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Abstract

Modern computing has adopted the floating point type as
a default way to describe computations with real numbers.
Thanks to dedicated hardware support, such computations
are efficient on modern architectures. However, rigorous rea-
soning about the resulting programs remains difficult, be-
cause of a large gap between the finite floating point rep-
resentation and the infinite-precision real-number semantics
that serves as the mental model for the developers. Because
programming languages do not provide support for estimat-
ing errors, some computations in practice are performed
more and some less precisely than needed.

We present a library solution for rigorous arithmetic com-
putation. Our numerical data type library tracks a (double)
floating point value, but also a guaranteed upper bound on
the error between this value and the ideal value that would
be computed in the real-value semantics. Our implemen-
tation involves a set of linear approximations based on an
extension of affine arithmetic. The derived approximations
cover most of the standard mathematical operations includ-
ing trigonometric functions, and are more comprehensive
than any publicly available ones. Moreover, while interval
arithmetic rapidly yields overly pessimistic estimates, our
approach remains precise for a range of computational tasks
of interest.

We evaluate the library on a number of examples from
numerical analysis and physical simulations. We found it to
be a useful tool for gaining confidence in the correctness of
the computation.

1. Introduction

Numerical computation has been one of the driving forces
in the early development of computation devices. Floating
point representations have established themselves as a de-
fault data type for implementing software that approximates
real-valued computations. Today, floating-point-based com-
putations form an important part of scientific computing ap-
plications, but also of cyber-physical systems, which reason
about the quantities describing the physical world in which
they are embedded.

The IEEE standard [51]] establishes a precise interface for
floating point computation. Over the past years, it has be-
come a common practice to formally verify the hardware
implementing this standard [23| 40, 47]]. On the other hand,
the software using floating point arithmetic remains difficult
to reason about. As an example, consider the experiment in
N-version programming [24], in which the largest discrep-
ancies among different software versions were found in nu-
merical computation code.

One of the main difficulties in dealing with numerical
code is understanding how the approximations performed
by the individual arithmetic operations (precisely specified
by the standard) compose into an overall error of a com-
plex computation relative to a hypothetical ideal value. Such
roundoff errors can accumulate to the point where the com-
puted value is not a precise enough approximation of the
real value. Currently, the developers have no reliable auto-
mated method to determine the error incurred by such ap-
proximation. Whereas for other important properties we cur-
rently have type systems and static analysis techniques that
can establish them, for errors we do not even have available
practical methods to accurately estimate errors in individual
computations.

While there is general agreement that we need to expand
verification to be practical for numerical computation [32],
we do not even know today how to fest numerical codes.
Indeed, the very first problem we face is that, for a given
execution, we do not know if the execution is correct in the
sense of being close to the expected meaning of operations in
real analysis. This makes formal or informal reasoning about
programs with floating-points very difficult. As a result, we
have little confidence in the correctness of an increasingly
important set of applications.

To remedy this unfortunate situation, we introduce an
easy-to-use system for estimating roundoff errors. Our sys-
tem comes in the form of new data types for the Scala [42]
programming language. These data types act as a drop-in
replacement for the standard floating point data types, such
as Double, and offer a support for a comprehensive range of
operations with a greater precision than in any previously
documented solution.
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When faced with these problems, many approaches use
interval arithmetic (IA) as a solution. However, in many
cases intervals give too pessimistic estimates. The problem
is easy to demonstrate, and its essence can be seen already
on a very simple example: if « is an interval [0, a], then the
expression 2 —z is approximated by [—a, a], although it is, in
fact, equal to zero. Furthermore, when such approaches are
used to estimate the behavior over a range of input values,
they fail to distinguish two sources of uncertainty:

e uncertainty in the error between the ideal and floating
point value;

e uncertainty in the actual values of floating point variables
given that the initial values can be anywhere from the
initial interval.

As a result, the computed estimates quickly become impre-
cise. To avoid these problems, we first examine affine arith-
metic, which was first introduced in [[15] and can more pre-
cisely track the correlations between variables. It turns out,
however, that affine arithmetic by itself cannot be as eas-
ily adapted for reasoning about roundoff errors as interval
arithmetic, because it uses mid-points of intervals for its es-
timates, and roundoff errors in the end-points of intervals
can be greater than for the mid-point value. We describe a
methodology that we used to derive the appropriate sound
approximations. The actual approximation rules we use in
our system are also available in the publicly available source
code. Furthermore, we introduce an approach that allows the
library to track errors over a range of values. We are there-
fore able to give answers to the following questions:

e What is an upper bound on the roundoff error of the result
of a particular floating-point computation?

e What is the maximum roundoff error for inputs ranging
over a given input interval?

By providing a freely available library that addresses these
questions, we hope to provide users with a tool that is easy to
use and that helps to gain understanding about the floating-
point properties of code as well as a tool that provides sound
guarantees on the floating-point roundoff errors committed.
Our system can be integrated as part of larger verification
and testing systems.

Contributions. This paper makes the following contribu-
tions.

e We develop and implement an AffineFloat data type
that supports testing of concrete numerical computa-
tions against their real-valued semantics. Our data type
computes practically useful error bounds while retaining
compatibility with the standard Double data type: not only
are the operations entirely analogous, but the underlying
Double computed is identical to the one computed with
the standard data type alone. This compatibility is impor-
tant in practice, but requires changes to the way round-

off errors and affine forms are supported compared to the
existing techniques. As a safe-guard, our technique falls
back onto intervals when the linear approximation is not
appropriate. Furthermore, our solution goes beyond the
(very few) available affine arithmetic implementations
by supporting a number of non-linear and transcenden-
tal functions reliably. Finally, the implementation con-
tains a technique to soundly bound the number of affine
error terms, ensuring predictable performance and preci-
sion without sacrificing much precision.

® We develop and implement a SmartFloat data type that
generalizes AffineFloat and can estimate upper bounds on
roundoff errors over an entire range of input values and
also accepts user-specified errors on input variables (aris-
ing from, e.g. physical measurements or iterative numer-
ical methods). Thanks to SmartFloat, the developer can
show, using a single program run, that the roundoff error
within the entire interval remains small. Existing meth-
ods that merge initial interval width with roundoff esti-
mates cannot perform such estimates. We also provide a
nested affine implementation, which uses linear approxi-
mation of error estimates for input ranges including zero,
providing an improved description of relative errors for
such ranges.

® We evaluate the precision and performance of our imple-
mentation on a number of benchmarks from physics and
the numerical analysis field.The results show that our li-
brary produces, possibly after initial interval subdivision,
precise estimates that otherwise require theorem proving
techniques. It also shows that the library scales to long-
running computation.

Our implementation is publicly available at:
http://lara.epfl.ch/w/smartfloat

Paper outline. We continue by illustrating our system
through two examples. We then provide a quick overview of
the basic affine arithmetic approach (Section[3), which gives
the high-level idea of the approach (but is not sufficient to
obtain our results). We then characterize the precision and
performance of our implementation in Section f] We show
further applications enabled by our system in Section[5] and
describe integration into Scala in Section[6] We then describe
the design and implementation of AffineFloat (Section[7)) and
SmartFloat (Section ). We finally present related work and
conclusions.

2. Examples

Cube root. Intervals have the unfortunate property of ig-
noring correlations between variables and thus often over-
approximate the errors by far too much to be useful. As an
illustration, consider the following code fragment that uses
Halley’s method [49]] to compute the cube root of 10, starting
from an initial value of xn = 1.6:

for (i <— 1 until 5)
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def triangleTextbook(a: SmartFloat,
b: SmartFloat,
c: SmartFloat): SmartFloat = {
vals=(a+ b +¢c)/20
sqrt(s * (s — a) x (s — b) x (s — ¢))

def triangleKahan(a: SmartFloat,
b: SmartFloat,
c: SmartFloat): SmartFloat = {
if(b < a) {
val t = a
ifc<b){a=cc=t}
else {
iflc<a){a=bb=cc=t}
else{a=b b=t}

}

else if(c < b) {
valt =c; c =

}
sqrt((a+(b+c)) * (c—(a—b)) * (c+(a—b))
} * (a+(b—c))) / 4.0

Figure 1. Code for computing the area of a triangle with the
classic textbook formula and Kahan’s improved version.

xn = xn * ((xnkxnkxn + 2.0%a)/(2.0%xn*xnkxn + a))

Compare the results computed with Double against the re-
sult to 30 digits precision from Mathematica, and the result
returned by interval arithmetic:

Double 2.1544346900318834

Math  2.154434690031883721...

Interval [2.1544346900317617,2.154434690032006]
Affine  2.1544346900318834 + 1.34 - 10~

It turns out that the Double value differs from the true real re-
sult only in the very last digit, which amounts to an absolute
error on the order of unit in the last place, ~ 4.44 x 1016,
Interval arithmetic however, would quantify this error as ~
1.23 %10~ 13, On the other hand, using our affine-arithmetic-
based type we compute an absolute error of 1.34 x 10715,
which is (by the correctness of our approach) sound, yet sev-
eral orders of magnitude more precise than the result in in-
terval arithmetic. If we relied only on intervals, we might
be led to believe that we cannot compute the value with the
desired precision using Halley’s method and decide to e.g.
adopt a more expensive computation method instead.

Area of a triangle.  As another example, consider the code
in[Figure 1] triangleTextbook computes the area of a triangle
with the well-known textbook formula. On the other hand,
triangleKahan uses an improved version by Kahan [29]. Run-
ning both versions with our SmartFloat type and with inter-

vals, we get the results listed in Although inter-
val arithmetic does not over-approximate the range by much

H area \ rel. roundoff
Interval Arithmetic
triangleTextbook
a=9.0,b,c=[4.71, 4.89] [6.00, 8.96] -
a=9.0,b,c=[4.61,4.79] [4.32,7.69] -
triangleKahan
a=9.0,b,c=[4.71, 4.89] [6.13, 8.79] -
a=9.0,b,c=[4.61,4.79] [4.41,7.54] -
SmartFloat
triangleTextbook
a=9.0, [6.25, 8.62] 1.10e-14
b, ¢ = SmartFloat([4.71, 4.89])
a=9.0, [4.50, 7.39] 1.97e-14
b, ¢ = SmartFloat([4.61, 4.79])
triangleKahan
a=9.0, [6.25, 8.62] 3.11e-15
b, ¢ = SmartFloat([4.71, 4.89])
a=9.0, [4.49, 7.39] 5.26e-15
b, ¢ = SmartFloat([4.61, 4.79])

Figure 2. Area and relative roundoffs computed on the code

from [Figure 1| with SmartFloat and intervals.

more than affine arithmetic on this particular example, it fails
to quantify the roundoff errors. Based only on intervals, it is
impossible to tell that one version of the code behaves better
than the other.

