

provided that either K = C or all of K, A and X are real.
If K = R but A or X is complex then problems occur because the supremum

in (3.5) is taken with respect to real vectors p but K−1
T (XT ⊗ XH

⊥ )M could be a
complex matrix. Nevertheless, one has the following bounds to address such cases,
see also [6].

Lemma 3.3. Let L ⊆ Rn×n be a linear matrix space with pattern matrix ML and
let X be a simple invariant subspace of A ∈ Cn×n. Then

‖K−1
T (XT ⊗XH

⊥ )ML‖2/
√

2 ≤ cA+L(X ) ≤ ‖K−1
T (XT ⊗XH

⊥ )ML‖2.

Proof. Let B = K−1
T (XT ⊗XH

⊥ )ML and decompose B = B(R) + ıB(I) with real
matrices B(R) and B(I). Then

1√
2






�
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BI BR

�




2

≤





�

BR

BI

�




2

≤





�

BR −BI

BI BR

�




2

= ‖B‖2.

Using



�BR

BI

�



2

= cA+L(X ), this concludes the proof.

3.2. An orthogonal decomposition approach. Although (3.5) provides an
explicit expression for cA+L(X ), it tells little about the relationship to the unstruc-
tured condition number c(X ). In this section, we provide an alternative approach by
decomposing the associated Sylvester operator T : R 7→ A22R − RA11 with respect
to the structure.

For this purpose, assume the invariant subspace X to be simple, and let the
columns of X and X⊥ form orthonormal bases of X and X⊥, respectively. We set

N := {XH
⊥EX : E ∈ L},

which can be considered as the structure induced by L in the (2, 1) block in a block
Schur decomposition (2.1). Moreover, let M denote the preimage of N under T. As
we assume X to be simple, we can simply write M := T−1(N ). Lemma 3.2 shows
that the structured condition number of X is given by

cA+L(X ) = ‖T−1
s ‖,

where Ts is the restriction of T to M → N , i.e., Ts := T
��
M→N . The operator

Ts can be considered as the part of T that acts on the linear spaces induced by the
structure.

In all examples considered in this paper, we additionally have the property that
the operator T? : Q 7→ AH

22Q − QAH
11 satisfies T? : N → M. Note that T? is the

Sylvester operator dual to T:

〈T(R), Q〉 = 〈R,T?(Q)〉

with the matrix inner product 〈X, Y 〉 = trace(Y HX). This implies T :M⊥ → N⊥,
where ⊥ denotes the orthogonal complement w.r.t. the matrix inner product. Hence,
T decomposes orthogonally into Ts and Tu := T

��
M⊥→N⊥ , and we have

c(X ) = max{‖T−1
s ‖, ‖T−1

u ‖}. (3.6)
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Hence, comparing c(X ) with cA+L(X ) amounts to comparing ‖T−1
u ‖ with ‖T−1

s ‖.
Remark 3.4. The conditions T :M→N and T? : N →M imply T−1|N→M =

T−1
s and T−?|M→N = T−?

s . Hence ‖T−1
s ‖ =

È
‖(T−? ◦T−1)|N→N ‖, and the power

method can be applied to T−? ◦T−1 in order to estimate ‖T−1
s ‖.

Example 3.5. Consider the embedding of a complex matrix B + ıC, with B,C ∈
Rn×n, into a real 2n×2n matrix of the form A =

�
B
−C

C
B

�
. Let the columns of Y + ıZ

and Y⊥ + ıZ⊥, where Y, Z ∈ Rn×k and Y⊥, Z⊥ ∈ Rn×(n−k), form orthonormal bases
for an invariant subspace of B+ıC and its orthogonal complement, respectively. Then
the columns of X =

�
Y
−Z

Z
Y

�
and X⊥ =

�
Y⊥
−Z⊥

Z⊥
Y⊥

�
form orthonormal bases for an

invariant subspace X of A and X⊥, respectively. This corresponds to the block Schur
decomposition

[X, X⊥]T A[X, X⊥] =:
�

A11 A12

0 A22

�
=

2
664

B11 C11 B12 C12

−C11 B11 −C12 B12

0 0 B22 C22

0 0 −C22 B22

3
775 ,

and the associated Sylvester operator is given by T : R 7→ A22R−RA11.

If we consider perturbations having the same structure as A then L =
¦�

F
−G

G
F

�©
and

N := XT
⊥LX =

§�
F21 G21

−G21 F21

�ª
, N⊥ =

§�
F21 G21

G21 −F21

�ª
.

Moreover, we have T : N → N and T? : N → N . The restricted operator Ts :=
T
��
N→N becomes singular only if B11 + ıC11 and B22 + ıC22 have eigenvalues in

common, while Tu := T
��
N⊥→N⊥ becomes singular if B11 + ıC11 and B22 − ıC22

have eigenvalues in common. Thus, there are situations in which the unstructured
condition number c(X ) = max{‖T−1

s ‖, ‖T−1
u ‖} can be significantly larger than the

structured condition number cS(X ) = cA+L(X ) = ‖T−1
s ‖, e.g., if ıγ is nearly an

eigenvalue of B11 + ıC11 while −ıγ is nearly an eigenvalue of B22 + ıC22 for some
γ ∈ R.

The introductionary example (1.1) is a special case of Example 3.5, where the
unstructured condition number tends to infinity as the parameter α tends to zero.
The results above imply that the structured condition number is given by

cS(X ) = inf
|β|2+|γ|2=1

§




�

0 1− α
−1 + α 0

� �
β γ
−γ β

�
−

�
β γ
−γ β

� �
0 −1− α

1 + α 0

� 




F

ª−1

=
1
2
.

There is evidence to believe that cS(X ) = 1/2 holds even if α = 0. However, all our
arguments so far rest on the perturbation expansion in Theorem 2.2, which requires
the invariant subspace to be simple; a condition that is not satisfied if α = 0. This
restriction will be removed in the following section by adapting the global perturbation
analysis for invariant subspaces proposed by Stewart [35] and refined by Demmel [10],
see also [8].
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3.3. Global perturbation bounds. Additionally to the block Schur decompo-
sition (2.1) we now consider the perturbed block Schur decomposition

[X, X⊥]H(A + E)[X, X⊥] =
�

A11 + E11 A12 + E12

E21 A22 + E22

�
=:
�

Â11 Â12

E21 Â22

�
. (3.7)

In order to obtain a formula for X̂, a basis for the perturbed invariant subspace X̂
close to X = span(X), we look for an invertible matrix of the form W =

�
I
−R

0
I

�
so

that

W−1

�
Â11 Â12

E21 Â22

�
W =

�
Â11 − Â12R Â12

E21 + RÂ11 − Â22R−RÂ12R Â22 + RÂ12

�

is in block upper triangular form. This implies that R is a solution of the algebraic
Riccati equation

Â22R−RÂ11 + RÂ12R = E21. (3.8)

To solve this quadratic matrix equation and for deriving the structured condition
number with respect to a linear matrix space L we need to require the following two
conditions on L.

