
Parallelizing Machine Learning– Functionally
A Framework and Abstractions for Parallel Graph Processing

Philipp Haller
EPFL, Switzerland, and Stanford University

philipp.haller@epfl.ch

Heather Miller
EPFL, Switzerland

heather.miller@epfl.ch

Abstract
Implementing machine learning algorithms for large data, such as
the Web graph and social networks, is challenging. Even though
much research has focused on making sequential algorithms more
scalable, their running times continue to be prohibitively long.
Meanwhile, parallelization remains a formidable challenge for this
class of problems, despite frameworks like MapReduce which hide
much of the associated complexity. We present a framework for im-
plementing parallel and distributed machine learning algorithms on
large graphs, flexibly, through the use of functional programming
abstractions. Our aim is a system that allows researchers and prac-
titioners to quickly and easily implement (and experiment with)
their algorithms in a parallel or distributed setting. We introduce
functional combinators for the flexible composition of parallel, ag-
gregation, and sequential steps. To the best of our knowledge, our
system is the first to avoid inversion of control in a (bulk) syn-
chronous parallel model.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming— Distributed and parallel pro-
gramming; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

Keywords Parallel programming, distributed programming, ma-
chine learning, graph processing

1. Introduction
There is a growing need to facilitate the analysis of large data.
Fields like bioinformatics, speech processing and medical imaging
are being faced with data sets that are growing in both size and
complexity, while the world of social media and other web services
are struggling to deal with the terabytes of data they collect daily.

Machine learning (ML) has provided elegant and sophisticated
solutions to many complex problems on a small scale, which if
ported to large scale problems, could open up new applications and
avenues of research for these and related fields. Unfortunately, ML
research efforts are routinely limited by the complexity and running
time of sequential algorithms. Meanwhile, while other areas of
software development have been readily facing an ongoing shift to
parallel and distributed hardware, the ML community, a community
full of “entrenched procedural programmers,”1 has instead largely
focused their efforts on the optimization specific algorithms, when
faced with scaling problems. Overall, scant effort has been made
to generalize and facilitate learning on large data, which currently
limits many efforts and applications of ML.

1 to quote the authors of Pig Latin [22]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.
The Second Annual Scala Workshop June 2, 2011.

The popularity of MapReduce [10], a functional abstraction
designed to simplify the implementation of distributed algorithms,
has inspired a number of efforts to utilize MapReduce/Hadoop for
large scale learning tasks [1, 9, 23]. However, other efforts which
have chosen not to base their system on MapReduce, like GraphLab
[19] and Google’s Pregel [20], have noted several limitations of
MapReduce in the context of ML. In particular, they point out that
in many situations it is not straightforward (nor appropriate) to
chain instances of MapReduce in order to achieve iteration, and that
doing so introduces considerable communication and serialization
overhead.

Although based on graphs and graph processing, GraphLab’s
programming model is asynchronous, requiring so-called consis-
tency models to prevent data-races. We argue that this program-
ming model, while often faster than its synchronous counterpart,
can lead to non-deterministic behavior (by allowing for inexact re-
sults through relaxation of the consistency model), and as a result is
considerably more difficult to use and troubleshoot. Instead, we ad-
vocate a programming model more akin to Google’s Pregel, which
capitalizes on the organization and determinism that results from
a computational model inspired by the Bulk Synchronous Parallel
(BSP) model [30].

Our goal in designing this framework is to enable researchers
and practitioners to quickly implement and experiment with their
algorithms in a parallel or distributed setting. We believe that a
synchronous model which transparently distributes functional com-
putations across cores (and eventually, machines in a cluster) is a
first step toward this goal, by simplifying reasoning about program
semantics.

Our paper makes the following contributions:

• A general framework for parallel graph processing, suitable for
parallelizing ML algorithms.

• The integration of a functional aggregation mechanism with a
simple bulk synchronous parallel model.

• The introduction of functional combinators that avoid an inver-
sion of control present in other graph-processing frameworks
based on the BSP model.

• A Scala implementation and preliminary experimental evalua-
tion of our framework using PageRank and hierarchical cluster-
ing on real-world data2.

