
FAST TV-L1 OPTICAL FLOW FOR INTERACTIVITY

Emmanuel d’Angelo, Johan Paratte, Gilles Puy, Pierre Vandergheynst

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Signal Processing Laboratory

ABSTRACT

Vision is a natural tool for human-computer interaction, since it pro-
vides visual feedback to the user and mimics some human behaviors.
It requires however the fast and robust computation of motion primi-
tives, which remains a difficult problem. In this work, we propose to
apply some recent mathematical results about convex optimization
to the TV-L1 optical flow problem. At the cost of a small smoothing
of the Total Variation (TV), the convergence speed of the numerical
scheme is improved, leading to earlier termination. Furthermore, we
successfully implement our algorithm on GPU for realtime perfor-
mance using the OpenCL framework.We demonstrate the potential
of our optical flow by using it as primary sensor in a remotely con-
trolled image browsing software.

Index Terms— Optical flow, two, three, four, OpenCL

1. INTRODUCTION

Since its introduction by Horn and Schunck [1], the problem of vari-
ational optical flow estimation has been an active area of research.
In this approach, the under-determination of the motion estimation
problem is accounted for by enforcing constraints on the flow reg-
ularity. Then, the objective function to be minimized becomes the
sum of an error (or registration) term and a flow regularity term. If
I0 and I1 are two images defined on a domain Ω ⊂ R2, then the
desired optical flow u = (u1, u2)T is the solution of the problem:

argmin
u

∑
x∈Ω

λρ (I0(x)− I1(x+ u(x)))︸ ︷︷ ︸
registration error

+
∑
x∈Ω

κ (∇u(x))︸ ︷︷ ︸
regularity

. (1)

While Horn and Schunck used the quadratic registration error
(ρ(z) = z2) and the Tikhonov regularization (κ(∇u) = ‖∇u‖2),
subsequent work was directed towards replacing these constraints by
more robust terms.

Indeed, discontinuities in the optical flow field should be al-
lowed along the boundaries of objects, since they may have differ-
ent motion than their surroundings. Many different techniques were
applied to deal with this issue. For example, Black and Anandan
introduced in [2] the use of robust statistics to replace the quadratic
expressions of ρ(·) and κ(·), while Pérez and Mémin [3] proposed
to solve a problem coupling optical flow and image segmentation.
However, these formulations lead to non-convex optimization prob-
lems, that are non trivial to solve.

In order to have better convergence properties, Deriche et al.
[4] introduced an anisotropic diffusion-based differential algorithm.
Later, [5] and [6] popularized the use of the L1 norm for both ρ(·)
and κ(·). In this case the regularity constraint becomes the Total

Variation (TV) norm of the optical flow: ‖u‖TV = |∇u| = κ(∇u).
Eq. (1) then becomes:

argmin
u

∑
x∈Ω

λ|I0(x)− I1(x+ u(x))|+
∑
x∈Ω

‖u(x)‖TV, (2)

hence the name of TV-L1 optical flow.
While the objective function in Eq. (2) is convex, it is not differ-

entiable near 0 because of the TV norm. To overcome this difficulty,
Zach et al. introduced in [7] an auxiliary variable v such that the
problem becomes:

argmin
u,v

∑
x∈Ω

λ|I0(x)−I1(x+u(x))|+ 1

2θ
(u−v)2+

∑
x∈Ω

‖u(x)‖TV,

(3)
where θ is a (small) additional parameter. By splitting this problem,
one gets two smooth convex subproblems:

1. solving for v yields an L2-L1 formulation, that can be solved
pointwise by a thresholding scheme (see [7]) ;

2. solving for u leads to a TV-L2 minimization, also known as
the Rudin-Osher-Fatemi (ROF) model, and for which exist
fast algorithms (see for example [8]).

Because both subproblems can be solved pointwise and involve par-
allel computations, the authors of [7] successfully implemented their
algorithm on Graphical Processing Units (GPU) for a significant
speed-up.