A1: Let N = {XH
⊥ FX : F ∈ L} and T̂ : R 7→ Â22R − RÂ11. Then there

exists a linear matrix space M, having the same dimension as N , such that
T̂ :M→N and RÂ12R ∈ N for all R ∈M.

A2: The restricted operator T̂s := T̂
��
M→N is invertible.

Theorem 3.6. Assume that A1 and A2 hold. If (4‖T̂−1
s ‖2 ‖Â12‖F ‖E21‖F ) < 1

then there exists a solution R ∈M of the quadratic matrix equation (3.8) with

‖R‖F ≤
2‖T̂−1

s ‖ ‖E21‖F
1 +

È
1− 4‖T̂−1

s ‖2 ‖Â12‖F ‖E21‖F
(3.9)

< 2‖T̂−1
s ‖ ‖E21‖F .

Proof. The result can be proved by constructing an iteration

R0 ← 0, Ri+1 ← T̂−1
s (E21 −RiÂ12Ri),

which is well-defined because Ri ∈ M implies RiÂ12Ri ∈ N . This approach is very
similar to the technique used by Stewart, see [33, 35] or [36, Thm. V.2.11]. In fact, it
can be shown in precisely the same way as in [36, Thm. V.2.11] that all iterates Ri

satisfy a bound of the form (3.9) and converge to a solution of (3.8).
Having obtained a solution R of (3.8), a basis for an invariant subspace X̂ of A+E

is given by X̂ = X − X⊥R. Together with Lemma 2.4, this leads to the following
global version of Corollary 2.5.

Corollary 3.7. Under the assumptions of Theorem 3.6 there exists an invariant
subspace X̂ of A + E so that

‖ tanΘ(X , X̂ )‖F ≤
2‖T̂−1

s ‖ ‖E21‖F
1 +

È
1− 4‖T̂−1

s ‖2 ‖Â12‖F ‖E21‖F
. (3.10)
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The quantity ‖T̂−1
s ‖ in the bound (3.10) can be related to ‖T−1

s ‖, the norm of
the inverse of the unperturbed Sylvester operator, using the following lemma.

Lemma 3.8. Assume that A1 holds, and that the Sylvester operator T : R 7→
A22R − RA11 associated with the unperturbed block Schur decomposition (2.1) also
satisfies T : M → N . If Ts := T

��
M→N is invertible and 1/‖T−1

s ‖ > ‖E11‖F +
‖E22‖F , then T̂s is also invertible and satisfies

‖T̂−1
s ‖ ≤

‖T−1
s ‖

1− ‖T−1
s ‖(‖E11‖F + ‖E22‖F )

. (3.11)

Proof. Under the given assumptions we have

‖I −T−1
s ◦ T̂s‖ = sup

R∈M
‖R‖F =1

‖T−1
s (E22R−RE11)‖F ≤ ‖T−1

s ‖(‖E11‖F + ‖E22‖F ) < 1.

Thus, the Neumann series

∞X
i=0

(I −T−1
s ◦ T̂s)i ◦T−1

s

converges to T̂−1
s , which proves (3.11).

Combining Corollary 3.7 with the expansion arctan z = z+O(z3) and Lemma 3.8
yields

‖Θ(X , X̂ )‖F ≤ ‖T−1
s ‖ ‖E‖F +O(‖E‖2F ). (3.12)

This implies that cA+L(X ), the structured condition number for X , is bounded from
above by ‖T−1

s ‖, even if the operator T itself is not invertible. To show that the
structured condition number and ‖T−1

s ‖ are actually equal, we require the extra
assumption that T? : N →M.

Theorem 3.9. Assume that A1 holds with the same matrix space M for all T̂
corresponding to a perturbation E ∈ L. Moreover, assume that the Sylvester operator
T : R 7→ A22R−RA11 additionally satisfies T? : N →M and that Ts := T

��
M→N is

invertible. Then cA+L(X ) = ‖T−1
s ‖.

Proof. By Lemma 3.8, it follows that T̂s is invertible for all sufficiently small
perturbations E. Thus, the discussion provided above proves cA+L(X ) ≤ ‖T−1

s ‖. It
remains to construct perturbations E ∈ L so that

lim
‖E‖F→0

‖Θ(X , X̂ )‖F /‖E‖F ≥ ‖T−1
s ‖,

where X̂ denotes an invariant subspace of A + E nearest to X . For this purpose, we
choose E21 ∈ N such that ‖E21‖F = 1, ‖T−1(E21)‖F = ‖T−1

s ‖, and consider the
perturbation E = εX⊥E21X

H . Because of (3.12) we may assume that the nearest
invariant subspace X̂ of A+E satisfies ‖Θ(X , X̂ )‖2 < π/2 for sufficiently small ε > 0.
In other words, none of the vectors in X̂ is orthogonal to X . This implies the existence
of a matrix R such that the columns of X̂ = X−X⊥R form a basis for X̂ . Equivalently,
R satisfies the matrix equation

T(R) + RA12R = εE21.
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If we decompose R = Rs +Ru, where Rs ∈M and Ru ∈M⊥, then T(Rs) ∈ N while
T? : N →M implies T(Ru) ∈ N⊥. Similarly, RA12R = Qs + Qu with Qs ∈ N and
Qu ∈ N⊥. Consequently, T(Rs) + Qs = εE21 and since ‖Qs‖F = O(ε2) it follows
that

lim
ε→0
‖R‖F /ε ≥ lim

ε→0
‖Rs‖F /ε = ‖T−1(E21)‖F = ‖T−1

s ‖.

Combining this inequality with ‖Θ(X , X̂ )‖F = ‖R‖F +O(ε2) yields the desired result.

