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Vibration and Wave Propagation Control of Plates
with Periodic Arrays of Shunted Piezoelectric Patches
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2

1School of Aerospace Engineering, Georgia Institute of Technology, Atlanta GA, 30332, USA
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ABSTRACT: Periodic arrays of shunted, piezoelectric patches are employed to control waves
propagating over the surface of plate structures, and corresponding vibrations. The shunted,
piezoelectric patches act as sources of impedance mismatch, which gives rise to interference
phenomena resulting from the interaction between incident, reflected and transmitted waves.
Periodically distributed mismatch zones, i.e., the piezo patches, produce frequency dependent,
wave-dynamic characteristics, which include the generation of band gaps, or stop bands in the
frequency domain. The extent of induced band gaps depends on the mismatch in impedance
generated by each patch. The total impedance mismatch, in turn, is determined by the added
mass and stiffness of each patch as well as the shunting electrical impedance. Proper selection of
the shunting electric-circuit thus provides control over the attenuation capabilities of the piezo-plate
structure, as well as the ability to adapt to changing excitation conditions. Control of wave-
propagation attenuation and vibration reduction for plates with periodic, shunted, piezoelectric
patches is demonstrated numerically, employing finite-element models of the considered structures.

Key Words: piezoelectric patches, waves propagation shunted circuits, stop bands, periodicity.

INTRODUCTION

T
HE application of shunted, piezoelectric materials
for vibration control has received great attention by

the structural dynamics community. Such passive vibra-
tion control strategy relies on the conversion of mechan-
ical energy, associated to vibrations, into electrical
energy, dissipated through a passive electrical circuit.
The concept has been first introduced by Forward (1979)
and then subsequently developed in the seminal paper by
Hagood and Von Flotow (1991b) where it is applied to
the vibration control of a cantilever beam. An elegant
description of the concept shows how the piezo and
shunting circuit introduce an additional degree of free-
dom in the system, which essentially acts as a tuned
vibration absorber. The impedance of an RLC circuit
may be selected to maximize energy conversion at the
circuit’s resonance frequency, so that energy conversion
and dissipative effects on the structure are optimized.
Similarly to a tuned vibration absorber, electromechani-
cal damping through RLC-shunting occurs over a very
narrow frequency band, so that tuning must be
performed by carefully targeting single structural
modes. Various other researchers have investigated

ways to increase effectiveness over broader frequency
ranges through alternative, more complex shunting
strategies (see for example Tang and Wang, 1999b;
Behrens and Moheimani, 2000; Clark, 2000; Behrens et
al., 2002). Noteworthy is the multi-modal shunting
approach presented byHollkamp (1994), which considers
shunting circuits with multiple resonant branches tuned
at frequencies corresponding the modes of the structure to
be damped. Similar concepts proposing refinements to
reduce the coupling between the circuit branches can be
found in papers by Wu (1999); Corr and Clark (2001);
Moheimani et al. (2001); Moheimani and Behrens (2004).
More recently, negative impedance circuits proposed for
example inMorgan andWang (2000); Park and Baz (2005);
Neubauer and Oleskiewicz, (2006), have shown excellent
broadband capabilities, but careful circuit design is
required to avoid inducing instability in the system.

This article presents a different approach, where a
periodic array of shunted piezo-patches is mounted on a
plate to control the propagation of elastic waves, and the
subsequent onset of vibrations. The patches represent
sources of impedance mismatch, partially reflecting the
propagating waves. The interference among incident,
reflected and transmitted waves at the discontinuity
zones can be constructive or destructive, depending on
the wavelength and therefore on the frequency of the
waves. Periodically induced impedance-mismatch zones
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generate frequency bands where waves are free to
propagate along the structure (pass bands), and
frequency bands where waves are attenuated (stop
bands) (Mead, 1996). The tunable characteristics of
shunted, piezoelectric materials (Hagood and Von
Flotow, 1991a) allow for the equivalent mechanical
impedance of the patch to be tuned so that stop bands
are generated over desired frequency ranges. In addition,
the energy-dissipation characteristics of shunted, piezo-
eletric patches can be utilized to dampen the amplitude
of vibration outside the stop bands. The proposed
treatment, therefore, combines several concepts for
vibration suppression, such as wave attenuation through
destructive interference, and structural damping.
The concept has been previously demonstrated on 1D
rods and axisymmetric shells (Thorp et al., 2001, 2005)
and it is here extended to flat plates. The approach
considers multiple shunting patches following a method
that was previously investigated for vibration confine-
ment and vibration de-localization in rotationally
periodic structures (Tsai and Wang, 1996; Tang and
Wang, 1999a, 2003). The use of more than one patch to
damp a relatively large number of modes is discussed by
Moheimani et al. (2004). Moreover, the technique
presented in this article can be considered as slightly
different since the spatial periodicity of the patches is
exploited to generate a frequency band where waves are
attenuated, and resulting vibrations are reduced, with-
out specifically targeting the modes of the structure.
The analysis is carried out employing a finite-element