Our SmartFloat on the other hand, shows an improvement
of about one order of magnitude in favor of Kahan’s formula.
Also note that the computed roundoffs indicate that for thin
triangles relative roundoff errors grow, which is indeed what
happens. This illustrates that our library allows not only
formal reasoning (by establishing correspondence to real-
valued semantics), but also high-level informal reasoning
and analysis.

Using our implementation of SmartFloat’s, we obtain not
only a more accurate interval for the result, but in fact an
upper bound on the error across the entire input interval.
In interval arithmetic, one could in principle use the width
of the actual interval as the roundoff error bound, but this
would yield unrealistically large errors. In this particular ex-
ample the bound on roundoff errors is more than 10* times
smaller than the actual width of the interval in which the out-
put ranges. Therefore, any attempt to use an interval-like ab-
straction to simultaneously represent the input range and the
error bound will fail. Our technique therefore distinguishes
these different quantities, and is among the first ones to do
so. Thanks to this separation, it can establish that roundoff
error is small even through the interval is relatively large.

3. Quick Tour of Interval and Affine
Arithmetic

Throughout this paper, we use the following general nota-
tion:



¢ [F denotes floating-point values, if not otherwise stated in
double (64 bit) precision, R the real numbers.

e [[IF, IR denote intervals of floating-point and real numbers
respectively.

¢ [i] denotes the interval represented by an expression a.

e |x] and Tx7T denotes the result of some expression x
rounded towards +oco or —oo respectively.

3.1 IEEE Floating-point Arithmetic

Throughout this paper we assume that floating-point arith-
metic conforms to the IEEE 754 floating-point standard [S1]].
All recent hardware conforms to it and it is also generally
respected in some subset by main programming languages.
The JVM (Java Virtual Machine), on which Scala’s code
is run, supports single and double precision floating-point
values according to the standard as well as the rounding-to-
nearest rounding mode [34]. Also by the standard, the basic
arithmetic operations {+, —, *, /, \f} are rounded correctly,
which means that the result from any such operation must
be the closest representable floating-point number. Hence, it
follows for binary operations that the result in floating-point
arithmetic satisfies

zopy = (xory)(1+6), 8] <em, o€ {+,—,/} (1)

where €); is the machine epsilon and determines the upper
bound on the relative error of a floating-point computation.
This model provides a basis for our roundoff error estimates.

Thanks to dedicated floating-point units in most hard-
ware, floating-point computations are fast, so our library
is aimed at double precision floating-point values only (i.e.
ey = 27°3). This is also the precision of choice for most nu-
merical algorithms. It is straight-forward to adapt the error
estimation for single precision, or any other precision with a
corresponding semantics.

3.2 Interval Arithmetic

One possibility to perform guaranteed computations in
floating-point arithmetic is to use standard interval arith-
metic proposed already in [41]. Then a bounding interval for
each basic operation is computed as

zopy=[Uzoy)l, Mzoy)T] )

where outwards rounding ensures soundness. The error for
square root follows similarly.

We have already seen in Section [2|an illustration of how
quickly interval arithmetic becomes imprecise. This is a
widely recognized phenomenon. To obtain a more precise
approximation, we therefore use affine arithmetic.

3.3 Affine Arithmetic

Affine arithmetic was originally introduced in [15] and de-
veloped to compute ranges of values over the domain of re-
als, with the actual calculations done in double (finite) pre-
cision. In particular, it addresses the problem of intervals to

handle correlations between variables. Affine arithmetic is
one possible range-based method to address this task, we
discuss further methods in Section

Given a function f : R — R, we wish to compute it
in some discrete number representation (in this case double
floating-point precision). Let A be a set of representations
of intervals, with [a] € IR for a € A. The goal is then
to compute an approximation of the function value with a
function g : A — A that satisfies the fundamental invariant
of range analysis:

PROPERTY 1. Ifa € A, x € R, x € [a], then f(x) € [g(a)].

Note, that a range-based arithmetic as such does not attempt
to quantify the roundoff errors itself,, it only tries to compute
results in a rigorous way.

A possible application of affine arithmetic as originally
proposed is finding the zeroes of functions by bisecting the
domain and computing a (rough) estimate of the function
value over each subdomain. If the output range for one sub-
domain does not include zero, then that part of the domain
can then be safely discarded. Affine arithmetic represents
variables as affine forms

n
T =z + E Ti€;
i=1

where x( denotes the central value and each noise symbol ¢;
is a formal variable denoting a deviation from the center, and
intended to range over [—1,1]. The maximum magnitude
of each noise term is given by the corresponding x;. Note
that the sign of x; does not matter in isolation, however it
reflects the relative dependence between values. The range
represented by an affine form is computed as

[2] = [xo — rad(2), xo + rad(Z)], rad(g) = Z | ;]
i=1

If we compute with affine forms in (finite) double precision
values, we need to take into account that some operations
are not performed exactly. As suggested in [[15], the roundoff
errors commited during the computation can be added with a
new fresh noise symbol to the final affine form. Hence, affine
operations are computed as

ai+py+¢ = (alﬂo+ﬂyo+oJrZ(a:EiJrﬁyi)eiJrLen_,_l

i=1

3)
where ¢ denotes the accumulated internal errors, that is the
roundoff errors committed when computing the individual
terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve truly rigorous bounds.
The challenge hereby consists of accounting for all roundoff
errors, but still creating a tight approximation. While for the
basic arithmetic operations the roundoff can be computed



with there is no such simple formula for calcu-
lating the roundoff for composed expressions (e.g. axxy+().

These errors can be determined by the following proce-
dure [15]):

z f(z1, 29, ...)

a= Jf(z1,22,...))
b= 1f(xy,x2,..)T
t= max(b—z,2z—a)

This suggests the use of affine arithmetic for keeping track of
roundoff errors by representing each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulated roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations be-
tween variables. However, a straighforward application of
affine arithmetic in the original formulation is not always
sound, as we will show in [section 7]

Our solution follows the ‘soft’ policy advocated in [[15],
whereby slight domain violations for functions that work
only on certain domains are attributed to the inaccuracy
of our over-approximations and are ignored. For example,
the square root of [—1, 4] results in the interval [0, 2]. This
behavior is important in reducing false alarms due to over-
approximation.

Before proceeding with the description of the technique
we use in our solution, we show how library behaves in
practice.

4. Evaluation of Precision and Performance

We have selected several benchmarks for evaluating our li-
brary. Many of them were originally written in Java or C; we
ported them to Scala as faithfully as possible. Overall, we
found that with the help of the Scala compiler’s typechecker,
changing the code then to use our AffineFloat type instead
of Double is a straightforward process and needs only few
manual edits. We want to remark that the benchmarks have
been developed with performance evaluation in mind and
not accuracy. We have yet to find a comprehensive bench-
mark whose goal is to evaluate the precision of numerical
error estimates. We hope that our library and examples will
stimulate further benchmarking with precision in mind. The
benchmarks we present are the following

Nbody simulation is a benchmark from [4]] and is a simula-
tion that “should model the orbits of Jovian planets, using
[a] (...) simple symplectic-integrator”.

Spectral norm is a benchmark from [4] and “should calcu-
late the spectral norm of an infinite matrix A, with en-

! All benchmarks are available from
http://lara.epfl.ch/w/smartfloat .

Benchmark rel. error AF | rel. error TA
SOR 5 iter. 2.327e-14 4.869¢e-14
SOR 10 iter 4.618e-13 3.214e-12
SOR 15 iter 8.854e-12 2.100e-10
SOR 20 iter 1.677e-10 1.377e-8
NBody, initial energy 5.9e-15 6.40e-15
Nbody, 1s, h=0.01 1.58e-13 1.28e-13
Nbody, 1s, h=0.0156 1.04e-13 8.32¢e-14
Nbody, 5s, h=0.01 2.44e-10 7.17e-10
Nbody, 5s, h=0.015625 1.42e-10 4.67e-10
Spectral norm 2 iter 1.8764e-15 | 7.1303e-15
Spectral norm 5 iter 4.9296e-15 | 2.4824e-14
Spectral norm 10 iter 7.5071e-15 | 5.6216e-14
Spectral norm 15 iter 1.0114e-14 | 8.8058e-14
Spectral norm 20 iter 1.7083e-14 | 1.1905e-13

Figure 3. Comparison of the relative errors computed by
AffineFloat and interval arithmetic.

tries a1l = 1, a12 = %, azl =
azl = %, etc.”

Scimark [43] is a set of Java benchmarks for scientific
computations and we selected three benchmarks that best
suited our purpose: the Fast Fourier Transform (FFT),
Jacobi Successive Over-relaxation (SOR) and a dense LU
matrix factorization to solve the matrix equation Az = b.
The exact dimensions of the problems we used are noted

in [Figure 7

Fbench was orginally written by Walker [52] as a
“Trigonometry Intense Floating Point Benchmark”. We
used the Java port [S3] for our tests.

Whetstone [35] is a classic benchmark for performance
evaluation of floating-point computations.

Spring simulation is our own code from [Figure 9] however
for benchmarking we removed the added method errors.

In addition, we have written an implementation of inter-
val arithmetic in Scala that otherwise behaves exactly like
AffineFloat or SmartFloat for comparison purposes.

4.1 AffineFloat Precision

Figure 3|presents our measurements of precision on three of
our benchmarks. These results provide an idea on the order
of magnitude of roundoff error estimates, as well as the scal-
ability of our approach. For the Nbody problem we compute
the energy at each step, which changes due to method er-
rors but also due to accumulated roundoffs. For the Spectral
norm we measure the roundoff error of the result after differ-
ent numbers of iterations. In the case of SOR, the reported
errors are average relative errors for the matrix entries. Since
we do not have a possibility to obtain the hypothetical real-
semantics results, we compare the errors against the errors
that would be computed with interval arithmetic. Note that
none of these benchmarks is known to be particularly unsta-
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double | AffineFloat 1A
with pivoting
LU 5x5 2.22e-16 | 1.04e-13 | 6.69e-13
LU 10x10 8.88e-16 | 7.75e-12 | 2.13e-10
LU 15x15 4.44e-16 | 6.10e-10 1.92e-8
no pivoting
LU 5x5 1.78e-15 | 2.50e-11 1.24e-9
LU 10x 10 5.77e-15 | 2.38e-10 4.89¢e-6
LU 15x15 7.15e-13 - -
FFT 512 1.11e-15 | 9.73e-13 | 6.43e-12
FFT 256 6.66e-16 | 3.03e-13 | 2.38e-12

Figure 4. Maximum absolute errors computed by Double,
AffineFloat and interval versions for the LU factorisation and
FFT benchmarks. The matrices were random matrices with
entries between 0 and 1.

ble for floating-point errors, so that we cannot observe some
particularly bad behaviour. We can see though that except for
the second and third (short) run of the Nbody benchmark our
AffineFloat gives consistently better bounds on the roundoff
errors. The numbers for the SOR benchmark also suggest
that the library scales better on longer computations.