Let us briefly summarize the discussion on structured condition numbers. If X is
simple then cA+L(X ) is given by ‖T−1

s ‖. This equality also holds for the case that X is
not simple but stable under structured perturbations, provided that the assumptions
of Theorem 3.9 are satisfied. It is easy to see that all these extra assumptions are
satisfied by the introductionary example (1.1), showing that cA+L(X ) = 1/2 also holds
for α = 0.

3.4. Extension to nonlinear structures. So far, we have mainly considered
structures S that form (affine) linear matrix spaces. Nevertheless, the results from
the previous subsections can be used to address a smooth manifold S by observing
that the structured condition number with respect to S equals the one with respect
to the tangent space of S at A. This is a consequence of the following theorem, which
is much in the spirit of the corresponding result in [22, Thm. 2.1] for structured
eigenvalue condition numbers.

Theorem 3.10. Let S be a smooth real or complex manifold and let X be a
simple invariant subspace of A ∈ S corresponding to a block Schur decomposition of
the form (2.1). Then the structured condition number for X with respect to S satisfies

cS(X ) = sup
¦
‖T−1(XH

⊥EX)‖F : E ∈ TAS, ‖E‖F = 1
©
, (3.13)

where T is the Sylvester operator T : R 7→ A22R−RA11 and TAS is the tangent space
of S at A.

Proof. Let E ∈ TAS with ‖E‖F = 1. Then there is a sufficiently smooth curve
GE : (−ε, ε)→ Kn×n (K = R or C) satisfying GE(0) = 0, G′

E(0) = E and A+GE(t) ∈
S for all t. We have GE(t) = Et +O(|t|2) and, by Lemma 3.2,

cA+GE(·)(X ) = lim
ε→0

sup
¦
‖T−1(XH

⊥GE(t)X)‖F /ε : |t| ≤ ε
©

= lim
ε→0

sup
¦
‖T−1(XH

⊥EtX)‖F /ε : |t| ≤ ε
©

= ‖T−1(XH
⊥EX)‖F .

The curves A + GE(·) form a covering of an open neighborhood of A ∈ S, implying

cS(X ) = sup
¦
cA+GE(·)(X ) : E ∈ TAS, ‖E‖F = 1

©
,

which proves (3.13).
Theorem 3.10 admits the derivation of an explicit expression for cS(X ), e.g., by

applying the Kronecker product approach from Section 3.1 to TAS. This requires
the computation of a pattern matrix for TAS; an issue which has been discussed for
automorphism groups in [22].
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4. Examples. In this section, we illustrate the applicability of the theory de-
veloped in the preceding section for product, Hamiltonian and orthogonal eigenvalue
problems.

4.1. Block cyclic matrices. Let us consider a matrix product

Π = A(p)A(p−1) · · ·A(1),

where A(1), . . . , A(p) ∈ Cn×n. Computing invariant subspaces of matrix products has
applications in several areas, such as model reduction, periodic discrete-time systems
and bifurcation analysis, see [42] for a recent survey. In many of these applications,
it is reasonable to consider factor-wise perturbations, i.e., the perturbed product
Π = (A(p)+E(p))(A(p−1)+E(p−1)) · · · (A(1)+E(1)). What seems to be a multilinearly
structured eigenvalue problem can be turned into a linearly structured eigenvalue
problem associated with the block cyclic matrix

A =

2
66664

0 A(p)

A(1) . . .
. . . . . .

A(p−1) 0

3
77775 .

To see this, let the columns of the block diagonal matrix X = X(1)⊕X(2)⊕· · ·⊕X(p)

with X(1), . . . , X(p) ∈ Cn×k form a basis for an invariant subspace X of A. By direct
computation, it can be seen that the columns of X(1) form a basis for an invariant
subspace of Π. Vice versa, the periodic Schur decomposition [4, 13] shows that any
basis X(1) for an invariant subspace of Π can be extended to a basis X(1) ⊕X(2) ⊕
· · · ⊕X(p) for an invariant subspace X of A.

To perform a structured perturbation analysis for an invariant subspace X ad-
mitting an orthonormal basis X = X(1) ⊕X(2) ⊕ · · · ⊕X(p), we first note that there
is an orthonormal basis X⊥ of X⊥ having the form X⊥ = X

(1)
⊥ ⊕X

(2)
⊥ ⊕ · · · ⊕X

(p)
⊥ .

This leads to the block Schur decomposition

[X, X⊥]T A[X, X⊥] =
�

A11 A12

0 A22

�
,

where A11 ∈ cyc(k, k, p), A12 ∈ cyc(k, n − k, p), A22 ∈ cyc(n − k, n − k, p), and
cyc(n1, n2, p) denotes the set of p× p block cyclic matrices with n1 × n2 blocks. The
corresponding Sylvester operator is given by T : R 7→ A22R−RA11.

Factor-wise perturbations in Π correspond to block cyclic perturbations in A,
i.e., S = cyc(n, n, p). The set N = XT

⊥SX coincides with cyc(n− k, k, p) and we have
T :M→N , whereM equals diag(n−k, k, p), the set of p×p block diagonal matrices
with (n − k) × k blocks. Moreover, it can be directly verified that T? : N → M.
Letting Ts = T

��
M→N and Tu = T

��
M⊥→N⊥ , we thus have cS(X ) = ‖T−1

s ‖ and
c(X ) = max{‖T−1

s ‖, ‖T−1
u ‖}. Note that M⊥, N⊥ coincide with the set of all p × p

block matrices with (n− k)× k blocks that are zero in their block diagonal or block
cyclic part, respectively.

Although Ts is invertible if and only if T is invertible [25], the following exam-
ple reveals that there may be significant difference between ‖T−1

s ‖ and ‖T−1‖ (and
consequently between the structured and unstructured condition numbers for X ).
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Example 4.1 ([25]). Let p = 2, A11 =
�

0
1

0
0

�
and A22 =

�
0
D

C
0

�
, where

C =
�

105 105

0 10−5

�
, D =

�
10−5 0

0 105

�
.

Then the structured condition number is given by

cS(X ) =







�

C −I2

0 D

�−1







2

=
√

2× 105,

while the unstructured condition number is much higher,

c(X ) = max

(
cS(X ),







�

D −I2

0 C

�−1







2

)
= 1010.

Other and more detailed approaches to the perturbation analysis for invariant
subspaces of (generalized) matrix products, yielding similar results, can be found
in [3, 27].

