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ABSTRACT

Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the
cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively.
The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the
sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed
by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression
performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The
CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content
of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and illumination data
compression ratios of approximately 40:1 can be achieved when a small degradation in quality is allowed. We make our SZIP program
that implements these compression algorithms available publicly.
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1. Introduction

Large data-sets that are measured or defined inherently on the
sphere arise in a range of applications. Examples include envi-
ronmental illumination maps and reflectance functions used in
computer graphics (e.g. Ramamoorthi & Hanrahan 2004), as-
tronomical observations made on the celestial sphere, such as
the cosmic microwave background (CMB) (e.g. Bennett et al.
1996, 2003), and applications in many other fields, such as plan-
etary science (e.g. Wieczorek 2006; Wieczorek & Phillips 1998;
Turcotte et al. 1981), geophysics (e.g. Whaler 1994; Swenson &
Wahr 2002; Simons et al. 2006) and quantum chemistry (e.g.
Choi et al. 1999; Ritchie & Kemp 1999). Technological ad-
vances in observational instrumentation and improvements in
computing power are resulting in significant increases in the
size of data-sets defined on the sphere (hereafter we refer to
a data-set defined on the sphere as a data-sphere). For exam-
ple, current and forthcoming observations of the anisotropies of
the CMB are of considerable size. Recent observations made by
the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(Bennett et al., 1996, 2003) contain approximately three mega-
pixels, while the forthcoming Planck mission (Planck collabora-
tion, 2005) will generate data-spheres with approximately fifty
mega-pixels. Furthermore, cosmological analyses of these data
often require the use of Monte Carlo simulations, which generate
in the order of a thousand-fold increase in data size. The efficient
and accurate compression of data-spheres is therefore becoming
increasingly important for both the dissemination and storage of
data.

In general, data compression algorithms usually consist of
an energy compression stage (often a transform or filtering pro-
cess), followed by quantisation and entropy encoding stages. For

example, JPEG (ISO/IEC IS 10918-1) uses a discrete cosine
transform for the energy compression stage, whereas JPEG2000
(ISO/IEC 15444-1:2004) uses a discrete wavelet transform.
Due to the simultaneous localisation of signal content in scale
and space afforded by a wavelet transform, one would expect
wavelet-based energy compression to perform well relative to
other methods. Wavelet theory in Euclidean space is well es-
tablished (see Daubechies (1992) for a detailed introduction),
however the same cannot yet be said for wavelet theory on the
sphere. A number of attempts have been made to extend wavelets
to the sphere. Discrete second generation wavelets on the sphere
that are based on a multiresolution analysis have been developed
(Schröder & Sweldens, 1995; Sweldens, 1996). Haar wavelets
on the sphere for particular pixelisation schemes have also been
developed (Tenorio et al., 1999; Barreiro et al., 2000). These dis-
crete constructions allow for the exact reconstruction of a signal
from its wavelet coefficients but they may not necessarily lead
to a stable basis (see Sweldens (1997) and references therein).
Other authors have focused on continuous wavelet methodolo-
gies on the sphere (Freeden & Windheuser, 1997; Freeden et al.,
1997; Holschneider, 1996; Torrésani, 1995; Dahlke & Maass,
1996; Antoine & Vandergheynst, 1998, 1999; Antoine et al.,
2002, 2004; Demanet & Vandergheynst, 2003; Wiaux et al.,
2005; Sanz et al., 2006; McEwen et al., 2006). Although sig-
nals can be reconstructed exactly from their wavelet coefficients
in these continuous methodologies in theory, the absence of an
infinite range of dilations precludes exact reconstruction in prac-
tice. Approximate reconstruction formula may be developed by
building discrete wavelet frames that are based on the continu-
ous methodology (e.g. Bogdanova et al. 2005). More recently,
filter bank wavelet methodologies that are essentially based on
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a continuous wavelet framework have been developed for the
axi-symmetric (Starck et al., 2006) and directional (Wiaux et al.,
2008) cases. These methodologies allow the exact reconstruc-
tion of a signal from its wavelet coefficients in theory and in
practice. Compression applications require a wavelet transform
on the sphere that allows exact reconstruction, thus the method-
ologies of Schröder & Sweldens (1995), Tenorio et al. (1999),
Barreiro et al. (2000), Starck et al. (2006) and Wiaux et al. (2008)
are candidates.

Data compression algorithms on the sphere that use
wavelet or alternative transforms have been developed already.
Compression on the sphere was considered first, to our knowl-
edge, in the pioneering work of Schröder & Sweldens (1995).
The lifting scheme was used here to define a discrete wavelet
transform on the sphere, however compression was analysed
only in terms of the number of wavelet coefficients required to
represent a data-sphere in a lossy manner and no encoding stage
was performed. The addition of an encoding stage to this algo-
rithm was performed by Kolarov & Lynch (1997) using zero-tree
coding methods. An alternative compression algorithm based on
a Faber decomposition has been proposed by Assaf (1999), how-
ever no encoding stage is included and performance is again
analysed only in terms of the number of coefficients required
to recover a lossy representation of the data-sphere. The data-
sphere compression algorithm devised by Schröder & Sweldens
(1995) and Kolarov & Lynch (1997) therefore constitutes the
current state-of-the-art. This algorithm relies on an icosahedron
pixelisation of the sphere that is based on triangular subdivi-
sions. The corresponding pixelisation of the sphere precludes
pixel centres located on rings of constant latitude. Constant lat-
itude pixelisations of the sphere are of considerable practical
use since this property allows the development of many fast al-
gorithms on pixelised spheres, such as fast spherical harmonic
transforms. For example, the following constant latitude pix-
elisations of the sphere have been used extensively in astro-
nomical applications and beyond: the equi-angular pixelisation
(Driscoll & Healy, 1994); the Hierarchical Equal Area isoLati-
tude Pixelisation1 (HEALPix) (Górski et al., 2005); the IGLOO2

pixelisation (Crittenden & Turok, 1998); and the GLESP3 pix-
elisation (Doroshkevich et al., 2005). Furthermore, at present no
data-sphere compression tool is available publicly.