(FE) model which is formulated to account for the effects
of the shunted piezos, and allows the prediction of the
dispersion relations for the plate-piezo-patch system
through the unit-cell-analysis approach, typically used
to investigate wave propagation in periodic structures.
The article is organized in six sections and one

appendix. This introduction (first section) is followed
by the description of the Finite Element formulation for
structures with shunted piezo patches (second section),
while Section three summarizes the fundamentals of the
technique used to analyze the propagation of waves in
2D periodic structures. The analysis is applied to plates
with periodic piezo patches as described in Section three,
and verified in Section five through the prediction of the
harmonic response of finite plates with shunted arrays.
Finally Section six summarizes the main results of the
work and provides recommendation for future research.

FINITE ELEMENT FORMULATION

General Description

The formulation, within a general FE framework,
for the analysis of structures with piezoelectric
patches begins with the definition of the well-known

constitutive equations for a piezoelectric material
(Becker et al., 2006):

r ¼ c½ �Ee� e½ ��E,

D ¼ e½ �eþ e½ �"E,
ð1Þ

where r ¼ f�x �y �z �xz �yz �xyg
T and e ¼ f"x "y "z

�xz �yz �xyg
T respectively are the mechanical stress and

strain vectors, D ¼ fDx Dy Dzg
T is the electric charge

vector, and E ¼ Ex Ey Ezg
T is the electric field vector.

Also, c½ �E, e½ ��, and e½ �" denote the mechanical stiffness
matrix at constant electric field, the piezoelectric stress
coupling matrix evaluated at constant stress, and the
permittivity matrix at constant strain. In the adopted
notation convention, lower case bold letters indicate
vectors, while matrices are denoted with capital bold
letters, or using square brackets.

The formulation of governing equations for the
piezoelectric medium, and the subsequent FE discretiza-
tion are based on the expressing the total potential for a
volume V of piezoelectric material:

� ¼
1

2

Z
V

� _uT _u dVþ
1

2

Z
V

eTr dVþ

Z
V

eTrp dV

�
1

2

Z
V

ETDe dV�We, ð2Þ

where u is the displacement vector for the solid, rP is the
mechanical stress vector due to piezoelectric effects
produced by an electric field, De is the electric charge
vector due to the presence of an electric field, and We is
the work done by external forces. Electro-elastic matrix
relations for a finite element are obtained by expressing
continuous displacements, strains and electric potentials in
terms of nodal values through a proper set of interpolation
functions and their derivatives (Cook et al., 2007):

u ¼ Nd,

e ¼ Bud, ð3Þ

E ¼ �B��,

where N is the matrix of the shape functions, Bu is the
strain interpolation matrix, while B� is the electric field
interpolation matrix. Equilibrium is imposed by enfor-
cing that the total potential be at a minimum:

�� ¼ 0 ð4Þ

Substituting Equation (3) into Equation (2), and
enforcing Equation (4) leads to the following electro-
elastic system of equations governing the behavior of the
considered piezoelectric-elastic domain:

Muu
€dþ Kuudþ Ku�� ¼ f,

K�udþ K��� ¼ q, ð5Þ
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where the structural mass and stiffness matrices are,
respectively, defined as:

Muu ¼

Z
V

�NTN dV, ð6Þ

and

Kuu ¼

Z
V

BT
uCBu dV: ð7Þ

The dielectric stiffness matrix K�� is:

K�� ¼

Z
V

BT
��
"B� dV: ð8Þ

Finally, the piezoelectric stiffness matrix Ku� ¼ KT
u�

coupling the structural and electrical behavior of the
system is given by:

