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Current and future directions in the development of numerical methods
and numerical software for control problems are discussed. Major chal-
lenges include the demand for higher accuracy, robustness of the method
with respect to uncertainties in the data or the model, and the need for
methods to solve large scale problems. To address these demands it is
essential to preserve any underlying physical structure of the problem. At
the same time, to obtain the required accuracy it is necessary to avoid
all inversions or unnecessary matrix products. We will demonstrate how
these demands can be met to a great extent for some important tasks in
control, the linear-quadratic optimal control problem for first and second
order systems as well as stability radius and H∞ norm computations.
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1 Introduction and preliminaries

In a recent panel report [26], future directions in modern control theory have
been collected. Despite large efforts in recent years even some of the chal-
lenges that were listed in the previous panel report [15] still remain partially
unsettled. In this paper we will address some of the challenges that are related
to the development of efficient and reliable numerical methods and numerical
software for control problems. These challenges include

– the demand for highly accurate methods;
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– the need for the robustness of methods under uncertainties in the data or
the model;

– exploitation and preservation of structure intrinsic to the problem (e.g.,
symmetry) in order to obtain physically meaningful results.

Major developments that have taken place in the area of computational meth-
ods over the last decade include the development of several Matlab toolboxes
in the area of control, see e.g. [23], and the development and extension of the
SLICOT subroutine library [8]. While the Matlab toolboxes serve the need
to have easy-to-use software available but none of the demands for high accu-
racy, large scale and real-time applicability is met, SLICOT already partially
satisfies these latter needs. The library includes for example parallel methods
for model reduction of large scale systems as well as robust control methods,
and all methods (implemented in FORTRAN 77) give the demands for reli-
ability and accuracy including error and sensitivity estimates high emphasis.
But much more has to be done and it is expected that the SLICOT library
will grow further and include also the methods that we discuss in this paper.

Here we will be concerned with one important aspect of computational control,
that is the exploitation of structure. The reason for this is multifaceted. First of
all, when a physical problem has structure, such as symmetries, then these will
typically be reflected in good mathematical models. But then it is crucial that
also the numerical method and its implementation addresses this structure to
get physically meaningful results.

Example 1 [27] The model of a shaft which rotates with angular velocity Ω,
containing a mass and four springs leads to the following equation of motion,
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where m is the mass, kx, ky are the stiffnesses of the springs and the input u is
used to control the angular velocity. This is an instance of a controlled linear
gyroscopic system Mq̈ + Gq̇ + Kq = Bu where M = MT is a positive definite
mass matrix, K = KT is a positive definite stiffness matrix for sufficiently
small Ω and the gyroscopic term satisfies G = −GT . Such a system is stable iff
all solutions of the quadratic eigenvalue problem (QEP) (λ2M +λG+K)x = 0
are purely imaginary and semi-simple. For system (1), these eigenvalues are
given by
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Under the assumption that kx ≤ ky the two pairs of eigenvalues will be purely

imaginary if either 0 < Ω <
√

kx/m or Ω >
√

ky/m. We will show in Section 3
that computing these eigenvalues with a method that does not reflect the
structure will lead to eigenvalues that are off the imaginary axis. Instead one
should use a method that enforces the stability if it is there, i.e., it limits the
perturbations (like round-off errors) in such a way that they structurally do
not destabilize the system.

This simple example illustrates that the preservation of structure is essential
for the qualitative behaviour of a system under perturbations. Another crucial
aspect of structure preservation is that the computational methods become
more efficient with respect to storage and computing time. This effect is well
known and easily demonstrated when looking at an example from numerical
linear algebra: the solution of a large tridiagonal symmetric positive definite
linear system Ax = b. If its structure is ignored and a full LU factorization is
used for the solution, then the method needs O(n2) storage and O(n3) flops,
while the use of a symmetric banded solver needs O(n) storage and O(n) flops.

These examples demonstrate the importance of exploiting the structures of
the problem, but in control problems it is not always so easy to detect what
the correct structures are and how to preserve and exploit these structures.

In this paper we will discuss some major tasks in control theory and demon-
strate what the important underlying structures are and how they can be
preserved. These topics are

– linear quadratic optimal L2 control of first order and second order systems;
– H∞ norm computation and the related problem of computing the stability

radius of a matrix.