Motivated by the requirement for a data-sphere compres-
sion algorithm defined on a constant latitude pixelisation of the
sphere, and a publicly available tool to compress such data, we
develop wavelet-based compression algorithms for data defined
on the HEALPix pixelisation scheme and make our implemen-
tation of these algorithms available publicly. We are driven pri-
marily by the need to compress CMB data, hence the adoption of
the HEALPix scheme (the pixelisation scheme used currently to
store and distribute these data). Wavelet transforms are expected
to perform well in the energy compression stage of the compres-
sion algorithm, thus we adopt a Haar wavelet transform defined
on the sphere for this stage (following a similar framework to
that outlined by Barreiro et al. 2000). We could have chosen a
filter bank based wavelet framework, such as those developed
by Starck et al. (2006) and Wiaux et al. (2008), however, for
now, we adopt discrete Haar wavelets due to their simplicity and
computational efficiency.

The remainder of this paper is organised as follows. In
Sec. 2 we describe the compression algorithms developed, first

1 http://healpix.jpl.nasa.gov/
2 http://www.cita.utoronto.ca/˜crittend/pixel.html
3 http://www.glesp.nbi.dk/

discussing Haar wavelets on the sphere, before explaining the
encoding adopted in our lossless and lossy compression algo-
rithms. The performance of our compression algorithms is then
evaluated in Sec. 3. We first examine compression performance
for CMB data and study the implications of any errors on cosmo-
logical inferences drawn from the data. We then examine com-
pression performance for topographical data and environmental
illumination maps. Concluding remarks are made in Sec. 4.

2. Compression algorithms

The wavelet-based compression algorithms that we develop to
compress data-spheres consist of a number of stages. Firstly,
a Haar wavelet transform is performed to reduce the entropy
of the data, followed by quantisation and encoding stages. The
resulting algorithm is lossless to numerical precision. We then
develop a lossy compression algorithm by introducing an addi-
tional thresholding stage, after the wavelet transform, in order to
reduce the entropy of the data further. Allowing a small degrada-
tion in the quality of decompressed data in this manner improves
the compression ratios that may be attained. In this section we
first discuss the Haar wavelet transform on the sphere that we
adopt, before outlining the subsequent stages of the lossless and
lossy compression algorithms. We make our SZIP program that
implements these algorithms available publicly.4 Furthermore,
we also provide an SZIP user manual (McEwen & Eyers, 2010),
which discusses installation, usage (including a description of
all compression options and parameters), and examples.

2.1. Haar wavelets on the sphere

The description of wavelets on the sphere given here is based
largely on the generic lifting scheme proposed by Schröder &
Sweldens (1995) and also on the specific definition of Haar
wavelets on a HEALPix pixelised sphere proposed by Barreiro
et al. (2000). However, our discussion and definitions contain a
number of notable differences to those given by Barreiro et al.
(2000) since we construct an orthonormal Haar basis on the
sphere and describe this in a multiresolution setting.

We begin by defining a nested hierarchy of spaces as required
for a multiresolution analysis (see Daubechies (1992) for a more
detailed discussion of multiresolution analysis). Firstly, consider
the approximation space V j on the sphere S2, which is a subset of
the space of square integrable functions on the sphere, i.e. V j ⊂

L2(S2). One may think of V j as the space of piecewise constant
functions on the sphere, where the index j corresponds to the
size of the piecewise constant regions. As the resolution index
j increases, the size of the piecewise constant regions shrink,
until in the limit we recover L2(S2) as j → ∞. If the piecewise
constants regions of S2 are arranged hierarchically as j increases,
then one can construct the nested hierarchy of approximation
spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ L2(S2) , (1)

where coarser (finer) approximation spaces correspond to a
lower (higher) resolution level j. For each space V j we de-
fine a basis with basis elements given by the scaling functions
φ j,k ∈ V j, where the k index corresponds to a translation on
the sphere. Now, let us define W j be the orthogonal complement
of V j in V j+1, where the inner product of two square integrable

4 http://www.szip.org.uk
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functions on the sphere f , g ∈ L2(S2) is defined by

〈 f |g〉 ≡
∫

S2
f (ω)g∗(ω) dΩ ,

where ω = (θ, ϕ) denotes spherical coordinates with colatitude
θ ∈ [0, π] and longitude ϕ ∈ [0, 2π), ∗ denotes complex con-
jugation and dΩ = sin θ dθ dϕ is the usual rotation invariant
measure on the sphere. W j essentially provides a space for the
representation of the components of a function in V j+1 that can-
not be represented in V j, i.e. V j+1 = V j ⊕ W j. For each space
W j we define a basis with basis elements given by the wavelets
ψ j,k ∈ W j. The wavelet space W j encodes the difference (or de-
tails) between two successive approximation spaces V j and V j+1.
By expanding the hierarchy of approximation spaces, the highest
level (finest) space j = J, can then be represented by the low-
est level (coarsest) space j = 1 and the differences between the
approximation spaces that are encoded by the wavelet spaces:

VJ = V1 ⊕

J−1⊕
j=1

W j . (2)

Let us now relate the generic description of multiresolution
spaces given above to the HEALPix pixelisation. The HEALPix
scheme provides a hierarchical pixelisation of the sphere and
hence may be used to define the nested hierarchy of approx-
imation spaces explicitly. The piecewise constant regions of
the function spaces V j discussed above now correspond to the
pixels of the HEALPix pixelisation at the resolution associ-
ated with V j. To make the association explicit, let V j corre-
spond to a HEALPix pixelised sphere with resolution parameter
Nside = 2 j−1 (HEALPix data-spheres are represented by the reso-
lution parameter Nside, which is related to the number of pixels in
the pixelisation by N = 12Nside

2). In the HEALPix scheme, each
pixel at level j is subdivided into four pixels at level j+1, and the
nested hierarchy given by (1) is satisfied. The number of pixels
associated with each space V j is given by N j = 12 × 4 j−1, where
the area of each pixel is given by A j = 4π/N j = π/(3×4 j−1) (note
that all pixels in a HEALPix data-sphere at resolution j have
equal area). It is also useful to note that the number and area of
pixels at one level relates to adjacent levels through N j+1 = 4N j
and A j+1 = A j/4 respectively.

