
Hardware-Software

MOST DIGITAL SYSIEMS usedfor
dedicated applications consist of gen-
eral-purpose processors, memory,
and applicationspecific hardware
circuits. Examples of such embedded
systems appear in medical instrumen-
tation, process control, automated
vehicles, and networking and com-
munication systems. Besides being
application specific, such system d e
signs also respect constraints related
to the relative timing of their actions.
For that reason we call them real-time
embedded systems.

Design and analysis of real-time
embedded systems pose challenges
in performance estimation, selec-
tion of appropriate parts for system
implementation, and verification of
such systems for functional and tem-
poral properties. In practice, design-
ers implement such systems from
their specification as a set of loosely
defined functionalities by taking a
design-oriented approach. For in-
stance, consider the design shown
in Figure 1 (next page) of a network
processor that is connected to a serial

Cosynhesis b r

~ -

M E S H K. GUPTA

GlOVANNl DE MlCHELl

Stanford University

As system design grows
increasingly complex, the use of

predesigd components, such as
general-purpose microprocessors,
can simplify synthesized hardware.
While the pr&s in designing

systems that contain processors and
application-specific integrated

circuit chips are not new, computer-
aided synthesis of such

h-s or m ' d systems

demonstroie he feasibility of
synthesizing b m s systems

by using timing constraints to
delegaie tasks between hardware
and sofhvare so that perfwmance

requirwnextts can be met.

(such as the protocol for Ethernet links).
The decision to map functionalities

into dedicated hardware or implement
them as programs on a processor usual-

ly depends on estimates of achiev-
able performance and the imple-
mentation cost of the respective
parts. While this division impacts
evely stage of the design, it is large
ly based on the designer's experi-
ence and takes place early in the
design process. As a consequence,
portions of a design often are either
under- or over-designed with re-
spect to their required perfor-
mance. More important, due to the
ad hoc nature of the overall design
process, we have no guarantee that
a given implementation meets re-
quired system performance (ex-
cept possibly by overdesigning).

In contrast, we can formulate a
methodical approach to system im-
plementation as asynthesiwriented
solution, a tactic that has met with
enormous success in individual
integrated circuit chip design (chip
level synthesis). A synthesis a p
proach for hardware proceeds with
systems described at the behavioral
level, by means of an appropriate

SEPTEMBER 1993 0740-7475/93/0900-0029$03.00 Q 1993 IEEE 29

Software

Memory El-

,
Applications interface

Packet formatting
Self-test

4

Hardware

Figure 1. A design-orientedapproach to system implementation.

Behavioral
specification

1 Memory b~
Performance

Prototyping High-level synthesis

I /
I / +Hardware

/
+oftware

I cost

Figure 2. A synthesis-oriented approach to system implementation.

Behavioral
specification

plus
constraints

i 3 interface Analog

I "L

Performance 1 i m p l R E 7 a t i o n

t
rdware

lPware I \Constraints

I 1 * cost

Figure 3. Proposed approach to system implementation.

Interface

1

scription languages (HDLsj to describe
integrated circuits has been gaining
wide acceptance in recent years.

A synthesis-oriented approach to dig-
ital circuit design starts with a behavior-
al description of circuit functionality.
From that, it attempts to generate a gate
level implementation that can be
characterized as a purely hardware im-
plementation (Figure 2). Recent strides
in high-level synthesis allow us tosynthe
size digital circuits from high-level spec-
ifications; several such systems are
available from industry and academia.
Gajski' and Camposano and Wolf2
provide surveys of these. Synthesis pro-
duces a gatelevel or geometric-level d e
scription that is implemented as single
or multiple chips. As the number of
gates (or logic cells) increases, such a
solution requires semicustom or custom
design technologies, which then leads
to associated increases in cost and d e
sign turnaround time. For large system
designs, synthesized hardware solutions
consequently tend to be fairly expen-
sive, depending upon the technology
chosen to implement the chip.

On the other end of the system devel-
opment cost and performance spectrum,
one can also create a software prototype,
amenable to simulation, of a system us-
ing a general-purpose programming lan-
guage. (See Figure 2.) The Rapide
prototyping system" is one example. D e
signers can build such software proto-
types rather quickly and often use them
for verifying system functionality. Howev-
er, software prototype performance very
often falls short of what timeconstrained

Practical experience tells us that cost-
effective designs use a mixture of hard-
ware and software to accomplish their
overall goals (Figure 1 j. This providessuf-
ficient motivation for attempting a synthe
sis-oriented approach to achieve system
implementations having both hardware
and software components. Such an a p
proach would benefit from a systematic
analysis of design trade-offs that is com-

' system designs require.

A mixed implementation

30 IEEE DESIGN & TEST OF COMPUTERS

Processor

process (a, b. c)
in port a, b,

read(a):

write(c);

I Out port c. ...
t '
Specification

Performance estimation Trade-offs
Constraint analysis

detach

Interface
Concurrency
Synchronization

Figure 4. Synthesis approach to embedded systems

mon in synthesis while also creating cost- i cation. Chou, Ortega, and Borriello6 de-
effective systems. scribe synthesis of hardware or software

One way to accomplish this task is to
specify constraints on cost and perfor-
mance of the resulting implementation
(Figure 3). We present an approach to
systematic exploration of system designs
that is driven by such constraints. Our
work builds upon high-level synthesis
techniques for digital hardware4 by ex-
tending the concept of a resource need-
ed for implementation.

As shown in Figure 4, this approach
captures a behavioral specification
into a system model that is partitioned
for implementation into hardware and
software. We then synthesize the parti-
tioned model into interacting hardware
and software components for the target
architecture shown in Figure 5. The tar-
get architecture uses one processor
that is embedded with an application-
specific hardware component. The
processor uses only one level of mem-
ory and address space for its instruc-
tions and data. Currently, to simplify
the synthesis and performance estima-
tion for the hardware component, we
do not pipeline the applicationspecific
hardware. Even with its relative simplic-
ity, the target architecture can apply to
a wide class of applications in embed-
ded systems.

