
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000 299

A Survey of Design Techniques for System-Level
Dynamic Power Management

Luca Benini, Member, IEEE, Alessandro Bogliolo, Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—Dynamic power management(DPM) is a design
methodology for dynamically reconfiguring systems to provide
the requested services and performance levels with a minimum
number of active components or a minimum load on such com-
ponents. DPM encompasses a set of techniques that achieves
energy-efficient computation by selectively turning off (or re-
ducing the performance of) system components when they are idle
(or partially unexploited).

In this paper, we survey several approaches to system-level dy-
namic power management. We first describe how systems employ
power-manageable components and how the use of dynamic re-
configuration can impact the overall power consumption. We then
analyze DPM implementation issues in electronic systems, and we
survey recent initiatives in standardizing the hardware/software
interface to enable software-controlled power management of
hardware components.

Index Terms—Energy conservation, energy management, opti-
mization methods.

I. INTRODUCTION

M OST ELECTRONIC circuits and system designs are
confronted with the problem of delivering high per-

formance with a limited consumption of electric power. High
performance is required by the increasingly complex appli-
cations (e.g., multimedia) that are running even on portable
devices. Low-power consumption is required to achieve accept-
able autonomy in battery-powered systems, as well as to reduce
the environmental impact (e.g., heat dissipation, cooling-in-
duced noise) and operation cost of stationary systems. In other
words, achieving highly energy-efficient computation is a
major challenge in electronic design.

Electronic systems can be viewed as collections of com-
ponents, which may be heterogeneous in nature. Some
components may have mechanical parts, e.g., hard-disk drives
(HDD’s), or optical parts, e.g., displays. For example, a cellular
telephone has a digital very large scale integration (VLSI)
component, an analog radio-frequency (RF) component, and
a display. Such components may be active at different times,
and correspondingly consume different fractions of the tele-
phone power budget. Similarly, main components of portable

Manuscript received February 14, 1999; revised September 23, 1999. This
work was supported in part by NSF under Contract CCR-9901190 and by the
MARCO/DARPA Gigascale Silicon Research Center.

L. Benini is with the Dip. di Elettronica, Informatica e Sistemistica, Univer-
sità di Bologna, Bologna 40136, Italy.

A. Bogliolo is with the Department of Engineering, Università di Ferrara,
Ferrara 44100, Italy.

G. De Micheli is with the Computer Systems Laboratory, Stanford University,
Stanford, CA 94305 USA.

Publisher Item Identifier S 1063-8210(00)04347-X.

computers are VLSI chips, HDD, and display. It is often the
case that the HDD and the display are the most power-hungry
components [1], and thus their effective use is key to achieving
long operating times between battery recharges.

To be competitive, an electronic design must be able to deliver
peak performance when requested. Nevertheless, peak perfor-
mance is required only during some time intervals. Similarly,
system components are not always required to be in the active
state. The ability to enable and disable components, as well as of
tuning their performance to theworkload(e.g., user’s requests),
is key in achieving energy-efficient designs.

Dynamic power management(DPM) is a design methodology
that dynamically reconfigures an electronic system to provide
the requested services and performance levels with a minimum
number of active components or a minimum load on such com-
ponents [1], [2]. DPM encompasses a set of techniques that
achieve energy-efficient computation by selectively turning off
(or reducing the performance of) system components when they
areidle (or partially unexploited). DPM is used in various forms
in most portable (and some stationary) electronic designs; yet
its application is sometimes primitive because its full potentials
are still unexplored and because the complexity of interfacing
heterogeneous components has limited designers to simple so-
lutions.

The fundamental premise for the applicability of DPM is that
systems (and their components) experience nonuniform work-
loads during operation time. Such an assumption is valid for
most systems, both when considered in isolation and when in-
ternetworked. A second assumption of DPM is that it is possible
to predict, with a certain degree of confidence, the fluctuations
of workload. Workload observation and prediction should not
consume significant energy.

Dynamic power managers can have different embodiments,
according to the level (e.g., component, system, network)
where DPM is applied and to the physical realization style
(e.g., timer, hard-wired controller, software routine). Typically,
a power manager(PM) implements a control procedure based
on some observations and/or assumptions on the workload.
The control procedure is often calledpolicy. An example of a
simple policy, ubiquitously used for laptops and palmtops, is
thetimeoutpolicy, which shuts down a component after a fixed
inactivity time, under the assumption that it is highly likely that
a component remains idle if it has been idle for the timeout time.
We shall show in this paper how this simple-minded policy
may turn out to be inefficient and how it can be improved.

This paper has the objective to cover and relate different
approaches to system-level DPM. We begin by describing how
systems employ power-manageable components and how the

1063–8210/00$10.00 © 2000 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

300 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

use of their dynamic reconfiguration can impact the overall
power consumption. Next, we review and compare different
approaches to DPM. We use a mathematical framework to
highlight the benefits and pitfalls of different power manage-
ment policies. We classify power management approaches
into two major classes, where policies are based onpredictive
schemesand stochastic optimum controlrespectively. Within
each class, we survey the approaches being applied to system
design and/or described in the literature. Last, we present the
means of implementing DPM in electronic systems, and we
describe in particular the recent initiatives in standardizing
hardware/software interface to enable software-controlled
power management of hardware components.

II. M ODELING POWER-MANAGED SYSTEMS

We model a power-managed system as a set of interacting
power manageable components(PMC’s) controlled by apower
manager(PM). We model PMC’s asblack boxes. We are not
concerned on how PMC’s are designed (this topic will be de-
ferred to Section IV), but we focus instead on how they interact
with the environment. The purpose of this analysis is to un-
derstand what type and how much information should be ex-
changed between a power manager and system components in
order to implement effective policies. We take a bottom-up view.
We consider PMC’s in isolation first. Then we describe DPM for
systems with several interacting components. Finally, we ana-
lyze the problem of managing power for anetworkof commu-
nicating systems.

A. Power Manageable Components

Our working definition ofcomponentis general and abstract.
A component is an atomic block in a complete system. Notice
that the granularity of this definition is arbitrary, hence compo-
nents can be as simple as a functional unit within a chip, or as
complex as a board. The characterizing property of our defini-
tion is atomicity. At the system level, a component is seen as
an indivisible functional block: no detailed knowledge of its in-
ternal structure is assumed. The fundamental characteristic of
a PMC is the availability of multiplemodes of operationthat
span the power-performance tradeoff. Nonmanageable compo-
nents are designed for a given performance target and power
budget. In contrast, with PMC’s it is possible to dynamically
switch between high-performance high-power modes of opera-
tion and low-power low-performance ones.

It is possible to think that a PMC may have a continuous
range of operation modes, or that the number of modes can be
very large. Intuitively, the availability of many operation modes
gives fine control on how to operate a PMC in such a way that
power waste is minimized and performance is perfectly cali-
brated on the task. In practice, the number of modes of oper-
ation tends to be quite small because the increased design com-
plexity and hardware overhead for supporting power manage-
ment must be tightly controlled. Several implementation tech-
niques for PMC’s are surveyed in Section IV. Here, we just
stress the fact that the increased flexibility offered by PMC’s
may have a cost that should be taken into account.

Fig. 1. Power state machine for the StrongARM SA-1100 processor.

Another important characteristic of real-life PMC’s is that
transitions between modes of operation have a cost. In many
cases, the cost is in terms of delay, or performance loss. If a tran-
sition is not instantaneous, and the component is not operational
during a transition, performance is lost whenever a transition is
initiated. Transition cost depends on PMC implementation: in
some cases (see Section IV) the cost may be negligible, but, gen-
erally, it is not. There might also be a transition power cost: this
is often the case when transitions are not instantaneous. It is im-
portant not to neglect transition costs when designing a PMC’s.
Excessive costs may make one or more low-power operation
states almost useless because it is very hard to amortize the cost
of transitioning in and out of them.

In most practical instances, we can model a PMC by a finite-
state representation calledpower state machine(PSM). States
are the various modes of operation that span the tradeoff be-
tween performance and power. State transitions have a power
and delay cost. In general, low-power states have lower per-
formance and larger transition latency than states with higher
power. This simple abstract model holds for many single-chip
components like processors [14] and memories [7] as well as
for devices such as disk drives [18], wireless network interfaces
[19], displays [18], which are more heterogeneous and complex
than a single chip.

Example 2.1:The StrongARM SA-1100 processor [3] is
an example of PMC. It has three modes of operation:Run,
IDLE , andSLEEP. Run mode is the normal operating mode
of the SA-1100: every on-chip resource is functional. The chip
enters run mode after successful power-up and reset.IDLE
mode allows a software application to stop the CPU when not
in use, while continuing to monitor interrupt requests on or
off chip. In idle mode, the CPU can be brought back to run
mode quickly when an interrupt occurs.SLEEP mode offers
the greatest power savings and consequently the lowest level
of available functionality. In the transition fromRun or IDLE ,
the SA-1100 performs an orderly shutdown of on-chip activity.
In a transition fromSLEEP to any other state, the chip steps
through a rather complex wake-up sequence before it can
resume normal activity.

The PSM model of the StrongARM SA-1100 is shown in
Fig. 1. States are marked with power dissipation and perfor-
mance values, edges are marked with transition times. The
power consumed during transitions is approximatively equal to
that inRun mode. Notice that bothIdle andSLEEPhave null
performance, but the time for exitingSLEEP is much longer
than that for exitingIdle (10 s versus 160 ms). On the other

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 301

hand, the power consumed by the chip inSLEEPmode (0.16
mW) is much smaller than that inIdle (50 mW).

Power-manageable components can be managedinternally
or externally, according to the physical location of the imple-
mentation of the corresponding policy. Internally managed com-
ponents (also calledself-managedcomponents) use conserva-
tive policies because of the lack of observability of the overall
system operation and of the need of tolerating little or no per-
formance degradation, since no assumptions can be made on
how demanding the component’s environment will be. Never-
theless, there are several examples of components that are either
partially of completely self-managed.

Example 2.2: IBM’s Travelstar [4] hard disk drives have
three low-power inactive states calledPerformance Idle,
Active Idle, and Low Power Idle . When the disk
is idle, the drives employ a proprietary internal management
technology called “Enhanced Adaptive Battery Life Extender”
for selecting the appropriate idle mode to minimize power
usage. Idle-mode selection is based on the current disk drive
access patterns, and IBM claims that automatic adaptation
helps in improving access times. The disk does not need
an external power manager and no configuration or set up
is needed. Travelstar drives have also two additional very
low-power states, namely,Stand-by andSleep . The times
required for entering and exiting these two states are much
longer than those needed for transitioning to and from the first
three. Decisions on transitions toStand-by or Sleep are
left to external control.