Figure 4.1| shows measurements of precision with
AffineFloat for those benchmarks. These results can be
actually check knowing the properties of this particular ap-
plication. Namely, for the LU factorization if the matrix A,
we can compute Az and compare it against the wanted re-
sult b. For the FFT benchmark, we can compute the trans-
form and its inverse and compare it to the original input. We
applied the LU factorization to random matrices with and
without pivotingE] We compared the error bounds against in-
terval arithmetic and the actual error. (Note that the compu-
tation of the error for the LU transform involves some mul-
tiplication, hence these error bounds are not very precise.)
Our AffineForm can show the pivoting approach to be clearly
more accurate and provides consistently better bounds than
interval arithmetic. For LU factorization of size 15x15 both
affine and interval arithmetic compute bounds that are too
large to be useful.

4.2 SmartFloat Precision

Doppler example. For an evaluation of the SmartFloat
type, consider again the Doppler frequency shift example
from[subsection 8.4 The results are summarized in[Figure 3]
We can not only compare the range bounds but also the
roundoff errors to the minimum number of bits required as
determined in [30]. Our estimates show precisely which cal-
culations require more precision, namely the ones with the
largest roundoff errors.

2 Pivoting attempts to select larger elements in the matrix during factoriza-
tion to avoid numerical instability.

B-splines example. Consider the B-spline basic functions
commonly used in image processing [28]]

By(u) = (1 —u)*/6

Bi(u) = (3u® — 6u* +4)/6

Bo(u) = (—3u® + 3u® + 3u+1)/6
Bs(u) = u®/6

with u € [0,1]. Zhang et al. [54] use these functions to
test their new and more complex way to approximate non-
linear functions in affine arithmetic. In light of the possi-
ble testing procedure we outline in [subsection 5.1| we use
our SmartFloat to estimate the ranges and roundoffs of these
functions on the given input interval. For this, we divide the
input interval twice and four times respectively and observe
the results in where we compare the computed
bounds against the ones from [54], and using the same di-
viding procedure with intervals. Note, that only SmartFloat
is able to bound the roundoff errors of the results. We can see
that with a suitable strategy, SmartFloat can indeed produce
very useful and precise results while at the same time being
efficient.

4.3 Performance

Our technique aims to provide much more information than
ordinary floating point execution while using essentially the
same concrete execution. We therefore do not expect the
performance to be comparable to that of an individual dou-
ble precision computation on dedicated floating-point units.
Nonetheless, our technique is effective for unit testing and
exploring smaller program fragments at a time.

The runtimes of AffineFloat and SmartFloat are summa-
rized in The SmartFloat uses the extra higher-order
information as described in which accounts
for the larger runtimes. Note, that the operation count is con-
siderable, more than any of the tools we know can handle,
yet the runtimes remain acceptable.

4.4 Compacting of Noise Terms

Affine arithmetic descriptions generally give no guidelines
on how to choose bounds on the number of linear terms used
in the approximation and how to compact them once this
number is exceeded. Our algorithm for compacting noise
symbols is described in In this paragraph we
want to briefly describe its effect on performance. We ran
experiments with AffineFloat on all our benchmarks and con-
cluded that in general, the maximum number of noise sym-
bols allowed is proportional to the runtime and inversely pro-
portional to the precision. The results are summarized in[Fig
The peaks in the runtime graph for very small thresh-
olds can be explained by the library spending too much time
compacting than doing actual computations. The irregular
peaks for the SOR and FFT benchmarks illustrate that some-
times the precise characteristics of the calculation problem



AA [30] SMT [30]] bits [30] | SmartFloat (outward-rounded) | abs. roundoff
ql [313, 362] [313, 362] 6 [313.3999,361.4000] 8.6908¢-14
q2 || [-473252,7228000] | [6267, 7228000] 23 [6267.9999,7228000.0000] 3.3431e-09
q3 [213, 462] [213, 462] 8 [213.3999,461.4000] 1.4924e-13
q4 [25363, 212890] [45539, 212890] 18 [44387.5599,212889.9600] 1.6135e-10
zZ [-80, 229] [0, 138] 8 [-13.3398,162.7365] 6.8184e-13

Figure 5. Doppler example from [30]]. Our values were rounded outwards to 4 digits. The third column indicates the minimum
number of bits needed to compute the result.

true ranges | ranges [4] Intervals 2 div. Intervals 4 div. SmartFloat 2 div. SmartFloat 4 div. errors for 4 div.
By [0, 1] [-0.05, 0.17] [0, 0.1667] [0, 0.1667] [-0.0079, 0.1667] | [-3.25-107%, 0.1667] 1.43e-16
B é, %] [-0.05,0.98] | [-0.2709,0.9167] | [-0.1223,0.6745] | [0.0885, 0.8073] [0.1442, 0.6999] 6.98e-16
By é, % [-0.02, 0.89] | [0.0417,1.1042] [0.1588, 0.9558] [0.1510, 0.8230] [0.1647, 0.7097] 7.2e-16
Bs [é, 0] [-0.17, 0.05] [-0.1667, 0] [-0.1667, 0] [-0.1667, 0.0261] [-0.1667, 0.0033] 1.3e-16
time 358s < 1s < 1s <1s < 1s

Figure 6. B-splines with SmartFloat compared against intervals and [54]. The errors given are absolute errors.

double(ms) AffineFloat (ms) SmartFloat (ms) + - * /, V trig
Nbody (100 steps) 2.1 779 33756 9530 3000 14542 2006 0
Spectral norm (10 iter.) 0.6 198 778 4020 0 4020 4002 0
Whetstone (10 repeats) 1.2 59 680 1470 510 600 110 0
Fbench 0.2 10 1082 115 120 89 94
Scimark - FFT (512x512) 1.2 1220 39987 13806 15814 19438 37 36
Scimark - SOR (100x100) 0.8 698 127168 8416 1 19209 0 0
Scimark - LU (50x50) 2.6 2419 4914 0 45425 44100 99 0
Spring sim. (10000 steps) 0.2 1283 4086 20002 20003 30007 10002 O

Figure 7. Running times of our set of benchmarks, compared against the running time in pure doubles. The numbers on the
right give the numerical operation count of each benchmark. Tests were run on a Linux machine with 2.66GHz and 227MB of

heap memory available.

can influence running times. It is thus necessary that the user
has some control over the compacting procedure. Note, that
the precision is not significantly affected in general, so that
we decided on a default limit of around 40 noise symbols as
a good compromise between performance and accuracy, but
the developer may change this value for particular calcula-

tions

S. Further Applications

Our SmartFloat type can be used to soundly estimate
ranges of floating-point numbers, or to soundly estimate the
roundoff errors in an entire range of floating-point numbers,
or both. So far, we have only discussed immediate applica-
tions of these types. In this section we would like to suggest
possible integrations of our tool into larger frameworks.

5.1 Testing Numerical Code

We can take SmartFloat’s ability to detect when different
paths in a program are taken within an input interval even
further. Suppose we have a piece of code, and for simplic-

3 Actually, the number used by default is 42.

ity, one input variable for which we assume that the input is
within some finite range [a, b]. To generate a set of input in-
tervals that exercise all possible paths through the program,
we propose the following procedure: Start with the entire in-
terval [a, b] and run the program with our SmartFloat type. If
no robustness violation is signaled, we are done and can read
off the maximum roundoff error incurred. If a possible vio-
lation is detected, split the interval and rerun the program on
each of the new input intervals. Repeat until no violation oc-
curs, or until an error in the program is found. In addition to
test inputs, the SmartFloats also provide guaranteed bounds
on the errors for each of the paths. The splitting can, in addi-
tion to control flow diversions, also be triggered on too large
roundoff error bounds. In this way, the testing procedure can
be refined for a desired precision.

5.2 User-Defined Error Terms

The ranges of a computation are determined chiefly by in-
put intervals and roundoff errors incurred along a compu-
tation path. However, it is also possible that the source of
uncertainty accumulates during a computation, for instance
during the integration of an ordinary differential equation.
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(a) Max. number of noise terms vs. average running time (ms).

20 40
Nbody | 1.60e-13 | 1.58e-13
Spectral | 1.94e-14 | 9.25e-15
Fbench | 3.09e-13 | 1.28e-13
FFT 1.17e-16 | 1.63e-16
SOR 1.17e-16 | 1.17e-16
LU 1.16e-16 | 1.18e-16
Spring | 1.81e-09 | 1.77e-09

60 80 100
1.57e-13 | 1.55e-13 | 1.56e-13
6.63e-15 | 8.73e-15 | 5.94e-15
9.48e-14 | 1.20e-13 | 5.22e-14
1.17e-16 | 1.57e-16 | 2.04e-16
1.32e-16 | 1.32e-16 | 1.32e-16
1.54e-16 | 1.14e-16 | 2.09e-16
1.73e-09 | 1.69e-09 | 1.64e-09

(b) Max. number of noise terms vs. accuracy.

Figure 8. The effect of the number of noise symbols.

One such, albeit simple, example is the simulation of a (un-
damped and unforced) spring in For simplicity,
we use Euler’s method and although this method is known
to be too inaccurate for many applications, it provides a
good application showcase for our library. The comparison
failed! line is explained infsubsection 5.3 for now note the
method addError in line 15. In this example, we compute a
coarse approximation of the method error, by computing the
maximum error over the whole execution. What happens be-
hind the scenes is that our library adds an additional error to
the affine form representing z, i.e. we add a new noise term
in addition to the errors already computed.

Now consider the output of the simulation using our li-
brary. Notice that when using stepsizes 0.1 and 0.01, time
t cannot be computed precisely, whereas using ¢ = 0.125,
which is representable in binary, we get an exact result. Now
consider x, we can see that choosing smaller step sizes, the

enclosure of the result becomes smaller and thus more accu-
rate, as expected. But note also, that the use of a smaller step
size also increases the overall roundoff errors, which is also
to be expected, since we have to execute more computations.

Note that this precise analysis of roundoff errors is only
possible by the separation of roundoff errors from other
uncertainties. Our SmartFloat type can thus be used in a more
general framework that guarantees soundness with respect to
a floating-point implementation but that also includes other
sources of errors.