Among the related work, Woo, Wolf,
and Dunlop5 investigate implementing
hardware or software from a cospecifi-

for interface circuits. Chiodo et al.7 dis-
cuss a methodology for generating hard-
ware and software based on a unified
finite-statemachinebased model. Given
a system specification as a C-program,
Henkel and Ern& identify portions of
the program that can be implemented
into hardware to achieve a speedup of
overall execution times. Srivastava and
Broderseng and Buck et present
frameworks for generating hardware
and software components of a system.
Investigators have proposed several new
architectures that use field-programma-
ble gate arrays to create special-purpose
coprocessors to speed up applications
(PAM", MoMI2) or to create prototypes
(Q~ickTurn'~).

Capiurin specification of system
functioncIity and constraints

We capture system functionality us-
ing a hardware description language,
Haudwa~eC.'~ The cosynthesis approach
formulated here does not depend upon
the particular choice of the HDL, and
could use other HDLs such as VHDL or
Verilog. However, the use of HardwareC
leverages the use of Olympus tools de-
veloped for chiplevel synthe~is.~

HardwareC follows much of the syntax
and semantics of the programming lan-
guage, with modifications necessary for
correct and unambiguous hardware

processor

Figure 5. Target architecture.

modeling. HardwareC description con-
sists of a set of interacting processes that
are instantiated into blocks using a d e
clarative semantics. A process model ex-
ecutes concurrently with other processes
in the system specification. A process r e
starts itself on completion. Operations
within a process body allow for nested
concurrent and sequential operations.

Figure 6 shows an example of an HDL
functionality specification. This exam-
ple performs two data input operations,
followed by a conditional in which a
counter index is generated. The specifi-
cation uses counter index z to seed a
downcounter indicated by the while
loop. A graph-based representation as
shown captures this HDL specification.

In general, the system model consists
of a set of hierarchically related se-
quencing graphs. Within a graph, verti-
ces represent languagelevel operations
and edges represent dependencies be-

SEPTEMBER 1993 31

. .

process counter(a,b,c)
in port a[8];
in channel b[8];
out port c[8];

boolean x[8], y[8], z[8]; False True
{

GO

Operation delay in cycles GlOop

Figure 6. Example of input specification and capture.

tween the operations. Such a represen-
tation makes explicit the concurrency
inherent in the input specification, thus
making it easier to reason about proper-
ties of the input description. As we shall
soon see, it also allows us to analyze tim-
ing properties of the input description.

Model properties. The sequencing
graph is a polar one with source and
sink vertices that represent no-opera-
tions. Associated with each graph mod-
el is a set of variables that defines the
shared memory between operations in
the graph model. Source and sink verti-
ces synchronize executions of opera-
tions in a graph model across multiple
iterations. Thus, polarity of the graph
model ensures that there is exactly one
execution of an operation with respect
to each execution of any other opera-
tion. This makes execution of opera-
tions within a graph single rate (Figure
7). The set of variables associated with a
graph model defines the storage common
to the operations; it sewes to facilitate com-
munication between operations.

Given the singlerate execution model,
i t is relatively straightforward to ensure

ordering of operations in a graph model
that preserves integrity of memory shared
between operations. However, opera-
tions across graph models follow multi-
rate execution semantics. That is, there
may be variable numbers of executions
of an operation for an operation in anoth-
er graph model. Because of this multirate
nature of execution, the operations use
messagepassing primitives like send and
receive to implement communications
across graph models. Use of these primi-
tives simplifies specification of inter.
model communications. A multirate
specification is an important feature for
modeling heterogeneous systems, b e
cause the processor and applicationspe
cific hardware may run on different
clocks and speeds.

HDL descriptions contain operations to
represent synchronization to external
events, such as the receive operation, as
well as datadependent loop operations.
These operations, called nondeterministic
delay (ND) operations, present unknown
execution delays. The ability to model ND
operations is vital for reactive embedded
system descriptions. Figure 6 indicates ND
operations with double circles.

Graph model

Single

Graph model

Messages

Single
Mult i rate

~ Figure 7. Properties of the graph model.

A system model may have many pos-
sible implementations. Timing con-
straints are important in defining specific
performance requirements of the desired
implementation. As shown in Figure 8,
timing constraints are of two types:

Min/max delay constraints: These
provide bounds on the time interval
between initiation of execution of
two operations.
Execution rate constraints: These
provide bounds on successive initi-
ations of the same operation. Rate
constraints on input/output opera-
tions are equivalent to constraints
on throughput of respective inputs/
outputs.

These two types of constraints are suf-
ficient to capture constraints needed by
most real-time system^.'^ Our synthesis
system captures minimum delay con-
straints in the graphical representation
by providing weights on the edges to in-
dicate delay of the corresponding
source operation. Capturing maximum
delay constraints requires additional
backward edges (Figure 9).

Model analysis. Having captured
system functionality and constraints in a
graphical model, we can now estimate
system performance and verify the con-
sistency of specified constraints. Perfor-
mance measures require estimation of
operation delays. We compute these
delays separately for hardware and soft-
ware implementations based on the

32 IEEE DESIGN & TEST OF COMPUTERS

type of hardware to be used and the pro-
cessor used to run the software. A pro-
cessor cost model captures processor
characteristics. It consists of an execu-
tion delay function for a basic set of pro-
cessor operations, a memory address
calculation function, a memory access
time, and processor interruption re-
sponse time.

Timing constraint analysis attempts to
answer the following question: Can im-
posed constraints be satisfied for a given
implementation? We indicate an imple-
mentation of a model by assigning ap-
propriate delays to the operations
with known delays (not ND) in the
graph model. Constraint satisfiability r e
lates to the structure as well as the actu-
al delay and constraint values on the
graph. Some structural properties of the
graphs (relating to ND operations and
their dependencies) may make a con-
straint unsatisfiable regardless of the ac-
tual delay values of the operations.
Further, some constraints may be mutu-
ally inconsistent: for example, a maxi-
mum delay constraint between two
operations that also have a larger mini-
mum delay constraint. No assignment of
nonnegative operation delay values can
satisfy such constraints.