The rest of this paper is structured as follows. Section 2 gives a
high-level overview of our BSP-like computational model. In Sec-
tion 3 we introduce our graph-based programming interface provid-
ing high-level control structures to compose supersteps. Section 4
discusses our actor-based implementation. In Section 5 we show
examples of ML applications, parallelized using our framework.

2 http://lamp.epfl.ch/~phaller/menthor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

abstract class Vertex[Data](initialValue: Data) {
def neighbors: List[Vertex[Data]]
def graph: Graph[Data]
var value: Data = initialValue
def update(): Substep[Data]
def superstep: Int
def incoming: List[Message[Data]]

}

Figure 1. The public interface of the Vertex class.

Section 6 discusses other related work, and Section 7 concludes
with an outlook of future work.

2. Model of Computation
In our framework, all data to be processed is represented as a data
graph. Vertices in such a graph typically represent atomic data
items, while edges represent relationships between these atoms. For
example, in the graph used to compute the page rank of a collection
of URLs, each vertex would represent a URL and each edge would
represent a link from one URL to another. For other data types
not typically represented by graphs, like image or video data, for
example, each pixel can be represented as a vertex with edges
connecting neighboring pixels (either spatially or temporally).

In addition to the data item that it represents, a vertex stores a
single value that is iteratively updated during processing– thus, an
algorithm is implemented by defining how the value of each ver-
tex changes over time. Updates to the vertices’ values proceed in
synchronous supersteps that are reminiscent of Valiant’s Bulk Syn-
chronous Parallel model [30]. A superstep consists of executing an
update step on all vertices in the graph; update steps are defined
locally for each vertex. The result of an update step is a list of out-
going messages to other vertices. These messages are made avail-
able to the target vertices as incoming messages at the beginning of
the next superstep. Thus, the update of a vertex’s value is based on
its current value, its list of incoming messages, as well as its local
state.

Besides regular update steps (in which all vertices run in paral-
lel), our programming model also provides a mechanism for aggre-
gation using so-called crunch steps. A crunch step basically cor-
responds to an invocation of the standard reduce combinator in
functional programming. It is used to compute a single aggregate
value over all vertices in the graph. The main differences between
crunch and the standard reduce combinator are that: (i) the result
is made available to all vertices via an incoming message that is
available at the beginning of the next superstep, and (ii) its invoca-
tion is vertex-local.

3. Programming Interface
The programming interface of our framework is centered around
graphs and vertices. Implementing an algorithm consists of two
steps. The first step involves the creation of a graph which holds
the data to be processed in its vertices and edges. In the second
step, we define how the value of each vertex in the graph is iter-
atively updated. The computation is then kicked off, providing a
termination condition.

3.1 Graphs and vertices
Graphs are created by instantiating the Graph class; the class has
a single type parameter Data which is the type of the data item
that each vertex in the graph manages. The graph is built by adding
instances of type Vertex[Data].

// A tiny web graph:
// BBC -> MS, EPFL -> BBC, JohnDoe -> BBC,
// JohnDoe -> EPFL
val g = new Graph[Double]
val v1 = g.addVertex(new PageRankVertex("BBC"))
val v2 = g.addVertex(new PageRankVertex("MS"))
val v3 = g.addVertex(new PageRankVertex("EPFL"))
val v4 = g.addVertex(new PageRankVertex("JohnDoe"))
g.connect(v1, v2)
g.connect(v3, v1)
g.connect(v4, v1)
g.connect(v4, v3)

Figure 2. Creating a simple web graph.

Figure 1 shows the interface that the Vertex class provides.
First, there are (standard) neighbors and graph methods to access
the neighbors of a vertex, as well as the Graph instance that it
belongs to. The data item of a vertex is maintained in its value
field. Finally, the update method defines how the value of the
vertex is updated in each superstep of the computation. It is the only
abstract method of Vertex. Implementing a concrete algorithm,
such as page rank, consists mostly of providing an implementation
of update in a subclass. The superstep member can be used to
adapt the behavior of update according to the current phase (given
by the superstep number) of the algorithm (we show an example
below). The incoming member provides access to messages that
other vertices have sent to the current vertex during the previous
superstep (i.e., superstep - 1). Messages are instances of the
following case class:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data],
value: Data)

In addition to carrying a value of the generic Data type, a message
identifies both the source and destination vertices.