2 Applications

The numerical solution of linear-quadratic L2 optimal control problems (in
control design often known as linear-quadratic regulator problem, short LQR
problem) and H∞ control problems is of great importance in the design of sta-
bilizing controllers, in particular when robust controllers are desired, [1,18,31].

Consider first the LQR problem for a first order system, which is to minimize
an energy functional

S(x, u) =

∞∫

t0

(

x(t)T Qx(t) + 2x(t)T Su(t) + u(t)T Ru(t)
)

dt (2)
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subject to the control equation ẋ = Ax + Bu, x(t0) = x0, where A ∈ Rn×n,
B ∈ Rn×m, S ∈ Rn×m, Q ∈ Rn×n and R ∈ Rm×m and it is required that the
solution associated with the optimal control is asymptotically stable.

Under some further assumptions, see, e.g., [24], application of the maximum
principle yields that the optimal solution is obtained from the two-point
boundary value problem of Euler-Lagrange equations










0 I 0

−I 0 0

0 0 0



















µ̇

ẋ
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(3)

with boundary conditions x(t0) = x0, limt→∞ µ(t) = 0. It is easily observed
that this problem contains symmetries, i.e., the coefficient of the derivatives
is skew symmetric and singular and the other coefficient is symmetric.

If R is nonsingular, then (3) is typically reduced to the two-point boundary
value problem
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µ(t) = 0 (4)

with
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F G

H −F T




 :=






A − BR−1ST −BR−1BT

−Q + SR−1ST −(A − BR−1ST )T




 . (5)

Definition 1 A matrix H ∈ R
2n×2n is called Hamiltonian iff JH is symmet-

ric, where J =
[

0
−I

I
0

]

.

It is easily shown that H in (5) is a Hamiltonian matrix.

The solution of the boundary value problems (3) and (4) can be obtained in
many different ways. The most popular solution method is via the computa-
tion of the positive semidefinite solution of the associated algebraic Riccati
equation 0 = H + PF + F TP − PGP, where H, F, G are as in (5). The Ric-
cati approach has proved very useful in the past and still is for large-scale
problems, since it allows to use iterative methods in computing a low-rank
approximation to the solution [7]. But when R is close to a singular matrix,
then forming the matrices H, G, F in (5) is an ill-conditioned problem, result-
ing in an inaccurate solution of the LQR problem even if the LQR problem
itself is well-conditioned. If R is singular, then the Riccati approach will not
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work at all as H in (5) is not defined. Similar difficulties arise when looking
at descriptor systems, see [5,20].

In the presence of the abovementioned difficulties it is better to work directly
with the two point boundary value problem (3) which is formulated in terms
of the original data and which can be solved via the solution of the associated
generalized eigenvalue problem

αEc − βAc := α
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associated with (3). In this system we can make full use of the existing sym-
metries, see [5]. However, for the sake of brevity, we will only consider the case
S = 0, R = rI yielding the Hamiltonian eigenvalue problem

λI −Hc = λI −






A −1
r
BBT

−Q −AT




 . (7)

For a treatment of the general case, see e.g. [6,24,28]. It was observed in [22],
that if Hc has an n-dimensional deflating subspace associated with eigenvalues
in the left half plane spanned by the columns of a matrix U , partitioned
analogous to Hc as U = [UT

1 , UT
2 ]T , then, if U1 is invertible, the optimal control

is a linear feedback of the form u(t) = Kx(t) = U2U
−1
1 x(t), see, e.g., [1,21,24]

for details. So in order to compute the optimal control it suffices to compute
this deflating subspace followed by the solution of a linear system.

Eigenvalue problems with Hamiltonian structure occur in many other com-
putational problems in systems and control theory. For instance, parameter-
dependent Hamiltonian eigenvalue problems arise in the problem of comput-
ing the stability radius of a matrix and the related H∞ norm computation of
transfer matrices.

The stability radius problem can be described as follows: Given a stable matrix
A ∈ Rn×n (i.e., σ(A) ⊂ C− where σ(A) denotes the set of eigenvalues of A),
it is often important to know how near A is to an unstable matrix, i.e., what
is the smallest norm perturbation E ∈ Cn×n for which A+E is unstable. The
distance of A to the unstable matrices can be measured by

γ(A) := min{||E||2 : σ(A + E) ∩ ıR 6= ∅}.

