
SPARSE NON-NEGATIVE DECOMPOSITION OF SPEECH POWER SPECTRA FOR
FORMANT TRACKING

Jean-Louis Durrieu, Jean-Philippe Thiran
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ABSTRACT

Many works on speech processing have dealt with auto-regressive
(AR) models for spectral envelope and formant frequency estima-
tion, mostly focusing on the estimation of the AR parameters. How-
ever, it is also interesting to be able to directly estimate the formant
frequencies, or equivalently the poles of the AR filter. To tackle this
issue, we propose in this paper to decompose the signal onto several
bases, one for each formant, taking advantage of recent works on
nonnegative matrix factorization (NMF) for the estimation stage, fur-
ther refined by sparsity and smoothness penalties. The results are en-
couraging, and the proposed system provides formant tracks which
seem robust enough to be used in different applications such as pho-
netic analysis, emotion detection or as visual cue for computer-aided
pronunciation training applications. The model can also be extended
to deal with multiple-speaker signals.

Index Terms— Speech Analysis, Autoregressive (AR) Model,
Source-Filter Model, Non-negative Matrix Factorization, Sparse De-
composition.

1. INTRODUCTION

The source/filter model from [1] is the generally admitted model for
speech or singing voice signals. The advantages of such a model
lie in its link with the physical production process underlying the
signal. Many speech processing techniques rely on its assumptions
in order to estimate the fundamental frequency (F0) [2] or the spec-
tral envelope, for instance by means of the Mel-Frequency Cepstral
Coefficients (MFCC) for speech recognition [3].

The formant frequencies, i.e. the vocal tract resonance frequen-
cies fp (with p the formant number), correspond in this model to the
poles of the filter part. This filter can be modeled as an all-pole filter,
leading to an AR model for the speech signal. In order to estimate
these frequencies or the resulting spectral envelope, many works
have focussed on the estimation of the AR coefficients, as in [4],
or through linear predictive coding (LPC) or peak-picking analysis,
after a first estimation of the smooth spectral envelope [5, 6, 7].
Such approaches suffer from several disadvantages. The AR pa-
rameters are not linearly related to the poles and the estimation of
the spectral envelope and the corresponding formant frequencies are
done separately: it is therefore difficult to impose constraints such
as the smoothness of formant tracks during the envelope estimation.
A spectral envelope estimated this way may not exhibit the desired
poles, at expected formant positions, hence the need for various post-
processing steps. Furthermore, these methods usually assume that
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the signal consists of only one speaker, and can hardly be extended
to deal with multiple-speaker signals.

We propose to estimate the spectral envelope of speech signals,
within a framework allowing the control of the smoothness of the
fp tracks during the estimation process. The power spectrum of the
signal is decomposed onto several bases, the elements of which are
parameterized either by their f0 (source basis) or by their fp (in-
dividual formant basis). These bases are redundant, and a strategy
aiming at imposing some sparsity is introduced to obtain a meaning-
ful decomposition. The desired track smoothness is then built on top
of this sparsity penalty strategy.

The resulting formant tracks on a vowel database are close to
the desired tracks, although some hand-tuning of the parameters still
seems necessary. The results can already be used for applications
such as phonetics analysis [8], emotion detection [9] or as a visual
support for computer-aided pronunciation training [10]. Although
the scope of this paper is limited to the single-speaker case, another
advantage of the proposed model is the possibility to extend it to
signals with several speakers, as suggested by previous works us-
ing a similar model [2]. This may for instance be used for speaker
separation [11].

This paper is organized as follows. The signal model is first
discussed. Then the parameter estimation algorithm is derived, along
with the sparsity and smoothness strategies. The results are then
presented and we conclude with perspectives for this work.

2. SIGNAL MODEL

In this section, the model for one frame is first described, and then
extended to consecutive frames.

2.1. Model for one signal frame

The input signal x is an utterance by a speaker, which is assumed to
follow a source/filter model [1]. The filter part is assumed to follow
an all-pole model. Let zp, p = 1 . . . P , be its distinct poles, i.e. the
real and complex conjugate pairs of poles, where P is the number of
formants. Let sf be the power spectrum at frequency bin f such that
sf = |xf |2, with xf the Fourier transform of size F of a frame from
x. The expression of sf , for complex poles zp, is given by:

sf =

PY
p=1

˛̨̨
(1− zpe−2jπf/F )(1− z∗pe−2jπf/F )

˛̨̨−2

| {z }
s

Fp
f

sF0
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where sFp = [s
Fp

0 , . . . , s
Fp

F ]T is the squared magnitude of the fre-
quency response of the AR(2) filter, with poles {zp, z∗p}, and sF0 =

[sF0
0 , . . . , sF0

F ]T the power spectrum of the excitation (or source) sig-
nal. When the latter is voiced, it is mainly parameterized by the
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fundamental frequency f0, hence the super-script F0. For a pole
zp = ρp exp 2jπfp/Fs, where Fs is the sampling rate of x, fp is
referred to as the pth formant frequency.