4.2. Hamiltonian matrices. A Hamiltonian matrix is a 2n × 2n matrix A of
the form

A =
�
−B G
Q BT

�
, G = GT , Q = QT ,

where B,G, Q ∈ Rn×n. Hamiltonian matrices arise from, e.g., linear-quadratic opti-
mal control problems and certain quadratic eigenvalue problems, see [2, 29] and the
references therein. A particular property of A is that its eigenvalues are symmetric
with respect to the imaginary axis. Hence, if A has no purely imaginary eigenvalues,
there are n eigenvalues having negative real part. The invariant subspace X belonging
to these n eigenvalues is called the stable invariant subspace. For all x ∈ X we have
Jx ⊥ X with J =

�
0
−In

In

0

�
, a property which makes X an isotropic vector space [30].

If the columns of X ∈ R2n×n form an orthonormal basis for X , the isotropy of X
implies that [X, JX] is an orthogonal matrix and we have the structured block Schur
decomposition

[X, X⊥]T A[X, X⊥] =
�
−B̃ G̃

0 B̃T

�
, G̃ = G̃T .

The corresponding Sylvester operator is given by T : R 7→ B̃T R + RB̃.
If we restrict the set S of admissible perturbations to be Hamiltonian then N =

XT
⊥SX equals symm(n), the set of n × n symmetric matrices, while N⊥ = skew(n),

the set of n×n skew-symmetric matrices. It can be directly seen that T : N → N and,
moreover, T? = T. Thus, by letting Ts = T

��
N→N and Tu = T

��
N⊥→N⊥ , we have

cS(X ) = ‖T−1
s ‖ and c(X ) = max{‖T−1

s ‖, ‖T−1
u ‖}. It is known that the expression

‖B̃T R+RB̃‖F /‖R‖F , R 6= 0, is always minimized by a symmetric matrix R [7, Thm.
8], which implies ‖T−1

u ‖ ≤ ‖T−1
s ‖. Hence, the structured and unstructured condition

numbers for the stable invariant subspace of a Hamiltonian matrix are always the
same.

A more general perturbation analysis for (block) Hamiltonian Schur forms, based
on the technique of splitting operators and Lyapunov majorants, can be found in [24].
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4.3. Orthogonal matrices. As an orthogonal matrix A ∈ Rn×n is normal, the
block Schur decomposition associated with a simple invariant subspace X is block
diagonal:

[X, X⊥]T A[X, X⊥] =
�

A11 0
0 A22

�
.

Here, we will assume for convenience that X and X⊥ are real. Both diagonal blocks,
A11 ∈ Rk×k and A22 ∈ R(n−k)×(n−k), are again orthogonal matrices.

The set of orthogonal matrices S = {A : AT A = I} forms a smooth real manifold
and the tangent space of S at A is given by TAS = {AW : W ∈ skew(n)}. According
to Theorem 3.10, this implies that the structured condition number is given by

cS(X ) = sup
¦
‖T−1(XT

⊥AWX)‖F : W ∈ skew(n), ‖AW‖F = 1
©

= sup
¦
‖T−1(A22X

T
⊥WX)‖F : W ∈ skew(n), ‖W‖F = 1

©
= sup

¦
‖T−1(A22W21)‖F : W21 ∈ R(n−k)×k, ‖W21‖F = 1

©
= sup

¦
‖T−1(W̃21)‖F : W̃21 ∈ R(n−k)×k, ‖W̃21‖F = 1

©
= c(X ),

where T : R 7→ A22R − RA11. Here we used the fact that the “off-diagonal” block
W21 = XT

⊥WX of a skew-symmetric matrix W has no particular structure. Hence,
there is no difference between structured and unstructured condition numbers for
invariant subspaces of orthogonal matrices.

5. Extension to matrix pencils. In this section, we extend the results of
Section 3 to deflating subspaces of matrix pencils. The exposition is briefer than for
the standard eigenvalue problem as many of the results can be derived by similar
techniques.

Throughout this section it is assumed that our matrix pencil A− λB of interest,
with n × n matrices A and B, is regular, i.e., det(A − λB) 6≡ 0. The roots λ ∈ C (if
any) of det(A − λB) = 0 are the finite eigenvalues of the pencil. In addition, if B is
not invertible, then the pencil has infinite eigenvalues. A k-dimensional subspace X
is called a (right) deflating subspace of A−λB if AX and BX are both contained in a
subspace Y of dimension k. The regularity of A− λB implies that such a subspace Y
is uniquely defined; we call Y a left deflating subspace and (X ,Y) a pair of deflating
subspaces, see [36] for a more detailed introduction.

Let (X ,Y) be such a pair of deflating subspaces and let the columns of X, X⊥, Y, Y⊥
form orthonormal bases for X ,X⊥,Y,Y⊥, respectively. Then A− λB admits the fol-
lowing generalized block Schur decomposition:

[Y, Y⊥]H (A− λB) [X, X⊥] =
�

A11 A12

0 A22

�
− λ

�
B11 B12

0 B22

�
. (5.1)

The eigenvalues of A−λB are the union of the eigenvalues of the k×k pencil A11−λB11

and the (n− k)× (n− k) pencil A22 − λB22.
An entity closely associated with (5.1) is the generalized Sylvester operator

T : (Rr, Rl) 7→ (A22Rr −RlA11, B22Rr −RlB11), (5.2)

where Rr and Rl are (n − k) × k matrices. It can be shown [34] that T is invertible
if and only if the matrix pencils A11 − λB11 and A22 − λB22 have no eigenvalues in
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common. Clearly, this property is independent of the choice of orthonormal bases for
X and Y, justifying the following definition.

Definition 5.1. Deflating subspaces are called simple if the associated gen-
eralized Sylvester operator is invertible, i.e., if the matrix pencils A11 − λB11 and
A22 − λB22 in (5.1) have no eigenvalues in common.

