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A Survey of Design Technigues for System-Level
Dynamic Power Management

Luca Beninj Member, IEEEAlessandro BogliolpMember, IEEEand Giovanni De MicheliFellow, IEEE

Abstract—Dynamic power managemer(DPM) is a design computers are VLSI chips, HDD, and display. It is often the
methodology for dynamically reconfiguring systems to provide case that the HDD and the display are the most power-hungry
the requested services and performance levels with a minimum components [1], and thus their effective use is key to achieving

number of active components or a minimum load on such com- ting ti betw batt h
ponents. DPM encompasses a set of techniques that achievegOng Operating imes betwween Dallery recharges.

energy_efﬁcient Computation by Se|ective|y turning off (Or re- To be Competitive, an e|eCtI‘0niC deSign must be able to de”Ver
ducing the performance of) system components when they are idle peak performance when requested. Nevertheless, peak perfor-
(or partially unexploited). mance is required only during some time intervals. Similarly,

In this paper, we survey several approaches to system-level dy- oystem components are not always required to be in the active

namic power management. We first describe how systems employ I -
power-manageable components and how the use of dynamic re. State. The ability to enable and disable components, as well as of

configuration can impact the overall power consumption. We then tuning their performance to theorkload(e.g., user’s requests),
analyze DPM implementation issues in electronic systems, and weis key in achieving energy-efficient designs.
survey recent initiatives in standardizing the hardware/software Dynamic power manageme(iiPM) is a design methodology
interface to enable software-controlled power management of {hat gynamically reconfigures an electronic system to provide
hardware components. - . L
the requested services and performance levels with a minimum
Index Terms—Energy conservation, energy management, opti- number of active components or a minimum load on such com-
mization methods. ponents [1], [2]. DPM encompasses a set of techniques that
achieve energy-efficient computation by selectively turning off
|. INTRODUCTION (or reducing the performance of) system components when they
areidle (or partially unexploited). DPM is used in various forms
% most portable (and some stationary) electronic designs; yet
) o . . - its application is sometimes primitive because its full potentials
formance with a limited consumption of electric power. Hig re still unexplored and because the complexity of interfacing

per}‘ormance IS requweq by the mcreas_mgly complex app ieterogeneous components has limited designers to simple so-
cations (e.g., multimedia) that are running even on portaq ions

devices, Low-pqwer consumption is required to achieve accept-.l.he -fundamental premise for the applicability of DPM is that
able aut_o nomy in ba}ttery-powered syster_ns,_ as yvell as to_ red_gﬁgtems (and their components) experience nonuniform work-
the environmental impact (e.g., heat dissipation, cooling-i

duced noi d i  of stati ; In ot bads during operation time. Such an assumption is valid for
uced noise) and operation cost of stationary systems. In o st systems, both when considered in isolation and when in-

wor_ds, ach|eV|ng highly e.nergy.-efﬁment computation 1S @ networked. A second assumption of DPM is thatit is possible
major chall_enge in electronic de_S|gn. . to predict, with a certain degree of confidence, the fluctuations
Electronic _systems can be viewed as co!lecnons of COTBf workload. Workload observation and prediction should not
ponents, which may be heterogeneous in nature. So sume significant energy.
components may have mechanical parts, e.g., hard-disk drivef)ynamic power managers can have different embodiments
(HDD's), or optical parts, e.g., displays. For example, a cellul rccording to the level (e.g., component, system network)'
telephone has a digital very large scale integration (VLSa/Here DPM is applied and 'éo the physic,al realiza’ltion style
component, an analog radio-frequency (RF) component, -g., timer, hard-wired controller, software routine). Typically,

a display. Such components may be active at different tim Spower manage(PM) implements a control procedure based

and correspondingly consume dlffgrent fractions of the tel n some observations and/or assumptions on the workload.
phone power budget. Similarly, main components of portal

e control procedure is often callgalicy. An example of a
simple policy, ubiquitously used for laptops and palmtops, is
Manuscript received February 14, 1999; revised September 23, 1999, Tii¢timeoutpolicy, which shuts down a component after a fixed
work was supported in part by NSF under Contract CCR-9901190 and by iimactivity time, under the assumption that it is highly likely that
MARCO/DARPA Gigascale Silicon Research Center. =~ __acomponent remains idle if it has been idle for the timeout time.
L. Benini is with the Dip. di Elettronica, Informatica e Sistemistica, Un|verW hall sh in thi h hi . | inded l
sita di Bologna, Bologna 40136, Italy. e shall show In this paper how this simple-minded policy

A. Bogliolo is with the Department of Engineering, Universita di Ferraramay turn out to be inefficient and how it can be improved.

confronted with the problem of delivering high per

Ferrara 44100, Italy. __ This paper has the objective to cover and relate different
G. De Micheli is with the Computer Systems Laboratory, Stanford Unlversné . i

Stanford, CA 94305 USA. pproaches to system-level DPM. We begin by describing how
Publisher Item Identifier S 1063-8210(00)04347-X. systems employ power-manageable components and how the
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use of their dynamic reconfiguration can impact the overall

power consumption. Next, we review and compare different

approaches to DPM. We use a mathematical framework to ~10us

highlight the benefits and pitfalls of different power manage-

ment policies. We classify power management approaches

into two major classes, where policies are basegmudictive

schemesand stochastic optimum contrakespectively. Within

each class, we survey the approaches being applied to system Wait for interrupt Wait for wake-up event

design and/or described in the literature. Last, we present the

mean.s Of. mpler_nentmg DPM in e.le.c.tro.mc S.yStemS’ an(.j .V\glag. 1. Power state machine for the StrongARM SA-1100 processor.

describe in particular the recent initiatives in standardizing

hardware/software interface to enable software-controlled

power management of hardware components. Another important characteristic of real-life PMC's is that
transitions between modes of operation have a cost. In many
cases, the costis in terms of delay, or performance loss. If a tran-

[l. M ODELING POWER-MANAGED SYSTEMS sition is not instantaneous, and the component is not operational
during a transition, performance is lost whenever a transition is

INfiated. Transiti depends on PMC impl ion: i
ower manageable compone@MC's) controlled by power infliated. Transition cqst epends on imp e_m_entat|on. in
b some cases (see Section V) the cost may be negligible, but, gen-

manager(PM). We model PMC’s ablack boxesWe are not erally, it is not. There might also be a transition power cost: this

concerned on how PMC'’s are designed (this topic will be de- o : .
. . . IS often the case when transitions are not instantaneous. Itis im-
ferred to Section V), but we focus instead on how they interact o - )
. : . 7 ortant not to neglect transition costs when designing a PMC’s.
with the environment. The purpose of this analysis is to ui- . .
. : xcessive costs may make one or more low-power operation
derstand what type and how much information should be ex- o .
ates almost useless because it is very hard to amortize the cost
changed between a power manager and system componenigin.~ .. o
: . . ~_of transitioning in and out of them.
order to implement effective policies. We take a bottom-up view. C -
) Y A . In most practical instances, we can model a PMC by a finite-
We consider PMC’s inisolation first. Then we describe DPM for : .
i . . ; State representation call@dwer state machinPSM). States
systems with several interacting components. Finally, we ana-

. are the various modes of operation that span the tradeoff be-
lyze the problem of managing power fonatworkof commu- i,
- tween performance and power. State transitions have a power
nicating systems.

and delay cost. In general, low-power states have lower per-
formance and larger transition latency than states with higher
A. Power Manageable Components power. This simple abstract model holds for many single-chip

Our working definition ofcomponenis general and abstract.components like processors [14] and memories [7] as well as
A Component is an atomic block in a Comp|ete system' No“é@l’ devices such as disk drives [18], wireless network interfaces
that the granularity of this definition is arbitrary, hence compd19], displays [18], which are more heterogeneous and complex
nents can be as simple as a functional unit within a chip, or &n a single chip.
complex as a board. The characterizing property of our defini-Example 2.1:The StrongARM SA-1100 processor [3] is
tion is atomicity. At the system level, a component is seen @& example of PMC. It has three modes of operatieon,
an indivisible functional block: no detailed knowledge of its inIlDLE , andSLEEP. Run mode is the normal operating mode
ternal structure is assumed. The fundamental characteristicobthe SA-1100: every on-chip resource is functional. The chip
a PMC is the availability of multiplenodes of operatiothat €nters run mode after successful power-up and réBéE
span the power-performance tradeoff. Nonmanageable compde allows a software application to stop the CPU when not
nents are designed for a given performance target and poWetise, While continuing to monitor interrupt requests on or
budget. In contrast, with PMC's it is possible to dynamicall@ff chip. In idle mode, the CPU can be brought back to run
switch between high-performance high-power modes of opef@ode quickly when an interrupt occurSLEEP mode offers
tion and low-power low-performance ones. the greatest power savings and consequently the lowest level

It is possible to think that a PMC may have a continuou® available functionality. In the transition froRun or IDLE ,
range of operation modes, or that the number of modes cantB@ SA-1100 performs an orderly shutdown of on-chip activity.
very large. Intuitively, the availability of many operation mode @ transition fromSLEEPto any other state, the chip steps
gives fine control on how to operate a PMC in such a way thitrough a rather complex wake-up sequence before it can
power waste is minimized and performance is perfectly caliesume normal activity.
brated on the task. In practice, the number of modes of oper-The PSM model of the StrongARM SA-1100 is shown in
ation tends to be quite small because the increased design cBig- 1. States are marked with power dissipation and perfor-
plexity and hardware overhead for supporting power managaance values, edges are marked with transition times. The
ment must be tightly controlled. Several implementation techewer consumed during transitions is approximatively equal to
niques for PMC’s are surveyed in Section IV. Here, we jushatinRun mode. Notice that botldle andSLEEPhave null
stress the fact that the increased flexibility offered by PMCiserformance, but the time for exitifGLEEP is much longer
may have a cost that should be taken into account. than that for exitingdle (10 s versus 160 ms). On the other