1.1. Main contributions

Since optical flow is an important primitive for various Image Pro-
cessing applications, such as shape-from-motion or video compres-
sion, there is a constant need for faster algorithms. In this work, we
propose to solve the TV-L1 optical flow of Eq. (2) directly, without
any splitting but after smoothing its expression, to reduce the overall
complexity. To do so, we base our approach upon a recent family of
fast iterative numerical schemes for convex (eventually non-smooth)
function minimization called Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [9].

Among the first order schemes (i.e. using only first order deriva-
tives), this resolution scheme yields to iterations with an optimal
convergence rate ofO(1/n2), which is one order of magnitude faster
than Chambolle’s method. Furthermore, we implemented the pro-
posed algorithm on GPU using the industry standard OpenCL API
to achieve realtime performance on a standard laptop hardware.

Note also that several recent papers presented optical flows de-
signed for higher accuracy [10, 11, 12]. However, they involve some
significant computational overhead (structure-texture decomposi-
tion, median filtering, bilateral or nonlocal filtering. . .) that are not
harmless with respect to the speed of the computations, while we
aim here at a faster algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. FAST APPROXIMATED TV-L1 OPTICAL FLOW

In this section, we present the proposed algorithm for fast TV-L1

optical flow. To obtain faster convergence, we want to apply the
iterations described in [9]. This requires to meet three conditions:

1. the function to minimize should be the sum of two convex
functions, which is the case ;

2. at least one function should be Lipschitz-differentiable ;

3. one should known the solution of the minimization problem
with respect to the other function.

First, we linearize the registration error of Eq. (2).Then, we intro-
duce Nesterov’s smooth approximation of a function [13] to the TV
norm to make it Lipschitz-differentiable. Finally, we embed these
two procedures into a FISTA-like procedure and solve the remaining
minimization problem by applying a result from [7].

2.1. Problem linearization

In the sequel, we write F (u) the function to minimize in Eq. (2):

F (u) = λρ(u) + κ(u), (4)

omitting the sum symbols for brevity, and with ρ(u) and κ(u) de-
fined for each pixel location x as:{

ρ(u) = |I0(x)− I1 (x+ u(x)) |
κ(u) = ‖u(x)‖TV

. (5)

While F (u) is convex, it is a non-linear function. Assuming that
we want to measure small displacements from a previous estimate
u0, we can take a Taylor expansion of ρ(u) to linearize it:

ρ(u) = |I0(x)− I1 (x+ u(x)) |
≈ |I0(x)− I1(x+ u0(x))− 〈∇I1,u− u0〉|. (6)

2.2. Smoothed Total Variation

Since the TV norm is non-smooth, we need to replace it by a smooth
approximation. For each component ud of the optical flow, we could
add a small constant ε to the norm to avoid the singularity near 0,
namely choosing ‖ud‖TV =

√
‖∇ud‖2 + ε2.

However, we chose instead to follow the smoothing scheme pro-
posed by Nesterov [13], because it comes with a value for the corre-
sponding Lipschitz constant and does not induce any computational
overhead. In this particular case it is similar to choosing a threshold
µ on the TV norm that will make it switch from a quadratic behavior
(for small values below µ) to the usual norm (values above µ).

Recall that the TV norm can also be defined in a dual form:

κ(ud) = ‖ud‖TV =
√
‖∇ud‖2 = max

z∈Q2

〈z,Dud〉, (7)

where Q2 is the unit ball in R2 and D = (D1, D2)T is the horizon-
tal and vertical forward differences operator. We then introduce the
smoothing parameter µ to balance between the quadratic and origi-
nal behaviors to define the smoothed function κµ:

κµ(ud) = max
z∈Q2

〈z,Dud〉 −
µ

2
‖z‖2. (8)

Eq. (8) admits a unique solution zµ:

• if ‖∇ud‖is greater than µ, the first term dominates the expres-
sion and is maximum when the vectors ud and z are aligned.
Hence, in this case zµ(ud) = ∇ud/‖∇ud‖ ;

• if ‖∇ud‖ is smaller than µ, then the direction is again given
by ∇ud and setting the derivative of Eq. (8) to 0 yields
zµ(ud) = µ−1∇ud.