B. Power-Managed Systems

From our viewpoint, a system is a set of interacting compo-
nents, some of which (at least one) are externally controllable
PMC’s. Notice that this generic definition does not pose any
limitation on the size and complexity of a system. The activity
of components is coordinated by a system controller. In com-
plex systems, control is often implemented in software. For in-
stance, in computer systems, global coordination is performed
by theoperating system(OS).

The system controller has precise and up-to-date control on
the status of system components, hence, the power manager is
naturally implemented as a module of the system controller. A
power-manageable system should provide a clean abstraction
of its components to the power manager. Standardization of the
interface between PM and system is an important feature for
decreasing design time.

The choice and realization of a DPM scheme requires mod-
eling both the components’ power/performance behavior and
their workload. The former model is captured well by the power
state machine model. On the other hand, models for the work-
load may vary in complexity, and range from the simple assump-
tion used in timeout schemes to complex statistical models. As
we shall see in Section III, workload information is required
for all advanced power management approaches. Hence, we
postulate the existence of a system-monitoring module which
is capable of collecting run-time workload data and extracting
the relevant information required to drive the PM. The abstract
structure of a generic system-level PM is shown in Fig. 2. The

Fig. 2. Abstract structure of a system-level power manager.

Fig. 3. PaperClip hardware diagram.

observerblock collects workload information for all PMC’s in
the system, while thecontroller takes care of issuing commands
for forcing state transitions.

Not all components in a power-managed system have to be
PMC’s. The power consumption of all noncontrollable compo-
nents makes up a baseline power consumption that cannot be
reduced by power management. Self-managed components ap-
pear as noncontrollable to the PM. Even though the function-
ality of the PM is clearly defined, its implementation is not con-
strained in any way. In some systems, the PM is a hardware
block, while in others it is a software routine. Hybrid hard-
ware–software implementations are also possible. PM imple-
mentation issues are analyzed in Section IV.

Example 2.3:The PaperClip, a hand-held electronic clip-
board developed by HP Laboratories, is an example of a power-
managed system [5]. The high-level hardware organization of
PaperClip is shown in Fig. 3. All major components are power-
manageable: the CPU, memory, LCD, and digitizer can be put
in a low-power sleep state. Some components, like the real-time
clock and the FPGA-based control logic, are always active. Pa-
perClip’s inputs come either from the control buttons situated
on the clipboard or from the digitizer’s pen. PaperClip can op-
erate as a digitizer and as data-transfer unit. During digitize, Pa-
perClip stores digitized handwriting on FLASH memory, while
the user writes on a sheet of paper on the clipboard. During data
transfer, the digitized handwriting is transferred to a host PC via
either a serial or an IR interface.

302 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

Power management for PaperClip is based on a hybrid
hardware–software implementation. The core PM functionality
is implemented as firmware running on the CPU. PaperClip’s
workload can be widely varying over time. If the user is
not writing on the clipboard, the system is idle. However,
PaperClip should not be turned off as soon as writing stops
because resuming normal operation after a sleep period re-
quires a few milliseconds. If the PM puts the system to sleep
too greedily, a significant amount of data can be lost when
writing resumes, and the quality of handwriting digitization
may be compromised. Power state transitions for non-CPU
components are forced by the PM module running on the CPU
by writing to memory-mapped I/O locations. PM commands
are then decoded by control circuitry implemented with an
FPGA and distributed to the components. CPU shutdown is
software based. Wake-up is interrupt driven: interrupts are
generated by pressing control buttons or by pressing the pen
on the clipboard. Notice that sleep power cannot be reduced
to zero because some of the system components are not power
manageable.

C. Power-Managed Networks

In many cases, systems are not isolated, but they actively
communicate among themselves. We callnetworka set of com-
municating systems. While network design has been tradition-
ally focused on communication quality and throughput, the in-
creased emphasis on low-power portable systems with commu-
nication capabilities has spurred several research initiatives tar-
geting power-efficient networking [22].

Energy-conscious communication protocols based on power
management have been extensively studied [23]–[25]. The main
purpose of these protocols is to regulate the access of several
communication devices to a shared medium trying to obtain
maximum power efficiency for a given throughput requirement.
Even when interference is not an issue, point-to-point commu-
nication can be made more power efficient by increasing the
predictability of communication patterns [26]: if it is possible
to accurately predict the arrival time of messages (packets), idle
times can be exploited to force communication devices into a
low-power inactive state.

The main challenge in network power management is that it
is generally not realistic to assume that power control is central-
ized. Hence, we must rely on distributed algorithms that take au-
tonomous decisions for each system in the network based either
on local information, or on incomplete global network status
data. Even though network power management is an interesting
and relevant topic, we focus on system-level centralized power
management.

III. D YNAMIC POWER MANAGEMENT TECHNIQUES

In this section, we analyze techniques for controlling the
power state of a system and its components. We consider
components as black boxes, whose behavior is abstracted
by the PSM model. We defer to Section IV the description
of the interfacing layers for component control as well as
the implementation technical details. We focus on how to
design effective power management policies. For the sake of

Fig. 4. PSM of a two-state power-manageable component.

simplicity, we shall focus on the problem of controlling a single
component (or, equivalently, the system as a whole).

First, we want to clarify why the search for a DPM policy is
not a simple problem to solve. For this reason, we give an ex-
ample of a trivial problem first. Consider a system where transi-
tions between power states are instantaneous: negligible power
and performance costs are paid for performing state transitions.
In such a system, DPM is a trivial task, and the optimum policy
is greedy: as soon as the system is idle, it can be transitioned to
the deepest sleep state available. On the arrival of a request, the
system is instantaneously activated.

Unfortunately, most PMC’s have nonnegligible performance
and power costs for power state transitions. For instance, if
entering a low-power state requires power-supply shutdown,
returning from this state to the active state requires a (possibly
long) time for: 1) turning on and stabilizing the power supply
and the clock; 2) reinitializing the system; and 3) restoring
the context. When power state transitions have a cost, as it is
typically the case, we are faced with a difficult optimization
problem. In rough but intuitive words, we need to decide
when (if at all) it is worthwhile (performance and power-wise)
to transition to a low-power state and which state should be
chosen (if multiple low-power states are available).

Example 3.1:Consider the StrongARM SA-1100 processor
described in Example 2.1. Transition times betweenRun and
Idle states are so fast that theIdle state can be optimally
exploited according to a greedy policy possibly implemented
by an embedded PM.

On the other hand, the wake-up time from theSleep state
is much larger and has to be carefully compared with the envi-
ronment’s time constants before deciding to shut the processor
down. In the limiting case of a workload with no idle periods
longer than the time required to enter and exit theSleep state,
a greedy policy shutting down the processor as soon as an idle
period is detected would reduce performance without saving any
power (the power consumption associated with state transitions
is of the same order of that of theRun state). An external PM
controlling transitions of the SA-1100 processor to theSleep
state has to observe the workload and take decisions according
to a policy whose optimality depends on workload statistics and
on predefined performance constraints. Notice that the policy
becomes trivial if there are no performance constraints: the PM
could keep the processor always in theSleep state.

An SA-1100 processor with embedded control for theIdle
state and external control for theSleep state is a partially
self-managed PMC whose PSM model (shown in Fig. 4) has
only two states:OnandOff . TheOnstate is a macrostate rep-
resenting both theRun andIdle states of the processor, with
a greedy policy autonomously controlling transitions between
them. The power consumption associated with theOn state is

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 303

the sum of the power consumptions of theRun andIdle states,
weighted by the workload activity and idleness probabilities.
The Off state corresponds to the actualSleep state. Transi-
tions betweenOn and Off represent transitions between the
Run andSleep states.

Example 3.1 leads to two observations. First, policy optimiza-
tion is apower optimizationproblem underperformance con-
straints, or vice versa. Second, the achievable power savings de-
pend on the workload (which must be bursty at some degree),
and system characteristics (i.e., the PSM of the system). The
general applicability of DPM is discussed in the next section
as a property of a system-workload pair. Existing techniques
for DPM and policy optimization are surveyed and discussed
in Sections III-B and C, focusing onpredictive techniquesand
stochastic control, respectively.

A. Applicability of DPM

Putting a PMC into an inactive state causes a period of inac-
tivity whose duration is the sum of the actual time spent in
the target state and the time spent to enter and exit it. We define
thebreak-even timefor an inactive state (denoted by)
as the minimum inactivity time required to compensate the cost
of entering state . The break-even time is inferred di-
rectly from the power state machine of a PMC. If ,
either there is not enough time to enter and exit the inactive state,
or the power saved when in the inactive state does not amortize
the additional power consumption typically required to turn-on
the component. Intuitively, DPM aims at exploiting idleness to
transition a component to an inactive low-power state. If no per-
formance loss is tolerated, the length of the idle periods of the
workload is an upper bound for the inactivity time of the re-
source. On the other hand, if some performance loss is tolerated,
inactivity times may be longer than idle periods.

In this section, we analyze theexploitability of the inactive
states of a PMC, that is the possibility of saving power by tran-
sitioning the component to the inactive states. Exploitability de-
pends on the power states, on the workload, on the performance
constraints, on the DPM policy and on the PM implementation.
Techniques for policy optimization and implementation will be
discussed later, together with the impact of performance con-
straints. Here, we focus only oninherent exploitability, which
represents the possibility of exploiting an inactive state under
the assumption that: 1) no performance penalty is tolerated and
2) anideal PM is available that has complete (a priori) knowl-
edge of the entire workload trace. Inherent exploitability is a
property of a system-workload pair.

For example, consider the two-state PSM of a component, as
shown in Fig. 4. For the sake of clarity, when there is only one
inactive state, we will use the shorthand notation instead
of . The optimum policy for an ideal PM controlling the
transitions between statesOnandOff consists of shutting down
the component at the beginning of all idle periods longer than

and waking it up right in time to serve up-
coming requests with no delay. The resulting power consump-
tion (denoted by) is a lower bound for the power con-
sumption that can be achieved by a PM exploiting inactive state
Off . The potential power saving (), defined as the gap

between and the power consumption of the system when
in the active state (), represents the inherent exploitability
of theOff state for the given workload. The larger the
larger the potential advantage of exploiting stateOff for DPM.
If , no power savings can be achieved by entering the
inactive state without impairing performance. Needless to say,
the inactive state can always be exploited in practice if arbitrary
performance degradation is tolerated.