In the presence of ND operations in a
graph model, we consider a timing con-
straint satisfiable if it issatisfied for all pos-
sible (and maybe infinite) delay values of
the ND operations. We consider a timing
constraint marginally satisfiable if it can
be satisfied for all possible values within
specified bounds on the delay of the ND
operations. Marginal satisfiability analysis
is useful because it allows the use of tim-
ing constraints that can be satisfied under
some implementation assumptions (ac-
ceptable bounds on ND operation de-
lays). Without these assumptions the
general timing constraint satisfiability
analysis would otherwise consider these
constraints ill-posed.I6

We perform timing constraint analysis
by graph analysis on the weighted s e
quencing graphs. Consider first the case

' where the graph model does not contain
any ND operations. Here, we can label

, every edge in the graph with a finite and
known weight. In such a graph, we can-
not satisfy a min/max delay constraint if a
positive cycle in the graph model exists.I6
Next, in the presence of ND operations,
timing constraints are satisfiable if no cy-
cles containing ND operations exist. For a
cycle containing an ND operation, it is
impossible to determine satisfiability of

~ timing constraints, and only marginal sat-
isfiability can be guaranteed. As we will
see, it is possible to break the cycle by
graph transformations that preserve the
HDL program semantics.

For nonpipelined implementations, we
can treat rate constraints as min/max d e
lay constraints between corresponding

~ source and sink operations of the graph
1 model. Thus we can apply the above min/

max constraint satisfiability criterion to the I analysis of rate constraints.
Note that in some cases system

i throughput (specified by rate con-
1 straints) can be optimized significantly

with little or no impact on system laten-
' cy by using a pipelined execution mod-
~ el and extra resources. Indeed, for

deterministic and fixed-rate systems par-
ticularly used for digital signal process- i ing applications, researchers have
developed extensive transformations
that determine and achieve bounds on
system throughput.I7 However, as noted

,

Time
t

L

c: m
a: I Minimax .I I. Rate .I

Figure 8. Timing constraints.

Figure 9. Representation of timing
constraints: min/max constraint {a), rate
constraint {b).

bounded loop. The ND operation induc-
es a bipartition of the calling process, P
= Fu B, such that the set of operations in
F (for example, the read operation in
process test) must be performed before
invoking the loop body. Further, the set
of operations in B can only be per-
formed after completing executions of

earlier, systems modeled by the se- i the loop body. We can then use func-
quencing graphs generally operate at ~ tional pipelining of F, B, and the loop to
different rates. In addition, because of ' improve the reaction rate of P. Since we
the presence of ND operations due to ~ assume nonpipelined hardware, these
loops, the rate at which a particular o g transformations are used only in the
eration executes may change over time. context of the software component.
While this property is essential for model-
ing controldominated embedded sys- Constraint analysis and software.
terns, it aggravates the problem of , The linear execution semantics imposed
determining absolute bounds on achiev- by the software running on a single-pro-
able system throughput. cessor target architecture complicates

We illustrate the issue of rate con- constraint analysis for a software imple
straints on graphs containing ND opera- ~ mentation of a graph model. That is, per-
tions in Example A (next page). forming delay analysis for software

In general, consider a process P that 1 operations requires a complete order of
contains an ND operation due to an un- I operations in the graph model. In creat-

~

SEPTEMBER 1993 33

,
~ ExampIeA

~ Consider the following process
fragment

process test (p, . . .)

I
in port p [SIZE];

...
v = read p ;
while (v >= 0)
{

I

< loop-body >
v = v - 1 ;

1

Here, vis a Boolean array that rep-
resents an integer. In the presence of
rate constraint ron the readoperation,
the constraint graph has a cycle con-
taining an ND operation relating to the
unbounded while loop operation. Note
that the rate constraint corresponds to
directed edge from sink tto source s in
the graph of Figure A.

The overall execution time of the while
loop determines the interval between

/

~~

successive executions of the read oper-
ation. Due to this variable-delay loop op-
eration, the input rate at port p is variable
and cannot always be guaranteed to
meet the required rate constraint. In gen-
eral, determining achievable throughput
at port p is difficult. As we explain next,
marginal satisfiability of the rate con-
straint can be ensured by graph transbr-
motions and by using a finite-size buffer.

Figure A shows the sequencing
graph model P corresponding to pro-
cess test. Identifier rd refers to the read
operation, /p refers to the while loop
operation. Symbols PI, P2, and so forth
in the execution trace below indicate
successive invocations of the process
test. L I, 12, 13, and 14 indicate multi-
ple invocations of the /p operation. De-
pending on the side effects produced
by the loop-body, the original graph P
can be transformed into fragments Q
and R such that executions of Q and R
can overlap to improve the throughput
of the read operation in Q. Data trans-
fers from Q to R by means of a buffer.
See Example B on page 37 for a con-
sideration of a software implementa-
tion of P.

/-? m faR
AI /\

5 q q q q i T ml-'m
Figure A. Breaking ND cycle by graph transformation

ing a complete order of operations, it is
likely that unbounded cycles may be cre
ated, which would make constraints
unsatisfiable.

Asshown in Figure 10, any serialization
that puts an ND operation between two
operations opl and op2 will make any
maximum delay constraint between opl

Partially ordered
constraint graph

Completely ordered
constraint graph

OP1 74
- wait A I a -U

op2 0' n2

Figure IO. Linearization in sobare leads
to creation ofunsotisfiable timing con-
straints. Constraint maxtime from op I to
op2 = U cycles.

and op2 unsatisfiable. However, note that
while all computations must be per-
formed serially in software, communica-
tion operations can proceed concurrently.
In other words, it is possible to overlap ex-
ecution of ND operations (wait for syn-
chronization or communication) with
some (unrelated) computation. But such
an overlap requires the ability to schedule
operations dynamically in software since
the simultaneously active ND operations
may complete in orders that cannot be
determined statically.