A bisection method for measuring γ(A) can be based on the following obser-
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vation [14]: if α ≥ 0, then the Hamiltonian matrix H(α) =






A −αIn

αIn −AT




 has

an eigenvalue on the imaginary axis if and only if α ≥ γ(A). This suggests
a simple bisection algorithm. Start with a lower bound β ≥ 0 and an upper
bound δ > γ(A) (an easy-to-compute upper bound is ‖A+AT‖F/2, see [14] for
details). Then in each step, set α := (β + δ)/2 and compute σ(H(α)). If there
is an eigenvalue on the imaginary axis, choose δ = α, otherwise, set β = α.

For the H∞ norm problem, consider the transfer function G(s) = C(sI −
A)−1B+D, where all the eigenvalues of A ∈ Rn×n are in the open left half plane
(hence, G is stable), B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The computation of
‖G‖H∞

plays a central role in H∞ control problems, see the recent monographs
[18,31]. Here, ‖G‖H∞

= esssup{‖G(ıω)‖2 : ω ∈ R}. Let σmax(D) denote the
largest singular value of D and let α ∈ R be such that α > σmax(D). Then

consider the parameter-dependent Hamiltonian matrix H(α) =
[

F (α)
H(α)

G(α)

−F (α)T

]

where for R(α) = α2I − DT D,

F (α) = A + BR(α)−1DTC, G(α) = 1
α2 BR(α)−1BT ,

and H(α) = −CT (I + DR(α)−1DT )C.

The following result can be used to approximate ‖G‖H∞
, see e.g. [31].

‖G‖H∞
< α ⇔ σmax(D) < α and σ(H(α)) ∩ ıR = ∅.

Using this fact, a bisection algorithm analogous to the stability radius compu-
tation can be formulated, starting with lower bound β = σmax(D) and upper
bound δ > ‖G‖H∞

(see [12] for details).

Note that in all these applications, it is crucial that the decision whether or not
the parameter-dependent Hamiltonian matrix H has eigenvalues on the imag-
inary axis is correct. Otherwise, any of the algorithms described above will
fail. For a method ignoring the Hamiltonian structure of the problem like the
general nonsymmetric QR algorithm [17], roundoff errors will lead to unstruc-
tured perturbations that break the Hamiltonian symmetry [16]. Therefore, the
computed eigenvalues will be perturbed off the imaginary axis and the decision
process described above becomes very difficult. On the other hand, a method
preserving the Hamiltonian structure will lead to structured perturbations.
Hence, roundoff will cause simple eigenvalues on the imaginary axis to move
only along the axis as the spectral symmetry forces the computed counterpart
of the purely imaginary eigenvalue pair to stay on the imaginary axis.

As third class of problems consider the LQR problem for second order systems
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of the form Mẍ + Dẋ + Kx = Bu, where x and u are as before the vectors of
state and control variables, respectively. If the system arises as in Example 1 in
the control of linearized mechanical systems, then we have further symmetry
structure, i.e., M = MT and K = KT are positive definite mass and stiffness
matrices, respectively.

The task of computing the optimal control u that minimizes the cost functional

∫ t1

t0

(

xT Q0x + ẋT Q1ẋ + uT Ru
)

dt

leads to the second order boundary value problem
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see [25]. Substituting x = eλtv and µ = eλtw and setting z :=
[

v
w

]

yields the
QEP

(

λ2M + λD + K
)

z = 0 (9)

Among the possible linearizations, a formulation reflecting the Hamiltonian
symmetry of the spectrum of the QEP is to be preferred. For instance,

αEQFQ − βAQ = α
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 .

is a generalized eigenproblem corresponding to the QEP (9) with Hamiltonian
structure [27]. It is easy to check that HQ = E−1

Q AQF
−1
Q is a Hamiltonian

matrix provided that EQ and FQ are nonsingular.

In the next two section we describe algorithms for the Hamiltonian eigenprob-
lem that preserve and exploit the given structure.