~90us
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We model a power-managed system as a set of interact
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hand, the power consumed by the chipShEEP mode (0.16 I-'i°!’-e-'-“4?"—"‘99'— ————————————— -
mW) is much smaller than that idle (50 mW).O I ir\:\flg;rlggﬁgn :
Power-manageable components can be manadechally : OBSERVER CONTROLLER :

! |

or externally according to the physical location of the imple-
mentation of the corresponding policy. Internally managed com- R -
ponents (also calledelf-managedtomponents) use conserva- Observations Commands
tive policies because of the lack of observability of the overall
system operation and of the need of tolerating little or no per-
formance degradation, since no assumptions can be made on
how demanding the component’s environment will be. Never-
theless, there are several examples of components that are either
partially of completely self-managed. Fig. 2. Abstract structure of a system-level power manager.
Example 2.2:1BM’s Travelstar [4] hard disk drives have BUTTON PRESS e SWITCH
three low-power inactive states call@drformance Idle, PRESS
Active Idle, and Low Power Idle . When the disk DIGITIZER
is idle, the drives employ a proprietary internal management
technology called “Enhanced Adaptive Battery Life Extender”
for selecting the appropriate idle mode to minimize power FLASH FPGA cPU
usage. Idle-mode selection is based on the current disk drive
access patterns, and IBM claims that automatic adaptation
helps in improving access times. The disk does not need
an external power manager and no configuration or set up I
is needed. Travelstar drives have also two additional very | P&t IME i
low-power states, namel§tand-by andSleep . The times éBLMSF\/ONENTs

SRAM  [*™

. . " BATTERY TO
required for entering and exiting these two states are much LCD DISPLAY 5V CONV
longer than those needed for transitioning to and from the first ALL 12V
three. Decisions on transitions tand-by or Sleep are COMPONENTS

-+ 57012V
left to external controld CONV

Fig. 3. PaperClip hardware diagram.
B. Power-Managed Systems g per-ip 9

From our viewpoint, a system is a set of interacting compebserverblock collects workload information for all PMC's in
nents, some of which (at least one) are externally controllahlge system, while theontrollertakes care of issuing commands
PMC's. Notice that this generic definition does not pose amyr forcing state transitions.
limitation on the size and complexity of a system. The activity Not all components in a power-managed system have to be
of components is coordinated by a system controller. In corpMC’s. The power consumption of all noncontrollable compo-
plex systems, control is often implemented in software. For ifkents makes up a baseline power consumption that cannot be
stance, in computer systems, global coordination is performggiuced by power management. Self-managed components ap-
by theoperating systerfOS). pear as noncontrollable to the PM. Even though the function-

The system controller has precise and up-to-date control glity of the PM is clearly defined, its implementation is not con-
the status of system components, hence, the power managstrisined in any way. In some systems, the PM is a hardware
naturally implemented as a module of the system controller.lflock, while in others it is a software routine. Hybrid hard-
power-manageable system should provide a clean abstractizare—software implementations are also possible. PM imple-
of its components to the power manager. Standardization of inentation issues are analyzed in Section IV.
interface between PM and system is an important feature forExample 2.3: The PaperClip, a hand-held electronic clip-
decreasing design time. board developed by HP Laboratories, is an example of a power-

The choice and realization of a DPM scheme requires maatanaged system [5]. The high-level hardware organization of
eling both the components’ power/performance behavior aRaperClip is shown in Fig. 3. All major components are power-
their workload. The former model is captured well by the powenanageable: the CPU, memory, LCD, and digitizer can be put
state machine model. On the other hand, models for the woik-a low-power sleep state. Some components, like the real-time
load may vary in complexity, and range from the simple assumgock and the FPGA-based control logic, are always active. Pa-
tion used in timeout schemes to complex statistical models. psrClip’s inputs come either from the control buttons situated
we shall see in Section Ill, workload information is requiredn the clipboard or from the digitizer’s pen. PaperClip can op-
for all advanced power management approaches. Hence, evate as a digitizer and as data-transfer unit. During digitize, Pa-
postulate the existence of a system-monitoring module whiplerClip stores digitized handwriting on FLASH memory, while
is capable of collecting run-time workload data and extractirthe user writes on a sheet of paper on the clipboard. During data
the relevant information required to drive the PM. The abstraitansfer, the digitized handwriting is transferred to a host PC via
structure of a generic system-level PM is shown in Fig. 2. Thegther a serial or an IR interface.
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Power management for PaperClip is based on a hybrid p Pon.orr Ton.orr p
hardware—software implementation. The core PM functionality oy OFF
is implemented as firmware running on the CPU. PaperClip’s @.@
workload can be widely varying over time. If the user is
not writing on the clipboard, the system is idle. However, Preon Torron
PaperClip should not be turned off as soon as writing stops

because resuming normal operation after a sleep period 8- 4. PSM of a two-state power-manageable component.
quires a few milliseconds. If the PM puts the system to sleep

too greedily, a significant amount of data can be lost whefimplicity, we shall focus on the problem of controlling a single
writing resumes, and the quality of handwriting digitizatiogomponent (or, equivalently, the system as a whole).

may be compromised. Power state transitions for non-CPUFirst, we want to clarify why the search for a DPM policy is
components are forced by the PM module running on the CRidt a simple problem to solve. For this reason, we give an ex-
by writing to memory-mapped I/O locations. PM commandgmple of a trivial problem first. Consider a system where transi-
are then decoded by control circuitry implemented with aons between power states are instantaneous: negligible power
FPGA and distributed to the components. CPU shutdown dfd performance costs are paid for performing state transitions.
software based. Wake-up is interrupt driven: interrupts afig such a system, DPM is a trivial task, and the optimum policy
generated by pressing control buttons or by pressing the pgiyreedy: as soon as the system is idle, it can be transitioned to

on the clipboard. Notice that sleep power cannot be reducg@ deepest sleep state available. On the arrival of a request, the
to zero because some of the system components are not payy@tem is instantaneously activated.

manageable.] Unfortunately, most PMC'’s have nonnegligible performance
and power costs for power state transitions. For instance, if
C. Power-Managed Networks entering a low-power state requires power-supply shutdown,

In many cases, systems are not isolated, but they activé?};ummg from this state to the active state requires a (possibly
communicate among themselves. We calworka set of com- 10ng) time for: 1) turning on and stabilizing the power supply
municating systems. While network design has been traditigi?d the clock; 2) reinitializing the system; and 3) restoring
ally focused on communication quality and throughput, the i€ context. When power state transitions have a cost, as it is
creased emphasis on low-power portable systems with comr(Rically the case, we are faced with a difficult optimization
nication capabilities has spurred several research initiatives f@foblem. In rough but intuitive words, we need to decide
geting power-efficient networking [22]. when (if at all) it is worthwhile (performance and power-wise)

Energy-conscious communication protocols based on powgrtransition to a low-power state and whlc_h state should be
management have been extensively studied [23]-[25]. The m&ftpSen (if multiple low-power states are available).
purpose of these protocols is to regulate the access of sever&<@mple 3.1: Consider the StrongARM SA-1100 processor
communication devices to a shared medium trying to obtefigScribed in Example 2.1. Transition times betw&am and
maximum power efficiency for a given throughput requiremenidle  states are so fast that théle state can be optimally
Even when interference is not an issue, point-to-point commgPloited according to a greedy policy possibly implemented
nication can be made more power efficient by increasing thy an embedded PM. _
predictability of communication patterns [26]: if it is possible ©On the other hand, the wake-up time from Bleep state
to accurately predict the arrival time of messages (packets), iéfidnuch ]afgef and has to be carefully compared with the envi-
times can be exploited to force communication devices into'@hment’s time constants before deciding to shut the processor
low-power inactive state. down. In the limiting case of a workload with no idle periods

The main challenge in network power management is thaf9nger than the time required to enter and exit$eep state,
is generally not realistic to assume that power control is centr&-9reedy policy shutting down the processor as soon as an idle
ized. Hence, we must rely on distributed algorithms that take aRfriod is detected would reduce performance without saving any
tonomous decisions for each system in the network based eitR8/Ver (the power consumption associated with state transitions
on local information, or on incomplete global network statu§ Of the same order of that of tfieun state). An external PM
data. Even though network power management is an interestfifgitrolling transitions of the SA-1100 processor to 8ieep

and relevant topic, we focus on system-level centralized powtfte has to observe the workload and take decisions according
management. to a policy whose optimality depends on workload statistics and

on predefined performance constraints. Notice that the policy
becomes trivial if there are no performance constraints: the PM
could keep the processor always in leep state.

