
BLOCK ALGORITHMS FOR ORTHOGONAL

SYMPLECTIC FACTORIZATIONS

D. KRESSNER1 ∗

1Institut für Mathematik MA 4-5, TU Berlin, D-10623 Berlin, FRG. email:

kressner@math.tu-berlin.de

Abstract.

On the basis of a new WY -like representation block algorithms for orthogonal sym-
plectic matrix factorizations are presented. Special emphasis is placed on symplectic
QR and URV factorizations. The block variants mainly use level 3 (matrix-matrix)
operations that permit data reuse in the higher levels of a memory hierarchy. Timing
results show that our new algorithms outperform standard algorithms by a factor 3–4
for sufficiently large problems.

AMS subject classification: 65F25, 15A23, 65P10, 65F15

Key words: Block algorithms, orthogonal symplectic factorizations, level 3 BLAS

1 Introduction

There are two distinct classes of matrix factorizations considered in this pa-
per, one-sided and two-sided orthogonal factorizations. Decomposing a matrix
into a product of an orthogonal matrix and a triangular matrix, e.g. by QR
factorization, belongs to the first class as the orthogonal factor only appears on
one side of the product. Preprocessing steps for eigenvalue computations, e.g.,
bidiagonalization and Hessenberg reduction, typically consist of factorizations
into products of three matrices involving orthogonal matrices on both sides of
the product and thus belong to the second class.

Many of these matrix factorizations have found their way into the LAPACK
software library [2]. In these implementations, efficiency is attained by employing
WY representations of the involved orthogonal transformations [7, 9, 10, 16].
The application of such representations can be formulated in terms of matrix-
matrix multiplications leading to reduced memory traffic which in turn means
better performance. For example, on an average work station, computing the
Hessenberg form of a 1000× 1000 matrix would take more than thrice the time
if no WY representations were used.

On the other hand, if the matrix to be factorized or the factors themselves are
structured then accuracy considerations require the factorization algorithm to
respect the underlying structures. Often, structure exploitation also reduces the
number of operations necessary to compute the factorization. For these reasons,

∗Supported through the DFG Research Center Mathematics for Key Technologies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 D. KRESSNER

it is widely appreciated that structure gives the potential to develop more effi-
cient and more accurate algorithms. In practice, however, there is usually a long
way to go in order to develop such an algorithm with an implementation so that
the latter is competitive with the corresponding unstructured implementation
in LAPACK. In this paper we will discuss this issue for orthogonal symplectic
factorizations.

Definition 1.1. Let J :=
[

0
−In

In

0

]

, where In is the n × n identity matrix.

A matrix Q ∈ R
2n×2n is symplectic if and only if QJQT = QT JQ = J and

orthogonal symplectic if and only if additionally QTQ = QQT = I2n holds.
The following one-sided orthogonal symplectic factorization is used in methods

for the symplectic integration of Hamiltonian systems [14] and for the computa-
tion of orthogonal bases of Lagrangian subspaces [3, 11].

Lemma 1.1. [8] Let A ∈ R
2m×n with m ≥ n, then there exists an orthogonal

symplectic matrix Q so that A = QR and

R =

[

R11

R21

]

, R11 =

[

@
@
0

]

, R21 =

[

@@
0

0
@@
0

]

,(1.1)

that is, the matrix R11 ∈ R
m×n is upper triangular and R21 ∈ R

m×n is strictly
upper triangular.

Benner, Mehrmann and Xu [5, 6] developed methods for computing eigenval-
ues and certain invariant subspaces of Hamiltonian matrices. The algorithms
presented therein are based on the so called symplectic URV factorization, a
two-sided orthogonal symplectic factorization.

Lemma 1.2. [6] Let A ∈ R
2n×2n, then there exist orthogonal symplectic ma-

trices U and V so that A = URVT and

R =

[

R11 R12

R21 R22

]

=

@
@

@@@
@

,(1.2)

that is, the matrix R21 ∈ R
n×n is zero, R11 ∈ R

n×n is upper triangular and
R22 ∈ R

n×n is lower Hessenberg.
The algorithm presented in [6] for computing the symplectic URV factor-

ization requires roughly the same number of operations as the standard algo-
rithm [12, p.344] for computing the Hessenberg form does. However, for the rea-
sons described above, the latter algorithm can be implemented very efficiently
while the necessary tools, WY -like representations, are not available for orthog-
onal symplectic factorizations.

In Section 2 we present such a WY -like representation which despite its more
complicated nature shares the same favorable properties as standard WY rep-
resentations. In Sections 3 and 4 we apply this representation to develop block
algorithms for the symplectic QR and the symplectic URV factorization, re-
spectively. It is shown in Section 5 that numerical stability of these algorithms
is preserved. Section 6 is devoted to numerical results showing that block algo-
rithms lead to more efficient implementations.