Ku� ¼

Z
V

BT
u e
�B� dV: ð9Þ

Application to Plates with Shunted Patches

The formulation presented above is general and can
be applied to any type of piezoelectric structure, given
the proper FE formulation. In this work, such formu-
lation is used to model thin plates (the host structure)
on which shunted piezos are mounted. The combina-
tion of host structure and piezo patches is modeled
using 4-node Kirchhoff plate elements (Cook et al.,
2007). Piezoelectric patches are assumed to have
through-the-thickness polarization, with electrodes
connected to the top and bottom surfaces. Further-
more, it is assumed that no electric-field gradients are
present on the top or bottom surface of each
piezoelectric patch, producing iso-electric-potential
surfaces. Accordingly, the electric potential, or voltage,
varies only through the thickness of the piezo patches.
Moreover, it is assumed that the variation of voltage
through the thickness is linear, and that the bottom
surface of each patch bonded to the host structure is
grounded (Figure 1).

The variation of voltage over the volume of the plate
can thus be expressed as:

�ðx, y, zÞ ¼ �ðzÞ ¼
z� h=2

hP
�P, ð10Þ

with h and hP denoting the plate and the piezo
thickness, respectively. Based on these assumptions, the
governing electrical equation for a single piezo element
(Equation (5)) becomes a scalar equation of the form:

K�udþ K���P ¼ qe, ð11Þ

with the coupling matrix K�u 2 R
1
�R

n, with n denoting
the number of structural degrees of freedom, and qe being
the external charge at the electrodes. The application of
a shunting circuit through the electrodes allows expres-
sing the charge in terms of the potential �P. Assuming
harmonic motion at frequency !, and correspondingly
harmonic variation of voltage and charge, i.e.,

�P ¼ �P0e
i!t, qe ¼ qe0e

i!t ð12Þ

gives:

�P0 ¼ i!Zeð!Þqe0, ð13Þ

where Ze(!) is the electrical impedance of the shunting
circuit, which for the simple case of shunting through
a series of an inductance L and a resistance R is
Zeð!Þ ¼ Rþ i!L (Figure 2).

Substituting Equation (13) into Equation (11) leads
to the expression for the potential in terms of structural
degrees of freedom, with a single governing matrix
equation of the form:

½Kuu � !
2Muu þ SZe

ð!Þ� d0 ¼ f0, ð14Þ

where SZe
ð!Þ is a structural shunting matrix containing

the effects of the shunting circuits on the dynamic
behavior of the structure. Its expression is:

SZe
ð!Þ ¼ �i!Ku�

�
i!K�� �

1

Zeð!Þ

��1
K�u: ð15Þ

Host structure

Piezoelectric material

hP

z

x

y
φP

φG = 0

Figure 1. Configuration of plate with piezo patch.

z

x

y

R

L
Host structure

Piezoelectric material

Figure 2. Plate with shunted piezo patch.

Vibration and Wave Propagation Control of Plates 981

 at JOHNS HOPKINS UNIV on December 15, 2009 http://jim.sagepub.comDownloaded from 

http://jim.sagepub.com


It is interesting to observe how the shunting matrix
contributes to the inertial, damping and stiffness
properties of the structure in ways that are defined by
the characteristics of the piezo patch and by the
parameters of the shunting circuit by way of the
electrical impedance. Particular cases are those corre-
sponding to the short and open shunting circuits, which
correspond to limiting shunting conditions. The short
circuit configuration, for which �P ¼ 0, is governed by
the following discretized Equation of motion:

Kuu � !
2Muu

� �
d0 ¼ f0, ð16Þ

where Muu and Kuu include mass and stiffness of the
piezoelectric patches, and of the host structure. The
open circuit case corresponds to Zeð!Þ ! 1, which
reduces the shunting matrix in Equation (15) to:

SZe
ð!Þ � �Ku�K

�1
��K�u, ð17Þ

which shows that the open circuit essentially modifies
the stiffness of the host-piezo structure.

WAVE PROPAGATION IN 2D PERIODIC

STRUCTURES

Plate structures with a periodic array of shunted,
piezo patches are now considered. Wave propagation in
the resulting 2D periodic structure is investigated
through the analysis of a unit cell, and the application
of Bloch theorem (Brillouin, 1953). A schematic of the
considered plate configuration and associated unit cell is
shown in Figure 3.
The motion of the periodic domain, according to

Bloch’s theorem, may be expressed as follows:

wðr, nÞ ¼ w0e
l�r, ð18Þ

where w denotes the generalized displacement of point r
belonging to the cell at location n within the assembly.
Also, w0 describes the generalized displacements of a
single cell, while l ¼ �x �y

� �
is the vector of the

propagation constants. The propagation constants are

complex numbers �k ¼ �k þ i"k, (k ¼ x, y), whose real
and imaginary parts are denote attenuation and phase
constants, respectively. The propagation constants are
equal to the wavenumber component in the direction of
wave propagation, multiplied by the spatial period of
the domain in the corresponding direction (Figure 4),
and therefore they are non-dimensional quantities. They
describe the nature of elastic waves propagating in the
2D periodic structure: purely imaginary propagation
constants correspond to waves which are free to
propagate, while the existence of a real part indicates
that amplitude attenuation occurs as elastic waves
propagate from one cell to the next.