3 Eigenvalue computation

We have seen that the solution of LQR and H∞ control problems as well
as H∞ norm and stability radius computations lead to the problem of com-
puting eigenvalues and deflating subspaces for Hamiltonian matrices. If the
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matrix were unstructured then the QR algorithm [17] would be an excellent
choice to solve such a problem. The structure present in Hamiltonian matrices
potentially entails the existence of more efficient and more accurate eigenprob-
lem solvers. It had nevertheless been a long-standing open problem to derive
such an algorithm. Van Loan [30] used the fact that if H is a Hamiltonian
matrix, then H2 is a skew-Hamiltonian matrix. As the eigenvalues of a real
skew-Hamiltonian matrix are easier to compute than those of a Hamiltonian
matrix, he suggested to compute the eigenvalues of H by taking square roots
of the eigenvalues of the explicitly computed H̃2 for an appropriate similarity
transformation H̃ = UTHU . Unfortunately, in a worst case scenario one might
obtain only half of the possible accuracy in the computed eigenvalues [13,30].
An example demonstrating this effect is given in [4,30]. A way out of this
dilemma was presented in [10]. The proposed method is based on a two-sided
reduction of H to a form making it easy to compute the eigenvalues of H2

without forming the product.

Definition 2 A matrix S ∈ R2n×2n is called symplectic iff SJST = J , where
J is defined as in Definition 1. The matrix S is called orthogonal symplectic
iff it additionally satisfies SST = I.

Theorem 3 [10] Let H ∈ R2n×2n be Hamiltonian. Then there exist orthogonal
symplectic matrices Q1, Q2 ∈ R2n×2n, such that

QT
1 HQ2 =






H11 H12

0 H22




 , (10)

with H11 upper triangular and HT
22 upper Hessenberg.

A simple calculation reveals QT
1 H

2Q1 =
[

−H11HT
22

0

H11HT
12
−H12HT

11

−H22HT
11

]

, showing

that the eigenvalues of H are the square roots of the eigenvalues of the upper
Hessenberg matrix −H11H

T
22. Again, for the sake of accuracy, the formation

of this product must be avoided. This can be achieved by the periodic QR
algorithm [11,19] which mimics the action of the standard QR algorithm ap-
plied to the product. However, the former algorithm stays backward stable by
exclusively applying orthogonal transformations to the factors H11 and H22.
As a result, orthogonal matrices U and V are constructed so that UT H11V is
upper triangular and (UT H22V )T is quasi upper triangular. After these forms
have been computed, we can compute the eigenvalues of H by solving 1 × 1
or 2 × 2 eigenvalue problems and taking square roots. The solution of these
tiny eigenproblems is a delicate subject, for a thorough treatment see [29].

Without accumulating the involved orthogonal transformations the described
algorithm requires ≈ 40n3 floating point operations (flops) including ≈ 80n3/3
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flops for computing the reduced form (10). On the other hand, the standard
approach, i.e. the QR algorithm subsequent to a reduction to Hessenberg form,
requires ≈ 80n3 flops including ≈ 80n3/3 flops for the reduction step. Thus,
the Hamiltonian structure gives us the potential to gain 50% in efficiency. Since
the structure-exploiting algorithm is restricted to orthogonal transformations
it can be expected to compute the eigenvalues at least as accurate as standard
QR does.

Achieving these gains in practice requires an implementation competitive
with the nonsymmetric eigenproblem solver DGEEVX from the LAPACK
library [2]. Three ingredients mainly account for the success of the LAPACK
implementation. These are balancing, block reduction to Hessenberg form and
the use of multiple shifts in the QR algorithm. We now briefly discuss these de-
tails and how they can be implemented for the structure-exploiting algorithm.
Balancing may drastically improve the accuracy of the computed eigenvalues
if the matrix elements differ greatly in size. For our implementation we have
chosen a balancing strategy which equilibrates row and column norms of the
Hamiltonian matrix using symplectic scaling matrices as described in [3]. The
block reduction of a general matrix to Hessenberg form is based on a block
representation of products of Householder transformations [17]. The appli-
cation of such representations amounts to matrix-by-matrix multiplications,
yielding considerably less memory transfer in comparison with the applica-
tion of the factored transformations. A similar block representation can be
derived for the orthogonal symplectic transformations involved in the reduc-
tion to (10). It turns out that this significantly improves the performance of
the corresponding implementation for sufficiently large n. Multiple shifts can
be incorporated into the periodic QR algorithm just as they are used in the
standard QR algorithm.