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 3

2 A WY -like representation for products of elementary orthogonal

symplectic matrices

An orthogonal matrix Q ∈ R
2n×2n is symplectic if and only if it takes the

form Q =
[

Q1

−Q2

Q2

Q1

]

, where Q1, Q2 ∈ R
n×n [15]. Furthermore, orthogonal

symplectic matrices can be decomposed into products of the following two types
of elementary matrices. These are 2n× 2n Givens rotation matrices of the form

Gj(θ) =

Ij−1

cos θ sin θ
In−1

− sin θ cos θ
In−j

, 1 ≤ j ≤ n, θ ∈ [−π/2, π/2),

and the direct sum of two identical n× n Householder matrices

Hj(v, β) =

[

In − βvvT

In − βvvT

]

,

where v is a vector of length n with its first j−1 elements equal to zero. Clearly,
both matrices are orthogonal and symplectic. A simple combination of these
transformations can be used to map an arbitrary vector x ∈ R

2n into the linear
space

Ej = span{e1, . . . , ej, en+1, . . . , en+j−1},
where ei denotes the i-th unit vector of length 2n. Note that in the following
algorithm elements 1, . . . , j − 1 and n + 1, . . . , n + j − 1 of the vector x are
unaffected.

Algorithm 2.1.

Input: A vector x ∈ R
2n and an index j ≤ n.

Output: Vectors v, w ∈ R
n and β, γ, θ ∈ R so that

(Hj(v, β)Gj(θ)Hj(w, γ))T x ∈ Ej .

1. Determine v ∈ R
n and β ∈ R such that the last n − j elements of x ←

Hj(v, β)x are zero [12, p.209].

2. Determine θ ∈ [−π/2, π/2) such that the (n+j)-th element of x← Gj(θ)x
is zero [12, p.215].

3. Determine w ∈ R
n and γ ∈ R such that the (j +1)-th to the n-th elements

of x← Hj(w, γ)x are zero.

We will later see that such transformations form the backbone of algorithms
for computing orthogonal symplectic factorizations which motivates us to call
matrices of the form

Ej(x) := Ej(v, w, β, γ, θ) := Hj(v, β)Gj(θ)Hj(w, γ)(2.1)

elementary (orthogonal symplectic).

4 D. KRESSNER

Block algorithms for QR factorization, Hessenberg, bidiagonal or tridiagonal
reduction implicitly rely on WY representations for products of Householder
matrices [7, 10, 16]. Furthermore, the generation of the involved orthogonal
transformation matrices can be implemented efficiently by making explicit use
of such representations, see for example the LAPACK routine DORGBR. Thus,
in order to develop block algorithms for orthogonal symplectic factorizations
we have to derive a modified WY representation theorem for products of Ej-
matrices with Ej as in (2.1). Of course, since Gj and Hj can be written as the
product of two Householder matrices, we could apply the standard WY repre-
sentation to obtain such a representation. However, such an approach would
ignore the structures in Gj , Hj and would consequently lead to considerably
higher memory and run-time requirements. The following theorem presents a
modified representation where these structures are exploited.

Theorem 2.1. Let k ≤ n and Q = Ej1(x1)Ej2 (x2) . . . Ejk
(xk), where the

matrices Eji
(xi) are defined as in (2.1) with ji ∈ [1, n] and xi ∈ R

2n. Then
there exist matrices R ∈ R

3k×k, S ∈ R
k×3k, T ∈ R

3k×3k and W ∈ R
n×3k so that

Q =

[

In + WTWT WRSWT

−WRSWT In + WTWT

]

.(2.2)

Furthermore, these matrices can be partitioned as

R =

R1

R2

R3

 , S =
[

S1 S2 S3

]

, T =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 ,

where all matrices Ri, Sl, Til ∈ R
k×k are upper triangular, and

W =
[

W1 W2 W3

]

,

where W1, W2, W3 ∈ R
n×k and W2 contains in its i-th column eji

, the ji-th
column of the n× n identity matrix.

Proof. The representation (2.2) is proven by induction w.r.t. k. The case
k = 0 is clear. Let Q be represented as in (2.2). Consider for j := jk+1 the
product

Q̃ := QEj(v, w, β, γ, θ) = QHj(v, β)Gj(θ)Hj(w, γ).