Typically, dynamic scheduling of o p
erations involves delay overheads due
to selection and scheduling of opera-
tions. Therefore, a good model of soft-
ware is to think of software as a set of
fixed-latency concurrent threads (Figure
11). We define a thread as a linearized
set of operations that may or may not
begin by an ND operation indicated by
a circle in Figure 1 1. Other than the be-
ginning ND operation, a thread does not
contain any ND operations. We consid-
er the delay of the initial ND operation
part of the scheduling delay and, there-
fore, not included in the latency of the
program thread. Use of multiple concur-
rent program threads instead of a single
program to implement the software also
avoids the need for complete serializa-
tion of all operations that may create un-

34

1-

IEEE DESIGN & TEST OF COMPUTERS

I

Figure 1 I . S o b a r e model to avoid cre-
ation of ND cycles.

bounded cycles.
In this software model, we can check

marginal satisfiability of constraints on
operations belonging to different threads,
assuming a fixed and known delay of
scheduling operations associated with
ND operations (context switch delay, for
example).

System partitioning
The system-level partitioning problem

refers to the assignment of operations to
hardware or software. The assignment
of an operation to hardware or software
determines the delay of the operation. In
addition, assignment of operations to a
processor and to one or more applica-
tion-specific hardware circuits involves
additional delays due to communica-
tion overheads.

Any good partitioning scheme must at-
tempt to minimize this communication.
Further, as operations in software are im-
plemented on a single processor, incre*
ing operations in software increases
processor utilization. Consequently, over-
all system performance depends on the ef-
fect of hardwaresoftware partition on
utilization of the processor and the band-
width of the bus between the processor
and applicationspecific hardware.

A partitioning scheme thus must at-
tempt to capture and make use of a par-
tition’s effect on system performance in
making trade-offs between hardware
and software implementations of an op-
eration. An efficient way to do this
would be to devise a partition cost func-

c
0 c

c 5 Statistical

x
0 = Deterministic

bounds

I

c

r: -

c

a
D

I
Hardware- ~

software i

i

i=
1 Static Partial Dynamic

Scheduling flexibility

Figure 12. Use of timing properties in partition cost function

tion that captures these properties. We
would then use this function to direct
the partitioning algorithm toward a de-
sired solution, where an optimum solu-
tion is defined by the minimum value of
the partition cost function.

Note that we need to capture not only
the effects of sizes of hardware and soft-
ware parts but also the effect on timing
behavior of these portions in our parti-
tion cost function. In contrast, most par-
titioning schemes for hardware have
focused on optimizing area and pinout
of resulting circuits. Capturing the effect
of a partition on timing performance
during the partitioning stage is difficult.
Part of the problem arises because the
timing properties are usually global in
nature, thus making it difficult to make
incremental computations of the parti-
tion cost function as is essential for
developing effective partition algo-
rithms. Approximation techniques have
been suggested to take into account the
effect of a partition on overall latency.I8

Note, however, that partitioning in the
software world does make extensive use
of statistical timing properties to drive the
partitioning algorithms.I9 We draw the
distinction between these two extremes
of hardware and software partitioning by
the flexibility to schedule operations.
Hardware partitioning attempts to divide
circuits that implement scheduled opera-

tions. Conversely, the program-level parti-
tioning addresses operations that are
scheduled at runtime.

Our approach to partitioning for hard-
ware and software takes an intermediate
approach. Asshown in Figure 12, we use
deterministic bounds on timing proper-
ties that are incrementally computable
in the partition cost function. That is, we
can compute the new partition cost
function in constant time. We accom-
plish this by using a software model in
terms of a set of program threads as
shown in Figure 11 and a partition cost
function, f , that is a linear combination
of its variables. The following properties
characterize this software component:

w Thread latency A, (seconds) indi-
cates the execution delay of a prc-
gram thread.

w Thread reaction rate p, (per sec-
ond) is the invocation rate of the
program thread.
Processor utilization Pis calculat-
ed by

P - C A , .p ,
/ = I

w Bus utilization B (per second) is
the total amount of communication
taking place between the hardware
and software. For a set of m vari-

SEPTEMBER 1993 35

C O S Y N T H E S I S
_.

ables to be transferred between
hardware and software,

rn

B = C Y ,
J=l

yi is the inverse of the minimum
time interval (in seconds) between
two consecutive samples for vari-
ablej, which is marked for destina-

w Timing constraints are satisfied for

w Processor utilization, P I 1.
Bus utilization, B I B.

w A partition cost function, f = f (S ,

the two sets of graph models.

B, PI, m) is minimized.

An exact solution to the constrained
partitioning problem-a solution that
minimizes the partition cost function-

tion rate ?, of a program thread is com-
puted as the inverse of its latency. The
latency of a program thread is computed
using a processor delay cost model and
includes a fixed scheduling overhead
delay.

From an initial solution we perform
iterative improvement by migrating o p
erations between the partitions. Migra-
tion of an operation across a partition

tion to one of the program threads. requires that we examine a large number
of solutions. Typically, that number is ex-

affects its execution delay. It also affects
the latency and reaction rate of the

Characterization of software using h,
p, P, and B parameters makes it possible
to calculate static bounds on software
performance. Use of these bounds is
helpful in selecting an appropriate parti-
tion of system functionality between
hardware and software. However, it also
has the disadvantage of overestimating
performance parameters such as pro-
cessor and bus bandwidth utilization.
Typically, there is a distribution of
thread invocations and communica-
tions based on actual data values being
transferred, which is not accounted for
in these parameters.

We compute hardware size S, bot-
tom-up from the size estimates of the re-
sources implementing the individual
operations. In addition, we characterize
the interface between hardware and

ponential to the number of operations
under partition. As a result, designers of-
ten use heuristics to find a “good” solu-
tion, with the objective of finding an
optimal value of the cost function that is
minimal for some local properties.