This function is differentiable, and its gradient can be computed
using the adjoint operator D∗ (see [13] for the details):

∇κµ(ud) = D∗zµ(ud). (9)

It is immediate to see from Eq. (9) and the expression of zµ that κµ
is indeed Lipschitz-differentiable, and its Lipschitz constant Lµ is
equal to the Lipschitz constant of D divided by µ: Lµ = 8/µ.

Note that sinceD was the forward differences gradient operator,
D∗ is minus the backwards divergence operator.

2.3. FISTA-based resolution scheme

Using the previous results, the objective function F (u) now writes:

F (u) = λρu0(u) + κµ(u), (10)

where ρu0(u) stands for the linearized version of ρ(u) from Eq. (6).
While standard first order iterative methods consider only the

current estimate, the authors of [9] suggest to use also the previous
iteration result to to achieve a faster convergence rate. The Iterative
Soft Thresholding Algorithm (ISTA) is then applied to a mixture
between the current and previous estimates, hence the name of Faster
ISTA (FISTA).

Since κµ is Lipschitz-differentiable, we can apply the different
steps of FISTA to F (u). We call y the auxiliary variable and t the
mixture parameter, and denote iteration by superscripts. The FISTA
optical flow writes:

1. initialization: set y1 = u0, t1 = 1 ;

2. for each iteration:

(a) update the flow estimate from y by computing the re-
sult of the proximal operator of ρu0 :

uk = PLµ{ρu0}(y) (11)

(b) update the mixture parameter:

tk+1 =
1 +

√
1 + 4(tk)2

2
; (12)

(c) update the auxiliary variable y:

yk+1 = uk +
tk − 1

tk+1
(uk − uk−1). (13)

Writing v(y) = y− 1
Lµ
∇κµ(y), the proximal operator PLµ is

defined here as the solution of the following minimization problem:

PLµ{ρu0}(y) = argmin
u

{
λρu0(u) +

Lµ
2
‖u− v(y)‖2

}
, (14)

that can be solved by applying Prop. (3) from [7], leading to a simple
thresholding operation with respect to τ = (λ/Lµ)‖∇I1‖2:

PLµ{ρu0}(y) = v(y)+

 (λ/Lµ)∇I1 if ρu0(v) > τ
−(λ/Lµ)∇I1 if ρu0(v) < −τ
−ρu0(v)∇I1/|∇I1| otherwise.

(15)

3. EXPERIMENTS

3.1. Implementation details

We implemented the proposed algorithm in C++ using the OpenCV
library 1, and on the GPU using the recently accepted OpenCL stan-
dard2 on different laptops running the latest version of Mac OS X.
While OpenCL implementations may not be as performant as other
frameworks such as NVIDIA CUDA, it is compatible with a broader
range of hardware, including mobile devices, and hence we hope for
a wider compatibility in a near future.

Due to the linearization of Eq. (6), the scheme is valid for small
flow vectors. Classically, we implemented a coarse-to-fine version of
the algorithm, using the flow at the previous level as the linearization
point u0.

For the GPU version, all the operations (downsampling, warp-
ing. . .) take place on the graphics unit. Since all the operations are
pointwise, the implementation is straightforward. For better perfor-
mance, we used the device embedded shared memory to avoid slow
redundant memory accesses. The source code for the GPU version
can be found on the authors website3.