Provided that T is invertible, the separation of two matrix pencils A11 − λB11

and A22 − λB22 can be defined via the norm of the inverse of T:

dif[(A11, B11), (A22, B22)] := 1/ sup
¦
‖T−1(E21, F21)‖F : ‖(E21, F21)‖F = 1

©
= 1/‖T−1‖,

where we let ‖(E21, F21)‖F =
È
‖E21‖2F + ‖F21‖2F . Not surprisingly, it turns out that

T−1 governs the sensitivity of (X ,Y) with respect to perturbations in A and B.
Theorem 5.2 ([38, 25]). Let the matrix pencil A− λB have a generalized block

Schur decomposition of the form (5.1) and assume the pair of deflating subspaces
(X ,Y) = (span(X), span(Y )) to be simple. Let (A + E,B + F ) ∈ B(A,B) be a
perturbation of (A,B), where B(A,B) ⊂ Cn×n × Cn×n is a sufficiently small open
neighborhood of (A,B). Then there exists an analytic function f : B(A,B)→ Cn×k×
Cn×k so that (X, Y ) = f(A,B), and the columns of (X̂, Ŷ ) = f(A + E,B + F ) span
a pair of deflating subspaces for the perturbed matrix pencil (A + E) − λ(B + F ).
Moreover, XH(X̂ −X) = Y H(Ŷ − Y ) = 0, and we have the expansion

(X̂, Ŷ ) = (X, Y )− (X⊥Rr, Y⊥Rl) +O(‖[E,F ]‖2) (5.3)

where (Rr, Rl) = T−1(Y H
⊥ EX, Y H

⊥ FX) and T is the generalized Sylvester operator
defined in (5.2).

By using similar techniques as in Section 3, it can be concluded from (5.3) that
the condition number for (X ,Y), defined as

c(X ,Y) := lim
ε→0

sup
¦
‖(Θ(X , X̂ ),Θ(Y, Ŷ))‖F /ε : E,F ∈ Cn×n, ‖(E,F )‖F ≤ ε

©
,

happens to coincide with ‖T−1‖ = 1/ dif[(A11, B11), (A22, B22)]; a result which goes
back to Stewart [34, 35]. If dif[(A11, B11), (A22, B22)] = 0, then T is not invertible
and, by convention, c(X ,Y) =∞. Algorithms that estimate dif efficiently by solving
only a few generalized Sylvester equations can be found in [20, 21].

It may happen that X and Y are not equally sensitive to perturbations. In this
case, c(X ,Y) overestimates the sensitivity of one of the deflating subspaces; an aspect
emphasized by Sun [38, 39], who has also pointed out that separating the influence
of the operator T−1 on X and Y resolves this difficulty. However, for the purpose of
simplifying the presentation we will only consider joint (structured) condition numbers
for (X ,Y).

Definition 5.3. Let S ⊆ Cn×n × Cn×n and let (X ,Y) be a pair of deflating
subspaces of a matrix pencil A− λB with (A,B) ∈ S. Then the structured condition
number for (X ,Y) with respect to S is defined as

cS(X ,Y) := lim
ε→0

sup
(A+E,B+F )∈S
‖(E,F )‖F≤ε

inf

8<
:‖(Θ(X , X̂ ),Θ(Y, Ŷ))‖F /ε :

(X̂ , Ŷ) is a deflating
subspace pair for
(A + E)− λ(B + F )

9=
; .

If S = Cn×n × Cn×n, then cS(X ,Y) = c(X ,Y).
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A straightforward generalization of Lemma 3.2 relates cS(X ,Y) to the norm of
T−1 restricted to a certain subset.

Lemma 5.4. Let (X ,Y) be a pair of simple deflating subspaces of a matrix pencil
A − λB corresponding to a generalized block Schur decomposition of the form (2.1).
Then the structured condition number for X with respect to S ⊆ Cn×n satisfies

cS(X ) = lim
ε→0

sup
¦
‖T−1(Y H

⊥ EX, Y H
⊥ FX)‖F /ε : (A + E,B + F ) ∈ S, ‖(E,F )‖F ≤ ε

©
,

where T is the generalized Sylvester operator defined in (5.2).

5.1. A Kronecker product approach. Using Kronecker products, the gener-
alized Sylvester operator T can be represented as

vec(T(Rr, Rl)) = KT

�
vec(Rr)
vec(Rl)

�
,

with the 2k(n− k)× 2k(n− k) matrix

KT =
�

Ik ⊗A22 −AT
11 ⊗ In−k

Ik ⊗B22 −BT
11 ⊗ In−k

�
.

This implies c(X ,Y) = ‖T−1‖ = ‖K−1
T ‖2.

In the following, we will assume that the structure S under consideration takes
the form S = (A,B) + L. Here, L denotes a linear matrix pencil subspace, i.e.,
(E1, F1) ∈ L and (E2, F2) ∈ L imply (αE1 + βE2, αF1 + βF2) ∈ L for all α, β ∈ K,
where K = R if L is real or K = C if L is complex. Let m be the dimension of L.
Then one can always find a 2n2×m pattern matrix ML such that for every (E,F ) ∈ L
there exists a uniquely defined parameter vector p ∈ Km with�

vec(E)
vec(F )

�
= MLp, ‖(E,F )‖F = ‖p‖2.

This yields for (Rr, Rl) = T−1(Y H
⊥ EX, Y H

⊥ FX) with (E,F ) ∈ L,

�
vec(Rr)
vec(Rl)

�
= K−1

T

�
X ⊗ Y H

⊥ 0
0 X ⊗ Y H

⊥

�
MLp.

Hence, Lemma 5.4 implies

c(A,B)+L(X ,Y) = sup
p∈Km

‖p‖2=1





K−1
T

�
X ⊗ Y H

⊥ 0
0 X ⊗ Y H

⊥

�
MLp






2

=




K−1

T

�
X ⊗ Y H

⊥ 0
0 X ⊗ Y H

⊥

�
ML






2

. (5.4)

Note that the latter equality only holds provided that either K = C, or all of K, A,
B, X and Y are real. Otherwise, inequalities analogous to Lemma 3.3 can be derived.

5.2. An orthogonal decomposition approach. In this section, we extend the
orthogonal decomposition approach of Section 3.2 to matrix pencils in order to gain
more insight into the relationship between the structured and unstructured condition
numbers for a pair of deflating subspaces.
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For this purpose, assume the pair of deflating subspaces (X ,Y) to be simple, and
let the columns of X, X⊥, Y, Y⊥ form orthonormal bases for X ,X⊥,Y,Y⊥, respec-
tively. Let

N := {(Y H
⊥ EX, Y H

⊥ FX) : (E,F ) ∈ L},

and letM denote the preimage of N under T, i.e.,M := T−1(N ). Then Lemma 5.4
implies that the structured condition number for (X ,Y) is given by

c(A,B)+L(X ,Y) = ‖T−1
s ‖,

where Ts is the restriction of T toM→N , i.e., Ts := T
��
M→N .