In this section, we analyze techniques for controlling the An SA-1100 processor with embedded control for lidie
power state of a system and its components. We considg¢gite and external control for tH&leep state is a partially
components as black boxes, whose behavior is abstractetf-managed PMC whose PSM model (shown in Fig. 4) has
by the PSM model. We defer to Section IV the descriptioonly two statesOnandOff . TheOnstate is a macrostate rep-
of the interfacing layers for component control as well agsenting both th&un andldle states of the processor, with
the implementation technical details. We focus on how #® greedy policy autonomously controlling transitions between
design effective power management policies. For the sakethém. The power consumption associated with @hrestate is

I1l. DYNAMIC POWER MANAGEMENT TECHNIQUES
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the sum of the power consumptions of fRen andldle states, betweenP.,y., and the power consumption of the system when

weighted by the workload activity and idleness probabilitiein the active stateK,,), represents the inherent exploitability

The Off state corresponds to the act&éep state. Transi- of the Off state for the given workload. The larg€,,.q the

tions betweerOn and Off represent transitions between théarger the potential advantage of exploiting stafé for DPM.

Run andSleep statesd If Pavea = 0, NO power savings can be achieved by entering the
Example 3.1 leads to two observations. First, policy optimizéaactive state without impairing performance. Needless to say,

tion is apower optimizatiorproblem undeperformance con- the inactive state can always be exploited in practice if arbitrary

straints or vice versa. Second, the achievable power savings gerformance degradation is tolerated.

pend on the workload (which must be bursty at some degree)We are interested in studying the dependencé&.gf.q on

and system characteristics (i.e., the PSM of the system). Tpmwver-state parameters and workload statistics. The parame-

general applicability of DPM is discussed in the next sectiaers of a power stat® are represented by its break-even time

as a property of a system-workload pair. Existing techniqué%r s, while workload statistics are represented by the prob-

for DPM and policy optimization are surveyed and discussexbility distribution of the idle period$' (T} ). Intuitively, the

in Sections Ill-B and C, focusing opredictive techniqueand largerI’zg, s (with respect to the average idle time), the smaller

stochastic contrglrespectively. Pyvea- Inthe limiting situation where all idle periods are shorter
than?’z g s, no power savings would be achieved by means of
A. Applicability of DPM DPM: an ideal PM implementing the optimum policy would

never shut the resource down, thus providitig..; = Po, and
Putting a PMC into an inactive state causes a period of inas,yeq = 0.

tivity whose duratioriZ}, is the sum of the actual time spentin In general, 7gg is the sum of two terms: the total transi-
the target state and the time spent to enter and exit it. We deftien time (i.e., the time required to enter and exit the inactive
thebreak-even timéor an inactive staté (denoted by/’zr s) state,7rr) and the minimum time that has to be spent in the
as the minimum inactivity time required to compensate the cdetv-power state to compensate the additional transition power
of entering states. The break-even timéz g s is inferred di- (Prg). For our example PMC (Fig. 4YTr and Prr can be
rectly from the power state machine of a PMCIJf < Tgg, s, computed as
either there is not enough time to enter and exit the inactive state,
or the power saved when in the inactive state does not amortize Trr = Ton, o + Tog, On 1)
the additional power consumption typically required to turn-on
the component. Intuitively, DPM aims at exploiting idleness to
transition a component to an inactive low-power state. If no per-
formance loss is tolerated, the length of the idle periods of the Prp = Ton, ot Pon, ot + Tos, onFost, on @)
workload is an upper bound for the inactivity time of the re- Irg
source. On the other hand, if some performance loss is tolerateﬂ,
inactivity times may be longer than idle periods. while T5z can be expressed as

In this section, we analyze thexploitability of the inactive

states of a PMC, that is the possibility of saving power by tran- T =T 4T Prg — Pon it P s P
sitioning the component to the inactive states. Exploitability de- BE = ATR T TR g Pog LR Om
pends on the power states, on the workload, on the performance  Typ =Trg if Prr < Pon. 3

constraints, on the DPM policy and on the PM implementation.
Techniques for policy optimization and implementation will bén practice, 7z grows linearly with transition time and cost
discussed later, together with the impact of performance cqi-z andPrr) and depends hyperbolically on the power saved
straints. Here, we focus only anherent exploitabilitywhich  (Py, — Pog) when in the inactive state Wherr < Poy,
represents the possibility of exploiting an inactive state und€g reduces tolrr (this is, for instance, the case of the
the assumption that: 1) no performance penalty is tolerated akidM SA-1100 processor), while it is greater th@akz when
2) anideal PMis available that has complete friori) knowl- Prr > Py, (as for components with mechanical inertia,
edge of the entire workload trace. Inherent exploitability is such as hard disk drives). In this case, we need to add-tp
property of a system-workload pair. the termTrr(Prr — Pon)/(Pon — Por), Which represents
For example, consider the two-state PSM of a component,the additional time that we need to spend in @# state to
shown in Fig. 4. For the sake of clarity, when there is only om®mpensate the excess power consumed during state transition.
inactive state, we will use the shorthand notatisy instead For systems with multiple inactive states, a different
of Ik, s. The optimum policy for an ideal PM controlling thebreak-even timd'sr_s and, consequently, a different value of
transitions between stat@nandOff consists of shutting down Faveq, s, has to be defined for each steateDeeper sleep states
the component at the beginning of all idle periods longer thdmave lower power consumption at the cost of longer and more
Tpr = Tpr,os and waking it up right in time to serve up-expensive transitions. When designing power-manageable
coming requests with no delay. The resulting power consumgmponents, a tradeoff betweéty, Prr and 11y has to be
tion (denoted byFi4..1) is a lower bound for the power con-found for each sleep state to obtain small values di’zg s
sumption that can be achieved by a PM exploiting inactive staad high exploitability. Sleep states with smaller break-even
Off . The potential power saving’...q), defined as the gap times are more likely to be successfully exploited by DPM.
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Fig.5. (a)PlotofP....a(Tsr) fortheSleep state of the StrongARM SA-1100 processor. The three curves refer to three different workload statistics, computed
from real-world CPU traces provided by tieM monitoring packagg5]. (b) Comparison of>....a(I's ) for the two inactive states of the SA-1100 processor.
The two curves refer to the same workload.

The energy saved by entering stateduring an idle period power consumption associated with all state transitions is equal
Tiaie > 1BE, s IS t0 Prun, Ie = IR

Es(Tiae) = (Liaie — Trr)(Pon — Ps) + Trr(Pon — Prr). TeE 1de =0.01 ms+0.01 ms

(4) T5E, Sleep = 160 MS+ 0.09 ms
Its average value is given by
oo As intuitively observed at the beginning of this section, the
EY® :/ Es(Tae) f(Tiae) dTiate (5) Idle state has a break-even time much smaller than the
TsE Sleep state.

avg _
idle>TgE, s Tsep, S)
aveg
Tidle

Psaved,S:(POn_PS)(

(1= F(TsE)) )

wheref(T}q.) is the probability density of the idle periods. The As reference workloads to evalgate exploitability, we t"’?"e
exploitability of S (in symbols,F;aveq, s) is the ratio between real-world CPU usage trace_s provided by the IPM monitoring
E™% and the average length of the idle periodZ€). By re- system [5] ql_escn_be(_j in _Sectmn I\_/. From each trace, we compute
S ) . . the probability distribution functiod'(Z;q.) and we evaluate
placing the expression dfs(Zia1..) from (4) into (5) and di- . ,
viding by Tzvlg, we obtain a formula foPu.q. s (7) for @fferent values of 5. .The_behawor_of’slaved, Sleep AS
idle ' a function of the break-even time is shown in Fig. 5(a) for three
1 o0 different CPU workloads, corresponding to three different user
Faved, s = TE / [(Tiwe — T7r)(Fon — Fs) sessions: editing, software development, and graphical interac-
idle /Tpr tive games. The dependence on the workload is evident: graph-
+Tra(Pon = Prajlf(Tae) dae joqiinteractive games require more CPU usage than text editors,
(6) thus reducing the opportunity of putting the CPU to 8leep
. . . state. Notice that, if the break-even time for tBleep state
which can be mtegrat_ed and rewritten as the pr_oduc_t of '_[hrwaere MU, Prpea s1eep WOUID have been of about 400 mW in-
terms: the power saving of statt the expectgd . -t|me n ependently of the workload. Corresponding to the actual value
excess ofT,'g.Eﬁ (nor.mahzed at the average idle period), an FT5 5 Steep, INStEAA Praved, s1eep i much smaller and strongly
the probgblllty of going t_o _statS (as_sumlng that we perform dependent on the workload.
the transition only when it is convenient) Fig. 5(b) compares th&,,..q curves of both inactive states
for the same workload (namely, the editing trac)yeq, rdie
is always belowP,,yed, sieep- Since theSleep state has lower
power consumption than tHdle state, if the two states had
the same break-even time the deepest one would have been more
exploitable. However, taking into account the actual break-even
wheref" is the probability distribution ofia. andZi®. ;. times we find that the inherent exploitability of thile  state is
is the average length of idle periods longer tHEs: s. The greater than that of thleep state (the points to be compared
power saved’xa..d IS always a decreasing functionBé g s: it are shown by square boxes on the graph).
takes maximum value fdfz ¢, s = 0 and asymptotically tends ~ As mentioned at the beginning of the section and formally
to zero for increasing values @iz s. The way it goes to zero expressed by (7), the exploitability of an inactive state depends
depends on the first-order statistics of the workload, namely, both on the characteristics of the inactive state and on the work-
the distribution of7}. load. If typical workload information is not available when de-
Example 3.2:We want to evaluate the exploitability of thesigning a PMC, the exploitability of its low-power states cannot
inactive states of the StrongARM SA-1100 processor. We st computed. To represent the properties of an inactive State
by computing their break-even times according to (4). Since threlependently of the workload, we use the time-power product
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Fig. 6. Quality of a timeout-based predictor evaluated as a function of timer duration. (a) Safety and efficiency of the timeout used to predadsdEnger
thanTsx = 160 ms. (b) Saved and wasted power consumption. Data refer to the PSM of Example 3.1 and to a CPU usage trace provided by the IPM monitoring
package [5].