We are interested in studying the dependence of on
power-state parameters and workload statistics. The parame-
ters of a power state are represented by its break-even time

, while workload statistics are represented by the prob-
ability distribution of the idle periods . Intuitively, the
larger (with respect to the average idle time), the smaller

. In the limiting situation where all idle periods are shorter
than , no power savings would be achieved by means of
DPM: an ideal PM implementing the optimum policy would
never shut the resource down, thus providing and

.
In general, is the sum of two terms: the total transi-

tion time (i.e., the time required to enter and exit the inactive
state,) and the minimum time that has to be spent in the
low-power state to compensate the additional transition power
(). For our example PMC (Fig. 4), and can be
computed as

(1)

(2)

while can be expressed as

if

if (3)

In practice, grows linearly with transition time and cost
(and) and depends hyperbolically on the power saved
() when in the inactive state When ,

reduces to (this is, for instance, the case of the
ARM SA-1100 processor), while it is greater than when

(as for components with mechanical inertia,
such as hard disk drives). In this case, we need to add to
the term , which represents
the additional time that we need to spend in theOff state to
compensate the excess power consumed during state transition.

For systems with multiple inactive states, a different
break-even time and, consequently, a different value of

, has to be defined for each state. Deeper sleep states
have lower power consumption at the cost of longer and more
expensive transitions. When designing power-manageable
components, a tradeoff between , and has to be
found for each sleep state to obtain small values of
and high exploitability. Sleep states with smaller break-even
times are more likely to be successfully exploited by DPM.

304 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

Fig. 5. (a) Plot ofP (T) for theSleep state of the StrongARM SA-1100 processor. The three curves refer to three different workload statistics, computed
from real-world CPU traces provided by theIPM monitoring package[5]. (b) Comparison ofP (T) for the two inactive states of the SA-1100 processor.
The two curves refer to the same workload.

The energy saved by entering stateduring an idle period
is

(4)
Its average value is given by

(5)

where is the probability density of the idle periods. The
exploitability of (in symbols,) is the ratio between

and the average length of the idle periods (). By re-
placing the expression of from (4) into (5) and di-
viding by , we obtain a formula for

(6)

which can be integrated and rewritten as the product of three
terms: the power saving of state, the expected idle time in
excess of (normalized at the average idle period), and
the probability of going to state (assuming that we perform
the transition only when it is convenient)

(7)

where is the probability distribution of and
is the average length of idle periods longer then . The
power saved is always a decreasing function of : it
takes maximum value for and asymptotically tends
to zero for increasing values of . The way it goes to zero
depends on the first-order statistics of the workload, namely, on
the distribution of .

Example 3.2:We want to evaluate the exploitability of the
inactive states of the StrongARM SA-1100 processor. We start
by computing their break-even times according to (4). Since the

power consumption associated with all state transitions is equal
to ,

ms ms

ms ms

As intuitively observed at the beginning of this section, the
Idle state has a break-even time much smaller than the
Sleep state.

As reference workloads to evaluate exploitability, we take
real-world CPU usage traces provided by the IPM monitoring
system [5] described in Section IV. From each trace, we compute
the probability distribution function and we evaluate
(7) for different values of . The behavior of as
a function of the break-even time is shown in Fig. 5(a) for three
different CPU workloads, corresponding to three different user
sessions: editing, software development, and graphical interac-
tive games. The dependence on the workload is evident: graph-
ical interactive games require more CPU usage than text editors,
thus reducing the opportunity of putting the CPU to theSleep
state. Notice that, if the break-even time for theSleep state
were null, would have been of about 400 mW in-
dependently of the workload. Corresponding to the actual value
of , instead, is much smaller and strongly
dependent on the workload.

Fig. 5(b) compares the curves of both inactive states
for the same workload (namely, the editing trace).
is always below . Since theSleep state has lower
power consumption than theIdle state, if the two states had
the same break-even time the deepest one would have been more
exploitable. However, taking into account the actual break-even
times we find that the inherent exploitability of theIdle state is
greater than that of theSleep state (the points to be compared
are shown by square boxes on the graph).

As mentioned at the beginning of the section and formally
expressed by (7), the exploitability of an inactive state depends
both on the characteristics of the inactive state and on the work-
load. If typical workload information is not available when de-
signing a PMC, the exploitability of its low-power states cannot
be computed. To represent the properties of an inactive state
independently of the workload, we use the time-power product

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 305

Fig. 6. Quality of a timeout-based predictor evaluated as a function of timer duration. (a) Safety and efficiency of the timeout used to predict idle periods longer
thanT = 160 ms. (b) Saved and wasted power consumption. Data refer to the PSM of Example 3.1 and to a CPU usage trace provided by the IPM monitoring
package [5].

. Inactive states with lower are likely
to lead to larger power savings. Incidentally, we remark that
has the same dimension of the well-known power-delay product
used as a cost metric for comparing different electronic devices
and circuits.

B. Predictive Techniques

In most real-world systems, there is little knowledge of future
input events and DPM decisions have to be taken based on un-
certain predictions. The rationale in all predictive techniques is
that of exploiting the correlation between the past history of the
workload and its near future in order to make reliable predic-
tions about future events. We denote bythe future event that
we want to predict. We denote bythe past event whose occur-
rence is used to make predictions on. For the purpose of DPM
we are interested in predicting idle periods long enough to go to
sleep, in symbols: .

Good predictors should minimize the number of mispredic-
tions. We calloverprediction(underprediction) a predicted idle
period longer (shorter) than the actual one. Overpredictions
give rise to a performance penalty, while underpredictions
imply power waste but no performance penalty. To represent
the quality of a predictor we define two figures:safety, that
is the complement of the risk of making overpredictions, and
efficiency, that is the complement of the risk of making under-
predictions. Safety and efficiency can be expressed in terms of
conditional probabilities and . A totally
safe predictor never makes overpredictions (),
and a totally efficient predictor never makes underpredictions
(). A predictor with maximum safety and effi-
ciency is anideal predictor, whose availability would enable
the actual implementation of the ideal PM discussed in the
previous section. Predictors of practical interest are neither safe
nor efficient, thus causing suboptimum control. Their quality
(and the quality of the resulting control) depends on the choice
of the observed event and on the second-order workload
statistics.

1) Static Techniques:
Fixed Timeout: The most common predictive PM policy is

the fixed timeout, which uses the elapsed idle time as observed

event () to be used to predict the total dura-
tion of the current idle period ().
The policy can be summarized as follows: when an idle pe-
riod begins, a timer is started with duration . If after
the system is still idle, then the PM forces the transition to the
Off state. The system remains off until it receives a request
from the environment that signals the end of the idle period.
The fundamental assumption in the fixed timeout policy is that
the probability of being longer than , given that

, is close to one:
. The critical design decision is obviously the choice

of the timeout value .
Timeouts have two main advantages: they are general (their

applicability slightly depends on the workload) and their safety
can be improved simply by increasing the timeout values. Un-
fortunately, they tradeoff efficiency for safety: large timeouts
cause a large number of underpredictions, which represent a
missed opportunity of saving power, and a sizeable amount of
power is wasted waiting for the timeout to expire.

Example 3.3:Consider one of the CPU usage traces de-
scribed in Example 3.2 (namely, the game trace) as a typical
workload for the StrongARM SA-1100 processor. We want to
evaluate the quality of a timeout-based shutdown policy for the
processor. Since the break-even time for theSleep state is of
160 ms, we evaluate the safety and efficiency of a timeout used
to predict idle periods longer than 160 ms. The two figures
are plotted on Fig. 6(a) as a function of the timer duration.
As the timeout increases, predictions become safer but less
efficient (efficiency is almost null for timeouts greater than 1
s). It is also worth noting that safety has a highly nonsmooth
instance-dependent behavior that makes it difficult to choose
optimal timeout values [the irregular curve in Fig. 6(a) refers
to a 1-h trace, while the smooth one refers to the average of
several traces collected during equivalent user sessions].

Fig. 6(b) shows the power savings obtained by applying the
timeout policy to the SA-1100 and the wasted power evaluated
with respect to the ideal power savings. The effect of on
the actual power savings is similar to the effect of on the
ideal ones. Both parameters reduce the portion of idle time that
can be effectively exploited to save power.

306 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

Fig. 7. (a) Scatter plot ofT versusT for the workload of the CPU of a personal computer running Linux. (b) Safety and efficiency of a predictive
shutdown scheme plotted as a function of the threshold valueT .

Karlin et al. [31] proposed to use and showed
that this choice leads to an energy consumption which is at
worse twice the energy consumed by an ideal policy. The ra-
tionale of this strong result is related to the fact that the worst
case happens for traces with repeated idle periods of length

separated by pointwise activity. In this case,
Karlin’s algorithm provides no power saving, while an ideal al-
gorithm saves power during half of each idle interval. Indeed,
the ideal algorithm performs a shutdown for each idle period,
but half of the period is spent in state transition.

Timeout schemes have two more limitations: they waste a
sizeable amount of power (during user’s idleness) waiting for
the timeout to expire and they always pay a performance penalty
upon wakeup. The first issue is addressed bypredictive shut-
down policies[30], [32] that take PM decisions as soon as a new
idle period starts, based on the observation of past idle and busy
periods. The second issue is addressed by predictive wakeup,
described later.

Predictive Shutdown:Two predictive shutdown schemes
have been proposed by Srivastavaet al. [32]. In the first
scheme, a nonlinear regression equation is obtained from the
past history

(8)

and used to make predictions. We use superscripts to indicate
the sequence of past idle and active periods;indicates the cur-
rent idle period (whose length has to be predicted) and the most
recent active period. If , the system is immediately
shut down as soon as it becomes idle. According to our notation,
the observed event is

(9)
The format of the nonlinear regression is decided heuristi-

cally, while the fitting coefficients can be computed with stan-
dard techniques. The main limitations of this approach are: 1)
there is no automatic way to decide the type of regression equa-
tion and 2) offline data collection and analysis are required to
construct and fit the regression model.