Invoking update returns an instance of Substep[Data] which
represents a delayed update step to a Data value. Typically, update
simply returns a list of outgoing messages to other vertices. In
this case, the body of update is converted to an instance of
Substep[Data] using an implicit conversion. Below we explain
how substeps can be used to conveniently structure iterations while
allowing our run-time system to optimize synchronization by merg-
ing substeps (Section 4.1).

3.2 Example: page rank
Figure 2 shows how to create a simple graph and populate it with a
few vertices where each vertex manages a value of type Double. In
this example, each vertex represents a web page, and the data value
of each vertex is the page rank of its web page. The vertices that we
add to the graph are instances of the PageRankVertex class which
implements the page rank algorithm. As mentioned before, in our
framework algorithms are expressed in terms of updates applied
to (the value of) each individual vertex. Concretely, this is done by
subclassing the generic Vertex class and implementing its update
method.

Figure 3 shows how the page rank algorithm is implemented
using a subclass of Vertex[Double]. Its update method defines
the update step that is executed in each superstep. By making
the current superstep accessible inside the body of update, it is
possible to customize the behavior according to a particular phase
of the algorithm. The example algorithm has two simple phases:
updating the value of a vertex according to the page rank algorithm
is only done until superstep 30. After that, the value doesn’t change

class PageRankVertex(val label: String)
extends Vertex[Double](0.0d) {

def update() = {
var sum = 0.0d
for (msg <- incoming) {

sum += msg.value
}
this.value = (0.15/graph.numVertices)+0.85*sum

if (superstep < 30) {
val n = neighbors.size
for (neighbor <- neighbors) yield
Message(this, neighbor, this.value/n)

} else

List()
}

}

Figure 3. Implementing PageRank.

any more. The page rank algorithm itself is implemented using
messages that vertices exchange. At the beginning of a superstep, a
vertex may have access to incoming messages which other vertices
have produced during the previous superstep. These incoming
messages contain the per-edge page ranks of pages with incoming
links to the current page. The message values are summed up
and used to compute the updated page rank of the current page,
this.value. Subsequently, the vertex produces a list of outgoing
messages to its neighbors, containing its updated per-edge page
rank (Message(this, neighbor, this.value/n)).

3.3 Substeps
Many graph-processing algorithms require interleaving parallel up-
date steps, which are executed on all vertices concurrently, with
sequential code. Examples for such sequential blocks are aggregat-
ing the values of all vertices in the graph or (in a non-distributed,
multi-core setting) updating shared state.

Our framework supports these interleavings through substeps.
A substep is a closure implementing an update step. By default,
the update method of (a subclass of) Vertex creates a single
substep which defines the update executed on that vertex in each
superstep of the computation. A set of substep combinators allows
composing substeps to form chains of computations. Essentially, a
chain of substeps structures an iteration into several phases, where
each phase may be either parallel or sequential.

For example, consider the implementation of a clustering al-
gorithm in the multicore setting (where it is possible to leverage
shared memory.) On each iteration, the clustering algorithm must
look up the pair of clusters with the minimal distance between
them, stored in a table of distances in shared memory, and then
merge them. In an effort to simplify the implementation, we might
want to have only one vertex decide upon which vertices to merge.

In our framework it is easy to introduce this type of global
decision making step. Figure 4 shows how to divide an iteration
of the clustering algorithm into several substeps using the then
combinator. The first substep is executed only by a single vertex.

3.4 Avoiding inversion of control
Substeps introduced using then and other combinators (see below)
avoid an inversion of control of previous systems based on the
BSP model. Essentially, in a system based on inversion of control,
it is not possible to express computations involving (logically)
blocking operations in direct style. Instead, the control flow has

def update() = {
{

// only the first vertex executes this substep
if (this == graph.vertices(0)) {

// find the minimal distance
val closest = SharedData.distances(0)
val newCluster = merge(closest)
for (v <- graph.vertices)

yield Message(this, v, newCluster)
}

} then {
val mergedCluster = incoming.head.value
// compute the pearson distance from
// our cluster to the merged cluster
if (value != mergedCluster) {
val distance =

pearson(value.vec, mergedCluster.vec)
// put distance into SharedData.distances...

}
// no outgoing messages
List()

} then {
...