Let us assume that we additionally have the property that the linear matrix
operator

T? : (Qr, Ql) 7→ (AH
22Qr + BH

22Ql,−QrA
H
11 −QlB

H
11)

satisfies T? : N → M. This is equivalent to the condition T : M⊥ → N⊥, where
⊥ denotes the orthogonal complement w.r.t. the inner product 〈(Xr, Xl), (Yr, Yl)〉 =
trace(Y H

r Xr + Y H
l Xl). Note that T? can be considered as the linear operator dual

to T:

〈T(Rr, Rl), (Qr, Ql)〉 = 〈(Rr, Rl),T?(Qr, Ql)〉.

The same conclusions as for the matrix case in Section 3.2 can be drawn: T decom-
poses orthogonally into Ts and Tu := T

��
M⊥→N⊥ , and we have

c(X ,Y) = max{‖T−1
s ‖, ‖T−1

u ‖}.

5.3. Global perturbation bounds. To derive global perturbation bounds we
consider, additionally to (5.1), the perturbed generalized block Schur decomposition

[Y, Y⊥]H
�
(A + E)− λ(B + F )

�
[X, X⊥] =

�
Â11 Â12

E21 Â22

�
− λ

�
B̂11 B̂12

F21 B̂22

�
. (5.5)

The following approach follows the work by Stewart [34, 35], which has been refined
by Demmel and K̊agström in [11]. In order to obtain bases (X̂, Ŷ ) for a nearby pair
of perturbed deflating subspaces (X̂ , Ŷ) we look for (n − k) × k matrices Rr and Rl

such that the matrix pencil

�
Ik 0
Rl In−k

���
Â11 Â12

E21 Â22

�
− λ

�
B̂11 B̂12

F21 B̂22

���
Ik 0
−Rr In−k

�

is in block upper triangular form. This is equivalent to the condition that the pair
(Rr, Rl) satisfies the following system of quadratic matrix equations:

Â22Rr −RlÂ11 + RlÂ12Rr = E21,

B̂22Rr −RlB̂11 + RlB̂12Rr = F21.
(5.6)

The following assumptions on the linear structure L ⊆ Cn×n × Cn×n are related to
the solvability of (5.6), along the lines of the assumptions A1 and A2 for the matrix
case:



Structured condition numbers for invariant subspaces 17

A3: Let N = {(Y H
⊥ GX,Y H

⊥ HX) : (G, H) ∈ L} and

T̂ : (Rr, Rl) 7→ (Â22Rr −RlÂ11, B̂22Rr −RlB̂11)

Then there exists a linear matrix spaceM, having the same dimension as N ,
such that T̂ :M→N and (RlÂ12Rr, RlB̂12Rr) ∈ N for all (Rr, Rl) ∈M.

A4: The restricted operator T̂s := T̂
��
M→N is invertible.

Theorem 5.5. Assume that A3 and A4 hold. If

κ := 4‖T̂−1
s ‖2 ‖(Â12, B̂12)‖F ‖(E21, F21)‖F < 1

then there exists a solution (Rr, Rl) ∈M of (5.6) with

‖(Rr, Rl)‖F ≤
2‖T̂−1

s ‖ ‖(E21, F21)‖F
1 +
√

1− κ
< 2‖T̂−1

s ‖ ‖(E21, F21)‖F .

Proof. It follows from A3 that the iteration

(R0, L0)← (0, 0), (Ri+1, Li+1)← T̂−1
s (E21 − LiÂ12Ri, F21 − LiB̂12Ri)

is well-defined and (Ri, Li) ∈M for all i. Its convergence and the bound (5.7) can be
proved along the lines of the proof of [36, Thm. V.2.11].

Any solution (Rr, Rl) of (5.6) yields a pair of deflating subspaces (X̂ , Ŷ) of the
perturbed pencil (A+E)−λ(B+F ) with the bases X̂ = X−X⊥Rr and Ŷ = Y −Y⊥Rl.
Considering the solution constructed in Theorem 5.5, we obtain

‖(tanΘ(X , X̂ ), tanΘ(Y, Ŷ))‖F ≤
2‖T̂−1

s ‖ ‖(E21, F21)‖F
1 +
√

1− κ
. (5.7)

The proof of Lemma 3.8 can be easily adapted to relate ‖T̂−1
s ‖ to ‖T−1

s ‖.
Lemma 5.6. Assume that A3 holds, and that the unperturbed generalized Sylvester

operator T defined in (5.2) also satisfies T :M→N . If Ts := T
��
M→N is invertible

and 1/‖T−1
s ‖ > ‖(E11, F11)‖F +‖(E22, F22)‖F , then T̂s is also invertible and satisfies

‖T̂−1
s ‖ ≤

‖T−1
s ‖

1− ‖T−1
s ‖(‖(E11, F11)‖F + ‖(E22, F22)‖F )

. (5.8)

Combining (5.7) and (5.8) implies c(A,B)+L(X ,Y) ≤ ‖T−1
s ‖. Assuming T? : N →

M, it can be shown that c(A,B)+L(X ,Y) and ‖T−1
s ‖ are equal.

Theorem 5.7. Assume that A3 holds with the same matrix space M for all T̂
corresponding to perturbations (E,F ) ∈ L. Moreover, assume that the generalized
Sylvester operator T defined in (5.2) additionally satisfies T? : N → M and that
Ts := T

��
M→N is invertible. Then c(A,B)+L(X ,Y) = ‖T−1

s ‖.
Proof. To adapt the proof of Theorem 3.9 to matrix pencils, we consider pertur-

bations of the form (E,F ) = (εY⊥E21X
H , εY⊥F21X

H), where (E21, F21) ∈ N is cho-
sen such that ‖(E21, F21)‖F = 1 and ‖T−1(E21, F21)‖F = ‖T−1

s ‖. The bound (5.7)
implies for sufficiently small ε > 0 that the nearest deflating subspace (X̂ , Ŷ) of
(A + E)− λ(B + F ) satisfies

max{‖Θ(X , X̂ )‖2, ‖Θ(Y, Ŷ)‖2} < π/2.
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This yields the existence of a matrix pair (R,L) such that the columns of (X̂, Ŷ ) =
(X −X⊥R, Y − Y⊥L) form bases for (X̂ , Ŷ). Equivalently, (R,L) satisfies

T(R,L) + Q(R,L) = (εE21, εF21),

where Q(R,L) = (LÂ12R,LB̂12R). Let us decompose (R,L) = (Rs, Ls) + (Ru, Lu),
where (Rs, Ls) ∈M and (Ru, Lu) ∈M⊥. Then T(Rs, Ls) ∈ N and T(Ru, Lu) ∈ N⊥.
This implies, as in the proof of Theorem 3.9,

lim
ε→0
‖(R,L)‖F /ε ≥ lim

ε→0
‖(Rs, Ls)‖F /ε = ‖T−1(E21, F21)‖F = ‖T−1

s ‖,

and consequently c(A,B)+L(X ,Y) ≥ ‖T−1
s ‖, which concludes the proof.