The second approach proposed by Srivastavaet al. [32] is
based on athreshold. The duration of the busy period imme-
diately preceding the current idle period is observed. If

, the idle period is assumed to be larger than
and the system is shut down. The rationale of this policy is

that for the class of systems considered by Srivastavaet al.(in-
teractive graphic terminals), short active periods are often fol-
lowed by long idle periods. Clearly, the choice of is crit-
ical. Careful analysis of the scatter plot of versus is
required to set it to a correct value, hence, this method is inher-
ently offline (i.e., based on extensive data collection and anal-
ysis). Furthermore, the method is not applicable if the scatter
plot is not L-shaped.

Example 3.4:Fig. 7(a) shows the scatter plot of versus
for the development trace of Example 3.2. From the plot,

we observe that: 1) the time is discretized (both and
are multiple of 10 ms, that is the duration of the time slots as-
signed by the Linux scheduler to the active process); 2) the large
majority of the idle periods are shorter than 1000 ms (this is
due to the presence of a system daemon that required the CPU
at every second independently of the state of user’s applica-
tion); and 3) the scatter plot is L-shaped (thus enabling the use
of threshold-based predictors). The horizontal line shows the
break-even time of the sleep state of the StrongARM SA-1100
processor. Safety and efficiency of a threshold-based predictor
used to shut down the SA-1100 are plotted in Fig. 7(b) as a
function of . Interestingly, efficiency becomes almost one
even for small threshold values (in fact, most of the exploitable
idle periods are preceded by short active periods), but there is
no way of improving safety. In our example, threshold-based
predictions are unsafe due to the presence of a dense region in
the bottom-left corner of the scatter plot. A threshold on
does not help us in distinguishing between idle periods longer
or shorter than .

The applicability and the quality of history-based predictors
depend on the correlation between past and future events, that is,
not under designer’s control. As a matter of fact, short-term cor-
relation has been observed in many real-world workloads, but
the nature and strength of such correlation is strongly instance
dependent. For a given workload, history-based predictors are
usually more efficient and less safe than timeouts.

Predictive Wakeup:The DPM strategy proposed by Hwang
et al. [33] addresses the second limitation of timeout policies,
namely the performance penalty that is always paid on wakeup.

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 307

Fig. 8. Effect of the workload on the quality of a timeout-based power manager. (a) Safety and efficiency. (b) Saved and wasted power.

To reduce this cost, the power manager performspredictive
wakeupwhen the predicted idle time expires, even if no new
requests have arrived. This choice may increase power dissipa-
tion if has been underpredicted, but decreases the delay
for servicing the first incoming request after an idle period.

2) Adaptive Techniques:Since the optimality of DPM
strategies depends on the workload statistics, static predictive
techniques are all ineffective (i.e., suboptimal) when the work-
load is either unknowna priori, or nonstationary. Hence, some
form of adaptation is required. While for timeouts the only
parameter to be adjusted is the timer duration, for history-based
predictors even the type of observed events could in principle
be adapted to the workload.

Example 3.5:Fig. 8 shows the same graphs of Fig. 6 plotted
for three different workloads. All the parameters used in Ex-
ample 3.3 to represent the quality of a timeout-based estimator
are shown to be strongly dependent on the workload. Suppose,
for instance, that a target power saving (e.g., of 50 mW) has to
be guaranteed regardless of the performance degradation. For
a given workload (namely, the editing trace) the timeout value
to be used to meet the constraint can be obtained from the cor-
responding curve of Fig. 8(b): about 550 ms. However, as the
workload changes (becoming for instance similar to the devel-
opment trace), the fixed timeout does not guarantee the required
power savings any longer (for the development trace, the power
savings provided by a timeout of 550 ms are of about 25 mW).

Several adaptive predictive techniques have been proposed
to deal with nonstationary workloads. In the work by Krishnan
et al.[27], a set of timeout values is maintained and each timeout
is associated with an index indicating how successful it would
have been. The policy chooses, at each idle time, the timeout
that would have performed best among the set of available ones.
Another policy, presented by Helmboldet al. [28], also keeps a
list of candidate timeouts and assigns a weight to each timeout
based on how well it would have performed relatively to an
optimum offline strategy for past requests. The actual timeout
is obtained as a weighted average of all candidates with their
weights. Another approach, introduced by Dougliset al. [29],
is to keep only one timeout value and to increase it when it is
causing too many shutdowns. The timeout is decreased when
more shutdowns can be tolerated. Several predictive policies are
surveyed and classified in Douglis’ paper.

Another aggressive shutdown policy has been proposed by
Hwanget al. [33]. This policy is capable of online adaptation,
since the predicted idle time is obtained as a weighted sum
of the last idle period and the last prediction

(10)

This recursive formula dynamically changes the actual observed
event: .

Underprediction impact is mitigated by employing a timeout
scheme to reevaluate periodically if the system is idle and
it has not been shut down. Overprediction impact is reduced
by imposing a saturation condition on predictions:

.
Workload prediction accuracy can be increased by special-

izing predictors to particular classes of workload. Specialization
restricts the scope of applicability, but it also reduces the diffi-
culties of predicting completely general workloads. A recently
proposed adaptive technique [34] is specifically tailored toward
hard-disk power management and it is based on the observation
that disk accesses are clustered insessions. Sessions are periods
of relatively high disk activity separated by long periods of in-
activity. Under the assumption that disk accesses are clustered
in sessions, adaptation is used only to predictsession length.
Prediction of a single parameter is easily accomplished and the
reported accuracy is high.

C. Stochastic Control

Policy optimization is an optimization problem under uncer-
tainty. Predictive approaches address workload uncertainty, but
they assume deterministic response and transition times for the
system. However, the system model for policy optimization is
very abstract, and abstraction introduces uncertainty. Hence, it
may be safer, and more general, to assume a stochastic model for
the system as well. Moreover, predictive algorithms are based on
a two-state system model, while real-life systems have multiple
power states. Policy optimization involves not only the choice of
whento perform state transitions, but also the choice ofwhich
transition should be performed. Furthermore, predictive algo-
rithms are heuristic, and their optimality can only be gauged

308 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

Fig. 9. Markov model of a power-managed system and its environment.

through comparative simulation. Parameter tuning for these al-
gorithms can be very hard if many parameters are involved. Fi-
nally, predictive algorithms are geared toward power minimiza-
tion, and cannot finely control performance penalty.

The stochastic control approach addresses the generality and
optimality issues outlined above. Rather than trying to elimi-
nate uncertainty by prediction, it formulates policy optimiza-
tion as an optimization problem under uncertainty. More specif-
ically [39], power management optimization has been studied
within the framework ofcontrolled Markov processes[42], [43].
In this flavor of stochastic optimization, it is assumed that the
system and the workload can be modeled as Markov chains.
Under this assumption, it is possible to: 1) model the uncertainty
in system power consumption and response (transition) times;
2) model complex systems with many power states, buffers,
queues, etc.; 3) compute power management policies that are
globally optimum; and 4) explore tradeoffs between power and
performance in a controlled fashion. The Markov model pos-
tulated by the stochastic control approach [39] consists of the
following.

• A service requester(SR), a Markov chain with state set,
which models the arrival of service requests for the system
(i.e., the workload).

• A service provider(SP), a controlled Markov chain with
states that models the system. Its states represent the

modes of operation of the system (i.e., its power states),
its transitions are probabilistic, and probabilities are con-
trolled by commands issued by the power manager.

• A power manager(PM), which implements a function
from the state set of SR and SP to the

set of possible commands. Such function is an abstract
representation of a decision process: the PM observes the
state of the system and the workload, takes a decision, and
issues a command to control the future state of the system.

• Cost metrics, which associate power and performance
values with each system state-command pair in .

In the work by Paleologoet al. [39], the general Markov model
is specialized by assuming finite state set, finite command set,
and discrete (or slotted) time. Continuous-time Markov models
have been studied as well [37], [38], [40].

Example 3.6:A simple Markov model for a power-managed
system [39] is shown in Fig. 9. The SR is a two-state Markov
chain with two states: zero (no request is issued to the service
provider) and one (a request is issued to the provider). The
transition probabilities between states are represented as edge
weights in Fig. 9(a). The chain models a “bursty” workload.
There is a high probability (0.85) of receiving a request during
period if a request was received during period, and the
mean duration of a stream of requests is equal to
periods.

The SP model has two states as well, namely .
State transitions are controlled by two commands that can be
issued by the power manager. The commands are, respectively,

and , with the intuitive meaning of “switch on”
and “switch off.” When a command is issued, the SP will
move to a new state in the next period with a probability
dependent only on the command, and on the departure and
arrival states. The Markov chain model of the SP is shown
in Fig. 9(b). Edge weights represent transition probabilities.
Notice that their values depend on the command issued by
the power manager. A power management policy can be
represented as a table that associates a command with each
pair of states of SP, SR. For instance, a simple deterministic
policy is:

.
1) Static Techniques:To perform policy optimization, the

Markov chains of SR and SP are composed to obtain a global
controlled Markov chain. Then, the problem of finding a min-
imum-power policy that meets given performance constraints
can be cast as a linear program (LP). The solution of the LP
produces astationary randomizedpolicy. Such a policy is a non-
deterministic function which, given a present system state, as-
sociates a probability with each command. The command to be
issued is selected by a random trial based on the state-depen-
dent probabilities. It can be shown [43] that the policy computed
by LP is globally optimum. Furthermore, LP can be solved in
polynomial time in the number of variables. Hence, policy op-
timization for Markov processes is exact and computationally
efficient.

Stochastic control based on Markov models has several ad-
vantages over predictive techniques. First, it captures the global
view of the system, thus allowing the designer to search for a
global optimum that possibly exploits multiple inactive states
of multiple interacting resources. Second, it enables the exact
solution (in polynomial time) of the performance-constrained
power optimization problem. Third, it exploits the strength and
optimality of randomized policies.

However, several important points need to be understood.
First, the performance and power obtained by a policy areex-
pectedvalues, and there is no guarantee that results will be op-
timum for a specific workload instance (i.e., a single realization
of the corresponding stochastic process). Second, policy opti-
mization requires a Markov model for SP and SR. If we can
safely assume that the SP model can be precharacterized, we
cannot assume that we always know the SR model beforehand.
Third, policy implementation in practice may not be straightfor-
ward. We have always implicitly assumed that the power con-
sumption of the PM is negligible, but this assumption needs to
be validated on a case-by-case basis. Finally, the Markov model
for the SR or SP can be just an approximation of a much more
complex stochastic process. If the model is not accurate, then
the “optimal” policies are just approximate solutions.