}
}

Figure 4. Using substeps to interleave sequential code with paral-
lel update steps in a clustering algorithm.

def update() = {
if (superstep % 4 == 0) {

...
} else if (superstep % 4 == 1) {
val mergedCluster = incoming.head.value
...

} else if (...) {
...

}
}

Figure 5. Structuring supersteps with inversion of control

to be “inverted” by explicitly managing the execution state across
such operations.

In the BSP model and related models such as Pregel, blocking
operations are implicit due to bulk synchronization between super-
steps. Any messages sent during a superstep are made available to
all receivers only at the beginning of the next superstep. Previous
systems do not provide control structures for composing computa-
tions executed during a single superstep. Instead, the programmer
has to explicitly manage the execution state. The required program
rewrite usually obscures its control flow.

As a simple example, consider implementing a sequence of
computation steps where each step is executed during a single
superstep. In a system like Pregel it is necessary to express this
sequencing based on the current superstep or some local state of
the vertex. This is shown in Figure 5. While simple sequencing is
not too difficult to express, it is very hard to express more complex
control structures, such as loops.

Besides composing substeps using the then combinator, our
framework provides other high-level control structures that take
full advantage of closures. For example, Figure 6 shows how to
express iteration spanning multiple substeps using the thenUntil

def update() = {
var acc = 0
thenUntil (acc == 10) {
...
acc += 1

} then {
...

}
}

Figure 6. Using until for iterations that span multiple substeps.

{
value = ...
...

} crunch((v1: Double, v2: Double) => v1+v2) then {
incoming match {
case List(crunchResult) =>

...
}
...

}

Figure 7. Using the crunch combinator for a global reduction.

combinator. Importantly, “loop iterations” are evaluated in subse-
quent supersteps. This means that inside the loop body, incoming
holds the incoming messages received in the global superstep in
which the previous loop iteration was run. This way it is possible to
directly express iteration over incoming messages received in sub-
sequent supersteps which is impossible to do in existing systems,
such as Pregel.

3.5 Aggregation
Besides regular substeps (in which all vertices run in parallel), our
programming model also supports aggregation steps that we call
crunch steps. A crunch step basically corresponds to an invocation
of the standard reduce combinator in functional programming. It
is used to compute a single aggregate value over all vertices in
the graph. The main differences between crunch and the standard
reduce combinator are: (i) the aggregation is itiatited locally at a
single vertex (via the update method), even though it results in
a single global operation, and (ii) the result of the aggregation is
made available to a set of vertices via an incoming message that is
available at the beginning of the next substep.

Figure 7 shows how to use the crunch combinator to compute
the sum of all vertex values in the graph. Since crunch creates
a Substep instance it can be composed with other substeps using
then and other combinators. By default, the result of a crunch step
is sent to all vertices. Thus, each vertex can access the aggregated
value through its incoming message list in the subsequent substep.

To allow application-specific optimizations it is also possible to
send the result of an aggregation to only a subset of the vertices;
this is supported through variants of crunch which additionally
specify the set of messages to be sent. For instance, this set can be
computed using an additional closure which takes the aggregation
result as an argument:

crunchTo: ((Data, Data) => Data)
(Data => List[Message[Data]])

4. Implementation
The implementation of our framework is based on Scala Ac-
tors [14]. The central graph instance is an actor which manages
a set of worker actors. Each worker actor is assigned a partition of
the graph’s vertices. A worker is responsible for executing update
steps on the vertices of its partition. The graph actor synchronizes
all workers using supersteps (see Section 2). A superstep is ini-
tiated by sending a special “Next” message to all workers. Upon
receiving this message, each worker

1. removes all incoming messages that were sent in the previous
superstep from its mailbox;

2. selects and executes the next update step on each vertex in its
partition;

3. delivers outgoing messages which were generated by its ver-
tices in the current update step.

In addition to synchronizing workers, the graph actor manages
iteration, supporting termination conditions, and aggregation.

Aggregation Aggregation steps are initiated as substeps of the
update method of a vertex: the vertex creates an aggregating step
passing a closure which defines the combination of the data items
of a pair of vertices. Upon invoking an aggregating step, a worker
reduces the values of all vertices in its partition using the provided
closure. The result and the closure that was used to compute it is
sent to the graph actor which computes the final aggregated value.
The aggregation result is then passed to all workers which make it
available to their vertices as incoming messages at the beginning of
the next superstep.