The behavior of the unit cell can be conveniently
described through a discretized equation of motion, and
by defining the cell’s interaction with its neighbors.
A general formulation for the cell’s equation of motion
can be expressed as:

KDð!Þd ¼ f, ð19Þ

where KD is the dynamic stiffness matrix of the cell
defined in Equation (14). In Equation (19) d and f are,

(a)

dLT
dT dRT

dRdL

dB
dLB dRT

dI

(b)

Figure 3. (a) Schematic of the periodic plate; (b) Corresponding
unit cell.

y

x

Lx

Ly

(a)

∈y = ky Ly

∈x = kx Lx

(p, p)

(0, 0) (p, 0)

(b)

(0, p)

Figure 4. (a) Unit cell dimensions; (b) First Irreducible Brillouin zone.
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respectively, vectors of generalized nodal displacements
of the cell and associated forces:

d ¼ f dL dR dT dB dLB dLT dRT dRB dI g
T,

f ¼ f fL fR fT fB fLB fLT fRT fRB fI g
T,

where dI and fI denote the generalized displacements and
forces internal to the unit cell. Imposing periodicity
conditions on the generalized displacements and equili-
brium conditions on the generalized forces yields:

dR ¼ e�x dL, dT ¼ e�y dB,

dLT ¼ e�y dLB, dRB ¼ e�x dLB, ð20Þ

dRT ¼ e�xþ�y dLB,

and

fR ¼ �e
�x fL, fT ¼ �e

�y fB,

fLT ¼ �e
�y fLB, fRB ¼ �e

�x fLB, ð21Þ

fRT ¼ �e
�xþ�y fLB:

Equation’s (20) and (21) can be rewritten in the
following matrix form:

d ¼ Ad ðrÞ, f ¼ B f ðrÞ, ð22Þ

where d ðrÞ is the reduced vector of nodal displacements.
Substituting Equation (20) into Equation (19), pre-
multiplying the resulting Equations for AH, with H
denoting a complex transpose conjugate, and assuming
fI ¼ 0 gives:

K
ðrÞ
D ðl,!Þ d

ðrÞ
¼ 0, ð23Þ

where K
ðrÞ
D ðl,!Þ is the reduced dynamic stiffness matrix.

Equation (23) is an eigenvalue problem whose solution
depends on the propagation constant l.

Direct Solution of the Dispersion Relations

The approach typically used to evaluate the dispersion
relation of a 2D periodic domain consists in setting the
attenuation part of the propagation constants to 0, and
varying the phase constants "i (i ¼ x, y) in the ½�	,	�
interval. Solving with respect to frequency for all the
combinations of "x, "y in the considered range yields a
series of functions ! ¼ fð"x, "yÞ, which are known as
phase constant surfaces and represent the dispersion
characteristics of the domain. The phase constant
surfaces are 2D representations of the dispersion
relations for the considered periodic domain, and
provide a wealth of information on the dynamics of

propagating waves. Frequency gaps between subsequent
surfaces correspond to attenuation in all directions and
therefore identify the stop bands, or band gaps, typical
of all periodic structures and domains. Phase constant
surfaces are therefore essential tools for the analysis of
the behavior of 2D periodic structures and their ability
to transmit or attenuate waves at certain frequencies and
in specified directions. This approach, here denoted
as direct, is very convenient, as for most domains,
specifying the two wavenumbers and solving for
frequency leads to a linear eigenvalue problem of easy
solution. This is, however, not the case for the
configuration at hand. The reason for this is 2-fold: (1)
the resistive component of the shunting circuit intro-
duces attenuation at all frequencies, which does not
allow setting the attenuation constants �k equal to 0, and
(2) the dynamic stiffness matrix is a complicated
function of frequency, so that even if the propagation
constants were correctly specified, the resulting eigen-
value problem expressed by Equation (23) would not be
linear with respect to frequency. The complexity is
introduced by the electrical impedance, which appears as
a factor on the denominator.