We now show how to find a representation for Q̃. Similar to the construction
of the storage-efficient WY representation [16], the first Householder matrix
Hj(v, β) is incorporated by updating

R1 ←
[

R1

0

]

, S1 ←
[

S1 −βSWT v
]

,(2.3)

T11 ←
[

T11 −βT1,:W
T v

0 −β

]

, Ti1 ←
[

Ti1 −βTi,:W
T v

]

,(2.4)

T1l ←
[

T1l

0

]

, W1 ←
[

W1 v
]

,(2.5)

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 5

where i, l ∈ {2, 3} and Ti,: denotes the i-th block row of T . By straightforward
computation it can be shown that the following update yields a representation
for QHj(v, β)Gj(θ),

R2 ←
[

R2 T2,:W
T ej

0 1

]

, Ri ←
[

Ri Ti,:W
T ej

]

, S2 ←
[

S2 c̄S2W
T

0 −s̄

]

,

Si ←
[

Si

0

]

, T22 ←
[

T22 (s̄R2S + c̄T2,:)W
T ej

0 c̄

]

,

Ti2 ←
[

Ti2 (s̄RiS + c̄Ti,:)W
T ej

]

, T2i ←
[

T2i

0

]

, W2 ←
[

W2 ej

]

,

where c̄ = 1 − cos θ, s̄ = sin θ and i, l ∈ {1, 3}. The second Householder matrix
Hj(w, γ) is treated similar to (2.3)–(2.5).

An inspection of the preceding proof reveals that the matrices R3, S1, T21, T31

and T32 are actually strictly upper triangular and the matrix R2 is unit upper
triangular. If ji = i then the upper k× k blocks of W1, W3 consist of unit lower
triangular matrices and W2 contains the first k columns of the identity matrix.
In this case a thorough implementation of the construction given in the proof of
Theorem 2.1 requires (4k − 2)kn + 19

3 k3 + 1
2k2 +O(k) floating point operations

(flops). For the definition of a flop see e.g. [12, p. 18]. The application of the
WY -like representation (2.2) to a 2n× q matrix requires (16k(n−k)+38k−2)q
flops using an implementation of the following algorithm which takes care of all
the generic structures present in R, S, T and W .

Algorithm 2.2.

Input: Matrices A1, A2 ∈ R
n×q; matrices R ∈ R

3k×k, S ∈ R
k×3k, T ∈

R
3k×3k, W ∈ R

n×3k representing the orthogonal symplectic matrix
Q as described in Theorem 2.1 for ji = i.

Output: The matrix
[

A1

A2

]

is overwritten with QT
[

A1

A2

]

.

V1 = AT
1 W, V2 = AT

2 W
Y1 = V1T

T + V2S
T RT

Y2 = V2T
T + V1S

T RT

A1 ← A1 + V1Y
T
1 , A2 ← A2 + V2Y

T
2

3 Block symplectic QR factorization

Using the results of the previous section we can now easily derive a block
oriented algorithm for computing the symplectic QR factorization. First, let us
recall the standard algorithm [8].

Algorithm 3.1.

Input: A matrix A ∈ R
2m×n with m ≥ n.

Output: An orthogonal symplectic matrix Q ∈ R
2m×2m; A is overwritten

with R = QTA having the form (1.1).

Q = I2m.
FOR j = 1, . . . , n

Set x = Aej .

6 D. KRESSNER

Apply Algorithm 2.1 to compute Ej(x).
Update A ← Ej(x)TA, Q← QEj(x).

END FOR

Let us partition the matrix A into block columns

A =
[

A1 A2 . . . AN

]

,

For convenience only, we will assume that each Ai has nb columns so that n =
N · nb. Our block algorithm for the symplectic QR factorization goes hand in
hand with block algorithms for the standard QR factorization [7]. The idea is
as follows. At the beginning of step p (1 ≤ p ≤ N) the matrix A has been
overwritten with

Qj−1 · · ·Q1A =

(p−1)nb nb q

(p−1)nb R11 R12 R13

r 0 R22 R23

(p−1)nb R31 R32 R33

r 0 R42 R43

,

where q = n− pnb and r = m− (p − 1)nb. The symplectic QR factorization of
[

R22

R42

]

is then computed and the resulting orthogonal symplectic factor applied

to
[

R23

R43

]

. In the following formal description of this procedure the colon notation

A(i1 : i2, j1 : j2) is used to designate the sub-matrix of A defined by rows i1
through i2 and columns j1 through j2.

Algorithm 3.2.

Input: A matrix A ∈ R
2m×n with m ≥ n and n = N · nb.

Output: An orthogonal symplectic matrix Q ∈ R
2m×2m; A is overwrit-

ten with R = QTA having the form (1.1). In contrast to Algo-
rithm 3.1 a block oriented method is used.

Q = I2m.
FOR p = 1, . . . , N

s = (p− 1)nb + 1
Apply Algorithm 3.1 and the construction given in the proof of
Theorem 2.1 to compute the WY -like representation (2.2) of an
orthogonal symplectic matrix Qp so that

QT
p

[

A(s : m, s : s + nb − 1)
A(m + s : 2m, s− 1 : s + nb − 1)

]

has the form (1.1).

Update
[

A(s:m,s+nb:n)
A(m+s:2m,s+nb:n)

]

← QT
p

[

A(s:m,s+nb:n)
A(m+s:2m,s+nb:n)

]

using Alg. 2.2.