5.3 Robustness

As a side-effect, our library can also show code to be robust
in certain cases. A computation is robust, if small changes
in the input only cause small changes in the output. There
are two ways in which we can get a change in the output,
starting from some given input.
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def springSimulation(h: SmartFloat) = {
val k: SmartFloat = 1.0
val m: SmartFloat = 1.0
val xmax: SmartFloat = 5.0
var x: SmartFloat = xmax //curr. horiz. position
var vx: SmartFloat = 0.0 //curr. velocity
var t: SmartFloat = 0.0 //curr. 'time’

var methodError = kxmxxmax x (hxh)/2.0

while(t < 1.0) {
val x_next = x + h * vx
val vx_next = vx — h * k/m * x
x = x_next.addError(methodError)
VX = vX_next
t=t+h

printin("t: " +t+ ", x: " + x)

Spring simulation for h = 0.1:
comparison failed!

t: [1.099,1.101] (8.55e-16)
x: [2.174, 2.651] (7.4158e-15)

Spring simulation for h = 0.125:

t: [1.0,1.0] (0.00e+0)
x: [2.618, 3.177] (4.04e-15)

Spring simulation for h = 0.01:

comparison failed!
t: [0.999, 1.001] (5.57e-14)
x: [2.699, 2.706] (6.52e-13)

Figure 9. Simulation of a spring with Euler’s method. The
numbers in parentheses are the maximum absolute roundoff
errors commited. We have rounded the output outwards for
readability reasons.

Change in input causes the control flow to change. In this
case, a different branch can be taken or a loop executed more
or less many times, so that actually different code is exe-
cuted, causing the output to differ. In each case, a compar-
ison in a guard is involved. These comparisons are handled
in a special way in our library. The library keeps a global
boolean flag which is set if a comparison fails. What we
mean by a comparison failing is that given the error bounds
associated with an affine form, it cannot be unambigously
decided whether this value is smaller or bigger than another
one. Hence, for the comparison z < y, if we compute the
difference x — y, then this difference includes zero.

The user may, when notified by such an situation, choose to
refine the input intervals until no such warning occurs. In ad-
dition, the user may choose that the library emits a warning
(comparison failed!) as seen in

Computation is numerically unstable. In this case, the
control flow may stay the same, but the input range of the

variables gets amplified, yielding a much larger output in-
terval. This case can obviously be also detected with our
library, as one only needs to compare the input to the out-
put widths of the intervals. Note that our library only gives
estimates on the upper bounds on roundoff errors, but not
on the lower bounds. That is, our library makes inevitably
over-approximations, so the computed output interval may
be larger than the true interval. However, the user can,
if such a case is suspected, rerun the computation using
AffineFloats, which in general gives tighter bounds.

The same comparison function is also used for the meth-
ods abs, max, min so that the flag will be set in these
cases, if a violation occurs, as well.

Hlustration of control-flow robustness check. As an ex-
ample for the first case of robustness violation, consider
again the code in One can see that the setting of
the global comparison flag was triggered in two of the three
runs. Since there is only one comparison in this code, it is
clear that the (possible) violation occured in line 12. And in
fact, we can see that in the first case for h = 0.1, the loop was
actually executed once too many, thus also giving a wrong
result for the value of x. In the second case h = 0.125, since
the computation of time is exact, the flag is correctly not
triggered.

6. Integration into a Programming Language

This section explains how our types are integrated into Scala
in a seamless way. Our decision to implement a runtime li-
brary was influenced by several factors. Firstly, a runtime
library is especially useful in the case of floating-point num-
bers, since the knowledge of exact values enables us to pro-
vide a much tighter analysis, that cannot be achieved in the
general case in static analysis. Also, with our tight integra-
tion it is possible to use any Scala construct, thus not restrict-
ing the user to some subset that an analyzer can handle.

6.1 Our Deployment as a Scala Library

Our library provides a wrapper type SmartFloat (AffineFloat
correspondingly) that tracks all errors and that is meant
to replace all Double types in the user-selected parts of a
program. All that is needed to put our library into action are
two import statements at the beginning of a source file

import smartfloats.SmartFloat
import smartfloats.SmartFloat._

and the replacement of Double types by SmartFloat. Any re-
maining conflicts are signaled by the compiler’s strong type-
checker. By now the library handles definitions of variables
and the standard arithmetic operations. In addition to this,
our library supports a subset of the scala.math library func-
tions, which we consider the most useful:

® log, expr, pow, cos, sin, tan acos, asin, atan

® abs, max, min



e constants Pi and E

The goal is to make the library as applicable for real appli-
cations as possible. That is, for any common code the devel-
oper should be able to easily adapt it, so that it will be also
bounding its roundoff errors. This also includes support for
the special values NaN and oo with the same behavior as
the original code. To accomplish such an integration, we had
to address the following issues:

Operator overloading. Developers should still be able to
use the usual operators +, —, *, / without having to rewrite
them as functions, e.g x.add(y). Fortunately, Scala allows
x my as syntax for the statement x.m(y) and (nearly) arbi-
trary symbols as method names [42] , including +, —, *, /.

Equals. Comparisons should be symmetric, i.e., the fol-
lowing should hold

val x: SmartFloat = 1.0
val y: Double = 1.0
assert(x ==y && y == x)

The == will delegate to the equals method, if one of the
operands is not a primitive type. However, this does not
result in a symmetric comparison, because Double, or any
other built-in numeric type, cannot compare itself correctly
to a SmartFloat. Fortunately, Scala also provides the trait
(similar to a Java [20]] interface) ScalaNumber which has a
special semantics in comparisons with ==. If y is of type
ScalaNumber, then both x ==y and y == x delegates to
y.equals(x) and thus the comparison is symmetric [45].

Mixed arithmetic. Developers should be able to freely
combine our SmartFloats with Scala’s built-in primitive
types, as in the following example

val x: SmartFloat = 1.0
valy =10+ x
if (5.0 <x) {...}

This is made possible with Scala’s implicit conversions,
strong type inference and companion objects [42]]. In addi-
tion to the class SmartFloat, the library defines the (single-
ton) object SmartFloat, which contains an implicit conver-
sion similar to

implicit def double2SmartFloat(d : Double):
SmartFloat = new SmartFloat(d)

As soon as the Scala compiler encounters an expression that
does not type-check, but a suitable conversion is present, the
compiler inserts an automatic conversion from the Double
type in this case to a SmartFloat. Therefore, implicit con-
versions allow a SmartFloat to show a very similar behavior
to the one exhibited by primitive types and their automatic
conversions.

Library functions. Having written code that utilizes the
standard mathematical library functions, developers should

be able to reuse their code without modification. Our li-
brary defines these functions with the same signature (with
SmartFloat instead of Double) in the companion SmartFloat
object and thus it is possible to write code such as

val x: SmartFloat = 0.5
val y = sin(x) * Pi

Concise code. For ease of use and general acceptance it is
desirable not having to declare new variables always with
the new keyword, but to simply write SmartFloat(1.0). This
is possible as this expression is syntactic sugar for the special
apply method which is also placed in the companion object.

6.2 Applicability to Other Languages

The techniques described in this paper can be ported to other
languages, such as C/C++, or to languages specifically tar-
geted for instance for GPU’s or parallel architectures, pro-
vided the semantics of floating-point numbers is well speci-
fied. In fact, language virtualization in Scala [46] can be used
to ultimately generate code for such alternative platforms in-
stead of JVM.

7. AffineFloat Design and Implementation

We will now discuss our contributions in developing an
affine arithmetic library suitable for evaluating floating-point
computations. The main problem are non-linear approxima-
tions, and this basically for two reasons:

e precision is unsatisfactory, if implemented in a simple
way

e roundoff error estimation is not sound, if using a standard
approximation method

7.1 Different Interpretations of Computations

When using a range-based method like interval or affine
arithmetic, it possible to have different interpretations of
what such a range denotes. In this paper we consider the
following three different interpretations of affine arithmetic.

DEFINITION 2 (Original Affine Arithmetic). In  original
affine arithmetic, an affine form & represents the range of
real values, that is %] ~ [a,b], a,b € R.

This is also the interpretation from in [[15]].

DEFINITION 3 (Exact Affine Arithmetic). In exact affine
arithmetic X represents one floating-point value and its devi-
ation from an ideal real value. That is, if a real valued com-
putation computed x € R as the result, then it holds for the
corresponding computation in floating-points that x € [I].

The difference to Definition [2] is that the central value xg
has to be equal to the actually computed double value at all
times. We will discuss the reason for this in[subsection 7.3

DEFINITION 4 (Floating-point Affine Arithmetic). In
floating-point affine arithmetic I represents a range of
Sfloating-point values, that is [Z] ~ [a,b], a,b € F.
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Figure 10. Linear pproximations of the inverse function.

Definition ] corresponds to our SmartFloat type and Defi-
nition 3] to AffineFloat, the details of which will be discussed
in this section.

Usually implementation issues are of minor interest, how-
ever in the case of floating-point computations they are an
important aspect: our tool itself uses floating-point values to
compute roundoff errors, so that we are faced with the very
same problems in our own implementation that we are trying
to quantify.

7.2 Nonlinear Operations

Affine operations are computed as

n

ai+By+( = (axo+ Byo +() +Z(0433i +Byi)€i+ tens1
i—1

For nonlinear operations like multiplication, inverse, or
square root, this formula is not applicable so that the op-
erations have to be approximated. Multiplication is derived
from multiplying two affine forms:

n
Ty = zoyo + Z(xoyi +yowi)€i + (1 + L)entr
i=1

where ¢ contains the internal errors and 7 an over-
approximation of the nonlinear contribution. To compute the
latter, several possibilities exists of varying degree of accu-
racy. In the case of tracking a single floating-point value the
most simple way 1 = rad(&) * rad(g) is sufficient as the
radii will be in general several orders of magnitude smaller
than the central values. For larger ranges, the nonlinear part
of multiplication unfortunately becomes a notable problem
and is discussed in[subsection 8.4} Division z/y is computed
as « * (1/y) so that it remains only to define unary nonlinear
function approximations.

For the approximation of unary functions, the problem is
the following: given f(Z), find «, ¢, § such that

[f(2)] C [z + (£ 9]

« and ¢ are determined by a linear approximation of the
function f and J represents all (roundoff and approximation)
errors committed, thus yielding a rigorous bound.

In [15] two approximations are suggested for computing
«, ¢, and 6: a Chebyshev (min-max) or a min-range approx-
imation. These two are illustrated on the example of the in-
verse functionf(2) = 27! in For both approx-
imations, the algorithm first computes the interval repre-
sented by Z and then works with its endpoints a and b. In
both cases we want to compute the box around the result,
by computing the slope («) of the dashed line, its intersec-
tion with the y-axis () and the maximum deviation from this
middle line (§). This can be done in the following two ways:

Min-range Compute the slope « at one of the endpoints a or
b. Compute the intersection a line with this slope would
have at a and b and fix { to be the average of the two.
¢ is then determined as the maximum deviation, which
occurs by construction at either a or b.