We are now in a position to define the scaling functions and
wavelets explicitly for the Haar basis on the nested hierarchy of
HEALPix spheres. In this setting the index k corresponds to the
position of pixels on the sphere, i.e. for V j we get the range of
values k = 0, · · · ,N j − 1, and we let P j,k represent the region of
the kth pixel of a HEALPix data-sphere at resolution j. For the
Haar basis, we define the scaling function φ j,k at level j to be
constant for pixel k and zero elsewhere:

φ j,k(ω) ≡
{

1/
√

A j ω ∈ P j,k

0 elsewhere .

The non-zero value of the scaling function 1/
√

A j is chosen to
ensure that the scaling functions φ j,k for k = 0, · · · ,N j − 1 do
indeed define an orthonormal basis for V j. Before defining the
wavelets explicitly, we fix some additional notation. Pixel P j,k
at level j is subdivided into four pixels at level j + 1, which we
label P j+1,k0 , P j+1,k1 , P j+1,k2 and P j+1,k3 , as illustrated in Fig. 1.
An orthonormal basis for the wavelet space W j, the orthogonal
complement of V j, is then given by the following wavelets of
type m = {0, 1, 2}:

ψ0
j,k(ω) ≡

[
φ j+1,k0 (ω) − φ j+1,k1 (ω) + φ j+1,k2 (ω) − φ j+1,k3 (ω)

]
/2 ;

ψ1
j,k(ω) ≡

[
φ j+1,k0 (ω) + φ j+1,k1 (ω) − φ j+1,k2 (ω) − φ j+1,k3 (ω)

]
/2 ;

ψ2
j,k(ω) ≡

[
φ j+1,k0 (ω) − φ j+1,k1 (ω) − φ j+1,k2 (ω) + φ j+1,k3 (ω)

]
/2 .

We require three independent wavelet types to construct a com-
plete basis for W j since the dimension of V j+1 (given by N j+1)
is four times larger than the dimension of V j (the approximation
function provides the fourth component). The Haar scaling func-
tions and wavelets defined on the sphere above are illustrated in
Fig. 1.

Let us check that the scaling functions and wavelets satisfy
the requirements for an orthonormal multiresolution analysis as
outlined previously. We require W j to be orthogonal to V j, i.e.
we require ∫

S2
φ j,k(ω)ψm

j,k′ (ω) dΩ = 0 .

This is always satisfied since for k′ , k the scaling function and
wavelet do not overlap and so the integrand is zero always, and
for k′ = k we find∫

S2
φ j,k(ω)ψm

j,k(ω) dΩ ∝

∫
S2
ψm

j,k(ω) dΩ = 0 .

We also require W j to be orthogonal to W j′ for all j and j′. Again,
if the basis functions do not overlap (i.e. k , k′) then this require-
ment is satisfied automatically, and if they do (i.e. k = k′) then
the wavelet at the finer level j′ > j will always lie within a region
of the wavelet at level j with constant value, and consequently∫

S2
ψm

j,k(ω)ψm′
j′,k′ (ω) dΩ ∝

∫
S2
ψm′

j′,k′ (ω) dΩ = 0 .

Finally, to ensure that we have constructed an orthonormal
wavelet basis for W j, we check the orthogonality of all wavelets
at level j:∫

S2
ψm

j,k(ω)ψm′
j,k′ (ω) dΩ = δmm′δkk′

(
1

2
√

A j+1

)2

A j = δmm′δkk′ ,

where for m , m′ the positive and negative regions of the inte-
grand cancel exactly and for k , k′ the wavelets do not overlap
and so the integrand is zero always. Note that in the previous
expression the final A j term arises from the area element dΩ.
The Haar approximation and wavelet spaces that we have con-
structed therefore satisfy the requirements of a orthonormal mul-
tiresolution analysis on the sphere. Although the orthogonal na-
ture of these spaces is important, a different normalisation could
be chosen. It is now possible to define the analysis and synthesis
of a function on the sphere in this Haar wavelet multiresolution
framework.

The decomposition of a function defined on a HEALPix
data-sphere at resolution J, i.e. fJ ∈ VJ , into its wavelet and
scaling coefficients proceeds as follows. Consider an intermedi-
ate level j + 1 < J and let f j+1 be the approximation of fJ in
V j+1. The scaling coefficients at the coarser level j are given by
the projection of f j+1 onto the scaling functions φ j,k:

λ j,k ≡

∫
S2

f j+1(ω)φ j,k(ω) dΩ

=
(
λ j+1,k0 + λ j+1,k1 + λ j+1,k2 + λ j+1,k3

) √
A j/4 ,

where we call λ j,k the approximation coefficients since they de-
fine the approximation function f j ∈ V j. At the finest level J, we

3



J. D. McEwen, Y. Wiaux and D. M. Eyers: Data compression on the sphere

naturally associate the function values of fJ with the approxima-
tion coefficients of this level. The wavelet coefficients at level j
are given by the projection of f j+1 onto the wavelets ψm

j,k:

γm
j,k ≡

∫
S2

f j+1(ω)ψm
j,k(ω) dΩ ,

giving

γ0
j,k =

(
λ j+1,k0 − λ j+1,k1 + λ j+1,k2 − λ j+1,k3

) √
A j/4 ,

γ1
j,k =

(
λ j+1,k0 + λ j+1,k1 − λ j+1,k2 − λ j+1,k3

) √
A j/4

and

γ2
j,k =

(
λ j+1,k0 − λ j+1,k1 − λ j+1,k2 + λ j+1,k3

) √
A j/4 ,

where we call γm
j,k the detail coefficients of type m. Starting from

the finest level J, we compute the approximation and detail co-
efficients at level J − 1 as outlined above. We then repeat this
procedure to decompose the approximation coefficients at level
J − 1 (i.e. the approximation function fJ−1), into approximation
and detail coefficients at the coarser level J − 2. Repeating this
procedure continually, we recover the multiresolution represen-
tation of fJ in terms of the coarsest level approximation f1 and
all of the detail coefficients, as specified by (2) and illustrated in
Fig. 2. In general it is not necessary to continue the multireso-
lution decomposition down to the coarsest level j = 1; one may
choose to stop at the intermediate level J0, where 1 ≤ J0 < J.

The function fJ ∈ VJ may then be synthesised from its ap-
proximation and detail coefficients. Due to the orthogonal nature
of the Haar basis, the approximation coefficients at level j + 1
may be reconstructed from the weighted expansion of the scaling
function and wavelets at the coarser level j, where the weights
are given by the approximation and detail coefficients respec-
tively. Writing this expansion explicitly, the approximation co-
efficients at level j + 1 are given in terms of the approximation
and detail coefficients of the coarser level j:

λ j+1,k0 =
(
λ j,k + γ0

j,k + γ1
j,k + γ2

j,k
)
/
√

A j ;

λ j+1,k1 =
(
λ j,k − γ

0
j,k + γ1

j,k − γ
2
j,k
)
/
√

A j ;

λ j+1,k2 =
(
λ j,k + γ0

j,k − γ
1
j,k − γ

2
j,k
)
/
√

A j ;

λ j+1,k3 =
(
λ j,k − γ

0
j,k − γ

1
j,k + γ2

j,k
)
/
√

A j .

Repeating this procedure from level j = J0 up to j = J, one finds
that the signal fJ ∈ VJ may be written

fJ(ω) =

NJ0−1∑
k=0

λJ0,kφJ0,k(ω) +

J−1∑
j=J0

N j−1∑
k=0

2∑
m=0

γm
j,kψ

m
j,k(ω) .

2.2. Lossless compression

The Haar wavelet transform on the sphere defined in the pre-
vious section is used as the first stage of the lossless compres-
sion algorithm. The purpose of this stage is to compress the en-
ergy content of the original data. In order to recover the original
data from its compressed representation, the energy compres-
sion stage must be reversible. This requirement limits candidate
wavelet transforms on the sphere to those that allow the exact re-
construction of a signal from its wavelet coefficients. We choose

the Haar wavelet transform on the sphere since it satisfies this re-
quirement and also because of its simplicity and computational
efficiency.

We demonstrate the energy compression achieved by the
Haar wavelet transform with an example. In Fig. 3(a) we show a
histogram of the value of each datum contained in a data-sphere
that we wish to compress (although the particular data-sphere
examined here is not of considerable importance, for the pur-
pose of this demonstration we use the CMB data described in
Sec. 3.1). In Fig. 3(b) we show a histogram of the value of the
Haar approximation and detail coefficients for the same data-
sphere. Notice how the wavelet transform has compressed the
energy of the signal so that it is contained predominantly within a
smaller range of values. Entropy provides a measure of the infor-
mation content of a signal and is defined by H = −

∑
i Pi log2 Pi,

where Pi is the probability of symbol i occurring in the data. By
compressing the energy of the data so that certain symbols will
have higher probability, we reduce its entropy. The aforemen-
tioned entropy value also provides a theoretical limit on the best
compression of data attainable with entropy encoding, hence by
reducing the entropy we improve the performance of any subse-
quent compression of the data.

Following the wavelet transform stage of the compression
algorithm, we perform an entropy encoding stage to compress
the data. Entropy encoding is a type of variable length encoding,
where symbols that occur frequently are given short codewords.
The entropy H of the data gives the mean number of bits per
datum required to encode the data using an ideal variable length
entropy code. We adopt Huffman encoding, which produces a
code that closely approximates the performance of the ideal en-
tropy code.

A compression algorithm consisting of the wavelet transform
and entropy encoding stages described above would work, how-
ever its performance would be limited. Although the wavelet
transform compresses the energy of the data, coefficient values
that are extremely close to one another may take distinct ma-
chine representations. In order to achieve good compression ra-
tios, one requires a compressed energy representation of the data
with a relatively small number of unique symbols. To satisfy this
requirement we introduce a quantisation stage in our compres-
sion algorithm before the Huffman encoding. By quantising we
map similar coefficient values to the same machine representa-
tion, thus reducing the number of unique symbols contained in
the data. The quantisation stage does introduce some distortion
and so the resulting compression algorithm is no longer perfectly
lossless, but is lossless only to a user specified numerical preci-
sion. As one increases the precision parameter, lossless compres-
sion is achieved in the limit. The user specified precision param-
eter p defines the number of significant figures to retain in the
wavelet detail coefficients (approximation coefficients are kept
to the full number of significant figures provided by the machine
representation). The precision parameter trades-off decompres-
sion fidelity with compression ratio. The effect of quantisation
on compression performance is evaluated in Sec. 3.

2.3. Lossy compression

If we allow degradation to the quality of the decompressed data
it is possible to achieve higher compression ratios. In this section
we describe a lossy compression algorithm that trades-off losses
in decompression fidelity against compression ratio in a natural
manner.