Update [Q(:,s:m) Q(:,m+s:2m)]← [Q(:,s:m) Q(:,m+s:2m)]Qp using Alg. 2.2.
END FOR

In this algorithm,

6(2mn2 − n3)/N + 29n3/(3N2) +O(n2)

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 7

flops are required to generate the WY -like representations while

8(mn2 − n3/3)− (8mn2 − 19n3)/N − 49n3/(3N2) +O(n2)

flops are necessary to apply them to the matrix A. On the other hand, Algo-
rithm 3.1 requires 8(mn2−n3/3)+O(n2) flops to compute the factor R. Hence,
Algorithm 3.2 is more expensive by roughly a factor of (1+2.5/N), at least when
flops are concerned. Basically the same observation holds for the computation
of the orthogonal symplectic factor Q. All but needless to remark that in an
efficient implementation Q would be accumulated in reversed order.

4 Block symplectic URV factorization

In the same manner WY -like representations allow us to develop block algo-
rithms for virtually any kind of one-sided orthogonal symplectic factorization.
Some new difficulties arise when we consider two-sided factorizations. In this
case and in contrast to the symplectic QR factorization it is often impossible to
reduce a subset of columns without touching other parts of the matrix. Hence,
more effort is necessary to resolve the dependencies between the individual el-
ementary transformations used to construct a two-sided factorization. Let us
illuminate this point with the symplectic URV factorization.

Algorithm 4.1. [6]
Input: A matrix A ∈ R

2n×2n.
Output: Orthogonal symplectic matrices U ,V ∈ R

2n×2n; A is overwritten
with R = UTAV having the form (1.2).

U = V = I2n.
FOR j = 1, . . . , n

Set x = Aej .
Apply Algorithm 2.1 to compute Ej(x).

Update Ã = Ej(x)TA, U = UEj(x).
IF j < n THEN

Set y = AT en+j .
Apply Algorithm 2.1 to compute Ej+1(y).
Update A ← AEj+1(y), V ← VEj+1(y).

END IF

END FOR

Let us assume that Algorithm 4.1 is stopped after k < n loops. Denote the so
far updated matrix by A(k) and partition

A(k) =

[

A(k) G(k)

Q(k) B(k)

]

,(4.1)

where each block is n × n. According to the usual terminology for block al-
gorithms we say that A(k) is k-panel reduced. The matrix A(k) emerged from
A(0) = A after k elementary transformations have been applied to both sides
of A(0). Applying Theorem 2.2 to these transformations and multiplying A(0)

8 D. KRESSNER

Ã(k)(i, j) = 0

Ã(k)(i, j) = A(k)(i, j)

Ã(k)(i, j) = A(0)(i, j)

Figure 4.1: Structure of Ã(k) for k = 5, n = 15. White and pale-gray parts
contain the reduced k-panel, these are elements of the matrix A(k). Dark-gray
parts contain elements of the original matrix A(0).

from both sides by the corresponding WY -like representations show that there
exist n× 3k matrices Ũ , Ṽ , X̃{A,B,G,Q}, Ỹ{A,B,G,Q} so that

A(k) =

[

A(0) + ŨX̃T
A + ỸAṼ T G(0) + ŨX̃T

G + ỸGṼ T

Q(0) + ŨX̃T
Q + ỸQṼ T B(0) + ŨX̃T

B + ỸBṼ T

]

.(4.2)

Clearly, the above representation of A(k) would directly lead to a block version of
Algorithm 4.1. Unfortunately, things are not that simple because the definition
of the elementary transformations used in Algorithm 4.1 requires that columns 1 :
k and rows n+1 : n+k are updated. Also, the first instruction in loop k+1 would
require that the (k + 1)-th column of A(k) is known at this time. We therefore
remove the parts from Ũ , Ṽ , X̃{A,B,G,Q} and Ỹ{A,B,G,Q} that correspond to these

portions of the matrix A(k). In turn, the matrices A(0), B(0), G(0), Q(0) in (4.2)
must be altered to compensate these removals. Let Ã(k) be equal to A(0) with
columns 1 : k + 1, n + 1 : n + k + 1 and rows 1 : k, n + 1 : n + k superseded by
the corresponding entries of A(k) as illustrated in Figure 4.1. Furthermore, Ã(k)

is partitioned into blocks Ã(k), B̃(k), G̃(k) and Q̃(k) similarly to (4.1).
Altogether, we consider the modified representation

A(k) =

[

Ã(k) + UXT
A + YAV T G̃(k) + UXT

G + YGV T

Q̃(k) + UXT
Q + YQV T B̃(k) + UXT

B + YBV T

]

,(4.3)

where U, V, X{A,B,G,Q}, Y{A,B,G,Q} have been reduced to n× 2k matrices.

We now show how to pass from (4.3) to an analogous representation forA(k+1).
In the following algorithm the symbol ’⋆’ denotes a placeholder which may take
any value in the set {A, B, G, Q}.