Chebyshev Compute the slope as the slope of a line
through a and b. This gives one bound on the wanted
“box”(parallelepiped). To find the opposite side, we need
to compute the point where the curve takes on the same
slope again. Again, ( is computed as the average of the
intersections of the two lines. § can be then computed
from the maximum deviation at either the middle point
v, a or b.

In general, the Chebyshev approximation computes tighter
parallelepipeds, especially if the slope is significantly differ-
ent at ¢ and b. However, it also needs the additional computa-
tion of the middle point. Especially for transcendental func-
tions like acos, asin, ... this can involve quite complex com-



putations which are all committing internal roundoff errors.
On big intervals, like the one considered in [[15] and [16]
these are (probably) not very significant. However, when
keeping track of roundoff errors, we are dealing with inter-
vals on the order of machine epsilon. From the experience
with several versions of transcendental function approxi-
mations we concluded that min-range is the better choice.
Chebyshev approximations kept returning unexpected and
wrong results. As discussed in [[16], the Chebyshev approxi-
mation would be the more accurate one in long running com-
putations, however we simply found it to be too numerically
unstable for our purpose. To our knowledge, this problem
has not been acknowledged before.

Obviously, any linear approximation is only valid when
the input range does not cross any inflection or extreme
points of the function. Should this occur, our library resorts
to computing the result in interval arithmetic and converting
it back into an affine form.

Error estimation for nonlinear library functions like
log, exp, cos, . .. requires specialized rounding, since these
are correct to 1 ulp (unit in the last place) only [1]], and
hence less accurate than the elementary arithmetic oper-
ations, which are correct to within 1/2 ulp. The directed
rounding procedure is thus adapted in this case to produce
larger error bounds, so that it is possible to analyze code
with the usual Scala mathematical library functions without
modifications.

7.3 Guaranteeing Soundness of Error Estimates

What we have described so far applies to the original affine
arithmetic as well as our AffineFloat. However, our goal is
to quantify roundoff errors, and original affine arithmetic
has not been developed to quantify them, only to compute
sound bounds on output values, interpreted over ranges of
real numbers. It turns out that if affine arithmetic is modified
appropriately, it can be used for the quantification of round-
off errors as in Definition[3] For this, we assume that the cen-
tral value z is the floating-point value involved in the com-
putation and the noise symbols x; represent the deviation
due to roundoff errors and approximation inaccuracies from
non-affine operations. A straight-forward re-interpretation of
the affine arithmetic from is not sound as the fol-
lowing observation shows.

OBSERVATION 5. The algorithm for approximating non-
affine operations using the min-range approximation as de-
fined in is unsound under the interpretation
of Definition 3]

The interpretation of affine arithmetic as in Definition [3] re-
lies on the assumption that the central value z is equal to
the floating-point value of the original computation. This
is important, as the roundoff for affine operations is com-
puted according to i.e. by multiplication of the
new central value by some J. If the central value does not
equal the actual floating-point value, the computed round-
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Figure 11. Modified min-range approximation of the in-
verse function.

off will be that of a different result. Affine operations main-
tain this invariant. However, non-affine operations defined
by computing «, ( and § such that the new affine form is
Z = a*x T + zeta + de,11 do not necessarily enforce that
zo = a* T + ¢ equals the actual double value computed in
the operation. That is in general (and in most cases), the new
zo will be slightly shifted. In general the shift is not large,
however soundness cannot be guaranteed any more.

Fortunately an easy solution exists and is illustrated in
For non-linear operations, the new central value
is computed as zg = « * xo + (. For this to equal the double
value that is actually computed by the nonlinear function f
(i.e. we want f(zo) = a * xo + zeta) we compute ¢ as

¢ = f(zo) — o

The minrange approximation computes for an input range
[a, b] an enclosing parallepiped of a function as a*xx 4+ £ 46
that is guaranteed to contain the image of the nonlinear func-
tion from this interval as computed in floating-point preci-
sion. Suppose that we have computed ¢ = f(xg) — a * xo,
with o computed at one of the endpoints of the interval.
Since we compute the deviation § with outwards round-
ing at both endpoints and keep the maximum, we soundly
overapproximate the function f in floating-point semantics.
Clearly, this approach only works for input ranges, where the
function in question is monotonic. By the Java API [[1], the
implemented library function are also guaranteed to be semi-
monotic, i.e. whenever the real function is non-decreasing,
so is the floating-point one.

It is clear from [Figure TT|that our modified approximation
computes a bigger parallelepiped than the original min-range
approximation. However, in this case, the intervals are very
small to begin with, so that the overapproximations do not
have a big effect on the precision of our library.

7.4 Double - Double Precision for Noise Terms

It turns out that even when choosing the min-range approx-
imation, with input ranges with small widths (order 10~°
and smaller), computing the result of a nonlinear function



in interval arithmetic gives better results. The computation
of o and ¢ in our approximation cannot be changed, but
it is possible to limit the size of §. In order to avoid ar-
bitrary precision for performance reasons, our library uses
double-double precision (denoted as DID) as a suitable com-
promise. Each value is represented by two standard double
precision values. Algorithms have been developed and im-
plemented [[14} 44] that allow the computation of standard
arithmetic operations with only ordinary floating-point op-
erations, making the performance trade-off bearable. In this
way, we can compute range reductions for the sine and co-
sine functions accurately enough. We also avoid using inter-
vals to bound 9, an approach we found not to be sufficiently
effective for our purpose.

One condition for these algorithms to work is that the
operations are made in exactly the order as given and without
optimizations or fused-multiply instructions. Currently, this
is not possible to enforce in Scala, so that the library uses
Java code with the strictfp modifier for the calculations.

The library uses the double-double precision types for
the noise symbols and computations involving them only.
Keeping the noise symbols in extended precision and thus
reducing also the internal roundoff errors, we have found
that the accuracy of our library increased sufficiently for
most nonlinear function approximations.

7.5 Constants

A single value, say 0.03127, is represented in a real valued
interval semantics as the point interval [0.03127,0.03127] or
in affine arithmetic as £ = 0.03127, i.e. without noise terms.
This no longer holds for floating-point values that cannot be
represented exactly in the underlying binary representation.
Our library tests each value for whether it can be represented
or not and adds noise terms only when necessary. In the
case of the above example, the following affine form is
then created: 0.03125 + (eps * 0.03125)e,,. This limits the
over-approximations committed and provides more precise
analyses when possible. For an error estimate according
to Definition [3] our runtime library has the exact values
available and can thus generally compute tighter bounds
compared to a static analysis-based approach.

7.6 Computing Roundoff Errors

The JVM does not provide access to the different rounding
modes of the floating-point unit, so that the expressions that
need directed rounding are implemented as native C meth-
ods. It turns out that this approach does not incur a big per-
formance penalty, but provides the needed precision, which
cannot be achieved by simulated directed rounding. The na-
tive C code has to be compiled for each architecture sepa-
rately, but since no specialized functionality is needed this
is a straightforward process and does not affect the portabil-
ity of our library. Using directed rounding also enables the
library to determine when a calculation is exact so that no
unnecessary noise symbols are added.

7.7 Correctness

The correctness of each step of the interval or affine arith-
metic computation implies the correctness of our overall ap-
proach: for each operation in interval or affine arithmetic the
library computes a rigorous over-approximation, and thus
the overall result is an over-approximation. This means, that
for all computations, the resulting interval is guaranteed to
contain the result that would have been computed on an ideal
real-semantics machine.

The correctness of our implementation is supported by
the use of assertions certifying that certain invariants al-
ways hold. Example invariants for AffineFloat include the
statement that the computed double precision value has to
be exactly the same as the central value of the affine form, a
prerequisite for our roundoff analysis.

In addition, we have tested our library extensively on sev-
eral benchmarks (see and our implementation of
nonlinear functions against the results from 30 digit preci-
sion results from Mathematica.

We are able to avoid several pitfalls related to floating-
point numbers [8| 39] by writing our library in Scala and
not for example in C, as the JVM is not as permissive to
optimizations that may alter the actual execution of code.

7.8 Quadratic Equation Example

A classic example is the quadratic formula in[Figure 12] be-
cause it produces less accurate results (two orders of magni-
tude in this particular case), when one root is much smaller.
Our library shows the result of rewriting this code following
the method in [19]. Our library confirms that both roots are
now computed with approximately the same accuracy:

-18.655036847834893 (5.7133e-16),

classic ril

r2 = -0.0178874602678082 (1.4081e-13)
smarter rl = -18.655036847834893 (5.7133e-16),
r2 = -0.0178874602678077 (7.7584e-16)

The values in parentheses give the relative errors. Note that
the code looks nearly the same as if it used the standard
Double type.

7.9 Managing Noise Symbols in Long Computations

The runtime performance of our library depends on the num-
ber of noise terms in each affine form, since each operation
has to access each at least once. Hence, a smart compact-
ing strategy of noise symbols becomes crucial for perfor-
mance. Compacting too little means that our approach be-
comes unfeasible, compacting too much means that we loose
too much correlation information.

Compacting algorithm. The goal of the algorithm is to
take as input a list of noise terms and output a new list with
less terms, while preserving the soundness of the roundoff
error approximation and ideally keeping the largest correla-
tion information. Compacting in this sense means to add the



var a = AffineFloat(2.999)

var b = AffineFloat(56.0001)
var ¢ = AffineFloat(1.00074)
val discr=bxb —a*cx*x4.0

//classical way

var r2 = (—b + sqrt(discr))/(a * 2.0)

var rl = (—b — sqrt(discr))/(a * 2.0)
printin("classicrl =" +rl 4+ ", r2="+1r2)

//smarter way
val (rkl: AffineFloat, rk2: AffineFloat) =
if(bxb — axc > 10.0) {
if(b > 0.0)
((—=b — sqrt(discr))/(a * 2.0),
c x 2.0 /(—=b — sqrt(discr)))
else if(b < 0.0)
(c % 2.0 /(—b + sqrt(discr)),
(—b + sqrt(discr))/(a * 2.0))
else
((—b — sqrt(discr))/(a * 2.0),
(—b + sqrt(discr))/(a * 2.0))

else {
((=b — sqrt(di.scr))/(a * 2.0),
(—b + sqrt(discr))/(a * 2.0))

printin("smarter r1 =" + rkl + ", r2 =" + rk2)

Figure 12. Quadratic formula computed in two different
ways.

absolute values of the smallest terms and to add them with
a fresh noise symbol to the terms that are kept. We propose
the following strategy.

e Compact all error terms smaller than 10732, These errors
are smaller than the smallest double value and are thus
internal errors.

e Compute the average (avrg) and the standard deviation
(stdDev) of the rest of the terms. Compact all terms
smaller than avrg * a + stdDev x b and keep the rest.
The factors a and b are user-controllable options and can
be chosen separately for each computation.

e In some cases this is still not enough (for example if
nearly all errors have the same magnitude). Is this case
detected, we repeat this procedure one more time. In
the worst case, i.e. should this also fail to produce the
desired number of noise terms, the library compacts all
noise symbols into a new one. In our experience, this case
occurs in very few pathological examples.