Most common heuristics to solving
partitioning problems start with a con-
structive initial solution that some itera-
tive procedure can then improve.
Iterative improvement can follow, for ex-
ample, from moving or exchanging oper-
ations and paths between partitions. A
good heuristic is also relatively insensitive
to the initial solution. Typically, exchange
of a larger number of operations makes
the heuristic more insensitive to the start-
ing solution, at the cost of increasing the
time complexity.

In the following, we describe the intu-
software by a set of communication itive features of the partitioning algo-
ports (one for each variable) between rithm. We have presented details
hardware and software that communi- elsewhere.20 The procedure identifies
cate data over a common bus. The over- operations that can be implemented in
head due to communication between software such that the corresponding
hardware and software is manifested by constraint qraph implementation can be

thread to which this operation is moved.
We similarly compute its effect on pro-
cessor and bus bandwidth utilization. At
any step, we select operations for migra-
tion so that the move lowers the com-
munication cost, while maintaining
timing constraint satisfiability. In addi-
tion, we check for communication feasi-
bility by verifying that pi 2 pi for each
thread, and that processor and bus utili-
zation constraints are satisfied.

System synthesis
From partitioned graph models, our

next problem is to synthesize individual
hardware and software components.
KuI4 and address in detail the
generation of hardware circuits for se-
quencing graph models. Therefore, we
concentrate on generation of software
and interface circuity from partitioned
models. The problem of software synthe
sis is to generate a program from parti-
tioned graph models that correctly
implements the original system function-
ality. We assume that the resulting pre

the utilization of bus bandwidth as de-
scribed earlier.

satisfied a id the resultingsoftware (as a
set of program threads) meets required

gram is mapped to real memory, so the
issues related to memory management

Given the cost model for software. rate constraints on its inputs and out-
hardware, and interface, we can infor-
mally state the problem of partitioning a
specification for implementation into
hardware and software as follows:

From a given set of sequencing graph
models and timing constraints between
operations, create two sets of sequenc-
ing graph models such that one can be
implemented in hardware and the other
in software and the following is true:

puts. As an initial partition we assume
that ND operations related to data-
dependent loop operations define the
beginning of program threads in soft-
ware, while all other operations are im-
plemented in hardware. The rate
constraints on software inputdoutputs
translate into bounds on required reac-
tion rate p, of corresponding program
thread q. Maximum achievable reac-

are not relevant to this problem. The par-
titioning discussed previously identified
graph models that are to be implemented
in hardware and operations (organized
as program threads) that are to be imple-
mented in software. See Example B.

The program generation from a
thread can either use a coroutine or sub-
routine scheme. Since, in general, there
can be dependencies into and from the
program threads, a coroutine model is

36

1-

IEEE DESIGN & TEST OF COMPUTERS

Example B

the variables common to SI and S2. In
such cases we can use data buffers be-

We can implement the process test
shown in Example A as following
two program threads in software.

Thread T1 Thread T2

read v loop-synch
detach <loop-bodp

v= v- 1
detach

In its software implementation of
process test, thread T1 performs the
reading operations, and thread T2
consists of operations in the body of
the loop. For each execution of
thread T1 there are v executions of
thread T2.

more appropriate. A dependency be-
tween two operations can be either a
data or a control dependency. Depend-
ing upon predecessor relationships and
timing of the operations, we can make
some of these redundant by inserting
other dependencies such that resulting
program threads are convex-all exter-
nal dependencies are limited to the first
and last operations.

For a given subgraph corresponding to
a program thread, we can move an in-
coming data dependency up to its first
operation and move an outgoing data
dependency down to its last operation.
This procedure produces a potential loss
of concurrency. However, it makes the
task of routine implementation easier
since we can implement all the routines as
independent programs with statically em-
bedded control dependencies.

Rate constraints and software. In
the presence of dependencies on ND
operations, we cannot always guarantee
that a given software implementation
will meet the data rate constraints on its

Example C
Consider the threads T I and T2 gen-

erated from process test mentioned in
Example A. The overall execution time
of the while loop determines the interval
between successive executions of the
read operation. Due to this variable-de-
lay loop operation, the input rate at port
pis variable x) we cannot always guar-
antee the reaction rate of T1. Since the
set of operations in loop-body may al-
ter the contents of memory in process
test, thread T1 must be blocked until the
completion of T2. Thus the process test
can be thought of as consisting of two
parallel processes, as shown in Figure B.
We need the first operation of thread T2,
wait1 , to observe the data dependency
of operations in thread T2. We need the
second wait operation, wait2, to guar-
antee that any memory side effects of T2
for variables in T1 are correctly reflect-
ed. To obtain a deterministic bound on
the reaction rate of the calling thread, it
is possible to unroll the looping thread
by creating a variable number of pro-
gram threads. However, in this case
each iteration of the looping thread
would carry scheduling overhead. Dy-
namic creation of program threads may
also lead to violation of processor utili-
zation constraint as described in previ-
ous sections.

However, it is possible to overlap ex-
ecution of loop thread T2 with execu-
tion of thread T I , and to ensure
marginal timing constraint satisfiabili-
Iy. Note that we can remove operation

~

I/O ports. In case of synchronization-
related ND operations, we can check for
marginal satisfiability of timing con-
straints by assigning a context-switch d e
lay to the respective wait operations.
However, in the case of unbounded
loop-related ND operations, the delay
due to these operations consists of ac-

Reference
1 R K Gupta, C Coelho, and G De

Micheli, “Program Implementation
Schemes for Hardwaresoftware Sys-
terns, ’ Notes of Int’l Workshop Hard-
ware-Software Codesign, Oct 1992,
and CSLTech Repott TR-92-548, Stan-
ford University, Stanford, Calif, 1992

rive computation time. Marginal timing
satisfiability analysis therefore requires
that we estimate loop index values. We
illustrate this in Example C.