3.2. Complexity and running times

All the operations involved in the proposed algorithm can be com-
puted pixel-wise. Furthermore, while the smooth TV gradient of
Eq. (9) may seem complex, it amounts at computing the divergence
of an image and thresholding it, which is also required when us-
ing for example Chambolle’s projectors [8]. However, there is no
loop additional loop than the iterations of FISTA at each scale, while
Chambolle’s method is iterative. Hence, few operations per pixel are
involved at each iteration.

The GPU version is slightly optimized to limit the data ex-
changes between the host CPU and the GPU. We found the compu-
tation times to be very decent: on a standard laptop with the latest
drivers and equipped with a mobile NVIDA GT320M device, we
were able to process 8 frames per second from the built-in webcam,
using 3 scales and 100 iterations per scale. The speed of our demon-
stration software (see Section 4) was actually limited by the user
interface updates.

3.3. Optical flow results

Figure 1 shows a comparison between the proposed scheme and an
exact TV-L1 algorithm (we took [7] as reference). While the asymp-
totic error is very similar, one can see the benefit of using FISTA in
the fast error decrease. Note also in Fig 1 that the approximation for
small values of µ is very good, while the solver does converge one
order of magnitude faster than standard iterations.

4. REALTIME VISUAL INTERACTION

4.1. Example application

To demonstrate the suitability of our algorithm for realtime applica-
tions, we use it to track user gestures in a camera-based interactive
setup. As shown in Fig. 3, the user can move an image according
to the mean optical flow computed inside its frame (materialized by
the green square). When the picture reaches the target area (white

1http://opencv.willowgarage.com/
2http://www.khronos.org/opencl/
3http://lts2www.epfl.ch/people/dangelo/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 104

µ

Va
lu

e
af

te
r 1

00
0

ite
ra

tio
ns

TV norm
f
µ
(u)

102 103 104
4

4.5

5

5.5

6

6.5

7

Number of iterations

Av
er

ag
e

An
gu

la
r E

rro
r

Exact TV, projected
gradient descent
Smoothed TV, optimal iterations

Fig. 1. Left: evaluation of the TV approximation. For small values
of µ, our approximation is very close to the actual TV norm (dashed
curve). Right: comparison with the baseline TV-L1 algorithm in [7].
While the asymptotic error is the same, our solver does converge
faster.

Fig. 2. Flow example for a frame from the Middlebury dataset [14].

square), it is zoomed and displayed full screen. This basic setup al-
lows us to assess the behavior of the optical flow algorithm and tune
its parameters. Since we do not need highly accurate results, we set
the algorithm to take only one linearization point per scale, and run
100 iterations for each of the 3 levels.

Fig. 3. Basic setup using only the optical flow to control one image.

For more complex interactions when several pictures are present,
more gestures are available: for instance, swiping horizontally
across the screen allows to navigate among the images. In this case,
several objects and motions may interfere: since the two hands (and
possibly some background objects) are moving at the same time, the
TV constraint in the flow estimation may propagate and mix these
motions together.

4.2. Improving the user experience

In this version, we solve this problem by adding skin and face detec-
tion to the application. These are executed on the CPU in parallel to
the optical flow, which resides on the graphics unit. Skin detection

Fig. 4. Output of the skin detection and clustering procedure. Left:
using back-projection and k-means on the original frame. Right: the
k-means algorithm was used in a coarse-to-fine setup and the face
was removed after detection.

is used to filter out all the non relevant areas from the input frames,
whereas face detection allows us to keep only the hands of the user.
The result of this process is then applied as a binary mask to to select
regions of interests in the optical flow.

After an initialization step, the skin detector works by color his-
togram matching to classify the pixels as skin / non-skin, followed
by k-means clustering to group the detections in three blobs (right
hand, left hand and head). For the face detection part, we used the
OpenCV implementation of the standard Viola - Jones detector [15].

Despite the numerous computations, we process the input video
feed at around 8 frames-per-second on a recent laptop equipped with
an NVIDIA GT320M unit, providing a smooth user experience. This
clearly shows the interest of leveraging the GPU for computation-
intensive tasks, while additional processing is performed by the host
hardware.