Cs = Tpg s - Ps. Inactive states with lowe€'s are likely event ¢ = {Tiue > Tro}) to be used to predict the total dura-
to lead to larger power savings. Incidentally, we remark (hat tion of the current idle periody(= {Ziae > Tro + Tsr}).

has the same dimension of the well-known power-delay produidte policy can be summarized as follows: when an idle pe-
used as a cost metric for comparing different electronic devicesd begins, a timer is started with durati@i. If after 7'y

and circuits. the system is still idle, then the PM forces the transition to the
o _ Off state. The system remains off until it receives a request
B. Predictive Techniques from the environment that signals the end of the idle period.

In most real-world systems, there is little knowledge of futur&éhe fundamental assumption in the fixed timeout policy is that
input events and DPM decisions have to be taken based on ¢ probability ofZiqi. being longer thafi’s g+ 170, given that
certain predictions. The rationale in all predictive techniquesZsue > Zro, is close to oneProb(Tiae > Tro +Tpe|Tiae >
that of exploiting the correlation between the past history of thero) ~ 1. The critical design decision is obviously the choice
workload and its near future in order to make reliable predi€f the timeout valué’ro.
tions about future events. We denotezbthe future event that ~ Timeouts have two main advantages: they are general (their
we want to predict. We denote bythe past event whose occur-applicability slightly depends on the workload) and their safety
rence is used to make predictionsprFor the purpose of DPM can be improved simply by increasing the timeout values. Un-
we are interested in predicting idle periods long enough to gof@tunately, they tradeoff efficiency for safety: large timeouts
sleep, in symbolsp = {Tiqe > T} cause a large number of underpredictions, which represent a

Good predictors should minimize the number of mispredi¢issed opportunity of saving power, and a sizeable amount of
tions. We calloverprediction(underpredictioh a predicted idle Power is wasted waiting for the timeout to expire.
period longer (shorter) than the actual one. OverpredictionsExample 3.3:Consider one of the CPU usage traces de-
give rise to a performance penalty, while underpredictios§tibed in Example 3.2 (namely, the game trace) as a typical
imply power waste but no performance penalty. To represet@rkioad for the StrongARM SA-1100 processor. We want to
the quality of a predictor we define two figuresafety that €valuate the quality of a timeout-based shutdown policy for the
is the complement of the risk of making overpredictions, arffocessor. Since the break-even time for8feep state is of
efficiency that is the complement of the risk of making underl60 ms, we evaluate the safety and efficiency of a timeout used
predictions. Safety and efficiency can be expressed in terms@fpredict idle periods longer than 160 ms. The two figures
conditional probabilitiesProb(p|o) and Prob(o|p). A totally ~are plotted on Fig. 6(a) as a function of the timer duration.
safe predictor never makes overpredictioRsob(plo) = 1), AS the timeout increases, predictions become safer but less
and a totally efficient predictor never makes underpredictio@éficient (efficiency is almost null for timeouts greater than 1
(Prob(o|p) = 1). A predictor with maximum safety and effi- s). It is also worth noting that safety has a highly nonsmooth
Ciency is anideal predictor whose ava||ab|||ty would enable instance-dependent behavior that makes it difficult to choose
the actual implementation of the ideal PM discussed in tig@timal timeout values [the irregular curve in Fig. 6(a) refers
previous section. Predictors of practical interest are neither sife 1-h trace, while the smooth one refers to the average of
nor efficient, thus causing suboptimum control. Their qualit§everal traces collected during equivalent user sessions].

(and the quality of the resulting control) depends on the choiceFig. 6(b) shows the power savings obtained by applying the
of the observed evert and on the second-order workloadimeout policy to the SA-1100 and the wasted power evaluated
statistics. with respect to the ideal power savings. The effectsf, on

1) Static Techniques: the actual power savings is similar to the effecflgfy on the

Fixed Timeout: The most common predictive PM policy isideal ones. Both parameters reduce the portion of idle time that
thefixed timeoutwhich uses the elapsed idle time as observedn be effectively exploited to save power.
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Fig. 7. (a) Scatter plot ofjqi. versusT,.iv. for the workload of the CPU of a personal computer running Linux. (b) Safety and efficiency of a predictive
shutdown scheme plotted as a function of the threshold VBjyg..

Karlin et al. [31] proposed to uséro = Tsgr and showed {Ta",;iie < Trpe}, the idle period is assumed to be larger than
that this choice leads to an energy consumption which is Bt g and the system is shut down. The rationale of this policy is
worse twice the energy consumed by an ideal policy. The rdrat for the class of systems considered by Srivastawea.(in-
tionale of this strong result is related to the fact that the worsractive graphic terminals), short active periods are often fol-
case happens for traces with repeated idle periods of lengiitved by long idle periods. Clearly, the choice’®#;,, is crit-

T = 21pg separated by pointwise activity. In this caseical. Careful analysis of the scatter plot&fy. versusy; tive IS
Karlin’s algorithm provides no power saving, while an ideal alrequired to set it to a correct value, hence, this method is inher-
gorithm saves power during half of each idle interval. Indeedntly offline (i.e., based on extensive data collection and anal-
the ideal algorithm performs a shutdown for each idle periogsis). Furthermore, the method is not applicable if the scatter
but half of the period is spent in state transition. plot is not L-shaped.

Timeout schemes have two more limitations: they waste aExample 3.4: Fig. 7(a) shows the scatter plot 6f;;. versus
sizeable amount of power (during user’s idleness) waiting fat,..;... for the development trace of Example 3.2. From the plot,
the timeout to expire and they always pay a performance penalig observe that: 1) the time is discretized (b6th. andZ,ctive
upon wakeup. The first issue is addressedbbsdictive shut- are multiple of 10 ms, that is the duration of the time slots as-
down policieg30], [32] that take PM decisions as soon as a negigned by the Linux scheduler to the active process); 2) the large
idle period starts, based on the observation of past idle and busjority of the idle periods are shorter than 1000 ms (this is
periods. The second issue is addressed by predictive wakeyie to the presence of a system daemon that required the CPU
described later. at every second independently of the state of user's applica-

Predictive ShutdownTwo predictive shutdown schemesion); and 3) the scatter plot is L-shaped (thus enabling the use
have been proposed by Srivastagt al. [32]. In the first f threshold-based predictors). The horizontal line shows the
scheme, a nonlinear regression equation is obtained from gsk-even time of the sleep state of the StrongARM SA-1100
past history processor. Safety and efficiency of a threshold-based predictor

Tpred = ¢ (T:mve’ Tﬁﬁla e T:C:i’;‘e’ Tﬂﬁk_l) (8) used to shut down the SA-1100 are plotted in Fig. 7(b) as a
o ) .. function of I7r;,,.. Interestingly, efficiency becomes almost one
and used to make predictions. We use superscripts 10 indicgi, for small threshold values (in fact, most of the exploitable
the sequence of past idle and active pe“‘mﬁ'cates the cur- e periods are preceded by short active periods), but there is
rentidle p_enod (yvhose length has to be pred|c_te_d) and .the mﬂﬁtway of improving safety. In our example, threshold-based
recent active period. ﬂ})re“ - TBE.’ the system. IS |mmed|ate|¥ redictions are unsafe due to the presence of a dense region in
shut down as soon as it becomes idle. According to our notati e bottom-left corner of the scatter plot. A thresholdieiv.
the observed event is d T . ;
oes not help us in distinguishing between idle periods longer
0= {¢ (T;tive7 Ti?lglv A T;:;i’xjev Tircll;:kil) > TBE} : or shorter thai’z . [
9) The applicability and the quality of history-based predictors

The format of the nonlinear regression is decided heuristiepend on the correlation between past and future events, thatiis,
cally, while the fitting coefficients can be computed with starmot under designer’s control. As a matter of fact, short-term cor-
dard technigues. The main limitations of this approach are: rElation has been observed in many real-world workloads, but
there is no automatic way to decide the type of regression eqtla nature and strength of such correlation is strongly instance
tion and 2) offline data collection and analysis are required tiependent. For a given workload, history-based predictors are
construct and fit the regression model. usually more efficient and less safe than timeouts.

The second approach proposed by Srivasetval. [32] is Predictive Wakeup:The DPM strategy proposed by Hwang
based on dhreshold The duration of the busy period imme-et al. [33] addresses the second limitation of timeout policies,
diately preceding the current idle period is observed: = namely the performance penalty that is always paid on wakeup.
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Fig. 8. Effect of the workload on the quality of a timeout-based power manager. (a) Safety and efficiency. (b) Saved and wasted power.