5.4. Nonlinear structures. The following theorem shows that the results of
Sections 5.1 and 5.2 can also be used to address matrix pencil structures that form
smooth manifolds.

Theorem 5.8. Let S ⊆ Kn×n×Kn×n with K ∈ {R, C} be a smooth manifold. Let
(X ,Y) be a pair of simple deflating subspaces of A−λB with (A,B) ∈ S, corresponding
to a generalized block Schur decomposition of the form (5.1). Then the structured
condition number for (X ,Y) with respect to S satisfies

cS(X ,Y) = sup
¦
‖T−1(Y H

⊥ EX, Y H
⊥ FX)‖F : (E,F ) ∈ T(A,B)S, ‖(E,F )‖F = 1

©
,

where T is the generalized Sylvester operator defined in (5.2) and T(A,B)S is the tan-
gent space of S at (A,B).

Proof. The result follows from a rather straightforward extension of the proof of
Theorem 3.10.

5.5. Example: Palindromic matrix pencils. To illustrate the obtained re-
sults for structured matrix pencils, let us consider a matrix pencil of the form A+λAT

with A ∈ C2n×2n. A matrix pencil that takes this form is called palindromic; it
arises, e.g., from structure-preserving linearizations of palindromic matrix polynomi-
als [16, 28]. The following result provides a structured Schur form.

Lemma 5.9 ([16]). Let A ∈ C2n×2n, then there exists a unitary matrix U ∈
C2n×2n such that

UT AU =

2
66664

0 · · · 0 t1,2n

... . .. t2,2n−1 t2,2n

0 . .. . ..
...

t2n,1 t2n,2 · · · t2n,2n

3
77775 =: T,

i.e., T is anti-triangular.
It should be emphasized that UT in Lemma 5.9 denotes the complex transpose of

U , i.e., UT AU is not similar to A. Nevertheless, T + λTT is equivalent to A + λAT ,
implying that the eigenvalues of A + λAT are given by

−t1,2n/t2n,1, . . . ,−tn,n+1/tn+1,n,−tn+1,n/tn,n+1, . . . ,−t2n,1/t1,2n.

It follows immediately that the eigenvalues have the following pairing: λ is an eigen-
value of A + λAT if and only if 1/λ is an eigenvalue. Zero eigenvalues are included in
these pairings as λ = 0 and 1/λ =∞.
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In the following, we consider the (right) deflating subspace X belonging to the
eigenvalues −tn+1,n/tn,n+1, . . . ,−t2n,1/t1,2n. Let the columns of X and X⊥ form
orthonormal bases for X and X⊥, respectively. Then Lemma 5.9 implies a structured
generalized block Schur decomposition of the form

[X⊥, X]T (A + λAT )[X, X⊥] =
�

A11 A12

0 A22

�
+ λ

�
AT

22 AT
12

0 AT
11

�
(5.9)

with A11, A22 ∈ Cn×n. Note that this also shows that X⊥, obtained from X⊥ by
conjugating its entries, spans a left deflating subspace Y belonging to the eigenval-
ues −tn+1,n/tn,n+1, . . . ,−t2n,1/t1,2n. We require the following preliminary result for
obtaining the structured condition number of (X ,Y) with respect to palindromic per-
turbations.

Lemma 5.10. Let C,D ∈ Cn×n, then the matrix equation

CR + αRT DT = F, (5.10)

where α ∈ {1,−1}, has a unique solution R for any F ∈ Cn×n if and only if the
following two conditions hold for the eigenvalues of C − λD:

1. if λ 6= α is an eigenvalue then 1/λ is not an eigenvalue;
2. if λ = α is an eigenvalue, it has algebraic multiplicity one.

Proof. The proof can be found in Appendix A.
The generalized Sylvester operator associated with (5.9) takes the form

T : (Rr, Rl) 7→ (A22Rr + RlA11, A
T
11Rr + RlA

T
22).

Considering the linear space

N :=
¦
(XT EX,−XT ET X) : E ∈ C2n×2n

©
=
¦
(E21,−ET

21) : E21 ∈ Cn×n
©

,

we have T : N → N and T : N⊥ → N⊥, where N⊥ =
�
(E21, E

T
21) : E21 ∈ Cn×n

	
.

Moreover, (RlA12Rr,−RlA
T
12Rr) ∈ N for all (Rl, Rr) ∈ N . The restricted Sylvester

operators Ts = T
��
N→N and Tu = T

��
N⊥→N⊥ can be identified with the matrix

operators

Ss : R 7→ A22R−RT A11, Su : R 7→ A22R + RT A11,

in the sense that

Ts(R,−RT ) = (Ss(R),−Ss(R)T ), Tu(R,RT ) = (Su(R),Su(R)T ).

In particular, Ts is invertible if and only if Ss is invertible, which in turn is equivalent
to require A22 − λAT

11 to satisfy the conditions of Lemma 5.10 for α = −1. In
this case, all assumptions of Theorem 5.7 are satisfied and the structured condition
number for the deflating subspace pair (X ,Y) = (span(X), span(X⊥)) with respect
to S = {(E,−ET ) : E ∈ C2n×2n} is given by

cS(X ,Y) = ‖T−1
s ‖ =

√
2 ‖S−1

s ‖ =
√

2
inf{‖A22R−RT A11‖F : R ∈ Cn×n, ‖R‖F = 1}

.

On the other hand, the unstructured condition number satisfies

c(X ,Y) =
√

2 max{‖S−1
s ‖, ‖S−1

u ‖}.
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This shows that the unstructured condition number can be much larger than the
structured condition number, e.g., if A22−λAT

11 has a simple eigenvalue close to −1. If
one of the eigenvalues of A22−λAT

11 happens to be exactly −1 then (X ,Y) is not stable
under unstructured perturbations, but Lemma 5.10 implies that it can still be stable
under structured perturbations. In these cases, the use of a computational method
that yields structured backward errors is likely to be significantly more accurate than
other methods.