Algorithm 4.2.

Input: A k-panel reduced matrix A(k) ∈ R
2n×2n represented as in (4.3).

Output: A representation of the form (4.3) for the (k + 1)-panel reduced
matrix A(k+1).

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 9

% Incorporate transformations from the left.
Apply Algorithm 2.1 to compute Ek+1(Ã(k)ek+1) = Ek+1(v, w, β, γ, θ) and
update the (k + 1)-th column of Ã(k).
FOR EACH ⋆ ∈ {A, B, G, Q} DO

X⋆ ← [X⋆,−β((⋆̃(k))T v + X⋆U
T v + V Y T

⋆ v)], U ← [U, v]
⋆̃(k)(k + 1, :)← ⋆̃(k)(k + 1, :) + X⋆(k + 1, :)UT + V (k + 1, :)Y T

⋆

X⋆(k + 1, :) = 0, V (k + 1, :) = 0
END FOR

Ã(k) ← Gk+1(θ)Ã(k)

FOR EACH ⋆ ∈ {A, B, G, Q} DO
w(k + 1) = 0, x⋆ = −γ((⋆̃(k))T w + X⋆U

T w + V Y T
⋆ w)

X⋆ ← [X⋆, x⋆], U ← [U, w]
⋆̃(k)(k + 1, :)← ⋆̃(k)(k + 1, :) + xT

⋆

END FOR

% Incorporate transformations from the right.
Apply Algorithm 2.1 to compute Ek+2((Ã(k))T en+k+1) = Ek+2(v, w, β, γ, θ)
and update the (n + k + 1)-th row of Ã(k).
FOR EACH ⋆ ∈ {A, B, G, Q} DO

Y⋆ ← [Y⋆,−β(⋆̃(k)v + UXT
⋆ v + Y⋆V

T v)], V ← [V, v]
⋆̃(k)(:, k + 2)← ⋆̃(k)(:, k + 2) + X⋆U(k + 2, :)T + V Y⋆(k + 2, :)T

U(k + 2, :) = 0, Y⋆(k + 2, :) = 0
END FOR

Ã(k) ← Ã(k)Gk+2(θ)
FOR EACH ⋆ ∈ {A, B, G, Q} DO

w(k + 2) = 0, y⋆ = −γ(⋆̃(k)w + UXT
⋆ w + Y⋆V

T w)
Y⋆ ← [Y⋆, y⋆], V ← [V, w]
⋆̃(k)(:, k + 2)← ⋆̃(k)(:, k + 2) + y⋆

END FOR

Ã(k+1) = Ã(k)

Subsequent application of Algorithm 4.2 yields representation (4.3) requiring

16 · (2kn2 + 7k2n− 13k3/3) + 42kn +O(k2)

flops.
The rest of the story is easily told. Using (4.3) the matrix A(k) is computed

via eight rank-2k updates of order n− k. The next panel to be reduced resides
in rows and columns k + 1 : 2k, n + k + 1 : n + 2k of A(k) as illustrated in
Figure 4.2. Algorithm 4.2 is repeatedly applied to the matrix

[

A(k)(k + 1 : n, k + 1 : n) G(k)(k + 1 : n, k + 1 : n)
Q(k)(k + 1 : n, k + 1 : n) B(k)(k + 1 : n, k + 1 : n)

]

to reduce its leading k-panel. Again, eight rank-2k updates, now of order n−2k,
yield ⋆(2k)(k + 1 : n, k + 1 : n) for ⋆ ∈ {A, B, G, Q}. It remains to update
rows 1 : k and columns n + 1 : n + k + 1 of A(k). This could be achieved by
applying WY -like representations of the orthogonal symplectic transformations
involved in the reduction of the second panel. In our implementation, however,

10 D. KRESSNER

A(k)(i, j) = 0

to be updated

2nd k-panel

A(k)(i, j) = R(i, j)

Figure 4.2: Reduction of the second k-panel for k = 5, n = 15. White and black
parts partly contain the first k-panel and are not affected by subsequent panel
reductions. Dark-gray parts contain the second k-panel and pale-gray parts must
be updated after the second panel has been reduced.

we include these parts in Algorithm 4.2 so that the subsequent rank-2k updates
readily yield the matrix A(2k). For more details the reader is referred to the
Fortran implementation of this algorithm [18].

Assume that n = N · k, then the procedure described above requires

80n3/3 + 64n3/N − 16n3/N2 +O(n2)

flops to compute the R-factor in the symplectic URV -factorization of a 2n× 2n
matrix. Since the unblocked version, Algorithm 4.1, requires 80n3/3 + O(n2)
flops for the same task, we see that blocking is more expensive by a factor of
(1 + 2.4/N).