To reduce this cost, the power manager perfopredictive Another aggressive shutdown policy has been proposed by
wakeupwhen the predicted idle time expires, even if no neiwanget al. [33]. This policy is capable of online adaptation,
requests have arrived. This choice may increase power dissigiice the predicted idle timi€, _, is obtained as a weighted sum
tion if Tiq has been underpredicted, but decreases the defdiyhe last idle periO(Ti’jlgl and the last predictiom;:gj
for servicing the first incoming request after an idle period.
2) Adaptive TechniquesSince the optimality of DPM n el n—1
strategies depends on the workload statistics, static predictive Torea = 0l + (1= a)Tpeq- (10)
techniques are all ineffective (i.e., suboptimal) when the work- , .
load is either unknowa priori, or nonstationary. Hence, somel Nis recursive foITuIa dynamlcElllly changes the actual observed
form of adaptation is required. While for timeouts the onlfVento = {alig.” + (1 — a)Ij. 5 > Tse}- . _
parameter to be adjusted is the timer duration, for history-based?nderprediction impact is mitigated by employing a timeout
predictors even the type of observed events could in princigieheme to reevaluaig,..a periodically if the system is idle and
be adapted to the workload. it has not been shut down. Overprediction impact is reduced
Example 3.5: Fig. 8 shows the same graphs of Fig. 6 plotteBY Imposing a saturation condition on predictioflg; ., <
for three different workloads. All the parameters used in E)CmaxT;;j-
ample 3.3 to represent the quality of a timeout-based estimato¥Vorkload prediction accuracy can be increased by special-
are shown to be strongly dependent on the workload. Suppd&#g predictors to particular classes of workload. Specialization
for instance, that a target power saving (e.g., of 50 mW) hasrgstricts the scope of applicability, but it also reduces the diffi-
be guaranteed regardless of the performance degradation. ®ties of predicting completely general workloads. A recently
a given workload (namely, the editing trace) the timeout valiFoposed adaptive technique [34] is specifically tailored toward
to be used to meet the constraint can be obtained from the doard-disk power management and it is based on the observation
responding curve of Fig. 8(b): about 550 ms. However, as tHeat disk accesses are clusteredessionsSessions are periods
workload changes (becoming for instance similar to the devéf relatively high disk activity separated by long periods of in-
opment trace), the fixed timeout does not guarantee the requigdivity. Under the assumption that disk accesses are clustered
power savings any longer (for the development trace, the povi@rsessions, adaptation is used only to predission length
savings provided by a timeout of 550 ms are of about 25 niwv). Prediction of a single parameter is easily accomplished and the
Several adaptive predictive techniques have been propo&egorted accuracy is high.
to deal with nonstationary workloads. In the work by Krishnan
etal.[27], a set of timeout values is maintained and each timeqgt
is associated with an index indicating how successful it would
have been. The policy chooses, at each idle time, the timeouPolicy optimization is an optimization problem under uncer-
that would have performed best among the set of available ontednty. Predictive approaches address workload uncertainty, but
Another policy, presented by Helmbadd al. [28], also keeps a they assume deterministic response and transition times for the
list of candidate timeouts and assigns a weight to each timesystem. However, the system model for policy optimization is
based on how well it would have performed relatively to awery abstract, and abstraction introduces uncertainty. Hence, it
optimum offline strategy for past requests. The actual timeonnay be safer, and more general, to assume a stochastic model for
is obtained as a weighted average of all candidates with th#ie system as well. Moreover, predictive algorithms are based on
weights. Another approach, introduced by Douglisal. [29], a two-state system model, while real-life systems have multiple
is to keep only one timeout value and to increase it when it iwer states. Policy optimization involves not only the choice of
causing too many shutdowns. The timeout is decreased whemento perform state transitions, but also the choicevbfch
more shutdowns can be tolerated. Several predictive policies aiemsition should be performed. Furthermore, predictive algo-
surveyed and classified in Douglis’ paper. rithms are heuristic, and their optimality can only be gauged

Stochastic Control
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a0s oas aoM 02 som 09 The SP model has two states as well, nandely {on, off}.
.o.c. .@.@ State transitions are controlled by two commands that can be
X — e — issued by the power manager. The commands are, respectively,
' s_on and s_off, with the intuitive meaning of “switch on”

(@) () and “switch off.” When a command is issued, the SP will
move to a new state in the next period with a probability
dependent only on the command, and on the departure and
arrival states. The Markov chain model of the SP is shown
through comparative simulation. Parameter tuning for these @-Fig. 9(b). Edge weights represent transition probabilities.
gorithms can be very hard if many parameters are involved. INotice that their values depend on the command issued by
naIIy, predictive algorithms are geared toward power minimizg—.e power manager. A power management po||Cy can be
tion, and cannot finely control performance penalty. represented as a table that associates a command with each

The stochastic control approach addresses the generality gag of states of SP, SR. For instance, a simple deterministic
optimality issues outlined above. Rather than trying to elimpolicy is: f: {(0, on) — s_off, (1, on) — s_om, (0, of f) —
nate uncertainty by prediction, it formulates policy optimizag of¢, (1, off) — s_on}. O
tion as an optimization problem under uncertainty. More specif- 1) Static TechniquesTo perform policy optimization, the
ically [39], power management optimization has been studi@garkov chains of SR and SP are composed to obtain a global
within the framework otontrolled Markov processg42], [43].  controlled Markov chain. Then, the problem of finding a min-
In this flavor of stochastic optimization, it is assumed that thgnhum-power policy that meets given performance constraints
system and the workload can be modeled as Markov chaiggn be cast as a linear program (LP). The solution of the LP
Under this assumption, itis possible to: 1) model the uncertairﬁyoduces atationary randomizepo”oy_ Such a po||cy is a non-
in system power consumption and response (transition) timggiterministic function which, given a present system state, as-
2) model complex systems with many power states, buffekpciates a probability with each command. The command to be
queues, etc.; 3) compute power management policies that @kgied is selected by a random trial based on the state-depen-
globally optimum; and 4) explore tradeoffs between power arént probabilities. It can be shown [43] that the policy computed
performance in a controlled fashion. The Markov model pogy LP is globally optimum Furthermore, LP can be solved in
tulated by the stochastic control approach [39] consists of thglynomial time in the number of variables. Hence, policy op-
following. timization for Markov processes is exact and computationally
« A service requestdiSR), a Markov chain with state st  efficient.

which models the arrival of service requests for the systemstochastic control based on Markov models has several ad-
(i.e., the workload). vantages over predictive techniques. First, it captures the global
* A service providel(SP), a controlled Markov chain with view of the system, thus allowing the designer to search for a
S states that models the system. Its states represent gfishal optimum that possibly exploits multiple inactive states
modes of operation of the system (i.e., its power stategk, multiple interacting resources. Second, it enables the exact
its transitions are probabilistic, and probabilities are coRpjution (in polynomial time) of the performance-constrained
trolled by commands issued by the power manager.  power optimization problem. Third, it exploits the strength and
* A power managei(PM), which implements a function gptimality of randomized policies.
f+ S x B — Afrom the state set of SR and SP to the However, several important points need to be understood.
set of possible commandé. Such function is an abStl’aCtFirst, the performance and power obtained by a p0||cyexr.e
representation of a decision process: the PM observes fgtedvalues, and there is no guarantee that results will be op-
state of the system and the workload, takes a decision, aftflum for a specific workload instance (i.e., a single realization
issues a command to control the future state of the systegfthe corresponding stochastic process). Second, policy opti-
+ Cost metrics which associate power and performancgization requires a Markov model for SP and SR. If we can
values with each system state-command paif i x A.  safely assume that the SP model can be precharacterized, we
In the work by Paleologet al.[39], the general Markov model cannot assume that we always know the SR model beforehand.
is specialized by assuming finite state set, finite command s€&hird, policy implementation in practice may not be straightfor-
and discrete (or slotted) time. Continuous-time Markov modelgard. We have always implicitly assumed that the power con-
have been studied as well [37], [38], [40]. sumption of the PM is negligible, but this assumption needs to
Example 3.6: A simple Markov model for a power-managede validated on a case-by-case basis. Finally, the Markov model
system [39] is shown in Fig. 9. The SR is a two-state Markder the SR or SP can be just an approximation of a much more
chain with two states: zero (no request is issued to the serviammplex stochastic process. If the model is not accurate, then
provider) and one (a request is issued to the provider). Ttee “optimal” policies are just approximate solutions.
transition probabilities between states are represented as eddgexample 3.7:We apply stochastic control to our example
weights in Fig. 9(a). The chain models a “bursty” workloadsystem, namely, the two-state PSM of the SA-1100 processor.
There is a high probability (0.85) of receiving a request durinbhe only decision to be taken by the PM is when to shut down
periodn + 1 if a request was received during periodand the the component. We stress that this is not a typical application
mean duration of a stream of requests is equaffl5 = 6.67  of stochastic control (whose main strength is the capability of
periods. managing multiple states and finding a global optimum in a

Fig. 9. Markov model of a power-managed system and its environment.
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Fig. 10. Power-performance tradeoff curves for the SA-1100 with (a) a realization of a stationary Markovian workload and (b) a highly
non-Markovian/nonstationary workload. Solid and dashed lines refer to stochastic control and timeout-based shutdown policies, respectively.