To demonstrate the efficiency of this implementation we present numerical ex-
amples run on an Origin2000 computer equipped with 400MHz IP27 R12000
processors and sixteen gigabytes of memory. The FORTRAN implementations
were compiled with version 7.30 of the MIPSpro FORTRAN 77 compiler with
options -64 TARG:platform=ip27 -Ofast=ip27 -LNO. The programs called
optimized BLAS and LAPACK subroutines from the SGI/Cray Scientific Li-
brary version 1.2.0.0.

We compared the following methods:

– URVPSD, the method based on Theorem 3 and the periodic QR algorithm
as suggested in [10] with the above described improvements,

– SQRED, Van Loan’s square reduced method [30] as implemented in [4]
and the SLICOT subroutine MB03SD 4 ,

4 ftp://wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT/doc/MB03SD.html
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– DGEEVX, the nonsymmetric eigenproblem solver from LAPACK [2].

Example 2 We computed the eigenvalues of the quadratic eigenvalue prob-
lem associated with the gyroscopic system (1) given in Example 1. The used

parameters were kx = 1, ky = 3, m = 5 and Ω =
√

1/5 − γ with different val-
ues of γ. The three algorithms were applied to the Hamiltonian linearization
of the quadratic eigenvalue problem similar to the linearization described in
Section 2. Columns 2 to 4 of Table 1 show the relative errors in the approxi-
mation of the eigenvalue with the smallest positive imaginary part. Only the
LAPACK implementation computed nonzero real parts, their relative magni-
tudes are listed in the last column of Table 1.

Table 1
Example 2, relative errors |λ − λ̃|/|λ| and relative values of computed real parts.

γ URVPSD SQRED DGEEVX Re(λ̃) (DGEEVX)

10−4 3.5 × 10−13 7.2 × 10−13 3.2 × 10−13 2.1 × 10−15

10−7 5.8 × 10−10 1.0 × 10−09 2.0 × 10−10 1.6 × 10−13

10−10 8.0 × 10−09 4.1 × 10−08 4.4 × 10−09 3.6 × 10−12

10−13 1.2 × 10−04 4.0 × 10−04 1.4 × 10−04 1.7 × 10−10

The three methods compute the considered eigenvalue to almost the same
accuracy. However, LAPACK yields eigenvalues with positive real parts, sug-
gesting incorrectly that the system described by (1) is unstable.

Example 3 To test efficiency we applied the three methods to randomly gen-
erated Hamiltonian matrices with entries distributed uniformly in the interval
[−1, 1 ]. Since the eigenvalues for these examples are usually well-conditioned,
the eigenvalues computed by either of the methods are computed to almost
the same accuracy. We give the CPU times for 2n × 2n examples for several
sizes of n. For each size of n, we computed 100 examples. The values given in
Figure 1 are the mean values of the measured CPU times.

It turns out that SQRED gives the best results even though its implementation
is not block oriented. URVPSD outperforms LAPACK by roughly 42%. The
difference to the predicted gain of 50% can be accounted for the overhead
caused by the higher complexity as far as index handling, memory access, and
subroutine calls are concerned.

We have seen that it is possible to use the algebraic structure of Hamilto-
nian matrices effectively to speed up the computation of eigenvalues while
still achieving full possible accuracy. Unfortunately this new approach is not
perfect. We would like to have the Hamiltonian Schur form, since it would
give us the eigenvalues and also the deflating subspaces. For the computation
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Fig. 1. Example 3, CPU times in seconds.
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of deflating subspaces we will use another procedure presented in the next
section.

4 Invariant subspace computation for Hamiltonian matrices

As noted in Section 2, LQR problems require the computation of invariant sub-
spaces associated with eigenvalues located in the left half plane. Note that the
approach presented in the previous section only provides eigenvalues, but not
the invariant subspaces. Nevertheless, this approach can be used by employing
the following relationship between the eigenvalues and invariant subspaces of
a matrix and an appropriate extension.

Theorem 4 [9] Let A ∈ Rn×n and define B =
[

0
A

A
0

]

. Then σ(B) = σ(A) ∪

(−σ(A)). Further, let σ(A) ∩ ıR = ∅. If the columns of the matrix [UT
1 , UT

2 ]T

span an invariant subspace for B associated with eigenvalues in the open right
half plane, then the columns of U1 − U2 span an invariant subspace for A
associated with eigenvalues in the open left half plane.