The Haar wavelet representation of a data-sphere decom-
poses the data into an approximation sphere and detail coef-
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Fig. 1. Haar scaling function φ j,k(ω) and wavelets ψm
j,k(ω). Dark shaded regions correspond to negative constant values, light shaded

regions correspond to positive constant values and unshaded regions correspond to zero. The scaling function and wavelets at level
j and position k are non-zero on pixel P j,k only. Pixel P j,k at level j is subdivided into four pixels at level j + 1, which we label
P j+1,k0 , P j+1,k1 , P j+1,k2 and P j+1,k3 as defined above.

ficients that encode the differences between the approximation
sphere and the original data-sphere. Many of these detail coef-
ficients are often close to zero (as illustrated by the histogram
shown in Fig. 3(b)). If we discard those detail coefficients that
are near zero, by essentially setting their value to zero, then we
lose only a small amount of accuracy in the representation of the
original data but reduce the entropy considerably. By increas-
ing the proportion of detail coefficients neglected, we improve
the compression ratio of the compressed data while reducing its
fidelity in a natural manner.

Our lossy compression algorithm is identical to the lossless
algorithm described in Sec. 2.2 but with two additional stages in-
cluded. Firstly, we introduce a thresholding stage after the quan-
tisation and before the Huffman encoding stage. The threshold
level is determined by choosing the proportion of detail coeffi-
cients to retain. We treat the detail coefficients on all levels iden-
tically. More sophisticated thresholding algorithms could treat
the detail coefficients on each level j differently, perhaps us-
ing an annealing scheme to specify the proportion of detail co-
efficients to retain at each level. However, we demonstrate in
Sec. 3.2 that the naive thresholding scheme outlined here per-
forms very well in practice and so we do not investigate more
sophisticated strategies. Once the threshold level is determined
we perform hard thresholding so that all detail coefficients be-
low this value are set to zero, while coefficients above the thresh-
old remain unaltered. The thresholding stage reduces the number
of unique symbols in the data by replacing many unique values
with zero, hence reducing the entropy of the data and enabling
greater compression. Furthermore, since many of the data are
now zero, it is worthwhile to incorporate a run length encoding
(RLE) stage so that long runs of zeros are encoded efficiently.

The RLE stage is included after the thresholding and before the
Huffman encoding stage. RLE introduces some additional en-
coding overhead, thus it only improves the compression ratio for
cases where there are sufficiently long runs of zeros. In Sec. 3.2
we evaluate the performance of the lossy compression algorithm
described here and examine the trade-off between compression
ratio and fidelity. Moreover, we also examine cases where the ad-
ditional overhead due to RLE acts to increase the compression
ratio.

3. Applications

In this section we evaluate the performance of the lossless and
lossy compression algorithms on data-spheres that arise in a
range of applications. The trade-off between compression ratio
and the fidelity of the decompressed data is examined in detail.
We begin by considering applications where lossless compres-
sion is required, before then considering applications when lossy
compression is appropriate.

3.1. Lossless compression

The algorithms developed here to compress data defined on the
sphere were driven primarily by the need to compress large CMB
data-spheres. CMB data are used to study cosmological models
of the Universe. Any errors introduced in the data may alter cos-
mological inferences drawn from it, hence the introduction of
large errors in the compression of CMB data will not be toler-
ated. The lossless compression algorithm is therefore required
for this application. Our lossless compression algorithm is loss-
less only to a user specified numerical precision (as described in
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Fig. 2. Haar multiresolution decomposition. Starting at the finest level J (the original data-sphere), the approximation and detail
coefficients at level J − 1 are computed. This procedure is repeated to decompose the approximation coefficients at level J − 1 (i.e.
the approximation function fJ−1), into approximation and detail coefficients at the coarser level J − 2. Repeating this procedure
continually, one recovers the multiresolution representation of fJ in terms of the coarsest level approximation fJ0 and all of the
detail coefficients.

detail in Sec. 2.2). It is therefore important to ascertain whether
the small quantisation errors that are introduced by this limited
precision could affect cosmological inferences drawn from the
data. We first evaluate the performance of the lossless compres-
sion of CMB data, before investigating the impact of errors on
the cosmological information content of the data.

To evaluate our lossless compression algorithm we use sim-
ulated CMB data. In the simplest inflationary models of the
Universe, the CMB is fully described by its angular power spec-
trum. Using the theoretical angular power spectrum that best
fits the three-year WMAP observations (i.e. the power spectrum
defined by the cosmological parameters specified in Table 2 of
Spergel et al. (2007)), we simulate a Gaussian realisation of the
CMB temperature anisotropies. Foreground emissions contami-
nate real observations of the CMB, hence we also consider simu-
lated maps where a mask is applied to remove regions of known
Galactic and point source contamination. We apply the conser-
vative Kp0 mask associated with the three-year WMAP obser-
vations (Hinshaw et al., 2007). These simulated CMB data, with
and without application of the Kp0 mask, are illustrated at res-
olutions Nside = 512 (J = 9; N ' 3 × 106) and Nside = 1024
(J = 10; N ' 13 × 106) in the first column of panels of Fig. 4.

The simulated CMB data are compressed using the lossless
compression algorithm for a range of precision values p. RLE is
applied when compressing the masked data to efficiently com-
press the runs of zeros associated with the masked regions but

not for the unmasked data (since the encoding overhead does
not make it worthwhile). For each precision value, we compute
the compression ratio achieved and the relative error between the
decompressed data and the original data. The compression ratio
is defined by the ratio of the size of the compressed data (in-
cluding the Huffman encoding table) relative to the size of the
original data, expressed as a percentage. The error used to eval-
uate the fidelity of the compressed data is defined by the ratio of
the mean-square-error (MSE) between the original and decom-
pressed data-spheres relative to the root-mean-squared (RMS)
value of the original data-sphere, expressed as a percentage.
These values are plotted for a range of precision values in the
third column of panels of Fig. 4. In the second column of panels
of Fig. 4 residual errors between the original data and decom-
pressed data reconstructed for a precision parameter p = 3 are
shown. Although the precision level p = 3 introduces some er-
ror in the reconstructed data (2.7% for Nside = 1024), the error
on each pixel is reassuringly small at typically a factor of ∼ 100
smaller than the corresponding data value. For the precision pa-
rameter p = 5, a compression ratio of 40% and an error of 0.03%
is obtained for resolution Nside = 1024. The error introduced by
the compression for this case is sufficiently small that one might
hope that no significant cosmological information content is lost
in the compressed data. We investigate the cosmological infor-
mation content of the compressed data in detail next.
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(a) CMB at Nside = 512 (13MB) (b) Residual for p = 3 at Nside = 512 (2.5MB)
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(c) Performance at Nside = 512