Example 3.7:We apply stochastic control to our example
system, namely, the two-state PSM of the SA-1100 processor.
The only decision to be taken by the PM is when to shut down
the component. We stress that this is not a typical application
of stochastic control (whose main strength is the capability of
managing multiple states and finding a global optimum in a

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 309

Fig. 10. Power-performance tradeoff curves for the SA-1100 with (a) a realization of a stationary Markovian workload and (b) a highly
non-Markovian/nonstationary workload. Solid and dashed lines refer to stochastic control and timeout-based shutdown policies, respectively.

large design space) since there is only one sleep state and the
PM cannot control the wake-up. This simple example, however,
allows us to make a fair comparison between stochastic control
and predictive techniques based on timeouts. The optimal
Markov policy is computed by formulating a Markov chain
model for the workload, composing it with the controlled
Markov model extracted from the PSM of the SA-1100 and
solving the LP problem associated with the controlled Markov
model of processor and workload under performance con-
straints [39].

Comparative results for a static Markovian workload are
shown in Fig. 10(a): the solid line is the performance versus
power Pareto curve of optimum stochastic control (obtained
by varying the performance constraint), while the dashed line
is the tradeoff curve of a timeout policy (obtained by varying
the timer duration). We remark that optimum stochastic control
performs better than a timeout heuristic even if the degrees of
freedom available for optimization are exactly the same. The
difference in power is proportional to the timeout time, which
represents a wasted opportunity of saving power.

The same comparison is repeated in Fig. 10 for a highly non-
stationary non-Markovian workload. For several timer values,
timeout-based shutdown outperforms stochastic control. In fact,
policy optimization is not guaranteed to provide optimum re-
sults if the modeling assumptions are not verified.

The class of application of stochastic control is that of com-
puter systems subject to performance constraints. We remark,
however, that policy optimization can be used as a tool for de-
sign exploration even when stochastic control is not the target
DPM technique. In fact, once Markov models have been con-
structed for the system and the workload, the Pareto curve of op-
timum tradeoff points can be drawn on the power-performance
plane by repeatedly solving policy optimization while varying
performance constraints. The Pareto curve provides valuable
information to evaluate and improve the quality of any power
management strategy.

2) Adaptive Techniques:One limitation of the stochastic op-
timization technique described in the previous section is that it
assumes completea priori knowledge of the system (i.e., the
SP) and its workload (SR). Even though it is generally possible
to construct a model for the SP once for all, system workload

is generally much harder to characterize in advance. Further-
more, workloads are often nonstationary. An adaptive exten-
sion of the static stochastic optimization approach has been pre-
sented by Chunget al.[41]. Adaptation is based on three simple
concepts:policy precharacterization, parameter learning, and
policy interpolation. A simple two-parameter Markov model for
the workload is assumed, but the value of the two parameters is
initially unknown.

Policy precharacterizationconstructs a two-dimensional
(2-D) table addressed by values of the two parameters. The
table element uniquely identified by a pair of parameters
contains the optimal policy for the system under the workload
uniquely identified by the pair. The table is filled by computing
optimum policies under different workloads. During system
operation,parameter learningis performed online. Short-term
averaging techniques are employed to obtain run-time estimates
of workload parameters based on past history. The parameter
values estimated by learning are then used for addressing the
lookup table and obtain the power management policy. Clearly,
in many cases the estimated parameter values do not correspond
exactly to values sampled in the table. If this is the case,policy
interpolation is employed to obtain a policy as a combination
of the policies in table locations corresponding to parameter
values close to the estimated ones.

Experimental results reported by Chunget al. [41] indicate
that adaptive techniques are advantageous even in the stochastic
optimization framework. Simulations of power-managed sys-
tems under highly nonstationary workloads show that the adap-
tive technique performs nearly as well as the ideal policy com-
puted offline, assuming perfect knowledge of workload param-
eters over time.

IV. I MPLEMENTATION OF DYNAMIC POWERMANAGEMENT

In this section, we address how different DPM schemes have
been implemented in circuits and systems. At the same time, we
describe the infrastructure that will enable the implementation
of complex power management policies in electronic systems.
The section is organized as follows. We describe first the phys-
ical mechanisms for power management of digital and other
types of components. We review how DPM is implemented in

310 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

hardware circuits that include power-manageable components.
We address next system-level design, and we describe how
power management is implemented in hardware/software
systems, with particular reference to operating system-based
power management. We conclude by presenting some experi-
mental results on software-managed personal computers.

A. Power Management in System Components

Our working definition of system component has been pro-
vided in Section II. The complexity of a component may vary
and it is irrelevant for this discussion. In Section II-A, compo-
nents are considered as black boxes. Here, we are concerned
with their internal structure, and we outline several techniques
that can be exploited to design power-manageable components
(PMC’s).

1) Clock Gating: We consider first digital components that
are clocked. This class of components is wide, and it includes
most processors, controllers and memories. Power consumption
in clocked digital components (in CMOS technology) is roughly
proportional to the clock frequency and to the square of the
supply voltage. Power can be saved by reducing the clock fre-
quency (and in the limit by stopping the clock), or by reducing
the supply voltage (and in the limit by powering off a compo-
nent). Note that the two limiting cases (clock freezing and pow-
ering off) are applicable only to idle components. For compo-
nents that are in an active state but whose response is not perfor-
mance critical, power consumption can be traded off for perfor-
mance by reducing the clock frequency or the supply voltage.
The latter solution is usually preferred because of the quadratic
dependence of power consumption on supply voltage, and it is
often combined with frequency downscaling.

When considering possibly idle digital components, clock
gating (or freezing) is the most common technique for power
management. Namely, the clock of an idle component can
be stopped during the period of idleness. Power savings are
achieved in the registers (whose clock is halted) and in the
combinational logic gates where signals do not propagate due
to the freezing of data in registers.

Example 4.1:Clock gating has been implemented in several
processors [14]–[17]. The Alpha 21 264 microprocessor uses a
hierarchical clocking scheme with gated clocks [17]. In partic-
ular, the 21 264 Floating Point Unit has a controller that can
freeze the clock to its components, such as the adder, multiplier,
divider, etc., according to the instructions to be executed, so that
the idle components do not waste power.

The PowerPC 603 processor [14] has both local and global
clock control. We highlight here a feature of global clock con-
trol. When the processor is in aSleep state, the clock to all
units may be disabled. On the other hand, the PLL is not neces-
sarily disabled in theSleep state, so that the system controller
can choose from different levels of power savings, depending on
the wake-up response time requirements. For example, if a quick
wake-up is required, the processor can wake up fromSleep
in ten system clock cycles, if the PLL is active. On the other
hand, for maximum power savings, the PLL can be shut off in
theSleep state. In this case, the wake-up time can be as long
as 100 s, to allow the PLL to relock to the external clock.

Clock gating has a small performance overhead: the clock
can be restarted by simply deasserting the clock-freezing signal.
Hence, clock gating is ideally suited for implementing self-man-
aged components. In this case, the clock isalwaysstopped as
soon as some custom-designed idleness detection logic signals
that the component (or some of its subunits) is idle. Several
CAD tools have been developed to support design with local
clock (or signal) gating [8]–[12], [47]. These tools aim at gen-
erating automatically the circuit that detects idleness and that
issues the signal to freeze the clock. The tools implement var-
ious methods of realizing clock gating, which differ according
to the type of unit to be controlled (e.g., sequential controller,
data path, pipelined circuit) and to the type of idleness being
monitored (e.g., state/output pair of a sequential circuit, external
observability of some signals).

Clock gating is widely used because it is conceptually simple,
it has a small overhead in terms of additional circuits and often
zero performance overhead because the component can transi-
tion from an idle to an active state in one (or few) cycles. The
main design challenges in the implementation of clock gating
are: 1) to construct an idleness-detecting circuit which is small
(and thus consuming little power) and accurate (i.e., able to
stop the clock whenever the component is idle) and 2) to de-
sign gated-clock distribution circuitry that introduces minimum
routing overhead and keeps clock skew under tight control [13].
In some cases, as seen in the previous example, power dissipa-
tion can be further reduced by stopping not only clock distri-
bution, but also clock generation (i.e., by stopping the master
clock PLL or the internal oscillator). This choice implies non-
negligible shutdown and restart delays and it is generally not au-
tomated. Sleep states where global clock generation is stopped
can only be entered by issuing external commands. For proces-
sors, shutdown can be initiated by either a dedicated instruction
or by asserting a dedicated signal.

2) Supply Shutdown:It is important to stress that
clock-gating does not eliminate power dissipation. First,
if clock gating is local, or if the clock generator is active, there
is still dynamic power dissipation on the active clock circuitry.
Second, leakage currents dissipate power even when all clocks
are halted. As a result, the objective of achieving minimum
power dissipation, as required by some battery-powered
hand-held devices, may not be achieved by clock gating.

Power consumption of idle components can be avoided by
powering off the unit. This radical solution requires controllable
switches on the component supply line. An advantage of this
approach is the wide applicability to all kind of electronic com-
ponents, i.e., digital and analog units, sensors, and transducers.
A major disadvantage is the wake-up time recovery time, which
is typically higher than in the case of clock gating because the
component’s operation must be reinitialized.

When thinking of a microelectronic circuit (e.g., processor,
controller), such a component is typically structured as a hierar-
chical compositions of subcomponents. Thus, power shutdown
is applied to a selected number of subcomponents. In the case
of complex circuits, usually a portion of the circuit is not pow-
ered down, so that it can run a set of minimal monitoring and
control functions, and wake up the powered-down components
when needed.

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 311

Example 4.2:The StrongARM SA-1100 [3] chip has two
power supplies: aVDDI 1.5-V internal power supply and a
VDDX3.3-V interface voltage supply.VDDI powers the CPU
core and the majority of the functional units on the chip (DMA
controller, MMU, LCD controller, etc.).VDDX powers the
input–output drivers, an internal 32-KHz crystal oscillator, the
system control unit, and a few critical circuits.