large design space) since there is only one sleep state andishgenerally much harder to characterize in advance. Further-
PM cannot control the wake-up. This simple example, howevenore, workloads are often nonstationary. An adaptive exten-
allows us to make a fair comparison between stochastic contsan of the static stochastic optimization approach has been pre-
and predictive techniques based on timeouts. The optinsgnted by Chungt al.[41]. Adaptation is based on three simple
Markov policy is computed by formulating a Markov chairconceptspolicy precharacterizationparameter learningand
model for the workload, composing it with the controllegolicy interpolation A simple two-parameter Markov model for
Markov model extracted from the PSM of the SA-1100 antthe workload is assumed, but the value of the two parameters is
solving the LP problem associated with the controlled Markanwitially unknown.
model of processor and workload under performance con-Policy precharacterizationconstructs a two-dimensional
straints [39]. (2-D) table addressed by values of the two parameters. The
Comparative results for a static Markovian workload areble element uniquely identified by a pair of parameters
shown in Fig. 10(a): the solid line is the performance versg®sntains the optimal policy for the system under the workload
power Pareto curve of optimum stochastic control (obtaineshiquely identified by the pair. The table is filled by computing
by varying the performance constraint), while the dashed limptimum policies under different workloads. During system
is the tradeoff curve of a timeout policy (obtained by varyingperation parameter learnings performed online. Short-term
the timer duration). We remark that optimum stochastic contraveraging techniques are employed to obtain run-time estimates
performs better than a timeout heuristic even if the degreesaffworkload parameters based on past history. The parameter
freedom available for optimization are exactly the same. Thalues estimated by learning are then used for addressing the
difference in power is proportional to the timeout time, whiclookup table and obtain the power management policy. Clearly,
represents a wasted opportunity of saving power. in many cases the estimated parameter values do not correspond
The same comparison is repeated in Fig. 10 for a highly noexactly to values sampled in the table. If this is the cpsécy
stationary non-Markovian workload. For several timer valuemterpolationis employed to obtain a policy as a combination
timeout-based shutdown outperforms stochastic control. In faof,the policies in table locations corresponding to parameter
policy optimization is not guaranteed to provide optimum reralues close to the estimated ones.
sults if the modeling assumptions are not verified. Experimental results reported by Chuegal. [41] indicate
The class of application of stochastic control is that of conthat adaptive techniques are advantageous even in the stochastic
puter systems subject to performance constraints. We remaggtimization framework. Simulations of power-managed sys-
however, that policy optimization can be used as a tool for dieems under highly nonstationary workloads show that the adap-
sign exploration even when stochastic control is not the targete technique performs nearly as well as the ideal policy com-
DPM technique. In fact, once Markov models have been coputed offline, assuming perfect knowledge of workload param-
structed for the system and the workload, the Pareto curve of @pers over time.
timum tradeoff points can be drawn on the power-performance
plane by repeatedly s_olvmg policy optimization Wh"e Vaying v/ | MPLEMENTATION OF DYNAMIC POWER MANAGEMENT
performance constraints. The Pareto curve provides valuable
information to evaluate and improve the quality of any power In this section, we address how different DPM schemes have
management strategy. been implemented in circuits and systems. At the same time, we
2) Adaptive TechniquesOne limitation of the stochastic op- describe the infrastructure that will enable the implementation
timization technique described in the previous section is thatot complex power management policies in electronic systems.
assumes complet priori knowledge of the system (i.e., theThe section is organized as follows. We describe first the phys-
SP) and its workload (SR). Even though it is generally possibilgal mechanisms for power management of digital and other
to construct a model for the SP once for all, system worklodgpes of components. We review how DPM is implemented in



310 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

hardware circuits that include power-manageable componentsClock gating has a small performance overhead: the clock
We address next system-level design, and we describe hoawn be restarted by simply deasserting the clock-freezing signal.
power management is implemented in hardware/softwarence, clock gating is ideally suited forimplementing self-man-
systems, with particular reference to operating system-basaged components. In this case, the clockligaysstopped as
power management. We conclude by presenting some expeden as some custom-designed idleness detection logic signals
mental results on software-managed personal computers. that the component (or some of its subunits) is idle. Several
CAD tools have been developed to support design with local
clock (or signal) gating [8]-[12], [47]. These tools aim at gen-
erating automatically the circuit that detects idleness and that

Our working definition of system component has been prissues the signal to freeze the clock. The tools implement var-
vided in Section Il. The complexity of a component may various methods of realizing clock gating, which differ according
and it is irrelevant for this discussion. In Section II-A, compoto the type of unit to be controlled (e.g., sequential controller,
nents are considered as black boxes. Here, we are concerfs@ path, pipelined circuit) and to the type of idleness being
with their internal structure, and we outline several techniquesonitored (e.g., state/output pair of a sequential circuit, external
that can be exploited to design power-manageable componegiiservability of some signals).

(PMC'’s). Clock gating is widely used because it is conceptually simple,
1) Clock Gating: We consider first digital components thaiit has a small overhead in terms of additional circuits and often
are clocked. This class of components is wide, and it includesro performance overhead because the component can transi-

most processors, controllers and memories. Power consumption from an idle to an active state in one (or few) cycles. The
in clocked digital components (in CMOS technology) is roughlghain design challenges in the implementation of clock gating
proportional to the clock frequency and to the square of thee: 1) to construct an idleness-detecting circuit which is small
supply voltage. Power can be saved by reducing the clock fi@and thus consuming little power) and accurate (i.e., able to
quency (and in the limit by stopping the clock), or by reducingtop the clock whenever the component is idle) and 2) to de-
the supply voltage (and in the limit by powering off a composign gated-clock distribution circuitry that introduces minimum
nent). Note that the two limiting cases (clock freezing and powsuting overhead and keeps clock skew under tight control [13].
ering off) are applicable only to idle components. For compda some cases, as seen in the previous example, power dissipa-
nents that are in an active state but whose response is not petiorr can be further reduced by stopping not only clock distri-
mance critical, power consumption can be traded off for perfdsution, but also clock generation (i.e., by stopping the master
mance by reducing the clock frequency or the supply voltaggock PLL or the internal oscillator). This choice implies non-
The latter solution is usually preferred because of the quadratiegligible shutdown and restart delays and it is generally not au-
dependence of power consumption on supply voltage, and itisnated. Sleep states where global clock generation is stopped
often combined with frequency downscaling. can only be entered by issuing external commands. For proces-
When considering possibly idle digital components, clockors, shutdown can be initiated by either a dedicated instruction
gating (or freezing) is the most common technique for power by asserting a dedicated signal.
management. Namely, the clock of an idle component can2) Supply Shutdownit is important to stress that
be stopped during the period of idleness. Power savings ateck-gating does not eliminate power dissipation. First,
achieved in the registers (whose clock is halted) and in tifeclock gating is local, or if the clock generator is active, there
combinational logic gates where signals do not propagate deestill dynamic power dissipation on the active clock circuitry.
to the freezing of data in registers. Second, leakage currents dissipate power even when all clocks
Example 4.1: Clock gating has been implemented in severalre halted. As a result, the objective of achieving minimum
processors [14]-[17]. The Alpha 21 264 microprocessor usep@wer dissipation, as required by some battery-powered
hierarchical clocking scheme with gated clocks [17]. In partidrand-held devices, may not be achieved by clock gating.
ular, the 21264 Floating Point Unit has a controller that can Power consumption of idle components can be avoided by
freeze the clock to its components, such as the adder, multipliswering off the unit. This radical solution requires controllable
divider, etc., according to the instructions to be executed, so t@fitches on the component supply line. An advantage of this
the idle components do not waste power. approach is the wide applicability to all kind of electronic com-
The PowerPC 603 processor [14] has both local and glolminents, i.e., digital and analog units, sensors, and transducers.
clock control. We highlight here a feature of global clock conA major disadvantage is the wake-up time recovery time, which
trol. When the processor is in3leep state, the clock to all is typically higher than in the case of clock gating because the
units may be disabled. On the other hand, the PLL is not necesmponent’s operation must be reinitialized.
sarily disabled in th&leep state, so that the system controller When thinking of a microelectronic circuit (e.g., processor,
can choose from different levels of power savings, depending controller), such a component is typically structured as a hierar-
the wake-up response time requirements. For example, if a quitkcal compositions of subcomponents. Thus, power shutdown
wake-up is required, the processor can wake up fBleep is applied to a selected number of subcomponents. In the case
in ten system clock cycles, if the PLL is active. On the otheaf complex circuits, usually a portion of the circuit is not pow-
hand, for maximum power savings, the PLL can be shut off gred down, so that it can run a set of minimal monitoring and
theSleep state. In this case, the wake-up time can be as lorgntrol functions, and wake up the powered-down components
as 100us, to allow the PLL to relock to the external clo€d.  when needed.

A. Power Management in System Components
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Example 4.2: The StrongARM SA-1100 [3] chip has two 3) Multiple and Variable Power SuppliesdDPM is also ap-
power supplies: &DDI 1.5-V internal power supply and aplicable to components that are notidle, but whose performance
VDDX3.3-V interface voltage suppl¥DDI powers the CPU (e.g., I/O delays) requirements varies with time. The implemen-
core and the majority of the functional units on the chip (DMAation technology can then be based on $lmvdownof non-
controller, MMU, LCD controller, etc.)VDDX powers the critical components. The slowdown is achieved by lowering the
input—output drivers, an internal 32-KHz crystal oscillator, theoltage supply, such that the component becomes performance
system control unit, and a few critical circuits. critical.