Inverse Solution of the Dispersion Relations: Transfer

Matrix Technique

An alternative approach, here denoted as inverse,
consists in specifying the frequency ! and one of the two
wavenumbers, and solving for the other. This is
performed by constraining the wave vector to follow
the contour of the First Brillouin Zone, which is the area
corresponding to one period of the frequency/wave-
number relationship. The First Brillouin Zone is
identified by evaluating the inverse lattice for a periodic
domain according to the procedure outlined
in (Brillouin, 1953). Due to symmetry of the unit-cell
configuration considered in this study, the First Brillouin
Zone is a square defined by ½0,	� � ½0,	� as shown
in Figure 4. The analysis through variation of the wave
vector along the contour significantly reduces the
computational effort in determining the dispersion
surfaces, and in general, provides a representation of
easy interpretation. The inverse solution method
adopted here allows imposing the frequency, and one
of the two wavenumbers and solving for the other
wavenumber along each side of the contour.

This is achieved by extending the transfer matrix
technique, typically restricted to the analysis of 1D
periodic structures, with the underlying restriction that
the propagation constants are only obtained for
combinations corresponding to the contour of the
Brillouin zone. The procedure is here illustrated for
the case when propagation along the x direction is
investigated, which corresponds to the first side of the
contour ( 0, 0ð Þ � 	, 0ð Þ with �y ¼ 0). In the procedure
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described in what follows, the unknown is �x while
frequency ! is an input parameter. The following
periodicity conditions are enforced:

dT ¼ dB,

dLT ¼ dLB, ð24Þ

dRT ¼ dRB:

This yields a reduced Equation of motion of the kind:

K
ðrÞ
D ð�y ¼ 0,!Þ d ðrÞ ¼ f ðrÞ ð25Þ

where d r
¼ fdL dLB dB dI dR dRBg

T, and
f r ¼ ffL fLB fB fI fR fRBg

T. Given the considered
direction of wave propagation, the reduced set of
degrees of freedom can be organized into left (L),
dL ¼ fdL dLBg

T, internal (I ) dI ¼ fdB dIg
T, and right

(R) dR ¼ fdR dRBg
T. Similar definitions hold for the

vectors of generalized forces, with the distinction that,
due to equilibrium considerations, the absence of
externally applied forces and the considered periodicity
conditions, fI ¼ 0. Accordingly, Equation (25) can be
rewritten as follows:

K
ðrÞ
D ð�y ¼ 0,!Þ

dL

dI

dR

8><
>:

9>=
>; ¼

aL,L aL, I aL,R

aI ,L aI ,I aI ,R

aR,L aR, I aR,R

8><
>:

9>=
>;

dL

dI

dR

8><
>:

9>=
>;

¼

fL

0

fR

8><
>:

9>=
>; ð26Þ

Equation (26) can be recast into transfer-matrix form
through the condensation of the internal degrees of
freedom and by imposing relations between left and
right displacements and forces. This gives:

dR
fR

� �
¼ Tð�y ¼ 0,!Þ

dL
fL

� �
; ð27Þ

where

Tð�y ¼ 0,!Þ ¼
�â�1L,RâL,L â�1L,R

âR,Rðâ
�1
L,RâL,LÞ � âR,L �â�1R,RâL,R

( )
,

ð28Þ

with


̂L,L ¼ 
L,L � 
L, I

�1
L,L
I ,L,


̂L,R ¼ 
L,R � 
L,I ð

�1
I , I
I ,RÞ,


̂R,L ¼ 
R,L � 
R, I ð

�1
I , I
I ,LÞ,


̂R,R ¼ 
R,R � 
R, I ð

�1
L,L
I ,RÞ:

The eigen values of the transfer matrix Tð�y ¼ 0,!Þ can
be obtained through the solution of the following
eigenvalue problem:

Tð�y ¼ 0,!Þ
dL
fL

� �
¼ �ð�y ¼ 0,!Þ

dL
fL

� �
ð29Þ

Combining Equations (27) and (29) gives:

dR
fR

� �
¼ �ð�y ¼ 0,!Þ

dL
fL

� �
ð30Þ

which indicates that the state vectors at the left and right
of the unit cell identified by the particular direction of
wave propagation are related through the eigenvalues of
the transfer matrix. The eigenvalues therefore determine
the nature of the wave dynamics in the periodic
structure. Waves are free to propagate in the specified
direction for those values of frequency for which j�j ¼ 1,
whereas attenuation occurs if j�j51. The propagation
constant �x corresponding to the assigned value of
frequency ! and to �y ¼ 0 can be obtained by letting:

� ¼ e�x ð31Þ

which is an expression that yields both imaginary and real
part of the propagation constant. This procedure,
described here ( 0, 0ð Þ � 	, 0ð Þ with �y ¼ 0), can be
replicated for the values of the propagation constants
defining the other three sides of the Brillouin zone. The
description of the periodicity conditions corresponding
to the other sides, and the definition of the left, right, and
internal degrees of freedom is provided in the Appendix.

WAVE PROPAGATION CHARACTERISTICS OF

PLATES WITH SHUNTED PIEZOS

Unit Cell Configuration, Geometry, and

Material Properties

The unit cell analysis presented in the previous section
is now employed to investigate the propagation char-
acteristics in the considered periodic plate-piezo-patch
configurations. The analysis is performed for the two unit
cells presented in Figure 5. For both cases, the host
structure is made of aluminum (Young’s Modulus
E ¼ 7:1� 1010 N/m2, density �¼ 2700 kg/m3, Poisson’s
ratio �¼ 0.33) and has a thickness h¼ 1mm. Both unit
cells feature side lengths Lx ¼ Ly ¼ 7:5 cm. The consid-
ered piezo patch has a thickness h¼ 0.5mm and its
properties are listed in Table 1. Both configurations are
considered to be shunted through an RL circuit which is
in series with the capacitance of the piezo. For the
selected configuration this capacitance is equal to
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CP¼ 21 nF. The inductance of the circuit is chosen in
order to tune the shunting circuit at its resonant
frequency, which, in the absence of resistance, is given by:

!TUN ¼
1

ðLCPÞ
1=2
: ð32Þ

Propagation Constant Results

Results for the first configuration (Figure 5(a)) are
presented in Figure 6, which show the variation of the
real (�) and imaginary part (�) of the propagation
constants over the 0� 1500Hz range. The results
obtained with the shunted piezo are compared with
the case of open circuit (ZE!1Þ which is presented
as a limiting case. The propagation constants along
the x-direction shown in Figure 6(a) and (b) show the

presence of an attenuation frequency range centered
at 450Hz, which occurs for all circuit configurations. The
presence of this attenuation band can be attributed to the
impedance mismatch generated by the added mass and
stiffness of the piezo. In addition, shunting of the circuits
introduces an additional range of attenuation at approxi-
mately the tuning frequency, which in this case is set at
200Hz, as defined by a shunting inductance L¼ 30.14H.
Another interesting observation is that the propagation
constants along the x direction are identical to those
along the y direction, as a result of the same spatial
periodicity in both in-plane directions (Figure 5(a)).

The results for the second unit-cell configuration
(Figure 5(b)) are presented in Figure 7, where propaga-
tion constants obtained for a tuning frequency of 700Hz
are displayed. As in the previous case, attenuation zones
are identified by the range of frequencies where the
attenuation constant � is non-zero. The presence of an
attenuation zone centered approximately at 450Hz, for
waves propagating in the x-direction (Figure 7(a)), is to
be attributed to the impedance mismatch associated
with the presence of the piezo-patch, as for the first
configuration. This range of attenuation is in fact
independent from the tuning frequency of the resonant
shunts and is not observed in the propagation constant
for the y-direction (Figure 7(c)), along which the
configuration of Figure 5(b) does not feature any spatial
periodicity.

The magnitude of the resistive component in
the shunting circuit, moreover, affects the amplitude
of the attenuation parameters and the frequency
bandwidth of attenuation. Higher resistance values
typically reduce the maximum attenuation value, but
tend to extend the range of effectiveness. This suggests
that a balance must be struck to achieve a compromise
between bandwidth and attenuation amplitude. Such
a behavior may be easily explained by observing that
the shunting circuit under consideration behaves as a
second-order system with a resonance at a frequency
defined by inductance and capacitance, and a corre-
sponding amplitude peak defined by the value of the
resistance, here acting as the dissipative term.
Maximum attenuation amplitude and bandwidth are
concurrent and thus their dependence on resistance is
here reported to illustrate the influence of various
shunting circuits.