5 Numerical Stability

The derived block algorithms would be unedifying if they flawed the favorable
error analysis of orthogonal factorizations. To show backward stability for the
construction and the application of the WY -like representation in Section 2 we
use techniques described in the book by Higham [13]. First, let us establish the
following inequalities.

Lemma 5.1. Let R̂, Ŝ, T̂ and Ŵ be the computed factors of the block represen-
tation constructed as in the proof of Theorem 2.1 and set

Q̂ =

[

I + Ŵ T̂ ŴT Ŵ R̂ŜŴT

−Ŵ R̂ŜŴT I + Ŵ T̂ ŴT

]

.

Let u denote the unit roundoff, then

‖Q̂T Q̂ − I‖2 ≤ udQ,(5.1)

‖R̂‖2 ≤ dR, ‖Ŝ‖2 ≤ dS , ‖T̂‖2 ≤ dT , ‖Ŵ‖2 ≤ dW ,(5.2)

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 11

for modest constants dQ, dR, dS , dT and dW .
Proof. Inequality (5.1) is shown by induction. For the evaluation of Q̂1 with
Q1 := QHj(v, β) we may assume that |v̂ − v| ≤ γcn|v|, ‖v‖2 =

√
2, and β = 1,

where the quantity γcn denotes ucn/(1 − ucn) with a small constant c > 1.
Then, using formulas (2.3)–(2.4) and Lemma 18.3 [13] on the backward error in
products of Householder matrices, it follows that

‖Q̂T
1 Q̂1 − I‖2 ≤ udQ +

√
nγcn =: ud′Q.(5.3)

Similarly, | cos θ̂− cos θ|+ | sin θ̂− sin θ| ≤ γc′ with a small constant c′ > 0. The
factored matrix Q̂2 with Q2 := Q1Gj(θ) satisfies

‖Q̂T
2 Q̂2 − I‖2 ≤ ud′Q +

√
nγc.

Repeated application of (5.3) toQ3 := Q2Hj(w, γ) proves (5.1). The inequalities
in (5.2) readily follow from the construction of R, S, T and W .

Inequality (5.1) implies that the matrix Q̂ is close to orthogonality. Closeness
to symplecticity is shown by the following lemma.

Lemma 5.2. Let Q̂ =
[

C
−S

S
C

]

be invertible with C, S ∈ R
n×n, then there

exist an orthogonal symplectic matrix U and a symmetric matrix H such that
Q = UH and

‖Q̂T Q̂ − I‖2
‖Q̂‖2 + 1

≤ ‖Q̂ − U‖2 ≤ ‖Q̂T Q̂ − I‖2.(5.4)

Proof. The matrix Q̂T Q̂ is symmetric and skew-Hamiltonian, i.e. Q̂T Q̂J =
−JT Q̂T Q̂. Hence, there exists an orthogonal symplectic matrix U1 such that
D = UT

1 Q̂T Q̂U1 is diagonal [15]. Similarly, there exists an orthogonal symplectic
matrix U2 with D = UT

2 Q̂Q̂TU2. The invertibility of D implies that D̂ = UT
2 Q̂U1

is diagonal. The first part of the lemma now follows by setting U = U2UT
1 and

H = U1D̂UT
1 . Inequality (5.4) is a well-known result, see e.g. [13, p.389].

Lemma 5.1 shows that under the usual assumptions on matrix multiplication,
the forward errors of the computed matrices B̂1 and B̂2 in Algorithm 2.2 satisfy

∥

∥

∥
B̂1 −B1

∥

∥

∥

2
≤ u‖A1‖2 + ud2

W [cT (k, n)‖A1‖2 + cR(k, n)‖A2‖2],
∥

∥

∥
B̂2 −B2

∥

∥

∥

2
≤ u‖A2‖2 + ud2

W [cT (k, n)‖A2‖2 + cR(k, n)‖A1‖2],

where

cT (k, n) := dT (18k2 + n2 + 2), cR(k, n) := dRdS(19k2 + n2 + 2).

Lemma 5.2 together with inequality (5.1) imply the existence of an orthogonal
symplectic matrix U so that Q̂ = U +△U with ‖△U‖2 ≤ udQ. This enables us
to bound the backward error of Algorithm 2.2,

[

B̂1

B̂2

]

= U
[

Â1 +△A1

Â2 +△A2

]

,

12 D. KRESSNER

where
∥

∥

∥

∥

[

△A1

△A2

]
∥

∥

∥

∥

2

≤
√

2u
[

1 + dQ + d2
W (cT (k, n) + cR(k, n))

]

∥

∥

∥

∥

[

A1

A2

]
∥

∥

∥

∥

2

.

This immediately verifies numerical backward stability for symplectic QR factor-
izations constructed as described in Algorithm 3.2. The analysis of the block al-
gorithm for symplectic URV factorizations presented in Section 4 is complicated
by the fact that parts from the WY -like representations for the left and right el-
ementary transformations are removed to keep the k-panel updated. However, it
can easily be shown that these removals do not introduce numerical instabilities
in the symplectic URV factorization.