The Sleep state the SA-1100 is an example of power
supply shutdown. Power inSleep is reduced to 0.16 mW (as
opposed to 400 mW inRun state) by switching off theVDDI
supply. The shutdown sequence for entering theSleep state
goes through three phases: 1) flush to memory all state infor-
mation that should be preserved throughout the sleep period; 2)
reset all internal processor state and program wakeup events;
and 3) shutdown the internal clock generator. Each phase
takes approximatively 30 s. During Sleep , the SA-1100
only watches for preprogrammed wake-up events. Processor
wake-up goes through three phases: 1) ramp-upVDDXand
processor clock startup; 2) wait time for stabilizing processor
clock; and 3) CPU boot sequence. The first two phases take,
respectively, 10 and 150 ms. The third phase has negligible
duration compared to the first two. TheSleep state can be
entered either by rising a dedicated pin (calledBATT_FAULT)
or by a software procedure that writes to the power manager
control registerPMCRof the CPU.

Power down is applicable to electrooptical and electro-
mechanical system components, such as displays and HDD’s.
For systems with mechanical moving parts, like HDD’s,
the time constants involved in accelerating and decelerating
moving parts are usually much larger than those involved in
powering up and down electronic components. Furthermore,
acceleration and deceleration tend to decrease the expected
lifetime of the component [34]. Lifetime reduction can be seen
as another cost associated with state transitions.

Example 4.3:We consider again the IBM Travelstar 14GS
disk drive [4], mentioned in Example 2.2. In this component, we
can highlight as main subunits: the spindle motor, the head po-
sitioning subsystem, and the host interface. The IBM Travelstar
HDD has nine power states: aspin-up state to initialize the
drive from power down, three operational states (seek, write
and read), and five inactive states (Performance Idle ,
Active Idle , Low power idle , Standby , andSleep).
Different physical mechanisms are used to reduce power in the
inactive states. In thePerformance Idle state, all electronic
components are powered while in theActive Idle state,
some circuitry is in power saving mode, and in theLow power
idle the head is unloaded. Whereas the spindle motor is
rotating in the three idle states, the motor is spun down in the
Standby andSleep states. In theStandby state the host
interface is active, while in theSleep it is turned off.

The power consumption in the active states (in average 2.6
W) decreases in the inactive states to the values of 2, 1.3, 0.85,
0.25, and 0.1 W, respectively. Restarting the HDD requires a
peak power of 5 W, due to the acceleration of the disks. Finally,
note that the lower the power consumption is, the longer the
corresponding wake up time is. Thus, DPM strategies need to
take advantage of the low-power states while minimizing the
impact on performance.

3) Multiple and Variable Power Supplies:DPM is also ap-
plicable to components that are not idle, but whose performance
(e.g., I/O delays) requirements varies with time. The implemen-
tation technology can then be based on theslowdownof non-
critical components. The slowdown is achieved by lowering the
voltage supply, such that the component becomes performance
critical.

Early implementations of multivoltage chips used a static
power-directed partitioning into subunits, each powered by a
different supply voltage. Most often two voltage levels were
used, and level shifters were employed at the border of subunits
running on different supplies [44]. The extension of this ap-
proach to the realm of DPM is to enable dynamic adjustment of
power supply voltage during system operation. One of the main
challenges in implementing this extension is to guarantee that
clock frequency tracks the speed changes caused by dynamic
voltage supply adjustments.

In the pioneering work by Nielsenet al. [45], self-timed
circuits were employed in conjunction with variable supply
voltage. Self-timed circuits synchronize using local handshake
signals, hence, they do not need adjustable clocks. Unfor-
tunately, self-timed circuits are not mainstream technology.
Alternative approaches employ standard synchronous logic
[46], [48], [49] coupled with adjustable clocks that adapt their
frequency to the speed of the critical path under different supply
voltages. Another issue in systems with dynamically variable
supply voltage is that they require high-efficiency dc–dc
converters that can be programmed over a wide range of output
voltages. Several adjustable dc–dc converters have been de-
scribed in the literature [50]–[53]. The variable supply voltage
approach can be complemented by dynamic threshold-voltage
adjustment, achieved by controlling the body back bias [48],
[49].

Dynamically varying supply voltages may be quantized [46]
and thus be restricted to a finite number of values, or may take
values in a continuous range. In the former case it is possible to
identify a finite number of power states for the system; in the
latter the concept of finite state is not applicable. State transi-
tion take a finite time because dc–dc converters cannot support
arbitrarily fast changes in supply voltage.

B. System-Level Power Management Implementation

We consider DPM at the system level, and the corresponding
implementation issues. Note that DPM schemes at the system
level can coexist with local power management of components.

When considering electronic systems implemented in hard-
ware, the power manager is a specialized control unit that acts
in parallel and in coordination with the system control unit. In
other words, the power manager may be a hardwired or micro-
programmed controller, and possibly merged with the system
controller. Policies based on timeouts are easily implemented by
timers. Stochastic policies can be implemented by lookup tables
(when stationary) or by sequential circuits. Randomized policies
require the use of pseudorandom number generators, that can be
implemented bylinear feedback shift registers(LFSR’s).

Typical electronic systems are software programmable, and
a majority have an operating system ranging from a simple

312 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

run-time scheduler or real-time operating system (RTOS) (for
embedded applications) to a full-fledged operating system (as
in the case of personal computers or workstations).

There are several reasons for migrating the power manager
to software. Software power managers are easy to write and to
reconfigure. In most cases, the designer cannot, or does not want
to, interfere with and modify the underlying hardware platform.
DPM implementations are still a novel art, and experimentation
with software is easier than with hardware.

In general, the operating system is the software layer where
the DPM policy can be implemented best.OS-based power
management(OSPM) has the advantage that the power/per-
formance dynamic control is performed by the software layer
(the OS) that manages the computational, storage and I/O tasks
of the system. Implementing OSPM is ahardware/software
codesignproblem because the hardware resources need to
be interfaced with the OS-based software power manager,
and because both the hardware resources and the software
application programs need to be designed so that they cooperate
with OSPM.

Recent initiatives to handle system-level power management
include Microsoft’sOnNow initiative [20] and theadvanced
configuration and power interface(ACPI) standard proposed by
Intel, Microsoft, and Toshiba [21]. The former supports the im-
plementation of OSPM and targets the design of personal com-
puters with improved usability through innovative OS design.
The latter simplifies the codesign of OSPM by providing an in-
terface standard to control system resources. On the other hand,
the aforementioned standards do not provide procedures for op-
timal control of power-managed system.

1) Industrial Design Standards:Industrial standards have
been proposed to facilitate the development of operating
system-based power management. Intel, Microsoft and Toshiba
proposed the open standard calledadvanced configuration
and power interface(ACPI) [21]. ACPI provides an OS-in-
dependent power management and configuration standard.
It provides for an orderly transition fromlegacy hardware
to ACPI-compliant hardware. Although this initiative targets
personal computers(PC’s), it contains useful guidelines for a
more general class of systems. The main goals of ACPI are
to: 1) enable all PC’s to implement motherboard dynamic
configuration and power management; 2) enhance power
management features and the robustness of power-managed
systems; and 3) accelerate implementation of power-managed
computers, reduce costs and time to market.

The ACPI specification defines most interfaces between OS
software and hardware. The software and hardware components
relevant to ACPI are shown in Fig. 11. Applications interact
with the OS kernel throughapplication programming interfaces
(API’s). A module of the OS implements the power manage-
ment policies. The power management module interacts with
the hardware through kernel services (system calls). The kernel
interacts with the hardware using device drivers. The front-end
of the ACPI interface is theACPI driver. The driver is OS-spe-
cific, it maps kernel requests to ACPI commands, and ACPI re-
sponses/messages to kernel signals/interrupts. Notice that the
kernel may also interact with non-ACPI-compliant hardware
through other device drivers.

Fig. 11. ACPI interface and PC platform.

At the bottom of Fig. 11 the hardware platform is shown. Al-
though it is represented as a monolithic block, it is useful to dis-
tinguish three types of hardware components. First, hardware
resources (ordevices) are the system components that provide
some kind of specialized functionality (e.g., video controllers,
modems, bus controllers). Second, theCPU can be seen as a
specialized resource that need to be active for the OS (and the
ACPI interface layer) to run. Finally, thechipset(also called core
logic) is the motherboard logic that controls the most basic hard-
ware functionalities (such as real-time clocks, interrupt signals,
processor busses) and interfaces the CPU with all other devices.
Although the CPU runs the OS, no system activity could be per-
formed without the chipset. From the power management stand-
point, the chipset, or a critical part of it, should always be active
because the system relies on it to exit from sleep states.

It is important to notice that ACPI specifies neither how to
implement hardware devices nor how to realize power man-
agement in the operating system. No constraints are imposed
on implementation styles for hardware and on power manage-
ment policies. Implementation of ACPI-compliant hardware can
leverage any technology or architectural optimization as long as
the power-managed device is controllable by the standard inter-
face specified by ACPI.

In ACPI, the system has fiveglobal power states. Namely, the
following.

• Mechanical off state , with no power consump-
tion.

• Soft off state (also called). A full OS reboot is
needed to restore the working state.

• Sleeping state . The system appears to be off and
power consumption is reduced. The system returns to the
working state in an amount of time which grows with the
inverse of the power consumption.

• Working state , where the system is On and fully us-
able.

• Legacy state, which is entered when the system does not
comply with ACPI.

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 313

Fig. 12. State definitions for ACPI.

The global states are shown in Fig. 12(a). They are ordered from
top to bottom by increasing power dissipation.

The ACPI specification refines the classification of global
system states by defining four sleeping states within state,
as shown in Fig. 12(b).

• is a sleeping state with low wake-up latency. No system
context is lost in the CPU or the chipset.

• is a low wake-up latency sleeping state. This state is
similar to the sleeping state with the exception that the
CPU and system cache context is lost.

• is another low wake-up latency sleeping state where all
system context is lost except system memory.

• is the sleeping state with the lowest power and longest
wake-up latency. To reduce power to a minimum, all de-
vices are powered off.

Additionally, the ACPI specification defines states for system
components. There are two types of system components,devices
andprocessor, for which power states are specified. Devices are
abstract representations of the hardware resources in the system.
Four states are defined for devices, as shown in Fig. 12(c). In
contrast with global power states, device power states are not
visible to the user. For instance, some devices can be in an inac-
tive state, but the system appears to be in a working state. Fur-
thermore, state transitions for different devices can be controlled
by different power management schemes. The processor is the
central processing unit that controls the entire PC platform. The
processor has its own power states, as shown in Fig. 12(d). No-
tice the intrinsic asymmetry of the ACPI model. The central role
of the CPU is recognized, and the processor is not treated as a
simple resource.