Finally, both Figures 6 and 7 illustrate how the
attenuation zones are clearly identified by frequency
ranges corresponding to non-zero attenuation param-
eter �, while phase-constant plots are more difficult to
interpret and do not provide clear information with
respect to stop bands. For this reason, in the remainder
of the article, only the attenuation constant plots will be
reported as effective prediction tools for the range of
effectiveness of the periodic arrangement of piezo-
patches for vibration attenuation.

(a)

(b)

Figure 5. Considered unit cell configurations.

Table 1. Summary of properties of
the piezo patches.

�s 7700 kg=m3

cE11 ¼ cE22 ¼ cE33 110:7 GPa

cE44 ¼ cE55 ¼ cE66 25:6 GPa

cE12 ¼ cE13 ¼ cE23 59:6 GPa

e31 ¼ e32 �9:6 N=Vm

�T33=�0 2100

k31 0:31

Vibration and Wave Propagation Control of Plates 985

 at JOHNS HOPKINS UNIV on December 15, 2009 http://jim.sagepub.comDownloaded from 

http://jim.sagepub.com


FREQUENCY RESPONSE OF A FINITE PLATE

WITH A PERIODIC SHUNTED ARRAY

The predictions of the unit-cell analysis using Bloch
theorem are verified by computing the harmonic response

of a periodic plate of finite extent. The configuration
under consideration, depicted in Figure 8, consists of an
assembly of a 5� 5 array of unit cells of the type shown in
Figure 5(a). The considered material properties are those
introduced in the previous section, while the modeled
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Figure 6. Propagation constants for the first unit cell configuration tuned at 200 Hz: attenuation and phase constant along x (a,b), and along y
(c,d) (L¼ 30.14 H; open circuit – thin solid line, R¼ 3000� – thick dashed line, R¼6000� – thick solid line).
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Figure 7. Propagation constants for the first unit cell configuration tuned at 700 Hz: attenuation and phase constant along x (a,b), and along y
(c,d) (L¼ 2.46 H; open circuit – thin solid line, R¼ 3000� – thick dashed line, R¼ 6000� – thick solid line).
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square plate features side lengths of 37.5 cm. The plate is
assumed to have free–free boundary conditions, and to be
excited by a harmonic displacement excitation at the
bottom-left corner. The plate frequency response at the
top-right corner is presented in Figures 9–12 for the open
circuit case and for various shunting configurations.

For reference purposes, the frequency response of the
finite plate is complemented with the attenuation
constants obtained for the corresponding shunting circuit
configurations to show the consistency between the
predictions of the unit cell analysis and the response of
a finite assembly.

Specifically, Figures 9 and 10 compare the response
obtained for tuning at 850Hz and different values of
shunting resistance. The frequency-response-function
plots illustrate how vibration attenuation is achieved in
the frequency range predicted by the unit cell analysis,
and that the amount of attenuation is influenced by
the shunting resistance. The difference can be
observed through careful observation of the response
amplitudes at the peak value of the attenuation
constant. Figures 11 and 12 present examples of
attenuation constants and frequency response obtained
for tuning, respectively, at 650 and 1100Hz. Both results
confirm the ability of the periodic, shunted array to
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Figure 8. Periodic plate configuration.
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Figure 9. Propagation constant (a) and frequency response function
(b) with tuning at 850 Hz (tuning inductance L¼ 1.67 H): open circuit –
thin solid line, shunting resistance R¼ 3000� – thick solid line.
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Figure 10. Propagation constant (a) and frequency response
function (b) with tuning at 850 Hz (tuning inductance L¼ 1.67 H):
open circuit – thin solid line, shunting resistance R¼ 6000� – thick
solid line.
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reduce the amplitudes of all the modes contained in the
frequency range of attenuation. Tuning at 1100Hz in
particular is characterized by a very significant broad-
band effect, while the results for 650Hz show localized
effectiveness around the tuning frequency. This is to be
attributed to the characteristics of the resonant peak
for the considered shunting circuits, whose bandwidth
increases with the resonant frequency. The resonance
behavior of the circuit and the equivalent effects on the
structural-dynamics behavior of the system are also
responsible for the shift between tuning frequency and
the actual peak observed in all attenuation constants.
In all the cases presented, in fact, one can clearly observe
that maximum attenuation occurs at frequencies, which
are lower than the tuned frequency for the shunt. This is
due to two factors. First, the calculated tuning frequency
is based on the resonant frequency of the circuit without
dissipation, i.e., !TUN ¼ 1=

ffiffiffiffiffiffiffi
LC
p

p, while all considered
shunting circuits feature a resistor R, which causes the
shunting-circuit response to peak at its damped natural
frequency. A second, and most important factor,

consists in the fact that maximum effects of shunting
on structural behavior are not achieved at the frequency
for which electrical impedance Ze(!) is maximized, but
rather at the value corresponding to a maximum of the
shunting matrix SZe

ð!Þ defined in Equation (15).