(d) Masked CMB at Nside = 512 (13MB) (e) Masked residual for p = 3 at Nside = 512
(2.1MB)
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(f) Masked performance at Nside = 512

(g) CMB at Nside = 1024 (50MB) (h) Residual for p = 3 at Nside = 1024 (9.1MB)
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(i) Performance at Nside = 1024

(j) Masked CMB at Nside = 1024 (50MB) (k) Masked residual for p = 3 at Nside = 1024
(7.6MB)
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(l) Masked performance at Nside = 1024

Fig. 4. Lossless compression of simulated Gaussian CMB data, with and without application of the Kp0 mask. The first column
of panels shows the original simulated CMB data, with corresponding file sizes also specified. The second column of panels shows
the residual of the original and decompressed CMB data reconstructed for a precision parameter of p = 3, with corresponding
file sizes of the compressed data also specified. Note that the colour scale between the first and second column of panels is scaled
by a factor of 100. RLE is applied when compressing the masked data to efficiently compress the runs of zeros associated with
the masked regions. The third column of panels shows the trade-off between compression ratio and decompression fidelity with
precision parameter p. Compression ratio (solid black line; left axis) is defined by the ratio of the compressed file size relative to
the original file size, expressed as a percentage. The decompression error (dashed red line; right axis) is defined by the ratio of the
MSE between the original and decompressed data relative to the RMS value of the original data, expressed as a percentage.

In the simplest inflationary scenarios the cosmological in-
formation content of the CMB is contained fully in its angular
power spectrum. Although the angular power spectrum does not
contain all cosmological information in non-standard inflation-
ary settings, anisotropic models of the Universe or various cos-

mic defect scenarios, we nevertheless use it as a figure of merit to
determine any errors in the cosmological information content of
CMB data. To evaluate any loss to the cosmological information
content of compressed CMB data, we examine the errors that are
induced in the angular power spectrum of the compressed data.
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(a) Original data
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(b) Wavelet coefficients

Fig. 3. Histograms of original data and wavelet (approxima-
tion and detail) coefficient values. Although the particular data-
sphere considered here is not important for the purpose of this
demonstration, these histograms correspond to the CMB data de-
scribed in Sec. 3.1. Notice how the Haar wavelet transform has
compressed the energy content of the signal, thereby reducing
its entropy and allowing for greater compression performance.

We consider here unmasked CMB data only, which simplifies
the estimation of the angular power spectrum. Before proceed-
ing, we briefly define the angular power spectrum of the CMB
and the estimator that we use to compute the power spectrum
from CMB data. The angular power spectrum C` is given by the
variance of the spherical harmonic coefficients of the CMB, i.e.
〈a`ma∗`m〉 = C`δ``′δmm′ , where δi j is the Kronecker delta symbol
and the spherical harmonic coefficients a`m are given by the pro-
jection of the CMB anisotropies ∆T (θ, ϕ) onto the spherical har-
monic functions Y`m(θ, ϕ) through a`m = 〈∆T |Y`m〉. If the CMB
is assumed to be isotropic, then for a given ` the m-modes of
the spherical harmonic coefficients are independent and iden-
tically distributed. The underlying C` spectrum may therefore
be estimated by the quantity Ĉ` ≡

∑`
m=−` |a`m|/(2` + 1). Since

more m-modes are available at higher `, the error on this estima-
tor reduces as ` increases. This phenomenon is termed cosmic
variance and arises since we may observe one realisation of the
CMB only. Cosmic variance is given by (∆Ĉ`)2 = 2C2

`/(2` + 1)
and provides a natural uncertainty level for power spectrum es-
timates made from CMB data. Any errors introduced in the an-
gular power spectrum of compressed CMB data may therefore
be related to cosmic variance to determine the cosmological im-
plication of these errors. In Fig. 5 we show the angular power
spectrum computed for the original and compressed CMB data
for Nside = 1024, and errors between these spectra, for a range
of precision parameter values. In the first two columns of panels
we also highlight the three standard deviation confidence inter-

128 256 512 1024
0.1

1

10

100

1000

C
om

p
u
ta

ti
on

ti
m

e
(s

ec
on

d
s)

Nside

Fig. 6. Computation time required to compress (blue/dashed
line) and decompress (green/dot-dashed line) simulated
Gaussian CMB data of various resolution Nside. Computation
times are averaged over five simulated Gaussian CMB maps and
are shown for precisions parameters p = 3 (squares) and p = 5
(triangles). O(Nside

2) scaling is shown by the heavy black/solid
line.

val due to cosmic variance. For the precision parameter p = 5,
we find that essentially no cosmological information content is
lost in the compressed data. Even for large values of `, for which
cosmic variance is very small, the error in the recovered power
spectrum relative to cosmic variance is of the order of a few per-
cent only. For the case p = 4, still only minimal cosmological
information content is lost, while for the case p = 3 we begin
to see a moderate loss of cosmological information. Obviously
the degree of cosmological information content loss that may be
tolerated depends on the application at hand. However, we have
demonstrated that it is possible to compress CMB data to 40% of
its original size while ensuring that essentially no cosmological
information content is lost (corresponding to p = 5). If one tol-
erates a moderate loss of cosmological information then the data
may be compressed to 18% of its original size (corresponding to
p = 3).