The proposed framework enables to jointly estimate the spec-
tral envelope

QP
p=1 s

Fp

f , the pitch f0 and the formant frequencies
fp. Contrary to previous works, using LPC for instance, the pro-
posed framework aims at allowing formant frequency tracking di-
rectly during the envelope estimation process. It can also be used
for multiple speaker mixtures. Instead of estimating the fp values,
for each p, we generate several AR(2) filter frequency responses (for
p = 1 . . . P ) with different values of (fp, ρp) and several glottal
source power spectra (for p = 0) with different f0. Each sFp is then
approximated as a sparse decomposition on its corresponding power
spectrum dictionary, similarly to [12].

In practice, for p ∈ [0, P ], the vector sFp is modeled as a non-
negative linear combination of Kp fixed power spectra wp

k, stored as
the column vectors of the F × Kp matrix Wp = [wp

0 , . . . ,wp
Kp ].

Therefore:

s
Fp

f =

Kp−1X
k=0

wp
fkhp

k = [Wphp]f , (2)

where hp is the vector of the decomposition coefficients. Eq. (1) can
therefore be written with matrix conventions, with • the Hadamard
product:

s = (W1h1) • . . . • (WP hP ) • (W0h0) (3)

For the filter part, i.e. p ∈ [1, P ], each column of Wp is
the frequency response of an AR(2) filter, with complex poles
{zkp, z∗kp}. The formant frequency range for each p is set such that
fkp ∈ [Fmin

p , Fmax
p ]. As in [12], a grid of linearly spaced values for

fkp and ρkp ∈ {0.8, 0.84, 0.88, 0.92, 0.97} is used, with GF = 60
values for fkp and GR = 5 values for ρkp. Let gF ∈ [0, GF − 1]
and gR ∈ [0, GR − 1], then k = GRgF + gR and, with byc the
integer part of y:

fkp = Fmin
p + (Fmax

p − Fmin
p )bk/GRc/(GF − 1)

With such a choice, elements in Wp that share the same frequency
fkp have consecutive indices k. This ordering strategy in Wp is
important for the subsequent sparsity and smoothness-inducing pro-
cedures. Elements from a dictionary Wp are shown on Fig. 1. The
following table summarizes the chosen formant ranges:

p Fmin
p Fmax

p comments
1 200 1000 from [13, 8]
2 550 3100 -
3 1700 3800 -
4 2400 6000 additional values
5 4500 8000 -

We are mostly interested in the first three formants: P should
therefore be greater than 3. In [8] an LPC of order 14 was used
for the estimation, corresponding to a maximum of P = 7 distinct
complex poles. We chose P = 5, because greater values with the
proposed framework tend to provide inconsistent results, with dupli-
cated formants.

W0 = [w0
0, . . . ,w

0
U ] is the basis for the source part: each

column w0
u is generated as the power spectrum of a glottal signal

whose F0 is:

F(u) = F min
0 × 2

u−1
12Ust , (4)

where F min
0 is the lowest desired F0, and Ust the number of F0 per

semitone. Setting a maximum value F max
0 for F0 therefore sets U ,
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Fig. 1. Elements from the dictionaries Wp (values in dB).

the number of elements in W0. The values used for this study are
F min

0 = 80Hz, F max
0 = 500Hz and Ust = 16. The glottal source

model KLGLOTT88 [14] was used, with an open coefficient arbi-
trarily fixed to 0.6. The order in which the columns are stored in
W0 also allows for an easy smoothing (or tracking) procedure.

For each basis Wp, an extra column of constant value (wf =
1, ∀f ) is appended. For the source part, it can be seen as the unvoiced
part of the speech production, while for the filter part, it mainly al-
lows to discard a formant, notably when the given range does not fit
the actual data.

The signal frame is assumed to be generated by one F0, and
one formant frequency for each formant p. In principle, this means
that the decomposition in Eq. (3) should be sparse, with only one
non-null coefficient in vector hp. It is not computationally feasible
to consider all the possible combinations, and select the best-fitting
one. An approximate solution is proposed: the vectors hp are first
estimated without constraint. Within the iterative algorithm devel-
oped in Section 3, the estimated hp are then re-weighted at each it-
eration, gradually enforcing the non-null coefficients to concentrate
in one region, hence simulating an L0 sparsity penalty, a technique
comparable with that of [15].