8. SmartFloat Design and Implementation

The implementation described in[section 7|provides a way to
estimate roundoff errors for one single computation. It pro-
vides reasonably tight bounds for the most common mathe-
matical operations and is fast enough for middle sized com-
putations, hence it can be used to provide some intuition

about the behavior of a calculation. It does not provide, how-
ever, any guarantee as to how large the errors would be if one
chose (even slightly) different input values or constants. In
this section we investigate the following two aspects

1. computation of a rigorous range of floating-point num-
bers (according to Definition )

2. computation of sound roundoff error estimates over this
range

Unfortunately a straight-forward re-interpretation of neither
the original affine arithmetic, nor the modified version for
AffineFloat give a sound range arithmetic for floating-point
numbers.

OBSERVATION 6. The roundoff computation of affine oper-

ations as defined in|subsection 7.2|is unsound under the in-

terpretation of Definition

When tracking a range of floating-point numbers and com-
puting the roundoff errors of each computation, we need to
consider the roundoff errors for all values in the range, not
only the central values as is the case in In
addition, the non-linear approximation algorithm does not
explicitly compute the roundoff errors, they are implicitly
included in the computed 6. If we now have input values
given by (possibly wide) ranges, the computed ¢ will be so
large that no roundoff estimate from them is meaningful.

Our library provides a new type, SmartFloat as a solution
for this problem. A SmartFloat can be constructed from a
double value or a double value with an uncertainty, providing
thus a range of inputs. A SmartFloat variable x, then keeps
the initial double value and the following tuple

z;,r; € DD

= (Z‘O,inei + Z%Ui, ZHP&
“)

where xo € F is the central value as before. x;¢; and x;u; are
the noise terms characterizing the range, but we now mark
those that come from user-defined uncertainties by special
noise symbols u;, which we call uncertainties. We keep
these separately, so that for instance during the noise term
compacting, these are preserved. r;p; are the error terms
quantifying the roundoff errors committed. The sum > |r;]
gives a sound estimate on the current maximum committed
roundoff error for all values within the range. We now need
to define the computation and propagation of roundoffs; the
noise terms are handled as before.

8.1 Computation of Roundoffs

To compute the roundoff error of an operation, we first com-
pute the new range, either by using for affine
operations or the min-range approximation and then com-
pute maximum roundoff from the resulting range. Following
the definition of roundoff from [Equation I|this the maximum
absolute value in the range multiplied by €,,. For the other
operations, correct to within 1 ulp, we adjust the factor to
2%¢€ M-



8.2 Propagation of Roundoffs

The already commited errors in some affine form x,
ie €, = Y r;p; have to be propagated correctly for each
operation.

Affine. The propagation is given straightforwardly by [sub-|
That is, if the operation involves the computation
ai + By + ¢, the errors are transformed as €, + Sé, + (v +
K)pn+1, Where ¢ corresponds to the internal errors commited
and « to the new roundoff error.

Multiplication. The non-linear part in multiplication poses
the difficulty that it involves cross-terms between the noise
and error terms. We derive the new (albeit admittedly naive)
propagation, by appending the error terms to the noise terms
and computing the multiplication. Then, removing the re-
sulting terms where the error terms do not appear again, we
get new 1),

Ne = rad(z) * rad(ey) + rad(g) * rad(ey) +
rad(ey) * rad(ey)

Note that this produces an overapproximation, since some
of the errors from the error terms are also included already
in the noise terms. The linear part is computed as usual by
multiplication by z( and yg.

Non-affine. Since the nonlinear function approximations
compute «, ¢ and 9, this reduces to an affine propagation of
errors. Note that the factor used to propagate the roundoff
errors must be the maximum slope of the function on the
given range and thus does not necessarily equal «.

8.3 Additional Errors

Additional errors, e.g. method errors can be added to the
affine form in the following way. we have a variable x given
by & = (o, xi€, >, rip;) and a the error to be added
given by § = (yo, Y yi€i, . Sipi). The result of adding this
error is then given by

z = (2o, szfi + (lyol + md(z Yi€i))€nt1s
> i +(rad(Y ] sipi)pmsr)

that is, the maximum magnitude of the error is added as a
new noise term, and the maximum magnitude of the round-
off committed when computing this error is added as a new
error term.

8.4 Treatment of Range Explosion

In the naive computation of the non-linear part
was sufficiently accurate due to relatively small radii of the
involved affine forms. This is in general no longer the case
if we consider arbitrary ranges of floating-point numbers. To
illustrate this problem, consider * = 3+ 2¢; and y = 4+ 3¢5
Both values are clearly positive, hence their product should
be positive as well. Now, z = £ x §y = 12 + 8¢ + 9eg +

6es which gives as resulting interval [Z] = [—11,35]. This
is unacceptable, if this value is subsequently used in for
instance division.

Some approaches have been suggested in [50} [54], how-
ever they either change the underlying structure by using
matrices instead of affine forms or are simply not scalable
enough. Since we do not want to change the underlying data
structure, we chose a different solution for this problem. The
problem is that by computing n = (i, |z:])* (i, |vil)
and appending it with a fresh noise symbol correlation in-
formation is lost. Affine forms do not give us the possibil-
ity to keep quadratic terms, however, we can keep “source”
information with each noise term. For example, if a noise
term is computed as x1z2€1 €2, this will result in a new fresh
noise symbol zge3[1, 2], where the indices in brackets de-
note the information that is additionally stored. Similarly,
if the product involves two noise terms that already contain
such information, it is combined. Currently, our library sup-
ports up to 8 indices, however this value can be extended
as needed - at a performance cost of course. Most opera-
tions work exactly as before; this information is only used
when the interval an affine form represents is computed and
is essentially an optimization problem. One option is to use
a brute force approach and to substitute all possible combi-
nations of —1, 1, 0 for all ¢;. Since an affine form represents
a convex range of values, the maximum and minimum value
of this range has to necessarily be at ¢; having one of these
values. Clearly, this approach is not very efficient, but for up
to 11 noise terms is still feasible. We use our compacting al-
gorithm to reduce the number of noise symbols before this
optimization is run to make this approach efficient enough
in practice.

We will demonstrate the impact of this simple solution
on a problem from [30], where an SMT-based approach was
chosen, precisely for the reason that affine arithmetic pro-
duces too large over-approximations. The example computes
the frequency change due to the Doppler effect

v (33144067
T du (331.4+ 0.6T 4 u)?

by decomposing it into the following subcalculations: q; =
33144 0.6T, g2 = 10, g3 = q1 + U, 4 = G5, 2 = G2/ .
The parameters used are —30°C < T < 50°C, 20Hz <
v < 20000Hz and —100m/s < w < 100m/s. The re-
sults reported in [30] for affine arithmetic and their SMT ap-
proach, as well as the ranges computed with our SmartFloat
are summarized in Note that we obtained our re-
sults in under half a second.

Clearly, the library can compute better bounds, if a better
optimization method is used, for instance by using a dedi-
cated solver.

8.5 Nested Affine Arithmetic

An even smarter version of SmartFloat would also be able
to provide information on how the output roundoff error de-



pends on the input error, thus providing additional insight
about the computation. This is possible, provided that round-
off errors are computed as functions of the initial uncertain-
ties, and not just absolute values. Note that if we restrict our-
selves to linear functions, we can use affine forms for the
new roundoffs. That is, for the affine form representing the
roundoff errors €, = > r;p;, the library now keeps each ;
as an affine form, where it keeps only the linear terms in the
uncertainties and compacts all other terms for performance
reasons. Finally, the computation of the actual roundoff er-
rors becomes an optimization problem similar to the one
for the multiplication. Our library currently reports the as-
signment that minimizes and maximizes the roundoff errors.
Note that due to over-approximations this reported assign-
ment may not necessarily be the one giving the real smallest
or largest roundoff. For this reason, the user may want to
examine the, say, three smallest or largest assignments re-
spectively.

Although this feature is so far only experimental, we
believe that it can become very useful. We will demonstrate
this by returning to the triangle example from [Figure 2] With
the modified SmartFloat, we can now run the following
code:

val area = triangleArea(9.0,
SmartFloat(4.7, 0.19), SmartFloat(4.7, 0.19))
area.analyzeRoundoff

The output is

analyzing the roundoffs...

maximum relative error: 4.728781774296841E-13
maximizing assignment: 10 -> -1.0, 7 -> -1.0
minimum relative error: 8.920060990068312E-14
minimum assignment: 10 -> 1.0, 7 -> 1.0

To explain this output, the numbers 10 and 7 denote the in-
dices of the uncertainties that were assigned to b and c re-
spectively, that is, those are the indices of their noise sym-
bols. The final analysis revealed that for the assignment of
—1.0 to both noise symbols, the roundoff is maximized.
Looking back at the definition of the values we can see that
the assignment of —1.0 corresponds to the input value of
4.51 for both b and c. This corresponds exactly to the known
property that the relative roundoff errors are largest for the
thinnest triangles. Similarly, the assignment of 1.0 corre-
sponds to the least thin triangles, as expected.

9. Related Work

Affine Arithmetic. Existing implementations of affine
arithmetic include [2]][3]. However, they have not been used
to quantify roundoff errors, only to compute ranges in the
way described by the original affine arithmetic in [15]]. As a
result, the problems we describe in this paper do not arise,
and the existing systems cannot be used as such for our pur-
pose. Other range-based methods are surveyed in [38] in the
context of plotting curves. We have decided to use affine

arithmetic, since it seems to us to be a good compromise
between complexity and functionality. A library based on
Chebyshev and Taylor series is presented in [17], however
it does not provide correlation information as affine arith-
metic does, so its use is directed more towards non-linear
solvers. Affine arithmetic is used in several application do-
mains to deal with uncertainties, for example in signal pro-
cessing [22]]. Our library is developed for general purpose
calculations and integrated into a programming language to
provide information about floating-points for any application
domain.

Estimating Roundoff Errors. The Fluctuat static an-
alyzer [21] analyzes numerical code with operations
+, —, %, / for roundoff errors and their sources based on ab-
stract interpretation. Because Fluctuat is not publicly avail-
able, we were not able to compare it with our system. Fur-
ther work in abstract interpretation includes the Astrée an-
alyzer [13] and APRON [12} [26]]. These systems provide
abstract domains that work correctly in floating-point se-
mantics, but they do not attempt to quantify roundoff er-
rors (an attempt to treat intervals themselves as roundoff
errors gives too pessimistic estimates to be useful). A re-
cent approach [25] statically detects loss of precision in
floating-point computations using bounded model checking
with SMT solvers, but uses interval arithmetic for scalabil-
ity reasons. [18]] uses affine arithmetic to track roundoff er-
rors using a C library; this work is specific to the signal pro-
cessing domain. Further approaches to quantify roundoff er-
rors in floating-point computations are summarized in [36],
of which we believe affine arithmetic to be the most useful
one. This also includes stochastic estimations of the error,
which have been implemented in the CADNA library [27].
However, the stochastic approach does not provide rigorous
bounds, since for example in loops, roundoff errors are not
uniformly distributed.