Finally, we measure the CPU time required to compress
and decompress CMB maps. We restrict our attention to un-
masked data and to precision parameters p = 3 and p = 5
only. Computation times are plotted in Fig. 6 for a range of
resolutions, where all measurements are averaged over five ran-
dom Gaussian CMB simulations. Note that computation time in-
creases with precision parameter p since the number of unique
wavelet coefficients requiring encoding also increases with p.
All stages of our compression and decompression algorithms are
linear in the number of data samples, hence the computation time
of our algorithms scales linearly with the number of samples on
the sphere, i.e. as O(Nside

2), as also apparent from Fig. 6.

3.2. Lossy compression

In certain applications the loss of a small amount of informa-
tion from a data-sphere is not catastrophic. For example, in com-
puter graphics environmental illumination maps and reflectance
functions that are defined on the sphere are used in render-
ing synthetic images (e.g. Ramamoorthi & Hanrahan 2004). In
this application accuracy is determined by human perception,
hence errors may be tolerated if they are not suitably noticeable.
Moreover, data-spheres that are inputted to reflectance algo-
rithms are not viewed directly, thus moderate errors in these data
may not necessarily produce noticeable errors in rendered im-
ages. Lossy representations of data-spheres in computer graphics

8
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(a) Angular power spectra for p = 5
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(b) Absolute error for p = 5
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(c) Error relative to cosmic variance for p =
5
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(d) Angular power spectra for p = 4
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(e) Absolute error for p = 4
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(f) Error relative to cosmic variance for p =
4
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(g) Angular power spectra for p = 3
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(h) Absolute error for p = 3
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(i) Error relative to cosmic variance for p =
3

Fig. 5. Reconstructed angular power spectrum of compressed CMB data at resolution Nside = 1024. Each row of panels shows
the reconstructed power spectrum and errors for a particular compression precision parameter p. In the first column of panels, the
power spectrum reconstructed from the original CMB data are given by the red dots, the power spectrum reconstructed from the
compressed CMB data are given by the blue dots and the underlying power spectrum of the simulated model is shown by the
solid black line, with three standard deviation cosmic variance regions shaded in yellow. Note that in some instances the red and
blue dots align closely and may not both be visible. In the second column of panels, the absolute error between the power spectra
reconstructed from the original and compressed CMB data is given by the blue dots, with three standard deviation cosmic variance
regions shaded in yellow. In the third column of panels, the absolute error between the power spectra reconstructed from the original
and compressed CMB data is expressed as a percentage of cosmic variance. Note that the scale of the vertical axis changes by an
order of magnitude between each row of the third column of panels.

are therefore not only tolerated, but are often desired as they may
improve the computational efficiency of rendering algorithms
(e.g. Ng et al. 2004). For data compression purposes, our lossy
compression algorithm is certainly appropriate and may be ap-
plied in order to achieve higher compression ratios. In additional
to the environmental illumination maps discussed previously, we
also compress Earth topography data and evaluate the perfor-

mance of both our lossless and lossy compression algorithms on
both of these types of data.

The Earth topology and environmental illumination data-
spheres considered here are all obtained from real-world ob-
servations. The original data are illustrated in the first column
of panels in Fig. 7. The topographical data are represented at a
HEALPix resolution of Nside = 512. The environmental illumi-
nation data-spheres were constructed by Debevec (1998) and are
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available publicly5. These data defined on the sphere were con-
structed by taking two photographic images of a mirrored ball
from different locations, and mapping the observed intensities of
the images onto the surface of a sphere. The illumination maps
are available in a cross-cube format and have been converted
to a HEALPix data-sphere at resolution Nside = 256 (J = 8;
N ' 0.8 × 106). We consider environmental illumination data
that was captured in this manner from within Galileo’s Tomb
in Santa Croce, Florence, St. Peter’s Basilica in Rome and the
Uffizi Gallery in Florence.

Lossless and lossy compressed versions of the data are illus-
trated in Fig. 7. For the lossless compression we use a precision
parameter of p = 3 in the quantisation stage of the compression
since ultimately we are concerned with achieving a high com-
pression ratio and will allow some quantisation error. For the
lossy compression we again use a precision parameter of p = 3
and retain only 5% of the detail coefficients in the thresholding
stage of the compression algorithm. Compression ratios of ap-
proximately 40:1 are achieved for the lossy compression of both
the topographic and environmental illumination data. Although
it is possible to discern errors in the lossy compressed data, the
overall structure and many of the details of the original data are
well approximated in this highly compressed representation.

In Fig. 8 we evaluate the performance of the compression of
these data more thoroughly. Firstly, for the lossless compression
we examine the trade-off between compression ratio and decom-
pression error with respect to the precision parameter p (see the
first column of panels of Fig. 8). For both the topographic and
illumination data it is apparent that we may reduce the preci-
sion parameter to p = 3, while introducing quantisation error
on the order of a few percent only. If the precision parameter is
reduced to p = 2, quantisation errors on the order of 10-20%
appear. We therefore choose p = 3 for the lossless compression
since this maximises the compression ratio while introducing an
allowable level of quantisation error. We then examine the effect
of increasing the threshold level, by reducing the proportion of
detail coefficients retained, on the performance of the lossy com-
pression (see the second column of panels of Fig. 8). Retaining
100% of the detail coefficients corresponds to the lossless com-
pression case, where no RLE is included. RLE is included for
all other lossy compression cases. Notice that when retaining
50% of the detail coefficients, the resulting improvement to the
compression ratio is offset by the additional encoding overhead
of the RLE. Consequently, the compression ratio when retain-
ing 50% of coefficients (with RLE) is often worse than when
retaining 100% of coefficients (without RLE). As the proportion
of detail coefficients that are retained is reduced, the improve-
ment to compression ratio quickly exceeds the additional over-
head of RLE. Decompression error remains at approximately 5%
when retaining only 5% of the detail coefficients, but increases
quickly as the proportion of coefficients retained is reduced fur-
ther. Retaining 5% of coefficients therefore appears to give a
good trade-off between compression ratio and fidelity of the de-
compressed data, justifying this choice for the results presented
in Fig. 7. For this choice, the topographic and illumination data
are compressed to a ratio of approximately 40:1, while introduc-
ing errors of approximately 5%. The images illustrated in Fig. 7
show that errors of this order are not significantly noticeable and
are likely to be acceptable for many applications. Also notice
that the curves shown in Fig. 8 for the environmental illumina-
tion data are similar, indicating that the characteristics of natural
illumination are to some extent independent of the scene. One

5 http://www.debevec.org/Probes/

would therefore expect the compression performance observed
for the data-spheres considered here to be typical of environ-
mental illumination data in general. Although we have made a
number of arbitrary choices here regarding acceptable levels of
distortion in the decompressed data, one may of course choose
the number of detail coefficients retained that provides a trade-
off between compression ratio and fidelity that is suitable for the
application at hand.