2.2. Modeling consecutive frames

We are in general interested in tracking the F0 and formant frequency
contours, i.e. determining at each frame n of the signal the under-
lying frequencies fpn, ∀p. The power spectra sn, ∀n = 1 . . . N ,
are stacked as the columns of a matrix S = |X|2, the power of the
short-term Fourier transform (STFT) of x. Using Eq. (3), the model
for S writes:

sn = (W1h1
n) • . . . • (WP hP

n ) • (W0h0
n) (5)

S = (W1H1) • . . . • (WP HP ) • (W0H0), (6)

where the link between the proposed model and non-negative matrix
factorization (NMF) becomes obvious. This parallel is useful when



designing the estimation algorithm of Sec. 3.
The desired F0 and formant frequencies also need to be con-

strained to “slowly” evolve. In [2], this smoothness is imposed a
posteriori for the F0 sequence. It is here proposed to impose it dur-
ing the estimation process, with the same re-weighting strategy as
for the sparsity constraint, as discussed in Section 3.3.

3. PARAMETER ESTIMATION

3.1. Maximum Likelihood (ML) criterion

The parameters of model (6) are estimated by ML. Each element xfn

of the STFT X is a complex Gaussian variable, centered, with a vari-
ance equal to sfn, defined in Eq. (6). Estimating Θ = {Hp}p=0...P

in this ML framework is equivalent to finding the set bΘ which min-
imizes the Itakura-Saito (IS) divergence between X and S (which
depends on Θ), i.e. the following criterion C(Θ) [16]:

C(Θ) =
X
fn

− log
|xfn|2Q

p

“P
k wp

fkhp
kn

” +
|xfn|2Q

p

“P
k wp

fkhp
kn

”
(7)

To avoid the scale indeterminacies of criterion C(Θ), ∀p = 1 . . . P ,P
k hp

kn = 1. H0 therefore bears most of the energy of the signal.

3.2. Estimation algorithm

As in [2], a multiplicative gradient approach is used to minimize C.
For hp

kn ∈ Θ, the derivative is of the form:

∇h
p
kn

C = ∇+

h
p
kn
−∇−

h
p
kn

(8)

where ∇+

h
p
kn
≥ 0 and ∇−

h
p
kn
≥ 0. Then, in practice, updating hp

kn

the following way decreases the value of C [17]:
hp

kn ← hp
kn ×∇

−
h

p
kn

/∇+

h
p
kn

The estimation algorithm then consists in iterative updates of the
P + 1 matrices, as follows:

1. Initialize Hp, ∀p, with positive random values,

2. Repeat for a given number of iterations I = 100:
• For p from 0 to P , compute SFp and S, then update Hp:

SFp = WpHp, S = SF0 • SF1 • . . . • SFP

Hp ← Hp • ∇−

∇+ with

8><>:
∇− = (Wp)T |X|2

SFp • S
∇+ = (Wp)T 1

SFp

where the operators • and (.)2 as well as÷ are element-wise.

3.3. Sparsity and regularity of the coefficients

The desired estimations should be sparse, allowing to identify one
formant or F0 frequency fp per frame, and these frequency contours
should be smooth, since the modifications of the vocal tract cannot
be instantaneous. A method for imposing the sparsity is first intro-
duced, leading to a convenient way of enforcing the smoothness.
Sparsity: For a given p, at a given frame n, the vector hp

n is assumed
to have its energy mostly concentrated around a single component at
k = µp

n. Classical L1 or L2 sparse estimations as in [17] are not
structured, and therefore do not comply with the desired concentra-
tion of energy or hardly scale to the smoothing problem which is
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Fig. 2. Formant track estimates for file ’b13ah’. Circles: GT tracks,
dot-dashed: unconstrained, dashed: sparse, plain: smooth estimates.

later discussed. Instead, a heuristic re-weighting strategy is pre-
ferred. It first consists, after each new estimate of hp

n, in finding an
index k at which the energy in hp

n is concentrated. hp
kn is then rein-

forced against the other values in hp
n, with degrees depending on the

iteration number.
At each iteration i of the above algorithm, for p = 1 . . . P ,

the “mode” µp
n is computed as the barycenter of the index k of hp

n

(weighted by its values). For p = 0, a term giving more importance
to lower frequencies is included in the weights to avoid octave errors:

µ0
n =

X
k

h0
kn(K0 − k)2P
l h0

ln(K0 − l)2
k and µp

n =
X

k

hp
knP
l hp

ln

k (9)

The weighting function is chosen as a Gaussian function, centered at
k = µp

n, with variance σi, ∀n, p. The σp
i are chosen as a decreasing

function, hence narrowing the lobe over the I iterations. hp
n is then

re-evaluated as:

hp
kn ← ωp

knhp
kn, with ωp

kn = exp− (k − µp
n)2

2σ2
i

(10)

The maximum of ωp
kn is equal to 1 and corresponds to the mode,

when k = µp
n. With decreasing values of σi, the number of non-null

coefficients decreases, down to 1, which is the desired sparsity in the
proposed framework. The chosen sequence of σi is exponentially
decreasing, from Kp down to 3, in order to allow some flexibility in
the model.