6 Numerical Results

The described block algorithms are implemented in Fortran 77 in accordance to
the SLICOT implementation and documentation standards [17]. They form an
integral part of a prospective software library for computing eigenvalue problems
with Hamiltonian, symplectic or block cyclic structures [18].

To demonstrate the efficiency of these implementations we present numer-
ical examples run on an Origin2000 computer equipped with 400MHz IP27
R12000 processors and sixteen gigabytes of memory. The implementations
were compiled with version 7.30 of the MIPSpro Fortran 77 compiler with op-
tions -64 TARG:platform=ip27 -Ofa st=ip27 -LNO. The programs called op-
timized BLAS and LAPACK subroutines from the SGI/Cray Scientific Library
version 1.2.0.0. Timings were carried out using matrices with pseudorandom
entries uniformly distributed in the interval [−1, 1]. Unblocked code was used
for all subproblems with column or row dimension smaller than 65 (NX = 64).
Each matrix was stored in an array with leading dimension slightly larger than
the number of rows to avoid unnecessary cache conflicts.

Table 6.1 shows the result for DGESQB, an implementation of Algorithm 3.1.
Rows with block size nb = 1 correspond to the unblocked variant of this algo-
rithm. Columns with heading R show timings when only the reduced matrix R
was computed. Additional times necessary to generate the orthogonal symplec-
tic factor Q are displayed in columns with heading Q. The results show that the
block algorithm outperforms the unblocked one for all chosen matrix dimensions
under the assumption that a suitable value for the block size nb has been used.
The best improvement has been obtained for m = 1024, n = 1024 where the
block algorithm saved 74.8% of the execution time for the computation of both
factors.

The results for DGESUB, an implementation of the block algorithm described in
Section 4, are displayed in Table 6.2. Again, the column with heading R refers
to timings when only the reduced matrix R was computed. The additional
times for generating the factors U and V are displayed in columns four and five,
respectively. Albeit not so dramatic as for the symplectic QR factorization the
results show considerable improvements when the matrix order is sufficiently
large. At its best, the block algorithm saved 47.6% of the execution time when

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 13

DGESQB n = 128 n = 256 n = 512 n = 1024
m nb R Q R Q R Q R Q
128 1 0.10 0.10 0.26 0.10 0.75 0.10 2.71 0.10
128 8 0 .08 0 .08 0 .21 0 .08 0 .50 0 .08 1.54 0 .08
128 16 0.09 0 .08 0.22 0 .08 0.51 0 .08 1.52 0 .08
128 24 0.10 0.09 0.23 0.09 0.52 0.09 1 .50 0.09
128 32 0.10 0.10 0.25 0.10 0.56 0.10 1.65 0.10

256 1 0.24 0.24 0.88 0.88 3.32 0.88 9.71 0.90
256 8 0 .18 0 .18 0 .54 0.54 1.46 0.54 3.87 0.54
256 16 0 .18 0 .18 0 .54 0 .50 1 .42 0 .50 3 .63 0 .51
256 24 0.20 0.19 0.57 0.53 1.46 0.53 3.72 0.53
256 32 0.20 0.20 0.61 0.56 1.52 0.56 3.93 0.56

512 1 0.59 0.60 3.25 3.27 13.10 13.16 35.16 13.16
512 16 0.40 0 .39 1 .31 1.28 4.33 4.20 11.34 4.15
512 24 0 .39 0 .39 1 .31 1 .27 4.26 4.11 11.04 4.07
512 32 0.42 0.41 1 .31 1 .27 4 .17 3 .96 10 .78 3 .94
512 48 0.46 0.45 1.40 1.35 4.26 4.06 11.05 4.04

1024 1 1.86 1.89 9.15 9.20 34.99 35.11 113.29 113.58
1024 16 0.87 0.88 2.94 2.92 10.43 10.21 33.85 33.17
1024 24 0 .85 0 .84 2.89 2.85 9.84 9.71 31.90 31.06
1024 32 0.89 0.89 2 .81 2 .77 9 .29 9 .13 29.68 28.65
1024 48 0.97 0.96 2.95 2.92 9.34 9.15 29 .17 27 .93

Table 6.1: Performance results in seconds for the symplectic QR factorization
of an m× n matrix.

the complete symplectic URV factorization of a 2048× 2048 (n = 1024) matrix
was computed.

The accuracy of the block algorithms has been tested for various random
matrices as well as Hamiltonian matrices obtained from the Riccati benchmark
collection [4]. We measured orthogonality of the factors Q, U , V and the relative
residuals ‖QR − A‖1/‖A‖1, ‖URV − A‖1/‖A‖1. The results for the standard
algorithms and the new block algorithms are qualitatively the same.