The Sleep state the SA-1100 is an example of power Early implementations of multivoltage chips used a static
supply shutdown. Power i8leep is reduced to 0.16 mW (as power-directed partitioning into subunits, each powered by a
opposed to 400 mW iRRun state) by switching off th&DDI  different supply voltage. Most often two voltage levels were
supply. The shutdown sequence for entering$teep state used, and level shifters were employed at the border of subunits
goes through three phases: 1) flush to memory all state infeanning on different supplies [44]. The extension of this ap-
mation that should be preserved throughout the sleep periodp2yach to the realm of DPM is to enable dynamic adjustment of
reset all internal processor state and program wakeup eveptsyer supply voltage during system operation. One of the main
and 3) shutdown the internal clock generator. Each phaseallenges in implementing this extension is to guarantee that
takes approximatively 3Q:s. During Sleep , the SA-1100 clock frequency tracks the speed changes caused by dynamic
only watches for preprogrammed wake-up events. Processoltage supply adjustments.
wake-up goes through three phases: 1) ramp/ipXand In the pioneering work by Nielsert al. [45], self-timed
processor clock startup; 2) wait time for stabilizing processelrcuits were employed in conjunction with variable supply
clock; and 3) CPU boot sequence. The first two phases takeltage. Self-timed circuits synchronize using local handshake
respectively, 10 and 150 ms. The third phase has negligilignals, hence, they do not need adjustable clocks. Unfor-
duration compared to the first two. Tigleep state can be tunately, self-timed circuits are not mainstream technology.
entered either by rising a dedicated pin (calBATT_FAULT) Alternative approaches employ standard synchronous logic
or by a software procedure that writes to the power manades], [48], [49] coupled with adjustable clocks that adapt their
control registePMCPRof the CPUO] frequency to the speed of the critical path under different supply

Power down is applicable to electrooptical and electroltages. Another issue in systems with dynamically variable
mechanical system components, such as displays and HDRigpply voltage is that they require high-efficiency dc—dc
For systems with mechanical moving parts, like HDD’sconverters that can be programmed over a wide range of output
the time constants involved in accelerating and deceleratipgitages. Several adjustable dc—dc converters have been de-
moving parts are usually much larger than those involved #eribed in the literature [50]-[53]. The variable supply voltage
powering up and down electronic components. Furthermoegproach can be complemented by dynamic threshold-voltage
acceleration and deceleration tend to decrease the expeeigitistment, achieved by controlling the body back bias [48],
lifetime of the component [34]. Lifetime reduction can be segr9].
as another cost associated with state transitions. Dynamically varying supply voltages may be quantized [46]

Example 4.3:We consider again the IBM Travelstar 14GSnd thus be restricted to a finite number of values, or may take
disk drive [4], mentioned in Example 2.2. In this component, wgalues in a continuous range. In the former case it is possible to
can highlight as main subunits: the spindle motor, the head pdentify a finite number of power states for the system; in the
sitioning subsystem, and the host interface. The IBM Travelstatter the concept of finite state is not applicable. State transi-
HDD has nine power states:spin-up  state to initialize the tion take a finite time because dc—dc converters cannot support
drive from power down, three operational statesk, write arbitrarily fast changes in supply voltage.
andread ), and five inactive statesPerformance Idle
Active Idle  , Low power idle , Standby , andSleep ).
Different physical mechanisms are used to reduce power in the
inactive states. In theerformance Idle  state, all electronic ~ We consider DPM at the system level, and the corresponding
components are powered while in tAetive ldle state, implementation issues. Note that DPM schemes at the system
some circuitry is in power saving mode, and in tiwv power  level can coexist with local power management of components.
idle the head is unloaded. Whereas the spindle motor isWhen considering electronic systems implemented in hard-
rotating in the three idle states, the motor is spun down in theare, the power manager is a specialized control unit that acts
Standby andSleep states. In theStandby state the host in parallel and in coordination with the system control unit. In
interface is active, while in thBleep it is turned off. other words, the power manager may be a hardwired or micro-

The power consumption in the active states (in average 2®grammed controller, and possibly merged with the system
W) decreases in the inactive states to the values of 2, 1.3, 0.8ntroller. Policies based on timeouts are easily implemented by
0.25, and 0.1 W, respectively. Restarting the HDD requirestimers. Stochastic policies can be implemented by lookup tables
peak power of 5 W, due to the acceleration of the disks. Finallyyhen stationary) or by sequential circuits. Randomized policies
note that the lower the power consumption is, the longer thequire the use of pseudorandom number generators, that can be
corresponding wake up time is. Thus, DPM strategies needitaplemented byinear feedback shift registe(6 FSR's).
take advantage of the low-power states while minimizing the Typical electronic systems are software programmable, and
impact on performancél a majority have an operating system ranging from a simple

System-Level Power Management Implementation
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run-time scheduler or real-time operating system (RTOS) (fc Applications

embedded applications) to a full-fledged operating system (i oS

in the case of personal computers or workstations). ettt o2 -
There are several reasons for migrating the power manac| Kemel |

to software. Software power managers are easy to write and| _— -~ :

reconfigure. In most cases, the designer cannot, or does notw{

ACPI driver
to, interfere with and modify the underlying hardware platform}

|

. . |
Device Driver AML interpreter |
|

DPM implementations are still a novel art, and experimentatio-—t+~—--=------s-o- 2 s oo _ Y1 -
with software is easier than with hardware. } Table BIOS e Registar I
In general, the operating system is the software layer whe l :
the DPM policy can be implemented be&S-based power ' acki Tables ACPI BIOS ACP! registers :
managemen{OSPM) has the advantage that the power/pel L — |
formance dynamic control is performed by the software laye i A—— =
(the OS) that manages the computational, storage and I/O ta: Platform Hardware
of the system. Implementing OSPM ishardware/software P .
codesignproblem because the hardware resources need devices Chipset CcPU

be interfaced with the OS-based software power managcr;
and because both the hardware resources and the software

application programs need to be designed so that they coopeFétell. ACPIinterface and PC platform.
with OSPM.

Recent initiatives to handle system-level power managemeniat the bottom of Fig. 11 the hardware platform is shown. Al-
include Microsoft'sOnNowinitiative [20] and theadvanced though it is represented as a monolithic block, it is useful to dis-
configuration and power interfad@CP1) standard proposed bytinguish three types of hardware components. First, hardware
Intel, Microsoft, and Toshiba [21]. The former supports the iMesources (odevice$ are the system components that provide
plementation of OSPM and targets the design of personal coggme kind of specialized functionality (e.g., video controllers,
puters with improved usability through innovative OS desigrpﬂodems, bus controllers). Second, tBBU can be seen as a
The latter simplifies the codesign of OSPM by providing an inspecialized resource that need to be active for the OS (and the
terface standard to control system resources. On the other haq¥lp| interface layer) to run. Finally, thenipset(also called core
the aforementioned standards do not provide procedures for ggic) is the motherboard logic that controls the most basic hard-
timal control of power-managed system. ware functionalities (such as real-time clocks, interrupt signals,

1) Industrial Design Standardsindustrial standards have processor busses) and interfaces the CPU with all other devices.
been proposed to facilitate the development of operatingihough the CPU runs the OS, no system activity could be per-
system-based power management. Intel, Microsoft and Tosh{ganed without the chipset. From the power management stand-
proposed the open standard calladvanced configuration noint, the chipset, or a critical part of it, should always be active
and power interfacgACPI) [21]. ACPI provides an OS-in- pecause the system relies on it to exit from sleep states.
dependent power management and configuration standardy is jmnportant to notice that ACPI specifies neither how to

It provides for an orderly transition fronfegacy hardware implement hardware devices nor how to realize power man-

to ACPI-compliant hardwa_re. Alth_ough this ini_tiati_ve target3gement in the operating system. No constraints are imposed
personal computer(PC’s), it contains useful guidelines for a,, 5 jementation styles for hardware and on power manage-
more general class of systems. The main goals of ACPI

. ) nt policies. Implementation of ACPI-compliant hardware can

to: D ene_lble all PC’s to implement motherboard dyn"’”‘n|8verage any technology or architectural optimization as long as

configuration and power management; 2) enhance POVRE ower-managed device is controllable by the standard inter-

management features and 'the robustngss of power-manaf%d)speciﬁed by ACPI.

iﬁiﬁ‘;rg”gjacicggﬁga;g‘t‘lﬂg't‘grr‘;aatrfgt°f power-managec, ACPI, the system has fivgiobal power statesNamely, the
The ACPI specification defines most interfaces between nglowmg.

software and hardware. The software and hardware component® Mechanical off state(G3, with no power consump-

relevant to ACPI are shown in Fig. 11. Applications interact  tion.

with the OS kernel througapplication programming interfaces  « Soft off stateG2 (also calledS5). A full OS reboot is

(API's). A module of the OS implements the power manage- needed to restore the working state.

ment policies. The power management module interacts with ¢« Sleeping stateG1. The system appears to be off and

the hardware through kernel services (system calls). The kernel power consumption is reduced. The system returns to the

interacts with the hardware using device drivers. The front-end  working state in an amount of time which grows with the

of the ACPI interface is th&CPI driver. The driver is OS-spe- inverse of the power consumption.

cific, it maps kernel requests to ACPl commands, and ACPI re- « Working stateGGO, where the system is On and fully us-

sponses/messages to kernel signals/interrupts. Notice that the able.

kernel may also interact with non-ACPIl-compliant hardware < Legacy state, which is entered when the system does not

through other device drivers. comply with ACPI.



BENINI et al. SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 313

Min Power Giobal sieep statas Global states Device states Processor siates

@ "@ Applications

CE O I ———
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@ \@ < @ : Kernel Power Management :
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I Dxiz Ag:\: . ACP! driver :
Fig. 12. State definitions for ACPI. | e Lrive AML interpreter |
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The global states are shown in Fig. 12(a). They are ordered fréin 13.
top to bottom by increasing power dissipation.