In the proposed dictionaries, whose elements are ordered ac-
cording to their formant or F0 frequencies, neighboring elements
have close values of fp. Allowing more than one element around
the mode can then be seen as allowing for some variation around
fp. This motivates the use of a final σi > 1, compensating potential
misfit between the model and the data.
Smoothness: At last, given the above modification to take the de-
sired sparsity into account, it is straightforward to smooth the fp

tracks by constraining, for each p and at each iteration, the sequence
{µp

n}n to be smooth. Note that, contrary to [17], the smoothness of
the sequence of indices k is sought after, and not the smoothness of
the values of {hp

kn}n. For this work, after the computation of each
mode, a median filter smoothes the sequence. Thanks to the chosen
ordering in Wp, ∀p, smoothing the sequence of index also implies
the smoothness of the sequence of fp frequencies (as well as ρp se-
quences for p > 0). An example of the estimated formant tracks is
given on Fig. 2.
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Fig. 3. “Box and Whiskers” plot of {εppv}p=1,2,3, for each system.
Box: lower to upper quartiles; line: median; dots: fliers.

4. RESULTS

4.1. Vowel database and evaluation criterion

The proposed algorithm was evaluated on the vowel database of [8],
consisting of 1668 /hVd/ utterances, with V a vowel from the “pho-
netic” set {ae, ah, aw, eh, er, ei, ih, iy, oa, oo, uh, uw}. The
sampling rate is 16 kHz. The STFTs are computed on 32ms-long
windows, every 8ms, weighted by a Hann window. For each utter-
ance, the first 3 formants are annotated on 8 “reliable” locations.

Three “systems” are compared, based on the proposed model:
the “unconstrained” estimation, the “sparse” estimation and the
“smooth” estimation (which includes sparsity).

We compare each “ground-truth” (GT) formant track {f0
qn}n to

each estimated formant track {fpn}n. The tracks are compared only
on the 8 frames for which the annotation is available. For each file
v, the deviation between the different estimated tracks {fv

pn}n and
GT tracks {f0,v

qn }n are computed as the mean squared error, in Mel:
ε2qpv = 1

8

P
n |f

v
pn − f0,v

qn |2.

4.2. Discussions

As shown on Fig. 2, the estimated smooth tracks closely follow the
annotated tracks. The unconstrained and the sparse estimates also
cluster around the GT tracks, but exhibit chaotic sequences. The
sparsity penalty is needed to obtain smooth meaningful sequences,
but it does not provide such sequences by itself. This is confirmed
by the distribution of errors between the estimated fv

pn and the cor-
responding GT f0,v

pn , as shown on Fig. 3.
The distributions of the errors (i.e. the histograms of {εqpv}v),

for the “smooth” system, are such that there is a salient peak near 0
only when p = q: the first three GT formants can most of the time
be identified with the first three smoothed formants. This is mostly
true for the utterances by the “men” and “women” groups, but for
the “boys” and “girls” group, some confusions occur more often,
associating formant f2 to f0

1 and f3 to f0
2 . To overcome this issue, a

de-correlation penalty between formant f1 and f2 could be added.
The “smooth” formant performance, in terms of quartiles, is

close to that of an LPC analysis of order 14 (as was used for the
annotation), with median errors of about 20 Mels. Although the pro-
posed method is not as efficient as the LPC, its advantages are the
possibility to estimate the poles and to enforce both their sparsity,
and the smoothness of their tracks, along with the potential exten-
sion to multiple-speaker signals analysis.

Note at last that the estimation of the F0 pitch track is also per-
formed. The performance with respect to this feature was not evalu-
ated, but the effectiveness of this type of decomposition was shown
in [2] for singing voice signals.

5. CONCLUSION AND PERSPECTIVES

We proposed a new approach for the estimation of formant tracks,
based on an AR(P) speech model, inspired by NMF decompositions
of power spectra and refined by sparsity and smoothness control dur-
ing the estimation stage.

The smoothed estimated tracks are consistently related to the GT
formant tracks of the database from [8]. Other penalties can be in-
cluded using the estimation/re-weighting framework: for instance,
de-correlation penalties or weights reflecting some other prior or
conditional knowledge may be used.

Future studies should assess the performance of the proposed
method on longer utterances such as phrases or sentences. The re-
sulting features, the pitch and the formant tracks, can be used in
several other applications, such as phonetics, speaker separation, but
also for emotion detection or as a visual feedback within computer-
aided pronunciation training softwares.
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“Single channel speech and background segregation through harmonic-
temporal clustering,” in WASPAA, 2007, pp. 279–282.

[12] N. Moal and J.J. Fuchs, “Estimation de l’ordre et identification des
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