To reduce the number of messages sent during an aggregation
step, and to parallelize aggregating intermediate results from dif-
ferent workers, we organize a group of aggregating actors in a
tree. Aggregation results are propagated from the leaves to the root
which is the graph actor. Whenever an aggregator has received the
results of all of its children, it reduces them and sends the result
to its parent. The final reduced result is then propagated down the
tree. When it reaches a worker at a leaf, this worker initiates a new
superstep for the vertices in its partition and makes the reduction
result available to its vertices as incoming messages.

4.1 Merging substeps
Our framework uses closures to compose substeps of the update
step of a vertex. Each substep corresponds to a delayed compu-
tation that produces a list of outgoing messages when evaluated.
In addition to these application-level messages, executing substeps
gives rise to internal control messages that are used to synchronize
workers according to the supersteps of the computation.

Delaying the execution of substeps allows us to optimize the
message flow induced by a chain of substeps prior to their execu-
tion. For instance, executing two crunch steps in sequence can be
optimized by computing the reduction results simultaneously. Of
course, this is only a valid optimization if the reduction functions
passed to the crunch combinator are side-effect free, which is the
case for typical aggregation functions, such as min, max, or sum.
In future work we intend to evaluate the effect of message flow
optimization through substep merging (the benchmarks we have
considered so far would not benefit from substep merging.)

5. Applications and Preliminary Results
In this section, we introduce example ML applications which re-
quire extensive computation and do not easily scale to large data,
but can be parallelized using our framework.

Page Rank We used the parallel page rank implementation of
Section 3.2 to compute the page rank of large subsets of the (the

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

Cores

Sp
ee

d
U

p
PageRank Speed Up on Subsets of the Wikipedia Graph

Linear
64,000 vertices, 10 iterations
107,000 vertices, 10 iterations
107,000 vertices, 30 iterations

Figure 8. Speed up of the parallel impelementation of PageRank
for different input sizes and iteration counts.

english-language) Wikipedia. We ran the algorithm between 10
and 30 iterations, on subsets of 64,000 and 107,000 vertices. Fig-
ure 8 shows the results of running PageRank on an 2.1 GHz AMD
Opteron(tm) 12-core processor using Oracle’s JDK 1.6.0 with a
heap size of 8 GB. In each case we ran the entire benchmark, which
includes reading the Wikipedia data from disk and building the
graph in memory, and took the average of 5 runs. Despite signifi-
cant time spent in sequential initialization code, the speed up when
utilizing all 12 cores is around 8.7. Interestingly, these results show
that despite an increase in input size, and number of iterations, the
speed up nonetheless remains about the same.

Hierarchical Clustering We used our framework to implement
a hierarchical clustering algorithm, a form of cluster analysis and
a branch of unsupervised ML. The objective of a clustering algo-
rithm is to group data elements into subsets, or clusters. Hierar-
chical clustering in particular seeks to iteratively choose pairs of
data elements with the minimum distance (Euclidean, Manhattan,
Pearson, etc.) between them, and to merge them together to form a
cluster. The result is a hierarchy in the form of a dendrogram which
groups member elements by their measure of similarity.

Due to our framework’s ability to seamlessly integrate sequen-
tial and parallel blocks of code, a sequential hierarchical cluster-
ing algorithm can quickly be implemented with parallel substeps.
Using a partially sequential, partially parallel algorithm, we per-
formed hierarchical clustering on a collection of blogs in an effort
to cluster them by thematic category. Despite the fact that we only
parallelized a single step of the algorithm, we were able to achieve
a speed up of around 2 on an 8-core machine.

Belief Propagation We used our framework to implement Loopy
Belief Propagation (BP), an algorithm for approximate inference
on graphs. The goal of Loopy BP is to iteratively approximate the
marginal distributions at unobserved nodes given observed nodes
(through message passing), until some convergence condition is
achieved. The standard formulation of BP is based on a message
passing formulation which is well-supported in our framework.