Hardware-software interface. Be-
cause of the serial execution of the soft-
ware component, a data transfer from

SEPTEMBER 1993 37

~ Example D
Consider the mixed implementation of a graphics controller that contains two

threads for generation of line and circle coordinates in software as shown in Fig-
ure C. The interface protocol using control FIFO is specified as follows:

queue [2] controlFIFO [l] ;
queue [1 6 1 line-queue [1 1, circle-queue [1 1;

when ((line-queue.dequeue-rq+ & !line-queue.empty) & !controlFIFO.full) do
controlFIFO enqueue #2;
when ((circle-queue.dequeue-rq+ & !circle-dequeue.empiy) & !controlFIFO.full)
do controlFIFO enqueue # l ;
when (controlFIFO.dequeue-rq +&!controlFIFO.ernpty)do controlFIFO de-
queue dlx.OxffOOO[l :O];

In this example, two data queues with 1 6 bits of width and 1 bit of depth, line-queue
and circle-queue, and one queue with 2 bits of width and 1 bit of depth, con-
frolFIF0, are declared. The guarded commands specify the conditions on which
the number 1 or the number 2 is enqueued-here, a '+' after a signal name means
a positive edge and a '-' after the signal means a negative edge. The first when
condition states that when a dequeue request for the queue line-queue arrives
and this queue is not empty and the queue controlFlF0 is not full, then enqueue
the value 2 (representing identifier for a corresponding program thread that con-
sumes data from the line queue) into the confrolFIF0.

ASIC
hardware

Processor

Circle data queue
Circle

Control FIFO

Figure C. Mixed implementation.

hardware to software must be explicitly
synchronized. By using a polling strategy,
we can design the software component to
perform premeditated transfers from the
hardware components based on its data
requirements. This requires static sched-
uling of the hardware component.
Where software functionality is limited

by communications-that is, where the
processor is busy waiting for an input-
output operation most of the time-
such a scheme would suffice. Further, in
the absence of any unbounded-delay
operations, we can simplify the software
component in this scheme to a single
program thread and a single data chan-

nel since all data transfers are serialized.
However, this approach would not sup-
port any branching nor any reordering
of data arrivals, since the design would
not support dynamic scheduling of o p
erations in hardware.

To accommodate differing rates of
execution among the hardware and
software components, and due to un-
bounded delay operations, we look for
a dynamic scheduling of different
threads of execution. Availability of data
forms the basis for such a scheduling.
One mechanism to perform such sched-
uling is a control FIFO (first in, first out)
buffer, which attempts to enforce the
policy that data items are consumed in
the order in which they are produced.
As shown in Example D, the hardware-
software interface consists of data
queues on each channel and a control
FIFO that holds the identifiers for the en-
abled program threads in the order in
which their input data arrives. The con-
trol FIFO depth equals the number of
threads of execution, since a thread ex-
ecution stalls pending availability of the
requested data.

Note that thread scheduling by means
of a control FIFO does not explicitly prior-
itize the program threads. This is because,
for safety reasons, the control FIFO serves
program threads strictly in the order in
which their identifiers are enqueued. In
some systems we may want to invoke a
program thread as soon as its needed
data becomes available. Such systems
would be better served by a preemptive
scheduling algorithm based on relative
priorities of the threads. However, pre
emption comes at significant operating
system overhead. In contrast, nonpre-
emptive prioritized scheduling of pro-
gram threads is possible with relatively
minor modifications to control FIFO.
Example E describes the actual intercon-
nection schematic between hardware
and software for a single data queue.

We can implement the control FIFO
and associated control logic either in
hardware as a part of the ASIC compo-

38 IEEE DESIGN & TEST OF COMPUTERS

nent or in software. I f we implement the
control FIFO in software, the system no
longer needs the FIFO control logic
since the control flow is already in soft-
ware. In this case, the q-rq lines from
data queues connect to processor un-
vectored interruption lines, where the
system uses respective interruption ser-
vice routines to enqueue the thread
identifier tags into the control FIFO. Dur-
ing the enqueue operations the system
disables the interruptions to preserve in-
tegrity of the software control flow.

Example
As an experiment in achieving mixed

system designs, we attempted synthesis
of an Ethernet-based network coproces-
sor. The coprocessor is modeled as a set
of 13 concurrently executing processes
that interact with each other by means
of 24 send and 40 receive operations.
The total description consists of 1,036
lines of HDL code. A hardware-software
implementation of the coprocessor
takes 8,572 bytes of program and data
storage for a DLX processorz1 and 8,394
equivalent gates using an LSI Logic 10K
library of gates.

We can thus build the mixed imple-
mentation using only one ASIC chip
plus an off-the-shelf processor. A com-
plete hardware implementation would
require use of a custom chip or two ASIC
chips. More importantly, we can guaran-
tee that the mixed solution using a DLX
processor running at 10 MHz will meet
the imposed performance requirements
of a maximum propagation delay of 46.4
ps, a maximum jam time of 4.8 ps, a min-
imum interframe spacing of 67.2 p, and

Example E
Figure D shows schematic connection of the FIFO control signals for a single

data queue. In this example, the data queue is memory mapped at address
OxeeOOO while the data queue request signal is identified by bit O of address
OxeeOO4 and enable from the microprocessor (up-en) is generated from bit 0 of
address OxeeOO8. The following describes the FIFO and microprocessor con-
nections. cntc refers to a data queue associated with the circle drawing program
threads. rnp refers to a model of the microprocessor. A signal name is prefixed
with a period to indicate the associated hardware or software model.

cntc.rq-line [O:O] = @ mp.Oxee004[0:0];
cn tc. en-1 i ne [O:O] = mp.Oxee008[O:O];
cntc.ab-line [O:O] = mp.OxeeOOO-rd;

request
enable up en
absorb up ack

The control logic needed to generate the enqueue is described by a simple
state transition diagram shown in Figure E. The control FIFO is ready to enqueue
(indicated by gn = 1) process id if the corresponding data request (q-rq) is high
and the process has enabled the thread for execution (up-en). Signal up-ab in-
dicates completion of a control FIFO read operation by the processor.