Robustness Analysis. Our library can detect the cases
when the program would continue to take the same path in
the event of small changes to the input, thanks to the use
of the global sticky flag set upon the unresolved compar-
isons. Therefore, we believe that our library can be useful
for understanding program robustness and continuity prop-
erties [11,137].

Finite-Precision Arithmetic. [31] uses affine arithmetic
for bit-width optimization and provides an overview of re-
lated approaches. [48] uses affine arithmetic with a spe-
cial model for floating-points to evaluate the difference be-
tween a reduced precision implementation and normal float
implementation, but uses probabilistic bounding to tackle
over-approximations. Furthermore, it only allows addition
and multiplication. [30] employs a range refinement method
based on SMT solvers and affine arithmetic, which is one
way to deal with the division-by-zero problem due to over-



approximations. However, a timeout has to be included for
when this becomes too expensive.

Theorem Proving Approaches. Researchers have used
theorem proving to verify floating-point programs [6, (7} 23,
40, 47)]. These approaches provide high assurance and guar-
antee deep properties. Their cost is that they rely on user-
provided specifications and often require lengthy user inter-
actions. [33] extend previous work using affine arithmetic
by considering the problem of reducing precision for perfor-
mance reasons, however the work remains interactive. [10]]
presents a decision procedure for checking satisfiability of a
floating-point formula by encoding into SAT. Even this ap-
proach requires the use of approximations, because of the
complexity of the resulting formulas. A symbolic execu-
tion technique that supports floating-point values was devel-
oped [9], but it does not quantify roundoff errors. There is a
number of general-purpose approaches for reasoning about
formulas in non-linear arithmetic, including the MetiTarski
system [5]]. Our work can be used as a first step in verifi-
cation and debugging of numerical algorithms, by provid-
ing the correspondence between the approximate and real-
valued semantics.

10. Conclusions

We have presented a library that introduces numerical types,
SmartFloat and AffineFloat, into Scala. Like the standard
Double type, our data type supports a comprehensive set of
operators. It subsumes Double in that it does compute the
same floating point value. In addition, however, it also com-
putes a roundoff error—an estimate of the difference be-
tween this floating point value and the value of the compu-
tation in an ideal real-number semantics. Moreover, it com-
putes the roundoff error not only for a given value, but also
for the values from a given interval, with the interval being
possibly much larger than the roundoff error.

It can be notoriously difficult to reason about computa-
tions with floating-point numbers. Running a computation
with a few sample values can give us some understanding
for the computation at hand. The SmartFloat allows develop-
ers to estimate the error behavior on entire classes of inputs
using a single run. We have found the performance and the
precision of SmartFloat to be appropriate for unit-testing of
numerical computations. We are therefore confident that our
implementation is already very helpful for reasoning about
numerical code, and can be employed for building future val-
idation techniques.
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11. Annex

This section provides the code used for computing the non-linear approximations in AffineFloat. The code given is identical to
the one used in AffineFloat, but pretty-printed for readability reasons. SmartFloat uses the same code in principle, except where
modifications are necessary for soundness reasons. Please see ?? for details. The following notation is used

e ++ and +T denote addition rounded towards —oc and oo respectively. Similarly for the other arithmetic operations.
® +pp denotes addition performed in double-double precision.

¢ DID(x) denotes a conversion of x into double-double precision. When the conversion is obvious from the context, we omitted
explicit conversion for readability reasons.

e The helper functions addQueues, subtractQueues and multiplyQueues are not listed, as they do not do anything particularly
interesting. For instance addQueues takes as input two queues representing » . z;¢; and . y;€; and computes Y (x; + y; )€;.

¢ roundOff is an auxiliary function returning the maximum roundoff error, assuming exact rounding and correctly rounded
operations.

e We have implemented our own Queue data structure for performance reasons. The operation queue :4 noiseTerm appends
the noiseTerm to the queue (modifies it).

e Since Scala has a very strong type inference, we have added type information in some places for clarity, e.g.
var deltapp = ... denotes that this variable is of type DoubleDouble.

e By || and |T we denote the specialized rounding that takes into account the max roundoff specified by the Java
java.lang.Math API.

The following class names are used:

® SymAForm is the name of the affine form used by AffineFloat. It stands for Symmetric Affine Form. The class has two fields
x0 and xnoise, denoting the central value and the noise terms respectively.

® EmptyForm is a special AffineForm denoting the equivalent of NaN (in Double). FullForm similarly denotes +ooc.

¢ Noise terms are represented by the class Noise which has fields for index and value.
11.1 Affine operations

def +(other: AffineForm): AffineForm = other match {
case SymAForm(y0, ynoise) => {
val z0 = x0 + y0
if(z0 == £00) return FullForm

var deltapp = if ((x0 +* y0) == (x0 +" y0)) 0 else roundOff(z0)

var (deviation, rd) = addQueues(xnoise, ynoise)
delta = delta +ED rd

if (delta == o0) return FullForm
if (delta != 0.0) deviation :4+ new Noise(newlndex, delta)
return new SymAForm(z0, deviation)

case EmptyForm => return EmptyForm
case FullForm => return FullForm

}

def —(other: AffineForm): AffineForm = other match {
case SymAForm(y0, ynoise) => {
val z0 = x0 — y0
if(z0 == £00) return FullForm

var deltapp = if ((x0 —* y0) == (x0 —" y0)) 0 else roundOff(z0)

var (deviation, rd) = subtractQueues(xnoise, ynoise)
delta = delta +},,, rd



if(delta == 00) return FullForm
if (delta != 0.0) deviation :+ new Noise(newlndex, delta)
return new SymAForm(z0, deviation)

case EmptyForm => return EmptyForm
case FullForm => return FullForm

}

def unary_—(): AffineForm = {
var deviation = new Queue
val iter = xnoise.getlterator
while(iter.hasNext) {
val xi = iter.next
deviation :+ — xi //no round—off error

new SymAForm(—x0, deviation)

}



11.2 Multiplication

def x(other: AffineForm): AffineForm = other match {
case SymAForm(y0, ynoise) => {
//nonlinear part, naive approximation

var delta = this.radiusExt *}, , other.radiusExt

val z0 = x0 * y0
if(z0 == £o00) return FullForm

if ((x0 %+ y0) 1= (x0 ' y0)) delta = delta 4}, ,, roundOff(z0)

var (deviation, rd) = multiplyQueues(x0, xnoise, y0, ynoise)
delta = delta 4}, rd

if(delta == o) return FullForm
if (delta != 0.0) deviation :4+ new Noise(newlIndex, delta)
return new SymAForm(z0, deviation)

case EmptyForm => return EmptyForm
case FullForm => return FullForm

}

11.3 Division

Division is computed as x * % Note that the division procedure calls a special multiplication method that takes a “hint” to make

sure that the central value equals the double value that would be computed. This is necessary as z * i is not necessarily equal

to % in floating-point (although the difference is very small).

def /(other: AffineForm): AffineForm = other match {
case SymAForm(y0, ynoise) =>
val (yloD, yhiD) = other.interval
val (ylopp, yhipp) = other.intervalpp
if(yloD <= 0.0 && yhiD >= 0.0) return FullForm //division by zero

if(ynoise.size == 0.0) { //exact
val inv = 1.0/y0
if((1.0 /* y0) == (1.0 /T y0)) return this % (SymAForm(inv, Queue.empty), x0/y0)
else return this x (SymAForm(inv, new Queue(new Noise(newlIndex, roundOff(inv)))) , x0/y0)

}

/* Calculate the inverse. x/

val (a, b) = (min(lylol, |yhil), max(lylo], lyhi))
val (ad, bd) = (min(|yloD|, |yhiD]), max(]yloD|, |yhiD]))

val alpha = —1.0 /pp ( b *xppb )

val dmax = DID(1.0 /T ad) =1, (alpha *},, a))
val dmin = DD(1.0 /* bd) -}, (alpha %}, b))

var (zeta, rdoff) = computeZeta(1.0/y0, alpha, y0)
if(yloD < 0.0) zeta = —zeta

val delta = computeDelta(zeta, dmin, dmax) +1,,, rdoff
val inverse = symmetricUnary(1.0/y0, ynoise, alpha, zeta, delta)
return this x(inverse, x0/y0)

case EmptyForm => return other
case FullForm => return other

}



11.4 Unary functions
The computation of unary functions uses these auxiliary methods
® computeZeta computes soundly: (dmin + dmax) / 2
® computeDelta computes soundly: (dmin — dmax) / 2
e symmetricUnary computes o * 2o + ¢ and " (v * x;)€; + d€,, 11 to obtain a new affine form

® computeExactResult computes the result for the case where the affine form is exact, i.e. the number of noise symbols is zero.
The method is similar to the procedure used in square root, except that the rounding takes into account the 1 ulp condition
on Java Math API functions.

® interval2affine converts an interval into an affine form.