2) ACPI-Based DPM Implementations:A set of exper-
iments were carried out by Luet al. [35], [36] to measure
the effectiveness of different DPM policies. Lu used two
ACPI-compliant computers, running a beta version of Windows
NT V5, which is also ACPI compliant. The first computer is a
VarStation 2861A desktop, using a Pentium II processor and an
IBM DTTA 350–640 HDD. The second is a Sony VAIO PCG
F-150 laptop, with a Pentium II and a Fujitsu MHF 2043AT
HDD. The experiments aimed at controlling the HDD unit
using different policies.

For this purpose, Lu implementedfilter drivers (Fig. 13) to
control the power states of the HDD’s, to record disk accesses
and to analyze the performance impact of the power manage-
ment overhead of each algorithm. The power lines of the disks

Fig. 13. DPM using filter drivers.

Fig. 14. PSM for IBM DTTA HDD.

TABLE I
DISK PARAMETERS: SUBSCRIPTS

sd AND wu DENOTE SHUT DOWN

AND WAKE UP, RESPECTIVELY

were monitored by digital multimeters, connected to a PC via a
RS-232 port to record the measurements.

The IBM HDD can be in one of three states:PowerDe-
viceD0 when it is reading or writing,PowerDeviceD1
when the plates are spinning andPowerDeviceD3 when the
plates stop spinning. I/O requests only wait for seek and rotation
delays when the disk is atPowerDeviceD1 (see Fig. 14). If
a request arrives when the hard disk is atPowerDeviceD3 ,
it has to wait for the wake-up procedure in addition to the seek
and rotation delays. The disk consumes 3.48 and 0.75 W in
statesD1 andD3, respectively. It takes approximately 7 s and
52.5 J to wake up fromD3 to D0. It takes (in average) 0.5 s to
enterD3 from D1. The behavior of the Fujitsu HDD is similar,
but with different parameters (see Table I). The break-even
times of the IBM and Fujitsu HDD’s are 17.6 and 5.43 s,
respectively.

Experimental results are reported in [36], where a compara-
tive analysis of different algorithms is presented. For compar-
ison purposes, both computers execute the same trace of input
data (an 11-h-long execution trace). Results show that all algo-
rithms spend less than 1% of computation on power manage-
ment itself, thus validating a fundamental premise of this body

314 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

of work. For the laptop (desktop) computer, power reductions
have been measured up to 55% (43%) (as compared to the al-
ways on case) and up to 34% (23%) (as compared to the de-
fault 3-min timeout policy of Windows OS). Larger power sav-
ings are achieved on the laptop computer because of the shorter
break-even time of its disk.

3) Observer Implementation:As seen in Section III, power
management requires information on the usage of each hard-
ware resource, such as: 1) distribution of interarrival times of re-
quest to the resources and 2) distribution of service times for the
requests. Theobservermodule (Fig. 2) of the PM takes care of
data collection. In ACPI-compliant PC’s, the observer may rely
on ACPI messages to obtain the data needed to drive the poli-
cies. However, not all computers are ACPI-compliant. In this
section, we shall analyze the implementation of a power man-
ager observer module that does not exploit ACPI, nor it is based
on a proprietary Microsoft operating system. The basic require-
ments for the implementation of the observer are as follows.

• Low perturbation of normal system activity: Monitoring
should be transparent to the end user and should modify
the usage patterns of hardware resources as little as pos-
sible.

• Flexibility: It should be easy to monitor multiple types of
resources. Moreover, the number and types of observed
resources should be dynamically controllable. This fea-
ture is particularly useful for laptop computers where new
devices can be installed during system operation (i.e.,
plug-and-play capability).

• Accuracy: Well-known system utilities give access to
cumulative counts of accesses to system resources. This
functionality is not sufficient to obtain accurate statistics
of interarrival times and service times. One important
feature of the observer is the capability of time-stamping
the events with high resolution.

The software-based observer architecture analyzed in this
section is calledIPM [6], and it has been implemented as an
extension of the Linux operating system [54]. The observer
monitors the accesses to system resources and stores them
in form of time-stamped events. The core data structure is
located in kernel memory space, that is forced to reside in
physical-address space. Hence, storing events in kernel space
prevents the usage of memory paging, thus avoiding the severe
performance penalty possibly caused by TLB misses.

On the other hand, storing the event list in kernel space
imposes a tight limitation on its maximum size. The list cannot
grow larger than 64 KB, which corresponds to
events. The event list is implemented as a circular buffer and it
is allocated once for all (for performance reasons). The circular
structure protects against memory violations. If the number
of unprocessed events stored in the list grows larger than the
number of slots, older events are overwritten. Event loss causes
a decrease in accuracy in monitoring but does not damage
normal system operation.

The size limitation of the event list in kernel memory is
not a concern if events are processed and discarded as soon
as they are registered (online monitoring). However, event
loss should be avoided if the observer is collecting long event
traces for offline processing. The observer supports offline

Fig. 15. Statistical analysis of the interarrival time. For each device, three
curves are plotted in lin-log scale: the probability density (solid line), the
probability distribution (bold line), and its complement to one (dashed line).
Data refer to software development.

monitoring through a simple dumping mechanism that can be
summarized as follows. Whenever the number of unprocessed
events reaches a value , a wake-up signal is sent to
a dedicated process. The process is normally inactive, waiting
for the wake-up signal, thus it does not alter normal system
activity. Whenever the wake-up signal is asserted, the process
becomes active and can be scheduled. Clearly, the execution
of this process does alter normal system activity. However, the
perturbation is limited by the fact that the list is processed only
when it is almost full.

Devices that are controlled by the OS through device drivers
are monitored by inserting standard function calls that update
the event list in the device driver routines that are run whenever
the component is accessed. Monitoring does not change the flow
of execution of the device driver, and it has minimal impact on
the execution time. At boot time, the observer is initialized by
specifying which resources should be monitored.

The CPU and all hardware components required for its op-
eration (chipset, RAM, bus controllers, etc.) are not controlled
through device drivers. Fortunately, it is possible to monitor the
CPU and its ancillary components by observing that the OS
kernel itself is nothing else than executable code running on the
CPU. Whenever the kernel is running, the CPU is active. When
there is nothing to do, the kernel schedules a dummy process,
calledidle task. Hence, to detect CPU idleness, it is sufficient to
monitor the scheduling ofidle task.

Monitor installation requires kernel recompilation, and sup-
ports monitoring of CPU, keyboard, serial and parallel ports,
PS2 mouse, IDE hard disk, and CD-ROM. During the system
boot, a data structure is created for eachIPM-compliant re-
source, containing its name, type, configuration flags, unique
identifier, and resource-specific information (such as the type
of events to be monitored). Monitoring can be selectively en-
abled for each resource by setting the corresponding flags.

Several experiments [5] (run on a HP Omnibook 5500 CT
with 133-MHz Pentium processor and 48 MB of RAM) showed

BENINI et al.: SURVEY OF DESIGN TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 315

that system operation is slowed down by less than 0.38% in av-
erage, even when all available system components are moni-
tored, thus showing convincing evidence of the nonintrusive-
ness of the monitor. Examples of the data collected by the mon-
itoring system are reported in Fig. 15, where the probability den-
sities and distributions of request interarrival times are plotted
for CPU, keyboard, mouse, and hard disk. Data was collected
during a code development user session. Several different usage
patterns were also tested (such as editing, game playing, etc.).

V. CONCLUSION

DPM is a powerful methodology for reducing power con-
sumption in electronic systems. In a power-managed system, the
state of operation of various components is dynamically adapted
to the required performance level, in an effort to minimize the
power wasted by idle or underutilized components. For most
system components, state transitions have nonnegligible power
and performance costs. Thus, the problem of designing power
management policies that minimize power under performance
constraints is a challenging one.

We surveyed several classes of power-managed systems and
power management policies. Furthermore, we analyzed the
tradeoffs involved in designing and implementing power-man-
aged systems. Several practical examples of power-managed
systems were analyzed and discussed in detail. Even though
DPM has been successfully employed in many real-life sys-
tems, much work is required for achieving a deep understanding
on how to design systems that can be optimally power managed.

ACKNOWLEDGMENT

The authors would like to thank E.-Y. Chung, Y.-H. Lu, G.
Paleologo, and T.̌Simunićat Stanford University and S. Cav-
allucci and A. Gordini at Bologna University for their help and
useful suggestions.

REFERENCES

[1] J. Lorch and A. Smith, “Software strategies for portable computer energy
management,”IEEE Personal Commun., vol. 5, pp. 60–73, June 1998.

[2] L. Benini and G. De Micheli,Dynamic Power Management: Design
Techniques and CAD Tools. Norwell, MA: Kluwer, 1998.

[3] SA-1100 Microprocessor Technical Reference Manual, Intel, 1998.
[4] 2.5-Inch Travelstar Hard Disk Drive, IBM, 1998.
[5] L. Benini, R. Hodgson, and P. Siegel, “System-Level power estimation

and optimization,” inInt. Symp. Low Power Architecture and Design,
Aug. 1998, pp. 173–178.

[6] L. Benini, A. Bogliolo, S. Cavallucci, and B. Riccó, “Monitoring system
activity for OS-directed dynamic power management,” inInt. Symp. Low
Power Architecture and Design, Aug. 1998, pp. 185–190.

[7] “Advanced micro devices,” inAM29SLxxx Low-Voltage Flash Memo-
ries, 1998.

[8] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,”
IEEE Trans. VLSI Syst., vol. 2, pp. 426–436, Dec. 1994.

[9] S. Malik, V. Tiwari, and P. Ashar, “Guarded evaluation: Pushing power
management to logic synthesis/design,” inInt. Symp. Low Power De-
sign, Apr. 1995, pp. 221–226.

[10] L. Benini and G. De Micheli, “Transformation and synthesis of FSM’s
for low power gated clock implementation,”IEEE Trans. Computer-
Aided Design, vol. 15, pp. 630–643, June 1996.

[11] F. Theeuwen and E. Seelen, “Power reduction through clock gating by
symbolic manipulation,” inSymp. Logic and Architecture Design, Dec.
1996, pp. 184–191.

[12] M. Ohnishiet al., “A method of redundant clocking detection and power
reduction at RT-level design,” inInt. Symp. Low Power Electronics and
Design, Aug. 1997, pp. 131–136.