4. Concluding remarks

We have developed algorithms to preform lossless and lossy
compression of data defined on the sphere. These algorithms
adopt a Haar wavelet transform on the sphere to compress the
energy content of the data, prior to quantisation and Huffman en-
coding stages. Note that the resulting lossless compression algo-
rithm is lossless to a user specified numerical precision only. The
lossy compression algorithm incorporates, in addition, a thresh-
olding stage so that only a user specified proportion of detail
coefficients are retained, and a RLE stage. By allowing a small
degradation to the fidelity of the compressed data in this manner,
significantly greater compression ratios can be attained.

The performance of these compression algorithms has been
evaluated on a number of data-spheres and the trade-off between
compression ratio and the fidelity of the decompressed data has
been examined thoroughly. Firstly, the lossless compression of
CMB data was performed and it was demonstrated that the data
can be compressed to 40% of their original size, while ensuring
that essentially none of the cosmological information content
of the data is lost. A compression ratio of approximately 20%
can be achieved if a small loss of cosmological information is
tolerated. Secondly, the lossy compression of Earth topography
and environmental illumination data was performed. For both of
these data types compression ratios of approximately 40:1 can
be achieved, while introducing relative errors of approximately
5%. By taking account of the geometry of the sphere that these
data live on, we achieve superior compression performance than
naively applying standard compression algorithms to the data
(such as a JPEG compression of each plane of a cross-cube rep-
resentation of a data-sphere, for example). On inspection of the
decompressed data, it is possible to discern errors in the recov-
ered data by eye, nevertheless the overall structure and many of
the details of the data are well approximated. The accuracy of
the compressed data remains suitable for many applications.

A number of avenues exist to improve the performance of the
current compression algorithms. We choose Haar wavelets on
the sphere for the energy compression stage due to their simplic-
ity and computational efficiency. However, the scale discretised
wavelet methodology developed by Wiaux et al. (2008) may
yield slightly better compression performance due to the ability
to represent directional structure in the original data efficiently.
However, this wavelet transform is computed in spherical har-
monic space; forward and inverse spherical harmonic transforms
are not exact on a HEALPix pixelisation. Consequently, greater
errors will be introduced in any compression strategy based on
this transform. The implementation of this wavelet framework is
also considerably more demanding computationally. Scope also
remains to improve the lossy compression algorithm by treating
the detail coefficients at each level differently, perhaps by using
an annealing scheme to dynamically specify the proportion of
detail coefficients to retain at each level. Nevertheless, the naive
thresholding strategy adopted currently has been demonstrated
to perform very well.
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(a) Earth: original (13MB) (b) Earth: lossless compressed (1.4MB) (c) Earth: lossy compressed (0.33MB)

(d) Galileo: original (3.2MB) (e) Galileo: lossless compressed (0.21MB) (f) Galileo: lossy compressed (0.07MB)

(g) St Peter’s: original (3.2MB) (h) St Peter’s: lossless compressed
(0.20MB)

(i) St Peter’s: lossy compressed (0.08MB)

(j) Uffizi: original (3.2MB) (k) Uffizi: lossless compressed (0.19MB) (l) Uffizi: lossy compressed (0.10MB)

Fig. 7. Compressed data for lossy compression applications. Each row of panels shows the original, lossless and lossy compressed
data-spheres. File sizes for each data-sphere are also specified. The lossless compressed data shown in the second column of panels
is performed with a precision parameter of p = 3. The lossy compressed data shown in the third column of panels is performed by
retaining 5% of detail coefficients only and including a RLE stage. The full dynamic range of these images may not be visible in
printed versions of this figure, hence this figure is best viewed online.

The algorithms that we have developed to compress data
defined on the sphere have been demonstrated to perform well
and we hope that our publicly available implementation will
now find practical use. Obviously these compression algorithms
may be used to reduce the storage and dissemination costs of
data defined on the sphere, but the compressed representation
of data-spheres may also find use in the development of fast al-
gorithms that exploit this representation (e.g. Ng et al. 2004).
Furthermore, data defined on other two-dimensional manifolds
may be compressed by first mapping these data to a sphere,
before applying our data-sphere compression algorithms. We
are current pursuing this idea for the compression of three-
dimensional meshes used to represent computer graphics mod-
els.
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(a) Earth: lossless performance
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(b) Earth: lossy performance
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(c) Galileo: lossless performance
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(d) Galileo: lossy performance
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(e) St Peter’s: lossless performance
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(f) St Peter’s: lossy performance
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(g) Uffizi: lossless performance
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(h) Uffizi: lossy performance

Fig. 8. Compression performance for lossy compression applications. Each row of panel shows performance plots for various data-
spheres. The first column of panels shows the trade-off between compression ratio and decompression fidelity with precision pa-
rameter p for lossless compression. The second column of panels shows the same trade-off, but with respect to the number of detail
coefficients retained in the lossy compression. A precision parameter of p = 3 is used for all lossy compression results illustrated
here. Compression ratio (solid black line; left axis) and decompression error (dashed red line; right axis) are defined in the caption
of Fig. 4.
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