6. Related Work
Our framework provides users with an API for parallel program-
ming with graphs based on synchronous supersteps inspired by the
BSP model. Details of parallelization, including load balancing and
messaging are handled transparently by the implementation. There

exist several general BSP library implementations [2, 12, 15, 21]
which, unlike our framework, do not provide a graph-specific API.
Furthermore, we use functional programming techniques to avoid
an inversion of control in BSP-like systems with a stateful model
of long-lived (vertex) processes.

While also based on graphs and the BSP model, Google’s Pregel
is a closed system. In an effort to capitalize on Pregel’s strengths
while focusing on a framework more aptly-suited to ML problems,
we introduce a more flexible programming model, based on high-
level functional abstractions.

OptiML, a Matlab-like domain-specific language (DSL) shares
this goal. It is embedded in Scala via lightweight modular stag-
ing [26]. In contrast to OptiML, our programming makes some
parallelism explicit in the form of (bulk) synchronous parallel su-
persteps. Like in FlumeJava [6], chains of supersteps can be opti-
mized through delayed computations. Language virtualization [4]
coupled with the Delite DSL framework [5] enables more exten-
sive, expression-level optimizations in OptiML. In the future, we
would like to use this approach to optimize the supersteps of our
model. Additionally, extending Delite with support for graphs and
distribution would benefit both the present framework and OptiML.

Our approach is different from other systems that hide paral-
lelization and distribution details such as Pig Latin [22], Dryad [16,
32], Sawzall [24], Piccolo [25], and Spark [33], since programs are
expressed in terms of graphs and updates on vertices.

CGMGraph [7] is an object-oriented framework providing MPI-
based implementations of various parallel graph algorithms. Un-
like our framework, its distribution mechanisms are exposed to the
user. Moreover, our focus is on a re-usable infrastructure leverag-
ing functional programming techniques. The Parallel Boost Graph
Library [13] provides generic concepts for distributed graphs, with
implementations based on MPI [11]. Distribution is supported us-
ing ghost cells that hold values associated with remote vertices and
edges. The authors of Pregel note that ghost cells may not scale very
well if many remote components are referenced. Like Pregel, our
system uses explicit messaging to access remote information which
does not have to be replicated. HIPG [17] and Signal/Collect [29]
are frameworks for parallel graph algorithms which were designed
to automatically distribute computations. For tuning, Sig/Coll al-
lows algorithm-specific scheduling policies. Our framework differs
in that it supports aggregation operations through a functional API.

Orleans [3] is a high-level cloud platform for building client/-
cloud applications; it is related to our effort in that it uses an actor-
based model to support communication and distribution.

Our programming model introduces substeps to structure an
iteration into phases which are synchronized using an implicit,
global barrier. Thus, substeps address a similar problem as programmer-
explicit barriers such as clocks in X10 [8, 27] and phasers in the
ForkJoin library of JDK7 [18, 28]. Explicit barriers can be used
to avoid bottlenecks in bulk-synchronous designs through asyn-
chronous tasks. Substeps, on the other hand, support global aggre-
gation operations, such as “crunch steps” (sec. 3.5), which would
require conforming to a complex synchronization pattern when im-
plemented using explicit barriers. Moreover, substeps enable cer-
tain optimizations, such as merging substeps. Optimizing explicit
barriers is feasible, but currently requires more complex static anal-
yses [31].

7. Conclusions and Future Work
We have presented a new framework for parallel graph processing
in Scala. Starting from a bulk-synchronous parallel model, we in-
troduce high-level control structures to compose parallel, aggregat-
ing, and sequential supersteps. Practical experience suggests that
our abstractions support real-world ML applications.

In future work we intend to experiment with other algorithms,
such as Gibbs sampling and a possible extension to Deep Belief
Networks. Supporting these and other classes of ML algorithms re-
quires extending our framework with weighted graphs, and allow-
ing dynamic changes in the graph topology. Extending our imple-
mentation for distribution is another area of future work. Some of
the challenges that we foresee involve optimized aggregation and
routing based on the network topology, and programming support
for fault handling.

References
[1] Apache. Mahout. http://mahout.apache.org/.
[2] O. Bonorden, B. H. H. Juurlink, I. von Otte, and I. Rieping. The

paderborn university BSP (PUB) library. Parallel Computing, 29(2):
187–207, 2003.