Example 5.11. For n = 1, we obtain

‖S−1
s ‖ =

1
|A22 −A11|

, ‖S−1
u ‖ =

1
|A22 + A11|

.

Hence, if A22/A11 ≈ −1 then c(X ,Y)� cS(X ,Y).

6. Conclusions. We have derived directly computable expressions for struc-
tured condition numbers of invariant and deflating subspaces for smooth manifolds
of structured matrices and matrix pencils. An orthogonal decomposition of the asso-
ciated Sylvester operators yields global perturbation bounds that remain valid even
in cases where the subspace is unstable under unstructured perturbations. It also
provides additional insight into the difference between structured and unstructured
condition numbers. We have identified structures for which this difference can be
significant (block cyclic, palindromic) or negligible (Hamiltonian, orthogonal). De-
veloping efficient structured condition estimators going beyond the simple method
mentioned in Remark 3.4 remains an important future task.

The examples suggest some relation between structures that admit the proposed
orthogonal decomposition approach and those that admit structured Schur decompo-
sitions. However, addressing this question thoroughly requires further investigation.
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editors, Proceedings of the Conference on Applied Mathematics and Scientific Computing,
Brijuni (Croatia), June 23-27, 2003, pages 3–39. Springer-Verlag, 2005.

[3] P. Benner, V. Mehrmann, and H. Xu. Perturbation analysis for the eigenvalue problem of a
formal product of matrices. BIT, 42(1):1–43, 2002.

[4] A. Bojanczyk, G. H. Golub, and P. Van Dooren. The periodic Schur decomposition; algorithm
and applications. In Proc. SPIE Conference, volume 1770, pages 31–42, 1992.

[5] R. Byers. A LINPACK-style condition estimator for the equation AX − XBT = C. IEEE
Trans. Automat. Control, 29(10):926–928, 1984.

[6] R. Byers and D. Kressner. On the condition of a complex eigenvalue under real perturbations.
BIT, 44(2):209–215, 2004.

[7] R. Byers and S. Nash. On the singular “vectors” of the Lyapunov operator. SIAM J. Algebraic
Discrete Methods, 8(1):59–66, 1987.

[8] F. Chatelin. Eigenvalues of matrices. John Wiley & Sons Ltd., Chichester, 1993.
[9] P. I. Davies. Structured conditioning of matrix functions. Electron. J. Linear Algebra, 11:132–

161, 2004.
[10] J. W. Demmel. Computing stable eigendecompositions of matrices. Linear Algebra Appl.,

79:163–193, 1986.



Structured condition numbers for invariant subspaces 21

[11] J. W. Demmel and B. K̊agström. Computing stable eigendecompositions of matrix pencils.
Linear Algebra Appl., 88/89:139–186, 1987.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[13] J. J. Hench and A. J. Laub. Numerical solution of the discrete-time periodic Riccati equation.
IEEE Trans. Automat. Control, 39(6):1197–1210, 1994.

[14] D. J. Higham and N. J. Higham. Structured backward error and condition of generalized
eigenvalue problems. SIAM J. Matrix Anal. Appl., 20(2):493–512, 1999.

[15] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA,
second edition, 2002.

[16] A. Hilliges, C. Mehl, and V. Mehrmann. On the solution of palindromic eigenvalue problems.
In Proceedings of ECCOMAS, Jyväskylä, Finland, 2004.
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Appendix A.
Proof of Lemma 5.10. We only have to show the case α = 1, as α = −1 follows

from α = 1 after replacing DT by −DT . First, we prove by induction that (5.10)
has a solution for any F if the two conditions hold. For n = 1, the first condition
implies C 6= −D and thus R = F/(C + D). For n > 1, using the generalized Schur
decomposition of C − λD, we may assume without loss of generality that C and D
have upper triangular form. Partition the matrices

C =
�

C11 C12

0 C22

�
, D =

�
D11 D12

0 D22

�
, F =

�
F11 F12

F21 F22

�
, R =

�
R11 R12

R21 R22

�

conformally with no void blocks, then (5.10) can be written as

F11 = C11R11 + C12R21 + RT
11D11 + RT

21D12, (A.1)
F21 = C22R21 + RT

12D11 + RT
22D12, (A.2)

F12 = C11R12 + C12R22 + RT
21D22, (A.3)

F22 = C22R22 + RT
22D22. (A.4)

By the induction assumption, the matrix equation (A.4) is solvable. Thus, R22 can be
regarded as known, which turns (A.2)–(A.3), after transposing (A.3), into a general-
ized Sylvester equation associated with the matrix pencils C22+λDT

11 and DT
22+λC11.

Under the given conditions these two pencils have no eigenvalue in common. Hence,
(A.2)–(A.3) is solvable and R12 as well as R21 can be regarded as known. This turns
(A.1) into a matrix equation of the form (5.10) of smaller dimension, which is – by
the induction assumption – solvable. The uniqueness of the constructed solution R
follows from the fact that (5.10) can be regarded as a square linear system of equations
in the entries of R.

For the other direction, consider the linear matrix operator S : R 7→ CR+RT DT .
We will make use of the fact that the matrix equation (5.10) is uniquely solvable if
and only if kernel(S) = {0}. Suppose that λ = −1 is an eigenvalue of C − λD and let
x be an associated eigenvector. Then the nonzero matrix R0 = xxT DT satisfies

S(R0) = CxxT DT + DxxT DT = CxxT DT − CxxT DT = 0,

i.e., R0 ∈ kernel(S). Now, suppose that λ 6= −1 and 1/λ are eigenvalues of C − λD
and let x, y be corresponding eigenvectors such that x, y are linearly independent (for
λ = 1 this is only possible if λ has geometric multiplicity at least 2). If λ 6= 0, the
nonzero matrix R1 = xyT DT − yxT CT satisfies

S(R1) = CxyT DT − CyxT CT + DyxT DT − CxyT DT

= − 1
λ

DyxT CT +
1
λ

DyxT CT = 0.

Analogously for λ = 0, the matrix R2 = xyT CT − yxT DT is nonzero and satisfies
S(R2) = 0. It remains to show that kernel(S) 6= {0} holds if λ = 1 is an eigenvalue
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of C − λD with algebraic multiplicity at least 2 but with geometric multiplicity 1.
This is, however, an immediate consequence of the fact that S cannot be nonsingular
at isolated points. Hence, if one of the two conditions of Lemma 5.10 is violated
then (5.10) is not uniquely solvable, which concludes the proof.