In case of multiple in-degree queues, the enqueue-rq is generated by OR-ing
the requests of all inputs to the queues. In case of multiple-out-degree queues,
the signal dequeue-rq i s generated also by OR-ing all dequeue requests from
the queue.

gn=O

\

p-en & q-rq

gn= l

Figure E. FIFO controlstate transition
diagram. figure D. Control FIFO schematic.

~~~ ~ _ _ _ _  ~- ~~ ~ ~~~ 

an input bit-rate of 10 Mbytesk computing systems, it also affords an o p  
portunity in computer-aided design, by 
which we can automatically synthesize 
such systems from a unified specifica- 

SYNTHESIS or EMBEDDED REAL-TIME tion. Further, the ability to perform con- 
systems from behavioral specifications I straint and performance analysis for 
constitutes a challenging problem in 1 such systems provides a major motiva- 
hardwaresoftware cosynthesis. Due to tion for using the synthesis approach 
the relative simplicity of the target archi- instead of design-oriented implementa- 
tecture compared to general-purpose tion approaches. 

Even when manually designed, such 
systems can benefit greatly from proto- 
types created by a cosynthesis approach. 
A cosynthesis approach lets us reduce 
the size of the chip-synthesis task, while 
meeting the performance constraints, 
such that we can use field- or mask- 
programmable hardware to provide fast 
turnaround on complexsystem designs. 

For hardwaresoftware synthesis to be 

SEPTEMBER 1993 39 

. ---l 



effective, we need specification Ian- 
guages that capture and use capabilities 
of both hardware and software. The a p  
proach presented in this article makes 
use of an HDL to formulate the problem 
of cosynthesis as an extension of hard- 
ware synthesis. In the process, the ap- 

6. P. Chou, R. Ottega, and G. Borriello, “Syn- 
thesis of the HardwarelSoftware Inter- 
face in Microcontroller-Based Systems,’’ 
hoc. Int’l Conf Computer-Aided Design, 
IEEE Computer Society Press, Los Alam- 
itos, Calif., 1992, pp. 4W95 .  

7. M. Chiodo et al., “Synthesis of Mixed 
proach makes many simplifications for 
the generated software and leaves room 
for considerable optimization of the soft- 
ware component. 

Currently, we are attempting to develop 
transformations to simplify control flow in 
the sequencing graph models, which we 
can use to minimize interface synchroni- 
zation requirements. We also plan to i n v e  
tigate extensions to the target architecture 
to include hierarchical memory schemes 
and multiple processors. #@b 

Acknowledgments 
We acknowledge discussions and contri- 

butions by Claudionor Coelho and David 
Ku. This research was sponsored by NSF- 
ARPA, undergrant MIP9115432, and byafel- 
lowship provided by Philips at the Stanford 
Center for Integrated Systems 

References 
1. Silicon Compilation, D. Gajski, ed., Addi- 

son Wesley, Reading, Mass., 1988. 
2. High-Leuel VUISynthesis, R. Camposano 

and W. Wolf, eds., Kluwer Academic 
Publishers, Norwell, Mass., 1991. 

3. D.C. Luckham, “Partial Ordering of Event 
Sets and Their Application to Prototyping 
Concurrent Timed Systems,” J.  Systems 
andsoftware, July 1993. 

4. G. De Micheli et al., “The Olympus Syn- 
thesis System for Digital Design,” IEEE De- 

Hardwaresoftware Implementations 
from CFSM Specifications,” Memo UCBl 
ERL M93/49, June 1993, Univ. of Califor- 
nia at Berkeley, and Notes of Int’l Work- 
shop on Hardware-Software Codesign, 
Oct. 1992. 

8. J. Henkel and R. Emst, “Ein Softwareori- 
entierter Ansatz zum Hardwaresoftware 
CoEntwurf” [A Software-oriented Ap- 
proach to Hardwaresoftware Codesign], 
Roc. 17% Conf , Recnergestuetzter En- 
twurf und Architektur mikroelektroninish- 
er Systeme, Darmstadt, Germany, 1992, 

9. M.B. Srivastava and R.W. Brodersen, 
“Rapid-Prototyping of Hardware and 
Software in a Unified Framework,” Roc. 
Int’l Con[ Computer-Aided Design, IEEE 
CSPress, 1991, pp. 152.155. 

10. J. Buck et al., “Ptolemy: A Framework for 
Simulating and Prototyping Heteroge- 

pp. 267-268. 

neous Systems,” to be published in Int’l 
J.  Computer Simulations. 

1 1.  P. Bertin, D. Roncin, and J. Vuillemin, “ln- 
troduction to Programmable Active 
Memories,” in Systolic Away pfocessors, ~ 

J. McCanny, J. McWhirter, and E. Swartz- ~ 

lander, Eds., Prentice Hall, New York, 
1989, pp. 30@309. 

12. R.W. Hattenstein, A.G. Hirschbiel, and M. 
Weber, “Mapping Systolic Arrays Onto 
the Maporiented Machine,” in Systolic 
Away Processors, J. McCanny, J. McWhirt- 
er, and E. Swattzlander, eds., Prentice 
Hall, New York, 1989, pp. 300-309. I 

13. S. Walters, “Reprogrammable Hardware ~ 

Emulation Automates System-Level ASIC ~ 

~ 

15. B. Dasarathy, “Timing Constraints of Real- 
Time Systems: Constructs for Expressing 
Them, Method for Validating Them,” 
IEEE Trans. Software Engineering, Vol. 
SE-1 1, No. 6, Jan. 1985, pp. 80-86. 

16. D. Ku and G.De Micheli, “Relative Sched- 
uling Under Timing Constraints: Algc- 
rithms for High-level Synthesis of Digital 
Circuits,” IEEE Trans. CADIICAS, Vol. 11 ., 
No. 6, June 1992, pp. 696718. 

17. K.K. Parhi, “Algorithm Transform for Con- 
current Processors,” Proc. IEEE, Dec. 
1989, IEEE Press, Piscataway, N.J., pp. 
18791 985. 

18. R.K. Gupta and G. De Micheli, “Partition- 
ing of Functional Models of Synchronous 
Digital Systems,”Boc. Int7Conf Computer- 
AidedDesign,lEEECSPress, 1990, pp.216 
219. 

19. V. Sarkar, Partitioning and Scheduling 
Parallel Programs forMultiprocessors> MIT 