DPM using filter drivers.

read/write

The ACPI specification refines the classification of global 348 W
system states by defining four sleeping states within stte
as shown in Fig. 12(b).
» Slisasleeping state with low wake-up latency. No system
context is lost in the CPU or the chipset.
* 52 is a low wake-up latency sleeping state. This state is
similar to theS1 sleeping state with the exception that the
CPU and system cache context is lost.
» S3is another low wake-up latency sleeping state where all 0.75 W
system context is lost except system memory.
» S4is the sleeping state with the lowest power and longeSy. 14. PSM for IBM DTTA HDD.
wake-up latency. To reduce power to a minimum, all de-
vices are powered off. TABLE |
Disk PARAMETERS. SUBSCRIPTS
Additionally, the ACPI specification defines states for system sd AND wu DENOTE SHUT DOWN
components. There are two types of system compordsig;es AND WAKE UP, RESPECTIVELY
andprocessorfor which power states are specified. Devices are Model | Por; | Porn | Toa | Esd | Twa | Euwe
abstract representations of the hardware resources in the system. Watt | Watt | sec | J | sec | J
Four states are defined for devices, as shown in Fig. 12(c). In IBM | 0.75 | 3.48 [ 0.51 | 1.08 | 6.97 | 52.5
contrast with global power states, device power states are not Fujitsu | 0.13 | 0.95 | 0.67 | 0.36 | 1.61 | 4.39

visible to the user. For instance, some devices can be in an inac-

tive state, but the system appears to be in a working state. Riere monitored by digital multimeters, connected to a PC via a
thermore, state transitions for different devices can be controllrg-232 port to record the measurements.

by different power management schemes. The processor is th&he |BM HDD can be in one of three stateéBowerDe-
central processing unit that controls the entire PC platform. TogeDO when it is reading or writingPowerDeviceD1
processor has its own power states, as shown in Fig. 12(d). Mghen the plates are spinning aRdwerDeviceD3 when the

tice the intrinsic asymmetry of the ACPI model. The central rolgiates stop spinning. I/O requests only wait for seek and rotation
of the CPU is recognized, and the processor is not treated agefays when the disk is &owerDeviceD1 (see Fig. 14). If
simple resource. a request arrives when the hard disk isatverDeviceD3 ,

2) ACPI-Based DPM Implementationgs set of exper- it has to wait for the wake-up procedure in addition to the seek
iments were carried out by Let al. [35], [36] to measure and rotation delays. The disk consumes 3.48 and 0.75 W in
the effectiveness of different DPM policies. Lu used twgtatesD1 andD3, respectively. It takes approximately 7 s and
ACPI-compliant computers, running a beta version of Windovwsp .5 J to wake up frond3 to DO. It takes (in average) 0.5 s to
NT V5, which is also ACPI compliant. The first computer is @&nterD3 from D1. The behavior of the Fujitsu HDD is similar,
VarStation 2861A desktop, using a Pentium Il processor andjax with different parameters (see Table 1). The break-even
IBM DTTA 350-640 HDD. The second is a Sony VAIO PCGimes of the IBM and Fujitsu HDD’s are 17.6 and 5.43 s,
F-150 laptop, with a Pentium Il and a Fujitsu MHF 2043ATrespectively.

HDD. The experiments aimed at controlling the HDD unit Experimental results are reported in [36], where a compara-
using different policies. tive analysis of different algorithms is presented. For compar-

For this purpose, Lu implementditter drivers (Fig. 13) to ison purposes, both computers execute the same trace of input
control the power states of the HDD's, to record disk access#ata (an 11-h-long execution trace). Results show that all algo-
and to analyze the performance impact of the power manag#éims spend less than 1% of computation on power manage-
ment overhead of each algorithm. The power lines of the disk®ent itself, thus validating a fundamental premise of this body
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of work. For the laptop (desktop) computer, power reduction ¢ ¢
have been measured up to 55% (43%) (as compared to the ;4
ways on case) and up to 34% (23%) (as compared to the ¢
fault 3-min timeout policy of Windows OS). Larger power sav-'°
ings are achieved on the laptop computer because of the sholyp*
break-even time of its disk.

3) Observer ImplementationAs seen in Section Ill, power
management requires information on the usage of each ha ¢’
ware resource, such as: 1) distribution of interarrival times of re
guest to the resources and 2) distribution of service times for tl
requests. Thebservemmodule (Fig. 2) of the PM takes care of 1* {
data collection. In ACPI-compliant PC’s, the observer may rel, . |
on ACPI messages to obtain the data needed to drive the pc
cies. However, not all computers are ACPI-compliant. In thi?*
section, we shall analyze the implementation of a power ma
ager observer module that does not exploit ACPI, nor it is bast
on a proprietary Microsoft operating system. The basic require-
ments for the implementation of the observer are as follows. ig. 15, statistical analysis of the interarrival time. For each device, three

 Low perturbation of normal system activitylonitoring curves are plotted in lin-log scale: the probability density (solid line), the
hould b h d d should obability distribution (bold line), and its complement to one (dashed line).
should be transparent to the end user and should modif;y refer to software development.
the usage patterns of hardware resources as little as pos-
sible.

« Flexibility: It should be easy to monitor multiple types ofnonitoring through a simple dumping mechanism that can be
resources. Moreover, the number and types of obseng@gnmarized as follows. Whenever the number of unprocessed
resources should be dynamically controllable. This fe&vents reaches a vallig,y < Liax, alwake-up S|gnal IS sentto
ture is particularly useful for laptop computers where nef dedicated process. The process is normally inactive, waiting

devices can be installed during system operation (i'é(_)'r the wake-up signal, thus it does not alter normal system
plug-and-play capability). activity. Whenever the wake-up signal is asserted, the process

cumulative counts of accesses to system resources. Tfighis process does alter normal system activity. However, the
functionality is not sufficient to obtain accurate statisticBerturbation is limited by the fact that the list is processed only
of interarrival times and service times. One importa¥hen itis almost full.
feature of the observer is the capability of time-stamping Devices that are controlled by the OS through device drivers
the events with high resolution. are monitored by inserting standard function calls that update
The software-based observer architecture ana|yzed in tm§ event list in the device driver routines that are run whenever
section is calledPM [6], and it has been implemented as afe componentis accessed. Monitoring does not change the flow
extension of the Linux operating system [54]. The observef execution of the device driver, and it has minimal impact on
monitors the accesses to system resources and stores tmﬁrexecution time. At boot time, the observer is initialized by
in form of time-stamped events. The core data structure SBecifying which resources should be monitored.
located in kernel memory space, that is forced to reside inThe CPU and all hardware components required for its op-
physical-address space. Hence, storing events in kernel spai@sion (chipset, RAM, bus controllers, etc.) are not controlled
prevents the usage of memory paging, thus avoiding the seviém@ugh device drivers. Fortunately, it is possible to monitor the
performance penalty possibly caused by TLB misses. CPU and its ancillary components by observing that the OS
On the other hand, storing the event list in kernel spa&ernel itself is nothing else than executable code running on the
imposes a tight limitation on its maximum size. The list cannéiPU. Whenever the kernel is running, the CPU is active. When
grow larger than 64 KB, which correspondsitq,,. = 4096 there is nothing to do, the kernel schedules a dummy process,
events. The event list is implemented as a circular buffer ancclledidle task Hence, to detect CPU idleness, itis sufficient to
is allocated once for all (for performance reasons). The circulgonitor the scheduling dtile task
structure protects against memory violations. If the numberMonitor installation requires kernel recompilation, and sup-
of unprocessed events stored in the list grows larger than th@rts monitoring of CPU, keyboard, serial and parallel ports,
number of slots, older events are overwritten. Event loss cau®32 mouse, IDE hard disk, and CD-ROM. During the system
a decrease in accuracy in monitoring but does not damdgmot, a data structure is created for edBiM-compliant re-
normal system operation. source, containing its name, type, configuration flags, unique
The size limitation of the event list in kernel memory isdentifier, and resource-specific information (such as the type
not a concern if events are processed and discarded as smfoevents to be monitored). Monitoring can be selectively en-
as they are registered (online monitoring). However, eveabled for each resource by setting the corresponding flags.
loss should be avoided if the observer is collecting long eventSeveral experiments [5] (run on a HP Omnibook 5500 CT
traces for offline processing. The observer supports offliveith 133-MHz Pentium processor and 48 MB of RAM) showed

10*
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that system operation is slowed down by less than 0.38% in ay12]
erage, even when all available system components are moni-
tored, thus showing convincing evidence of the nonintrusiver; 3
ness of the monitor. Examples of the data collected by the mon-
itoring system are reported in Fig. 15, where the probability den- 4
sities and distributions of request interarrival times are plotte(gl1
for CPU, keyboard, mouse, and hard disk. Data was collecteids]
during a code development user session. Several different usage
patterns were also tested (such as editing, game playing, etc.)s g

[17]
V. CONCLUSION

DPM is a powerful methodology for reducing power con-[18]
sumption in electronic systems. In a power-managed system, t
state of operation of various components is dynamically adapt
to the required performance level, in an effort to minimize the
power wasted by idle or underutilized components. For mogf
system components, state transitions have nonnegligible powgs
and performance costs. Thus, the problem of designing power
management policies that minimize power under performancEZ]
constraints is a challenging one.

We surveyed several classes of power-managed systems and
power management policies. Furthermore, we analyzed tHés
tradeoffs involved in designing and implementing power-man-
aged systems. Several practical examples of power-managé&dl
systems were analyzed and discussed in detail. Even though
DPM has been successfully employed in many real-life sysps)
tems, much work is required for achieving a deep understandin
on how to design systems that can be optimally power manageg.

ol
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