[13] J. Oh and M. Pedram, “Gated clock routing minimizing the switched
capacitance,” inDesign Automation and Test in Europe Conf., Feb. 1998,
pp. 692–697.

[14] S. Garyet al., “PowerPC 603, a microprocessor for portable computers,”
IEEE Design & Test of Computers, vol. 11, pp. 14–23, 1994.

[15] G. Debnath, K. Debnath, and R. Fernando, “The pentium processor-
90/100, microarchitecture and low-power circuit design,” inInt. Conf.
VLSI Design, Jan. 1995, pp. 185–190.

[16] S. Furber,ARM System Architecture. Reading, MA: Addison-Wesley,
1997.

[17] M. Gowan, L. Biro, and D. Jackson, “Power considerations in the design
of the alpha 21 264 microprocessor,” inDesign Automation Conf., June
1998, pp. 726–731.

[18] E. Harriset al., “Technology directions for portable computers,”Proc.
IEEE, vol. 83, pp. 636–657, Apr. 1996.

[19] M. Stemm and R. Katz, “Measuring and reducing energy consumption
of network interfaces in hand-held devices,”IEICE Trans. Commun.,
vol. E80-B, pp. 1125–1131, Aug. 1997.

[20] Microsoft. (1997) On now: The evolution of the PC platform. [Online]
http://www.microsoft.com/hwdev/pcfuture/OnNOW.HTM.

[21] Intel, Microsoft, and Toshiba. (1996) Advanced configuration and
power interface specification. [Online] http://www.intel.com/ial/pow-
ermgm/specs.html.

[22] N. Bambos, “Toward power-sensitive network architectures in wireless
communications: Concepts, issues and design aspects,”IEEE Personal
Commun., vol. 5, pp. 50–59, June 1998.

[23] J. Rulnick and N. Bambos, “Mobile power management for wireless
communication networks,”Wireless Networks, vol. 3, no. 1, pp. 3–14,
Jan. 1997.

[24] K. Sivalinghamet al., “Low-power access protocols based on sched-
uling for wireless and mobile ATM networks,” inInt. Conf. Universal
Personal Communications, Oct. 1997, pp. 429–433.

[25] M. Zorzi and R. Rao, “Energy-constrained error control for wireless
channels,”IEEE Personal Commun., vol. 4, pp. 27–33, Dec. 1997.

[26] B. Mangione-Smith, “Low-power communication protocols: Paging and
beyond,” inIEEE Symp. Low-Power Electronics, Apr. 1995, pp. 8–11.

[27] P. Krishnan, P. Long, and J. Vitter, “Adaptive disk spindown via op-
timal rent-to-buy in probabilistic environments,” inInt. Conf. Machine
Learning, July 1995, pp. 322–330.

[28] D. Helmbold, D. Long, and E. Sherrod, “Dynamic disk spin-down tech-
nique for mobile computing,” inIEEE Conf. Mobile Computing, Nov.
1996, pp. 130–142.

[29] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive disk spin-down poli-
cies for mobile computers,” in2nd USENIX Symp. Mobile and Loca-
tion-Independent Computing, Apr. 1995, pp. 121–137.

[30] R. Golding, P. Bosh, and J. Wilkes, “Idleness is not sloth,” HP Labora-
tories Tech. Rep. HPL-96-140, 1996.

[31] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki, “Competitive ran-
domized algorithms for nonuniform problems,”Algorithmica, vol. 11,
no. 6, pp. 542–571, June 1994.

[32] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient pro-
grammable computation,”IEEE Trans. VLSI Syst., vol. 4, pp. 42–55,
Mar. 1996.

[33] C.-H. Hwang and A. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” inInt. Conf. Computer-
Aided Design, Nov. 1997, pp. 28–32.

[34] Y. Lu and G. De Micheli, “Adaptive hard disk power management on
personal computers,” inGreat Lakes Symp. VLSI, Feb. 1999, pp. 50–53.

[35] Y. Lu, T. Šimunić, and G. De Micheli, “Software controlled power
management,” inHardware–Software Codesign Symp., May 1999, pp.
151–161.

[36] Y. Lu, E. Y. Chung, T.Šimunić, L. Benini, and G. De Micheli, “Quan-
titative comparison of power management algorithms,” inDATE, Proc.
Design Automation and Test in Europe, Mar. 2000.

[37] T. Šimunić, L. Benini, and G. De Micheli, “Event-driven power manage-
ment of portable systems,” inISSS, Proc. Int. Symp. System Synthesis,
Nov. 1999, pp. 18–23.

[38] T. Šimunić, L. Benini, P. Glynn, and G. De Micheli, “Dynamic
power management of portable systems using semi-Markov decison
processes,” inDATE, Proc. Design Automation and Test in Europe,
Mar. 2000.

[39] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy op-
timization for dynamic power management,”IEEE Trans. Computer-
Aided Design, vol. 18, pp. 813–33, June 1999.

316 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

[40] Q. Qiu and M. Pedram, “Dynamic power management based on con-
tinuous-time Markov decision processes,” inDesign Automation Conf.,
June 1999, pp. 555–561.

[41] E. Chung, L. Benini, A. Bogliolo, and G. De Micheli, “Dynamic power
management for nonstationary service requests,” inDesign and Test in
Europe Conf., Mar. 1999, pp. 77–81.

[42] S. Ross,Introduction to Probability Models, 6th ed. New York: Aca-
demic, 1997.

[43] M. Puterman,Finite Markov Decision Processes. New York: Wiley,
1994.

[44] K. Usamiet al., “Automated low-power technique exploiting multiple
supply voltages applied to a media processor,”IEEE J. Solid-State Cir-
cuits, vol. 33, pp. 463–472, Mar. 1998.

[45] L. Nielsen, C. Niessen, J. Sparso, and K. van Berkel, “Low-power oper-
ation using self-timed circuits and adaptive scaling of supply voltage,”
IEEE Trans. VLSI Syst., vol. 2, pp. 425–435, Dec. 1994.

[46] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal
processing: An approach for energy efficient computing,” inInt. Symp.
Low Power Electronics and Design, Aug. 1996, pp. 347–352.

[47] H. Kapadia, G. De Micheli, and L. Benini, “Reducing switching activity
on datapath buses with control-signal gating,” inCustom Integrated Cir-
cuit Conf., May 1998, pp. 589–592.

[48] K. Suzuki et al., “A 300 MIPS/W RISC core processor with variable
supply-voltage scheme in variable threshold-voltage CMOS,” inCustom
Integrated Circuits Conf., May 1997, pp. 587–590.

[49] K. Usami et al., “Design methodology of ultra low-power MPEG4
codec core exploiting voltage scaling techniques,” inDesign Automa-
tion Conf., June 1998, pp. 483–488.

[50] A. Stratakos, S. Sanders, and R. Brodersen, “A low-voltage CMOS
dc–dc converter for a portable battery-operated system,” inPower
Electronics Specialists Conf., June 1994, pp. 619–626.

[51] G. Wei and M. Horowitz, “A low power switching power supply for
self-clocked systems,” inInt. Symp. Low Power Electronics and Design,
Aug. 1996, pp. 313–317.

[52] W. Namgoong, M. Yu, and T. Meng, “A high-efficiency variable-voltage
CMOS dynamic dc–dc switching regulator,” inInt. Solid-State Circuits
Conf., Feb. 1997, pp. 380–381.

[53] V. Gutnik and A. Chandrakasan, “Embedded power supply for low-
power DSP,”IEEE Trans. VLSI Syst., vol. 5, pp. 425–435, Dec. 1997.

[54] L. Torvalds, “The Linux operating system,”Commun. ACM, vol. 42, no.
4, pp. 38–39, Apr. 1999.

Luca Benini (M’93) received the Dr.Eng. degree in electrical engineering from
the University of Bologna, Bologna, Italy, in 1991 and the M.S. and Ph.D. de-
grees in electrical engineering from Stanford University, Stanford, CA, in 1994
and 1997, respectively.

Since 1998, he has been an Assistant Professor in the Department of Elec-
tronics and Computer Science, University of Bologna. He also holds visiting
professor positions at Stanford University and Hewlett-Packard Laboratories,
Palo Alto, CA. His research interests are in all aspects of computer-aided de-
sign of digital circuits, with special emphasis on low-power applications and in
the design of portable systems.

Dr. Benini has been a member of technical program committees for several
technical conferences, including the Design and Test in Europe Conference and
the International Symposium on Low Power Design.

Alessandro Bogliolo(M’95) received the Laura degree in electrical engineering
and the Ph.D. degree in electrical engineering and computer science from the
University of Bologna, Bologna, Italy, in 1992 and 1998, respectively.

From 1992 to 1999, he was with the Department of Electronics, Computer
Science and Systems (DEIS), University of Bologna. In 1995 and 1996, he was
a Visiting Scholar at the Computer Systems Laboratory (CSL), Stanford Uni-
versity, Stanford, CA. Since then he has cooperated with the research group of
Prof. De Micheli at Stanford. In 1999, he joined the Department of Engineering
(DIF), University of Ferrara, Ferrara, Italy, as an Assistant Professor. His re-
search interests are in the area of computer-aided design of digital integrated
circuits and systems, with particular emphasis on high-level power modeling,
power optimization, and intellectual property protection.

Giovanni De Micheli (F’94) is a Professor of Elec-
trical Engineering and Computer Science at Stanford
University, Stanford, CA. His research interests
include several aspects of the computer-aided design
of integrated circuits and systems, with particular
emphasis on automated synthesis, optimization,
and validation. He is the author ofSynthesis and
Optimization of Digital Circuits(New York: Mc-
Graw-Hill, 1994) and a coauthor ofDynamic Power
Management: Circuit Techniques and CAD Tools
(Norwell, MA: Kluwer, 1998) and three other books.

He is the Editor-in-Chief of the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN.
Dr. De Micheli received the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED

DESIGN/ICAS Best Paper Award, a Presidential Young Investigator Award in
1988, and two Best Paper Awards at the Design Automation Conference in 1983
and in 1993. He is Vice President (for publications) of the IEEE CAS Society.
He is the General Chair of the 37th Design Automation Conference. He was Pro-
gram and General Chair of the International Conference on Computer Design
(ICCD) in 1988 and 1989, respectively. He was also Codirector of the NATO
Advanced Study Institutes on Hardware/Software Co-design, Tremezzo, Italy,
in 1995 and the Logic Synthesis and Silicon Compilation, L’Aquila, Italy, in
1986.