® math.sqrt calls the Scala library function, i.e. this is really a call to scala.math.sqrt. Similarly for the other methods.
11.5 Square root

def squareRoot: AffineForm = {
var (ad, bd) = interval

if(bd < 0.0) return EmptyForm
if(bd == o) return FullForm

if(xnoise.size == 0) { //exact
val sqrt = math.sqrt(x0)

if(sqrt* (x0) == sqrt’(x0)) return new SymAForm(sqrt, Queue.empty)
else return new SymAForm(sqrt, new Queue(new Noise(newlndex, roundOff(sqrt))))

var (aDD, bDD) = intervalpp
if(ad < 0.0) {ad = 0.0; a = zero} //soft policy

val sqA = DID(math.sqrt*(ad))
val sqB = DID(math.sqrt"(bd))
val alpha = 0.5 /pp sqrtpp(b)

val dmin = sqA —},, (alpha ), a)
val dmax = sqB —1,, (alpha *ED b)

var (zeta, rdoff) = computeZeta(math.sqrt(x0), alpha, x0)

val delta = computeDelta(zeta, dmin, dmax) +1,,, rdoff
return symmetricUnary(math.sqrt(x0), xnoise, alpha, zeta, delta)



11.6 Logarithm

def In: AffineForm = {

}

if(xnoise.size == 0) return computeExactResult(x0, math.log)

val (ad, bd) = interval
if(ad <= 0.0 || bd < 0.0 || bd == o) return FullForm

var (app, bpp) = intervalpp

val alpha =1.0 /pp b
val dmin = DD||(math.log(ad)) —%,,, (alpha *},,, a)
val dmax = DD1](math.log(bd)) =1, (alpha ¥, ,,b)

var (zeta, rdoff) = computeZeta(math.log(x0), alpha, x0)
val delta = computeDelta(zeta, dmin, dmax) +1,,, rdoff

return symmetricUnary(math.log(x0), xnoise, alpha, zeta, delta)

11.7 Exponential

def exponential: AffineForm = {

if(xnoise.size == 0) return computeExactResult(x0, math.exp)

val (ad, bd) = interval
if(bd == o) return FullForm

var (app, bpp) = intervalpp
val expA = DD||(math.exp(ad))
val expB = DD1](math.exp(bd))

val alpha = expA
val dmin = expA *ED (1.0 —ED a)
val dmax = expB ng (alpha *ng)

var (zeta, rdoff) = computeZeta(math.exp(x0), alpha, x0)
val delta = computeDelta(zeta, dmin, dmax) +1,,, rdoff

return symmetricUnary(math.exp(x0), xnoise, alpha, zeta, delta)



11.8 Cosine

def cosine: AffineForm = {
if(radiuspp > 27pp) return new SymAForm(0.0, new Queue(new Noise(newlndex, 1.0)))

if(xnoise.size == 0) computeExactResult(x0, math.cos)

var (xlo, xhi) = interval
var (xloExtpp, xhiExtpp) = intervalpp

// range reduction.

val ka = if(xlo > 0.0) (2.0xxlo /* 7") else (2.0xxlo /* 7*)
val kb = if(xhi > 0.0) (2.0%xhi /T 7*) else (2.0xhi /T =)
val m = math.floor(ka).toLong

val n = math.ceil(kb).toLong

if(n—m < 2.0) {
val k = math.floor(xlo/27)
val kD = DD(k)
val r = (m % 4).toLong

val aExt = 27 +}, ((xloExt /%, 27) —%,, kD)
val bExt = 27 «}, ((xhiExt /1, 27) =1, kD)

val alpha = DID(— math.sin(xlo))
val (dminpp, dmaxpp) =
if(r == 0 || r = —1 || r==3) { //y > 0
(DD | (math.cos(xhi) —% ,(alpha %1, bExt)),
(D17 (math.cos(xlo) —1, ,(alpha *}, , aExt)))

ilse {//y<o0
(DD || (math.cos(xlo) —% ,(alpha 1, aExt)),
)

(DD1](math.cos(xhi) — 1, (alpha x% ,, bExt)))

val xOD = DID(x0)
val xO_new = 27 *DD((XOD /DD 271') —DD kD)

val x0_down = 27 %, ,((xOD /%, 27) =%, kD)
val x0_up = 27 ), ,((x0D/%, , 27) =1, , kD)

var delta = max((x0_up —1,,, x0_new),(x0_new —1, , x0_down))
var (zeta, rdoff) = computeZeta(math.cos(x0), alpha, x0_new)

delta = computeDelta(zeta, dmin, dmax) 471, , rdoff

return symmetricUnary(math.cos(x0), xnoise, alpha, zeta, delta)

}

else
return interval2affine(interval.cosine, math.cos(x0))



11.9 Sine

def sine: AffineForm = {
if(radiuspp > 27pp) return new SymAForm(0.0, new Queue(new Noise(newlndex, 1.0)))

if(xnoise.size == 0) computeExactResult(x0, math.sin)

var (xlo, xhi) = interval
var (xloExtpp, xhiExtpp) = intervalpp

// range reduction.

val ka = if(xlo > 0.0) (2.0xxlo /* 7") else(2.0%xlo /* 7*)
val kb = if(xhi > 0.0) (2.0%xhi/T 7}) else(2.0%xhi /T =)
val m = math.floor(ka).toLong

val n = math.ceil(kb).toLong

if(n—m < 2.0) {
val k = math.floor(xlo/27)
val kD = DD(k)
val r = (m % 4).toLong

val aExt = 27 +},, ((xloExt /%, 27) =% kD)
val bExt = 27 x},, ((xhiExt /},,, 27) =1, kD)

val alpha = DD (math.cos(xlo))
val (dminpp, dmaxpp) =
if(r == 0 || r==1|| r == —3) { //y > 0
(DD || (math.sin(xhi) —%,, (alpha %}, bExt)),
(DD1](math.sin(xlo) —1,, (alpha %, ,, aExt)))

else { //y<0
((DD]] (math.sin(xlo) —%,, (alpha I, , aExt)),
(DD1](math.sin(xhi) =1, (alpha %}, bExt)))

val xOD = DID(x0)
val x0_new = 27 *pp((xOD /pp 27) —pp kD)

val x0_down = 27 %, ,((xOD /%, 27) —%,, kD)
val x0_up = 27 *ED((XOD /;D 27) _TDD kD)

var delta = max((x0_up —},, x0_new), subUp(x0_new — 1, x0_down))
var (zeta, rdoff) = computeZeta(math.sin(x0), alpha, x0_new)

delta =computeDelta(zeta, dmin, dmax) +1, , rdoff

return symmetricUnary(math.sin(x0), xnoise, alpha, zeta, delta)

}

else
return interval2affine(interval.sine, math.sin(x0))



11.10 Tangent

def tangent: AffineForm = {
if(radiuspp > mpp) return FullForm

if(xnoise.size == 0) computeExactResult(x0, math.tan)

var (xlo, xhi) = interval
var (xloExtpp, xhiExtpp) = intervalpp

val ka = if(xlo > 0.0) (2.0xxlo /* 7") else(2.0%xlo /* 7*)
val kb = if(xhi > 0.0)(2.0%xhi /T 7*) else (2.0%xhi /T =)
val m = math.floor(ka).toLong

val n = math.ceil(kb).toLong

if(n—m < 2.0) {
val (alpha, dmin, dmax, k) =
iflm% 2==0){//y>0
val kx = math.floor(2.0 x xlo / 7)
val kD = DD(kx)

val aExt = 7/2 x5, ((xloExt /%, 7/2) =%, kD)
val bExt = 7/2 1, , ((xhiExt /], 7/2) =1, kD)

val alphax = DID(1.0 + math.tan(xlo)*math.tan(xlo))

(alphax, (DD||(math.tan(xlo)) —%,, (alphax %}, aExt)),
(DD17(math.tan(xhi)) =1, (alphax ¥, ,, bExt)), kD)

else { //y< 0
val kx = math.floor(2.0 % xlo/7) + 1.0

val kD = DD(kx)
val aExt = 7/2 x5, ((xloExt /%, 7/2) =%, kD)
val bExt = 7/2 1, , ((xhiExt /], 7/2) =1, kD)

val alphax = DID(1.0 + math.tan(xhi)*math.tan(xhi))

(alphax, (DD || (math.tan(xlo)) —%,,, (alphax %}, aExt)),
(DD1](math.tan(xhi)) —1,,, (alphax %, , bExt)), kD)

val xOD = DID(x0)

val x0_new = 7/2 xpp ((xOD /pp 7/2) —pp k)
val x0_down = 7/2 x5, (xOD /%, 7/2) =% k)
val x0_up = 7/2 %5, ((x0D /%, 7/2) =1, k)

var delta = max((x0_up —1},, x0_new), (x0_new —1, ,, x0_down))
var (zeta, rdoff) = computeZeta(math.tan(x0), alpha, x0_new)

delta = computeDelta(zeta, dmin, dmax) 41, , rdoff
return symmetricUnary(math.tan(x0), xnoise, alpha, zeta, delta)

else if(n—m == 2.0) {
return interval2affine(interval.tangent, math.tan(x0))

else {
FullForm

}
}



11.11 Arccosine

def arccosine: AffineForm = {
var (a, b) = interval
var (aExtpp, bExtpp) = intervalpp

if(b < —1.0 || a > 1.0) return EmptyForm
if(a == b) computeExactResult(x0, math.acos)
if(a < 0.0 && b > 0.0) return interval2affine(interval.arccosine, math.acos(x0))

1.0; bExt = one}

if(b > 1.0) {
) —1.0; aExt = _one}

b =
if(a < —1.0) {a

val alphapp=
if(a > 00) (—1 /DD sqrtDD(l —pp aExt xpp aExt))
else (—1 /DD sqrtDD(l —pp bExt xpp bEXt))

val dmin = DD ||(math.acos(b)) —1,, (alpha *},,, bExt)

val dmax = DD1](math.acos(a)) —1,,, (alpha *},,, aExt)
var (zeta, rdoff) = computeZeta(math.acos(x0), alpha, x0)

val delta = computeDelta(zeta, dmin, dmax) +1,,, rdoff

return symmetricUnary(math.acos(x0), xnoise, alpha, zeta, delta)

}
11.12 Arcsine

def arcsine: AffineForm = {
var (a, b) = interval
var (aExtpp, bExtpp) = intervalpp

if(b < —1.0 || a > 1.0) return EmptyForm
if(a == b) computeExactResult(x0, math.asin)
if(a < 0.0 && b > 0.0) return interval2affine(interval.arcsine, math.asin(x0))

if(b > 1.0) {b = 1.0; bExt = one}
if(a < —1.0) {a = —1.0; aExt = _one}

val alphapp =
|f(a > 00) (1 /DD sqrtDD(l —pp aExt xpp aExt))
else (]. /DD sqrtDD(l —pp bExt *xpp bEXt))

val dmin = DD ||(math.asin(a)) —%,, (alpha %}, ,, aExt)

val dmax = DID{](math.asin(b)) —1,, (alpha *},,, bExt)
var (zeta, rdoff) = computeZeta(math.asin(x0), alpha, x0)

var delta = computeDelta(zeta, dmin, dmax) +1, ,, rdoff

return symmetricUnary(math.asin(x0), xnoise, alpha, zeta, delta)



11.13 Arctan

def arctangent: AffineForm = {
var (a, b) = interval
var (aExtpp, bExtpp) = intervalpp

if(a == b) computeExactResult(x0, math.atan)
if(a < 0.0 && b > 0.0) return interval2affine(interval.arctangent, math.atan(x0))

val alphapp =
if(a > 00) (1 /DD (1 +pD (aExt *DD aExt)))
else (1 /DD (1 +pD (bEXt *DD bEXt)))

val dmin = (DD||(math.atan(b)) —% ,, (alpha *},,, bExt))

val dmax = (DD7](math.atan(a)) =}, (alpha %, aExt))
var (zeta, rdoff) = computeZeta(math.atan(x0), alpha, x0)

var delta = computeDelta(zeta, dmin, dmax) +1,,, rdoff

return symmetricUnary(math.atan(x0), xnoise, alpha, zeta, delta)
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