Additionally, we found that it was not intuitive to immediately
stop an object when the user ceases dragging it. Adding some in-
ertia instead to produce deceleration trajectories improved the user
experience.

Fig. 5. Using our software. On the leftmost illustrations, the fram-
erate is lowered by the scaling computation of the displayed images,
not by the optical flow. An obvious improvement would be to port
this part of the interface to the GPU too.

5. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated the feasibility of a very fast, nu-
merically optimal, TV-L1 optical flow algorithm. While it shows
similar precision to the reference TV-L1 method, its convergence
speed is one order of magnitude higher. Hence, it can be stopped
after fewer iterations. Furthermore, it does not break the parallelism
of modern TV-L1 solvers and can be implemented on GPUs. Put to-
gether, these properties allowed us to achieve realtime performance
and to embed this algorithm into a more complex software.

As a future work, we will work on implementing the “secrets”
for more accurate optical flow recently proposed in [12]. While this

should be straightforward for the structure-texture decomposition,
which can also be implemented on GPU, there may be some per-
formance issues with the median filtering. Finally, we also plan to
extend the gesture recognition capacities of our demonstration soft-
ware by adding it some finger position recognition capabilities.

6. REFERENCES

[1] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[2] M. J. Black and P. Anandan, “A framework for the robust es-
timation of optical flow,” Proceedings of the Fourth Interna-
tional Conference on Computer Vision, pp. 231–236, 1993.

[3] E. Mémin and P. Pérez, “Dense estimation and object-based
segmentation of the optical flow with robust techniques,” IEEE
Transactions on Image Processing, vol. 7, no. 5, pp. 703–719,
1998.

[4] R Deriche, P Kornprobst, and G Aubert, “Optical-flow esti-
mation while preserving its discontinuities: a variational ap-
proach,” in Proceedings of the Second Asian Conference on
Computer Vision, 1995, pp. 290—295.

[5] I. Cohen and I. Herlin, “Non uniform multiresolution method
for optical flow and phase portrait models: Environmental ap-
plications,” International Journal of Computer Vision, vol. 33,
no. 1, pp. 29–49, 1999.

[6] J. Weickert and C. Schnörr, “Variational optic flow computa-
tion with a spatio-temporal smoothness constraint,” Journal of
Mathematical Imaging and Vision, vol. 14, no. 3, pp. 245–255,
2001.

[7] C. Zach, T. Pock, and H. Bischof, “A duality based approach
for realtime tv-l 1 optical flow,” in Proceedings of the 29th
DAGM conference on Pattern Recognition, 2007, pp. 214–223.

[8] A. Chambolle, “An algorithm for total variation minimization
and applications,” Journal of Mathematical Imaging and Vi-
sion, vol. 20, no. 1, pp. 89–97, 2004.

[9] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[10] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers, “An
improved algorithm for tv-l 1 optical flow,” in Statistical and
Geometrical Approaches to Visual Motion Analysis, pp. 23–45.
Springer, 2009.

[11] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof, “Anisotropic Huber-L1 optical flow,” in Proceed-
ings of the British Machine Vision Conference, 2009.

[12] D. Sun, S. Roth, and M.J. Black, “Secrets of optical flow es-
timation and their principles,” in Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, 2010, pp.
2432–2439.

[13] Y. Nesterov, “Smooth minimization of non-smooth functions,”
Mathematical Programming, vol. 103, no. 1, pp. 127–152,
2005.

[14] S. Baker, D. Scharstein, JP Lewis, S. Roth, M.J. Black, and
R. Szeliski, “A database and evaluation methodology for op-
tical flow,” in Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, November 2010, pp. 1–8.

[15] P Viola and M Jones, “Robust real-time object detection,”
International Journal of Computer Vision, vol. 57, no. 2, pp.
137–154, 2002.