CONCLUSIONS

This article presents the analysis of wave propagation
and subsequent vibrations in plates with periodic,
shunted, piezoelectric patches. Finite element models
are formulated to predict the wave propagation char-
acteristics of the plate with piezo patches through the
application of Bloch theorem on a unit cell of the periodic
assembly. The formulation is general as it allows
accommodating various structural and shunting config-
urations. The unit cell analysis gives the dispersion
relations for the plate with shunted patches, which show
the existence of ranges of frequency within which waves
are attenuated as they propagate from one cell to
another. Examples presented for two unit cell
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Figure 11. Propagation constant (a) and frequency response
function (b) for tuning at 650 Hz (tuning inductance L¼ 2.85 H,
shunting resistance R¼ 3000 �).
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Figure 12. Propagation constant (a) and frequency response
function (b) for tuning at 1100 Hz (tuning inductance L¼ 0.99 H,
shunting resistance R¼ 3000 �).
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configurations show that the presence of the shunted
piezoelectric-patch arrays introduces an attenuation
range due to the added mass and stiffness, and a second
attenuation range which is defined by the parameters of
the shunting circuit. This second attenuation zone is
characterized by broadband behavior and can be tuned
through the selection of the shunting circuit resonance
characteristics. The attenuation effects of the periodic
shunted array are demonstrated by computing the
response of finite plate with a 5� 5 piezo patch array,
and by comparing the obtained range of attenuation with
the one predicted by the unit cell analysis. The results
show the consistency of the results, and suggest
the effectiveness of the unit cell analysis as a design tool
for the selection of array configuration, spatial periodi-
city and shunting configuration. The results also illus-
trate the strong broadband characteristics of the
considered concept, which is contrast with the narrow-
band effect obtained with a single patch shunted through
an RL circuit.

ACKNOWLEDGMENTS

This work is supported by a collaborative research
agreement (NNX07AD20A) between NASA Langley
Research Center and the Georgia Institute of
Technology.

APPENDIX: PERIODICITY CONDITIONS

CORRESPONDING TO THE FIRST BRILLOUIN
ZONE

The following describes the periodicity conditions and
the degrees of freedom selected to define a transfer
matrix corresponding to the 4 sides of the contour of the
First Brillouin Zone. The first segment, already described
in the body of the article, is included here for
completeness.

Segment 1: 0, 0ð Þ � 	, 0ð Þ

It corresponds to �y ¼ 0. The periodicity conditions
reduce to:

dT ¼ dB,

dLT ¼ dLB,

dRT ¼ dRB,

Left, right and internal degrees of freedom are defined as:

dL ¼ fdL dLBg
T,

dR ¼ fdR dRBg
T,

dI ¼ fdB dIg
T:

Segment 2: 	, 0ð Þ � 	,	ð Þ

It corresponds to �x ¼ 	. The periodicity conditions
reduce to:

dR ¼ �dL,

dRB ¼ �dLB,

dRT ¼ �dLT,

Left, right and internal degrees of freedom are defined as:

dL ¼ fdB dLBg
T,

dR ¼ fdT dLTg
T,

dI ¼ fdL dIg
T:

Segment 3: 	,	ð Þ � 0,	ð Þ

It corresponds to �y ¼ 	. The periodicity conditions
reduce to:

dT ¼ �dB,

dLT ¼ �dLB,

dRT ¼ �dRB,

Left, right and internal degrees of freedom are defined as:

dL ¼ fdL dLBg
T,

dR ¼ fdR dRBg
T,

dI ¼ fdR dIg
T:

Segment 4: 0,	ð Þ � 0, 0ð Þ

It corresponds to �x ¼ 0. The periodicity conditions
reduce to:

dR ¼ dL,

dRB ¼ dLB,

dRT ¼ dLT,

Left, right and internal degrees of freedom are defined as:

dL ¼ fdB dLBg
T,

dR ¼ fdT dLTg
T,

dI ¼ fdL dIg
T:
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