[3] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin.
Orleans: A framework for cloud computing. Technical Report MSR-
TR-2010-159, Microsoft Research, Nov. 2010.

[4] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun. Language virtualization for heteroge-
neous parallel computing. pages 835–847. ACM, 2010.

[5] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun. A domain-specific approach to heterogeneous paral-
lelism. In PPOPP. ACM, 2011.

[6] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. Flumejava: easy, efficient data-parallel
pipelines. In PLDI, pages 363–375. ACM, 2010.

[7] A. Chan and F. K. H. A. Dehne. CGMgraph/CGMlib: Implementing
and testing CGM graph algorithms on PC clusters. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface (10th
PVM/MPI’03), volume 2840 of Lecture Notes in Computer Science
(LNCS), pages 117–125. Springer-Verlag (Berlin/New York), Venice,
Italy, September-October 2003,.

[8] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2005,
October 16-20, 2005, San Diego, CA, USA, pages 519–538. ACM,
2005.

[9] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng,
and K. Olukotun. Map-reduce for machine learning on multicore. In
B. Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages 281–
288. MIT Press, 2006.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. CACM, 51(1):107–113, 2008.

[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, San Francisco, CA,
1999.

[12] M. W. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Portable
and efficient parallel computing using the BSP model. IEEE Trans.
Computers, 48(7):670–689, 1999.

[13] D. Gregor and A. Lumsdaine. The parallel BGL: A generic library for
distributed graph computations, 2005.

[14] P. Haller and M. Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci, 410(2-3):202–220,
2009.

[15] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang,
S. Rao, T. Suel, T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP
programming library. Parallel Computing, 24(14):1947–1980, 1998.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In
Proceedings of the 2007 EuroSys Conference, Lisbon, Portugal, March
21-23, 2007, pages 59–72. ACM, 2007.

[17] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal. A high-level frame-
work for distributed processing of large-scale graphs. In Proceedings

of the 12th International Conference on Distributed Computing and
Networking, ICDCN 2011, 2011.

[18] D. Lea. Proposed Phaser class in the java.util.concurrent library
for JDK7. http://download.java.net/jdk7/docs/api/java/
util/concurrent/Phaser.html.

[19] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new framework for parallel machine learn-
ing. July 2010.

[20] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SPAA, page 48. ACM, 2009.

[21] R. Miller. A Library for Bulk Synchronous Parallel Programming. In
Proceedings of the BCS Parallel Processing Specialist Group Work-
shop on General Purpose Parallel Computing, pages 100–108, Dec.
1993.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages
1099–1110. ACM, 2008.

[23] B. Panda, J. Herbach, S. Basu, and R. J. Bayardo. PLANET: Massively
parallel learning of tree ensembles with mapreduce. PVLDB, 2(2):
1426–1437, 2009.

[24] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with sawzall. Scientific Programming, 13(4):
277–298, 2005.

[25] R. Power and J. Li. Piccolo: building fast, distributed programs with
partitioned tables. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, pages 1–14,
2010.

[26] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs. In Ninth In-
ternational Conference on Generative Programming and Component
Engineering (GPCE’10), Oct. 2010.

[27] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent pro-
gramming for modern architectures. In Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP 2007, San Jose, California, USA, March 14-17, 2007,
page 271. ACM, 2007.

[28] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. S. III. Phasers: a uni-
fied deadlock-free construct for collective and point-to-point synchro-
nization. In Proceedings of the 22nd Annual International Conference
on Supercomputing, ICS 2008, Island of Kos, Greece, June 7-12, 2008,
pages 277–288. ACM, 2008.

[29] P. Stutz, A. Bernstein, and W. Cohen. Signal/collect: Graph algorithms
for the (semantic) web. In The 9th International Semantic Web Con-
ference, November 2010.

[30] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.

[31] N. Vasudevan, O. Tardieu, J. Dolby, and S. A. Edwards. Compile-time
analysis and specialization of clocks in concurrent programs. In Com-
piler Construction, 18th International Conference, CC 2009, Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings,
pages 48–62. Springer, 2009.

[32] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey. Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proceedings
of the 8th USENIX conference on Operating systems design and im-
plementation, OSDI’08, 2008.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, HotCloud’10,
2010.