Press, Cambridge, Mass, 1989. 

20. R.K. Gupta and G. De Micheli, “System- 
Level Synthesis Using Reprogrammable 
Components,” Proc. European Design 
Automation Conf ,  IEEE CS Press, 1992, 

21. J.L. Hennessy and D.A. Patterson, Com- 
pp. 2-7. 

sign & Test o f  Computers, Vol. 7 ,  No. 5, 
Oct. 1990, pp. 37-53. 

5. N.  Woo, W. Wolf., and A. Dunlop, ‘Tom- 
pilation of a Single Specification Into 
Hardware and Software,” Notes of Int ’I  
Workshop Hardware-So ftware Codesign, 
Oct. 1992. 

Validation,” Wescon/SO Conf Records, 
Electron. Conventions Mgt., Nov. 1990, 
pp. 140-143. 

14. D. Ku and G. De Micheli, High-Leuel Syn- 
thesis ofASlCs Under Kming andSynchre 
nization Constraints, Kluwer Academic 
Publishers, Nonvell, Mass., 1992. 

puter Architecture: A Quantitative A p  
proach, Morgan Kaufman Publishers, 
Palo Alto, Calif., 1990, pp. 88137. 

Department of Electrical Engineering at Stan- 
ford University. His primaly research interests 
are the design and synthesis of VLSl circuits 
and systems. Gupta received an MS in electri- 
cal engineering and computer science from 
the University of California, Berkeley, and a 
BTech in electrical engineering from the In- 

40 IEEE DESIGN & TEST OF COMPUTERS 



dian Institute of Technology in Kanpur. Earli- 
er he worked on VLSl design at various levels 
of abstraction as a member of the design 
teams for the 8038&SX, 486, and Pentium mi- 
croprocessor devices at Intel. He is coauthor 
of a patent on a PLL-based clock circuit, and 
is currently a Philips fellow at the Center for 
Integrated Systems at Stanford. 

sor of electrical engineering and computer 
science at Stanford University. His research 
interests include several aspects of the com- 
puter-aided design of integrated circuits with 
particular emphasis on automated synthesis, 
optimization, and verification of VLSI cir- 
cuits. He is coeditor of Design Systems for 
VU1 Circuits: Logic Synthesis and Silicon 
Compilation, and coauthor of High-Level 
Synthesis o f  ASKS Under Timing and Syn- 
chronization Constraints. He graduated from 
the Politecnico di Milano with a degree in 
nuclear engineering and received a PhD in 
electrical engineering and computer sci- 
ence from the University of California, Ber- 
keley. De Micheli is a senior member of the 
IEEE and is associate editor of the IEEE Pro- 
ceedings, the IEEE Transactions on VLSISys- 
terns, and Integration: The VLSIJoumal. 

Send correspondence about this article to 
the authors at the Center for Integrated Sys- 
tems, CIS 18, Stanford University, Stanford, 
CA 94305; rgupta@momus.stanford.edu. 

SEPTEMBER 1993 

VLSl  A L G O R I T H M S  
AND A R C H I T E C T U R E S  

Fundamentals 
edited b y  N. Ranganathan 

This first book introduces basic approaches to the design of VLSI algorithms and architec- 
tures and provides a reliable reference source for advanced readers. It addresses introductory 
and fundamental topics related to VLSI algorithms and architectures and provides a concise 
tutorial on the subject. The chapters in this volume: 

+ Introduce Basic Concepts  and  Discuss Var ious  Issues 

+ Present  Papers  on Sys to l ic  and  Wavefront  Arrays  
+ Focus  on VLSI  Implementation of Data Structures and  Sorting 
+ 
+ Address  Impor tan t  Appl ica t ion  Areas  

Related to the Design of VLSI Algorithms and Architectures 

Deal with VLSI Structures for Matrix and Algebraic Computations 

Sections: An Overview of VLSI Algorithms and Architectures, Systolic and Wavefront 
Arrays, Data Structures and Sorting, Matrix and Algebraic Computations, Pattern 
Matching and Text Retrieval, VLSI Processor Designs. 

320pages July 1993 Hardcover ISBN 0-8186-4392-7 
Catalog # 4392-01 - $40 00 Members $32 00 

VLSl  A L G O R I T H M S  
A N D  A R C H I T E C T U R E S  

Advanced Concepts 
edited b y  N. Ranganathan 

This companion volume features an in-depth examination into the latest designs of VLSI 
algorithms and architectures for the engineering community. It contains many new studies and 
elaborates on various computationally intensive problems requiring VLSI solutions. It also 
addresses advanced techniques and VLSI architectures for a broad range of application areas. 

The first chapter discusses important architectural design issues as well as the realization of 
these architectures as VLSl systems. It discusses design issues such as layout methodology, 
processor synchronization, area-time trade-offs, and performance. The next chapter focuses on 
advanced concepts for systolic arrays and algorithms for the automatic synthesis of systolic 
arrays. The subsequent chapters describe special-purpose architectures for a wide range of 
computationally intensive problems. They discuss special-purpose architectures; VLSI chips 
for problems in image and speech processing, Al. and vision applications; application issues for 
dictionary machines and data compression; and hardware architectures for iterative algorithms. 

Sections: VLSI Architecture Design Issues: Advanced Topics in Systolic Arrays; 
Image, Speech, and Signal Processing: Artificial Intelligence and Computer Vision; 
Dictionary Machines and Data Compression; Iterative Algorithms. 

320pages July 1993. Hardcover 

Catalog # 4402-01 ~ $40.00 Members $32 00 
ISBNO-8186-4402-8 

To order call toll-free 

1 -800-CS-BO0 KS 
in CA - 71 41 821-8380 + FAX - 71 41 821-4641 

mailto:rgupta@momus.stanford.edu