7 Final Remark

While the symplectic QR factorization basically covers the range of practically
important one-sided orthogonal symplectic factorizations an important class of
two-sided factorizations, so called PVL reductions [15], is not considered in this
work. The PVL reduction of a Hamiltonian matrix is extensively used in the OS-
MARE algorithm [1]. However, with increasing matrix dimensions, OSMARE

14 D. KRESSNER

DGESUB

n nb R U V
128 1 0.53 0.11 0.11
128 8 0 .48 0 .08 0 .09
128 16 0.52 0 .08 0 .09

256 1 6.91 0.87 0.89
256 8 4 .74 0 .50 0 .52
256 16 5.12 0 .50 0.53
256 32 5.82 0.55 0.58

512 1 66.79 13.04 12.90
512 8 42.17 4.82 5.15
512 16 42 .05 4.07 4.34
512 32 44.02 3 .88 4 .11

1024 1 563.16 113.40 114.02
1024 16 377.55 32.52 33.42
1024 32 318 .84 28 .13 29 .29
1024 64 350.11 28.98 30.32

Table 6.2: Performance results in seconds for the symplectic URV factorization
of an n× n matrix.

heavily suffers from forward instabilities in the QR algorithm. The PVL reduc-
tion of a skew-Hamiltonian matrix constitutes a preprocessing step for eigenvalue
computations [15]. Developing an efficient block algorithm for this reduction
would require to have an efficient BLAS for skew-symmetric block updates of
the form C ← C + ABT −BAT handy. Unfortunately, such a subroutine is not
yet defined in the BLAS standard.

8 Acknowledgments

The author sincerely thanks Peter Benner, Erik Elmroth and Christian Mehl
for various useful improvements and corrections to earlier versions of this paper.
Special thanks go to his (former) supervisors Ralph Byers and Volker Mehrmann.

REFERENCES

1. G. Ammar, P. Benner, and V. Mehrmann. A multishift algorithm for the
numerical solution of algebraic Riccati equations. Electron. Trans. Numer.
Anal., 1(Sept.):33–48 (electronic only), 1993.

2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

ORTHOGONAL SYMPLECTIC FACTORIZATIONS 15

LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

3. P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation
of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J.
Matrix Anal. Appl., 24(1):165–190, 2002.

4. P. Benner, A.J. Laub, and V. Mehrmann. A collection of benchmark
examples for the numerical solution of algebraic Riccati equations I:
Continuous-time case. Technical Report SPC 95 22, Fakultät für Mathe-
matik, TU Chemnitz–Zwickau, 09107 Chemnitz, FRG, 1995. Available from
http://www.tu-chemnitz.de/sfb393/spc95pr.html.

5. P. Benner, V. Mehrmann, and H. Xu. A new method for computing the
stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl.
Math., 86:17–43, 1997.

6. P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure pre-
serving method for computing the eigenvalues of real Hamiltonian or sym-
plectic pencils. Numer. Math., 78(3):329–358, 1998.

7. C. Bischof and C. Van Loan. The WY representation for products of House-
holder matrices. SIAM J. Sci. Statist. Comput., 8(1):S2–S13, 1987. Parallel
processing for scientific computing (Norfolk, Va., 1985).

8. A. Bunse-Gerstner. Matrix factorizations for symplectic QR-like methods.
Linear Algebra Appl., 83:49–77, 1986.

9. J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. Block reduction of
matrices to condensed forms for eigenvalue computations. J. Comput. Appl.
Math., 27(1-2):215–227, 1989. Reprinted in Parallel algorithms for numerical
linear algebra, 215–227, North-Holland, Amsterdam, 1990.

10. E. Elmroth and F. Gustavson. Applying recursion to serial and parallel QR
factorization leads to better performance. IBM J. Research & Development,
44(4):605–624, 2000.

11. G. Freiling, V. Mehrmann, and H. Xu. Existence, uniqueness, and
parametrization of Lagrangian invariant subspaces. SIAM J. Matrix Anal.
Appl., 23(4):1045–1069, 2002.

12. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, third edition, 1996.

13. N. J. Higham. Accuracy and stability of numerical algorithms. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

14. B. J. Leimkuhler and E. S. Van Vleck. Orthosymplectic integration of linear
Hamiltonian systems. Numer. Math., 77(2):269–282, 1997.

15. C. Paige and C. Van Loan. A Schur decomposition for Hamiltonian matrices.
Linear Algebra Appl., 41:11–32, 1981.

16. R. Schreiber and C. Van Loan. A storage-efficient WY representation for
products of Householder transformations. SIAM J. Sci. Statist. Comput.,
10(1):53–57, 1989.

16 D. KRESSNER

17. The Working Group on Software: WGS. SLICOT Implementation and Doc-
umentation Standards 2.1, 1996. Available from http://www.win.tue.nl/

wgs/reports.html as WGS-report 96-1.

18. See http://www.math.tu-berlin.de/~kressner/syperham/.