An orthogonal basis for the subspace spanned by the columns of U1 − U2 can
be obtained, e.g., from a rank-revealing QR decomposition [17] of U1 − U2.
For general matrices it is of course not advisable to use the above result in
order to compute invariant subspaces of the matrix A as it would unnecessarily
double the dimension of the problem. But if A is a Hamiltonian matrix then
the results from the previous section can be used to compute the invariant
subspaces of the extended matrix B.

Let H ∈ R2n×2n be Hamiltonian with σ(H) ∩ ıR = ∅. Then we apply Theo-
rem 3 and the periodic QR algorithm to H. From this we obtain orthogonal
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symplectic matrices Q̂1 and Q̂2 such that Ĥ = Q̂T
1 HQ̂2 =

[

Ĥ11

0
Ĥ12

Ĥ22

]

, where

Ĥ11 is upper triangular and ĤT
22 is quasi upper triangular. Then

B :=






Q̂T
1 0

0 Q̂T
2











0 H

H 0











Q̂1 0

0 Q̂2




 =






0 Ĥ

(JĤJ)T 0




 .

Swapping the middle block rows/columns of B corresponds to P TBP , where
P is the appropriate permutation matrix, and transforms B to block upper
triangular form.

Now let Q3 be orthogonal such that

QT
3






0 Ĥ11

−ĤT
22 0




Q3 =






T11 T12

0 T22




 =: T (11)

is quasi upper triangular with all eigenvalues of T11 ∈ Rn×n and −T22 ∈ Rn×n

located in the open right half plane. Note that this is possible as the eigenvalues

of
[

0
−ĤT

22

Ĥ11

0

]

are exactly those of H and σ(H) ∩ ıR = ∅. Hence,

B̃ :=






QT
3 0

0 QT
3




P TBP






Q3 0

0 Q3




 =






T R

0 −T T




 . (12)

In order to apply Theorem 4 it is necessary to reorder the eigenvalues of B̃
such that all eigenvalues in the upper 2n× 2n block are in the open right half
plane. This can be achieved, e.g., by the symplectic re-ordering algorithm due
to Byers [13]. With this algorithm it is possible to determine an orthogonal
symplectic matrix U such that

UT B̃U =






T̃ R̃

0 −T̃ T




 , T̃ =






T11 T̃12

0 T̃22




 .

Now define

S :=






S11 S12

S21 S22




 :=






Q̂1 0

0 Q̂2




P






Q3 0

0 Q3




U, (13)
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then by construction the columns of the matrix [ST
11, S

T
21]

T span the invariant

subspace for
[

0
H

H

0

]

associated with all eigenvalues in the open right half plane.
Applying Theorem 4 with A replaced by H, we obtain the required H-invariant
subspace.

Corollary 5 Let H ∈ R
2n×2n be Hamiltonian with σ(H)∩ ıR = ∅ and let S be

as in (13). Then the n-dimensional invariant subspace for H associated with
all eigenvalues in the left half plane is spanned by the columns of S11 − S21 ∈
R2n×2n.

Computing the matrix Q3 in (12) as well as obtaining an orthogonal basis
for the column range of S11 − S21 can be implemented very efficiently using
the underlying structure; for details see [9]. Then the cost of the algorithm
described above is approximately 60% of the cost that the standard QR would
require to compute the invariant subspace under consideration. Due to space
limitations, we refrain from presenting numerical results for this approach.

5 Conclusions

We have discussed the importance of preserving and exploiting structure in
computational methods for control. As one of the most striking examples of
a structure arising in systems and control we considered the problem of com-
puting eigenvalues and invariant subspaces of Hamiltonian matrices. We have
considered the relevance of an accurate and reliable numerical solution of this
problem for LQR and H∞ control problems, stability radius and H∞ norm
calculations, and control of second-order systems. New algorithmic develop-
ments of the recent past based on the idea of exploiting and preserving the
Hamiltonian structure have led to numerically stable and efficient algorithms.
Several numerical examples demonstrate that these new algorithms outper-
form standard approaches in every aspect. We hope that in the future, similar
developments will be achieved for other challenging problems that could not
yet solved, e.g., numerically stable and structure-preserving methods for sym-
plectic eigenproblems arising in discrete-time (optimal) control.
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